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This article considers the acoustic field propagating in the 
radiation-dominated (p = e ê 3) universe of arbitrary space 
curvature (K = 0, ±1). The field equations are reduced to the 
dʼAlembert equation in an auxiliary static Robertson–Walker 
spacetime and dispersion relations are discussed.

‡ Introduction
The  Sachs–Wolfe  theorem  ([1],  pp.  76–77)  contains  two  separate  results  formulated  for
two different equations of state: the first (i, p. 76) for pressureless matter (p = 0) and the
second (ii, p. 77) for an ultrarelativistic gas (p = e ê 3). The first result was recently recal-
culated  and  discussed  in  [2].  In  this  article  we  concentrate  on  the  latter  and  call  it  the
acoustic theorem to distinguish it from the former.

The acoustic theorem refers to the spatially flat (K = 0), hot (p = e ê 3) Friedmann–Robert-
son–Walker universe and the scalar perturbation propagating in it. The theorem states that
with the appropriate choice of the perturbation variable,  one can express the propagation
equation in the form of d’Alembert’s equation in Minkowski spacetime. Scalar perturba-
tions in the flat, early universe propagate like electromagnetic or gravitational waves ([1],
p. 79; see also [3]).

On the other hand, the wave equation for the scalar field of the dust (p = 0) cosmological
model  can  be  transformed  into  the  d’Alembert  equation  in  the  static  Robertson–Walker
spacetime,  regardless  of  the  universe’s  space curvature  (see [4]).  Therefore,  we can sup-
pose that  the flatness assumption in the Sachs–Wolfe theorem is not needed and that  the
theorem is true in the general case. The proof of this fact, formulated as a symbolic compu-
tation, is the subject of this article.

We  have  found  the  synchronous  coordinate  system  the  most  convenient  for  algorithmic
purposes. The code is concise and does not involve concepts other than those covered in
classical papers and textbooks [1, 5, 6]. The perturbation equations can also be reduced to
d’Alembert’s  equation  in  other  gauge-invariant  formalisms  [7].  The  level  of  difficulty
depends  on  the  formalism,  but  in  each  case  difficulties  are  computational  rather  than
conceptual.
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Originally,  the  Sachs–Wolfe  theorem  was  published  without  a  detailed  proof.  The  theo-
rem contradicts  the  heuristic,  but  popular  Jeans  instability  criterion (instability  is  not  the
best  word;  gravitational  and  electromagnetic  waves  show  the  same  kind  of  behavior
[1, p. 79]). Probably these two circumstances are responsible for the Jeans instability crite-
rion’s still playing a marginal role in explaining cosmic microwave background radiation
fluctuations [8] and cosmological structure genesis.

This  article  consists  of  a  brief  description  of  the  problem  and  a  short  verification  using
Mathematica. Throughout, c = 1 and 8 p G = 1.

‡ Scalar Perturbations on the Friedmann–Robertson–
Walker Background
We adopt Robertson–Walker metrics in spherical coordinates xs = 8h, c, J, f<:

(1)gHRWL = a2HhL

-1 0 0 0
0 1 0 0

0 0
sin2J K cN

K 0

0 0 0
sin2J K cN sin2HJL

K

with the scale factor aHhL appropriate for the equation of state p = e ê 3,

(2)aHhL =
sinI K cM

K
.

Consider the scalar perturbations in the synchronous system of reference. The metric ten-
sor correction is then determined by two scalar functions E and C [9]:

(3)dgm0 = 0,

(4)dgmn = a2 !m!nE +
1

3
HC - ÆEL gmn .

Here Æ stands for the Beltrami–Laplace operator on the h = constant hypersurface. Even-
tually, the metric takes the form

(5)gmn = gHRWL mn + dgmn.
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To first order in the perturbation expansion, the Einstein equations with the metric tensor
(5) reduce to

