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Sampling Distribution of ML 
Estimators: Cauchy Example
Jan Vrbik

We show how to use the Edgeworth series to construct an 
accurate approximation to the sampling distribution of the 
maximum likelihood estimator of a parameter of a Cauchy 
distribution. We then demonstrate the accuracy of this 
approximation, valid even for relatively small samples.

‡ Introduction
Random  variables  in  statistics  have  many  different  distributions;  one  of  them  is  called
Cauchy, and has the following probability density function:

(1)f HxL =
s

p
ÿ

1

s2 + Hx - mL2
,

where x can have any real value. The distribution has two parameters m and s, which repre-
sent its median (the “location” parameter) and semi-interquartile deviation (the “scale” pa-
rameter),  respectively.  This rather unusual distribution has no mean and infinite standard
deviation.
The exact parameter values are usually not known, and need to be estimated by repeating
the corresponding random experiment independently n times, and converting the informa-
tion thus gathered into two respective estimates of m and s. The best way of doing this is
by maximizing the corresponding likelihood function:

(2)‰
i=1

n s

p
ÿ

1

s2 + HXi - mL2
,

where the Xi are the individual observations, or, equivalently, its logarithm

(3)n ln s- n ln p -‚
i=1

n

lnAs2 + HXi - mL2E.
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The maximization is usually achieved by setting the first derivative (with respect to each
parameter)  of  the  previous  expression  to  zero,  thus  obtaining  the  so-called  normal  equa-
tions, namely

(4)‚
i=1

n Xi - m̀

s̀2 + HXi - m̀L2
= 0,

and

(5)
n

s̀
= 2 s̀‚

i=1

n 1

s̀2 + HXi - m̀L2
,

where the implicit solution (these equations cannot be solved explicitly for m  and s) de-
fines the maximum likelihood (ML) estimators of m and s, denoted m̀ and s̀, respectively.
Since  these  estimators  are  always  implicit  functions  of  the  n  random  observations,  they
are both random variables, with their own distribution called the sampling distribution.
The normal equations can be rewritten more elegantly as

(6)
X - m̀

s̀2 + HX - m̀L2
= 0

and

(7)
s̀2

s̀2 + HX - m̀L2
=

1

2
,

where each bar indicates taking the corresponding sample average—X  now symbolically
represents all n observations.

‡ Approximating Sampling Distribution of s̀
To simplify our task, we assume that the value of m is known and equal to zero. From now
on, we are thus concerned with estimating only the scale parameter s, based on the follow-
ing simplified version of (7):

(8)
s̀2

s̀2 + X2
=

1

2
.
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Furthermore, we can introduce the following so-called pivot

(9)G
`
ª

s̀

s
,

which reduces (8) to

(10)
G
` 2

G
` 2

+ I
X
s
M
2
ª

G
` 2

G
` 2

+U 2
=

1

2
,

where U1, U2, …, Un  is a random independent sample from the Cauchy distribution with

m = 0 and the scale parameter equal to 1. It is thus obvious that G
`
 (and its sampling distri-

bution) will be free of s. 

We first expand G
`
 as a power series in ¶ε (a “smallness” parameter—¶ε j indicates that its co-

efficient is proportional to n- jê2), thus:

(11)G
`
= 1+ ¶ε g1 + ¶ε2 g2 + ¶ε3 g3 +….

The first term is 1 since the corresponding expansion of s̀ must start with s—this is a gen-
eral  property  of  a  maximum  likelihood  estimator.  We  then  similarly  expand  the  expres-
sion under the bar in (10).

XP@q_, k_D := Series@q, 8¶ε, 0, k<D êê Normal êê Expand;

lhs = XPB
G2

G2 + U2
ê. 9G Ø 1 + SumAgi ¶εi, 8i, 3<E=, 3F

1

1 + U2
+
2 U2 ¶ε g1

I1 + U2M2
-
3 U2 ¶ε2 g1

2

I1 + U2M3
+

U4 ¶ε2 g1
2

I1 + U2M3
+
4 U2 ¶ε3 g1

3

I1 + U2M4
-

4 U4 ¶ε3 g1
3

I1 + U2M4
+
2 U2 ¶ε2 g2

I1 + U2M3
+
2 U4 ¶ε2 g2

I1 + U2M3
-
6 U2 ¶ε3 g1 g2

I1 + U2M4
-

4 U4 ¶ε3 g1 g2

I1 + U2M4
+
2 U6 ¶ε3 g1 g2

I1 + U2M4
+
2 U2 ¶ε3 g3

I1 + U2M4
+
4 U4 ¶ε3 g3

I1 + U2M4
+
2 U6 ¶ε3 g3

I1 + U2M4

Placing  a  bar  over  each  term  and  then  replacing  every  Uk

I1+UkMm
 by

E@ Uk

I1+U2Mm
D + ¶ε

Uk

I1+U2Mm
- E@ Uk

I1+U2Mm
D,  where  E  stands  for  the  corresponding expected

value (a plain number), lets us solve for g1, g2, and g3 [1]. Here G1 stands for G` - 1.
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L@q_D :=

L@qD = IntegrateB
q

1 + U2
, 8U, -Infinity, Infinity<F ì p;