(6)
¶∂2

¶∂h2
lHxsL = -2

a£HhL

aHhL

¶∂

¶∂h
lHxsL-

1

3
ÆHlHxsL+ mHxsLL,

(7)

¶∂2

¶∂h2
mHxsL =

-I2+ 3 c2HhLM
a£HhL

aHhL

¶∂

¶∂h
mHxsL+

1

3
+ c2HhL H3 K + ÆL HlHxsL+ mHxsLL,

where we set m = C,  l = –ÆE  (in agreement with [5, 6]); cHhL  stands for sound velocity.
The density contrast d = de ê e reads

(8)dHxsL =
1

3 eHhL a2HhL
3

a£HhL

aHhL

¶∂

¶∂h
mHxsL- H3 K + ÆL HlHxsL+ mHxsLL .

Let us define a new perturbation variable Y with the help of the second-order differential
transformation of the density contrast d,

(9)YHxsL =
1

cosI K cM

¶∂

¶∂h

K

tan2I K cM

¶∂

¶∂h

tan2I K cM

K
cosI K cM dHxsL .

The function YHxsL is the solution of the d’Alembert equation

(10)
¶∂2

¶∂h2
YHxsL-

1

3
ÆYHxsL = 0

with the Beltrami–Laplace operator Æ = H3Lgmn !m!n acting in this space,

(11)H3Lg =

1 0 0

0
sin2J K cN

K 0

0 0
sin2J K cN sin2HJL

K

.

Sachs–Wolfe Acoustic Theorem for K = 0, ±1

Scalar perturbations in the hot (p= e ê 3) Friedmann–Robertson–Walker universe of
arbitrary space curvature (K = 0, ±1) expressed in terms of the perturbation variable (9)
obey the wave equation (10) in the static Robertson–Walker spacetime g= diagI–1, H3LgM.

Proof

We  perform  this  calculation  in  Mathematica.  The  commands  are  reproduced  below  and
also can be downloaded from drac.oa.uj.edu.pl/usr/woszcz/kody/acoucticRWcode.nb.
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· Mathematica Verification

ü Coordinates

Clear@K, a, c, e, H, Lap, YD;
X = 8h, c, J, j<; XX = 8h_, c_, J_, j_<;
x = Sequence üü X;
xx = Sequence üü XX;

ü Friedmann–Robertson–Walker Background for e = 3 p

c@h_D =
1

3
;

a@h_D = LimitB
SinB k hF

k
, k Ø KF;

H@h_D =
a£@hD

a@hD2
êê Simplify;

e@h_D =
3 K

a@hD2
+ 3 H@hD2 êê Simplify;

ü Lifshitz–Khalatnikov Perturbation Equations (Partial Differential Form)

lH2,0,0,0L@xxD = -
2 a£@hD

a@hD
¶∂hl@xD -

1

3
HLap@lD@xD + Lap@mD@xDL;

mH2,0,0,0L@xxD = -I2 + 3 c@hD2M
a£@hD

a@hD
¶∂hm@xD +

1

3
I1 + 3 c@hD2M

HHLap@lD@xD + 3 K l@xDL + HLap@mD@xD + 3 K m@xDLL;
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ü The Density Contrast

d@xxD =

1

3 e@hD a@hD2

-HHLap@lD@xD + 3 K l@xDL + HLap@mD@xD + 3 K m@xDLL +

3
a£@hD

a@hD
¶∂8h,1<m@xD êê Simplify;

ü  Higher-Order Derivatives

lHk_Integerê;k>2,0,0,0L@xxD := DAlH2,0,0,0L@xD, 8h, k - 2<E

mHk_Integerê;k>2,0,0,0L@xxD := DAmH2,0,0,0L@xD, 8h, k - 2<E

lH2,d1_,d2_,d3_L@xxD = DAlH2,0,0,0L@xD, 8c, d1<, 8J, d2<, 8j, d3<E;

mH2,d1_,d2_,d3_L@xxD = DAmH2,0,0,0L@xD, 8c, d1<, 8J, d2<, 8j, d3<E;

ü Laplacian in the Maximally Symmetric Three-Dimensional Curved Space

w@K_, c_D = LimitB2 k CotB k cF, k Ø KF;

Lap@f_D@xxD =

w@K, cD2

4 CosB K cF
2
ICsc@JD2 ¶∂8j,2<f@xD + Cot@JD ¶∂Jf@xD + ¶∂8J,2<f@xDM +

w@K, cD ¶∂cf@xD + ¶∂8c,2<f@xD;

ü The Gauge-Invariant Variable Y

t@K_, h_D = LimitB
TanB k hF

2

k
, k Ø KF;

Y@xxD =

1

CosB K hF
¶∂8h,1<

1

t@K, hD
¶∂hJt@K, hD CosB K hF d@xDN ;
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ü The Wave Equation

¶∂8h,2<Y@xD -
1

3
Lap@YD@xD == 0;

Timing@Simplify@%, TimeConstraint Ø 5000DD

8559.997, True<

‡ Dispersion Relations
Equation (10) reduces the problem of cosmological density perturbations to a field theory
on a curved background (see [10]). Acoustic waves are dispersed by the space curvature.
The dispersion relation for equation (10) takes the form ([10] equation (5.27))

(12)w =
1

3
Ik2 -KM ,

and the group velocity becomes

(13)vg =
¶∂

¶∂ k
w =

k

3 k2 -K
.

In flat space (K = 0), the group velocity is constant and equal to 1 ë 3 . For K ¹≠ 0, the
dispersion relation is nonlinear. In a space of negative curvature (K = –1), the waves be-
have as a scalar field with mass m = 1. The group velocity is a function of k and decreases
to zero in the limit as k Ø 0,

(14)lim
kØ 0

vg = 0,

while the limit frequency is still positive

(15)lim
kØ 0

w =
1

3
.

Acoustic behavior does not extend to the solutions for imaginary k  such that k2 œ H–1, 0L
(supplementary series [11, 12], supercurvature modes [13]).
In a closed universe (K = 1), the wave numbers are integers and 1 < k. The general solu-
tion is a countable combination of hyperspherical functions.
Using the basis  functions YHxsL,  one can reconstruct  the solution for  the density  fraction
dHxsL  by  means  of  the  reciprocal  relation  (9).  Compare  the  analogous  procedure  for  the
scalar field [4]. Reconstructing dHxsL makes it necessary to restore the less desirable gauge
ambiguity.
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‡ Conclusion
A  generic  solution  to  equation  (10)  forms  a  random  wave  field  in  some  auxiliary  static
Robertson–Walker spacetime. The space curvature K  is  the only quantity that  affects the
wave dispersion. Neither the Jeans scale nor the horizon size appears in equation (10); con-
sequently,  the  dispersion  relation  (12)  does  not  indicate  them  as  critical  values.  Critical
scales  of  the  Jeans  type,  which  emerge  in  some  Newtonian  approaches,  disappear  in  a
fully relativistic treatment. Equation (10) does not confirm the existence of frozen modes
[14]. The waves, whether inside or outside the horizon, propagate in the same manner (for
K = 0 with the same phase and group velocity), and do not change at the horizon crossing.
Frozen modes (implemented in cosmological software [15]) involved in deciphering cos-
mological parameters [8] are not solutions consistent with general relativity.

A further consequence of the Sachs–Wolfe acoustic theorem is that the canonical formal-
ism  is  adequate  to  define  the  constants  of  motion  for  a  scalar  perturbations  field.  For
K = 0, the construction of conserved quantities (energy, momentum, and angular momen-
tum)  is  fairly  obvious  and  reproduces  that  from  other  scalar  fields  in  Minkowski  space
[10]. For K < 0, the hyperbolic momentum must be introduced and the Fourier expansion
limited to the principal series of the Laplacian eigenfunctions.
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