G1 = ModuleB8lhs, eq, g<,

lhs = XPB
G2

G2 + U2
ê. 9G Ø 1 + 8g@1D, g@2D, g@3D<.9¶ε, ¶ε2, ¶ε3==, 3F;

eq =

XPB

lhs ê. Uk_ I1 + U2Mm_ :>

LB
Uk

I1 + U2M-m
F + ¶ε

Uk

I1 + U2M-m
- LB

Uk

I1 + U2M-m
F

ê. I1 + U2M-1 :> LB
1

1 + U2
F + ¶ε

1

1 + U2
- LB

1

1 + U2
F, 3F;

DoA

g@iD =

ExpandAg@iD ê. SolveACoefficientAeq, ¶εiE == 0, g@iDE@@

1DDE, 8i, 3<E; 8g@1D, g@2D, g@3D<.9¶ε, ¶ε2, ¶ε3=

F

-4 ¶ε -
1

2
+

1

1 + U2
+ ¶ε2 32 -

1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
+ 8 -

1

2
+

1

1 + U2

2

+

¶ε3 -256 -
1

16
+

U2

I1 + U2M3
-
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
-

256 -
1

16
+

U4

I1 + U2M3
-
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
+

128 -
1

16
+

U2

I1 + U2M3
-
1

2
+

1

1 + U2

2

- 128 -
1

16
+

U4

I1 + U2M3

-
1

2
+

1

1 + U2

2

- 128 -
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2

2

- 16 -
1

2
+

1

1 + U2

3
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· Cumulants

The next step is to compute the expected value, variance, and the next two cumulants of
G
`
. We recall the definition of cumulants as coefficients of ti ê i! in the following expansion.

SeriesALogA1 + SumAmi ti ë i!, 8i, 2, 4<EE, 8t, 0, 4<E

m2 t2

2
+
m3 t3

6
+

1

24
I-3 m2

2 + m4M t4 + O@tD5

This tells us that the second and third cumulants are equal to m2  and m3, respectively, but
the  fourth  cumulant  is  m4 - 3 m22,  where  mi  denotes  the  corresponding  central  moment,
that is,

(12)mi ª EBJG
`
- k1N

i
F,

and k1 is the expected value of G
`
 (which also happens to be the first cumulant).

To  find  these,  we  need  a  procedure  for  computing  the  expected  value  of  expressions
involving products and powers of all possible sample averages (our bars) in our previous
expansion of G1. This is trivial for a single bar (its expected value is always zero), and rela-
tively easy for a product of two or three bars (including powers, as a special case), since
one can show that

(13)EA f1HUL ÿ f2HULE =
E@ f1HUL ÿ f2HULD

n
,

and

(14)EA f1HUL ÿ f2HUL ÿ f3HULE =
E@ f1HUL ÿ f2HUL ÿ f3HULD

n2
.

For example,

(15)

EB -
1

8
+

U 2

I1+U 2M
2

ÿ -
1

2
+

1

1+U 2

2

F =

1

n p
‡
-¶

¶ 1

1+U 2
-

1

8
+

U 2

I1+U 2M
2

-
1

2
+

1

1+U 2

2

dU = -
1

128 n
,

and so on.

Things get more complicated when the overall power is four or higher (we need to go up
to six). In such a case, we first need to find all partitions of f1HUL, f2HUL, f3HUL, …, where
the  individual  subsets  must  have  at  least  two  elements  each.  Thus,  for  example,  having
four terms, we either take all  of them as a single subset or partition them into two pairs,
such  as  8 f1, f2<, 8 f3, f4<—there  are  three  ways  of  doing  this.  Similarly,  having  six  fi,  we
can either take all of them or split them into two triplets (10 ways), a pair and a quadruplet
(15 ways), or three pairs (15 ways).
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Things get more complicated when the overall power is four or higher (we need to go up
to six). In such a case, we first need to find all partitions of f1HUL, f2HUL, f3HUL, …, where
the  individual  subsets  must  have  at  least  two  elements  each.  Thus,  for  example,  having

such  as  8 f1, f2<, 8 f3, f4<—there  are  three  ways  of  doing  this.  Similarly,  having  six  fi,  we
can either take all of them or split them into two triplets (10 ways), a pair and a quadruplet
(15 ways), or three pairs (15 ways).

The contribution of each of these partitions is then computed using the following scheme:
we multiply the expected values of  the product  of  the fi  in  each subset,  multiply the an-
swer  by nHn- 1L Hn- 2L …Hn+ 1- kL,  where  k  is  the  number  of  these  subsets,  and divide
by nk. Thus, for example the 8 f1, f2<, 8 f3, f4<, 8 f5, f6<< partition contributes

(16)
nHn- 1L Hn- 2L ÿE@ f1 f2D ÿE@ f3 f4D ÿE@ f5 f6D

n3
.

To find, for example, EA f1 ÿ f2 ÿ f3 ÿ f4 ÿ f5 ÿ f6E,  all such contributions from all correspond-
ing partitions must be added together. This is done by the following program.

EV@x_, io_D :=

QuietüCLADistributeAHAExpand@xD ê. ¶εj_ê;j>2 io Ø 0EE ê. H Ø Q ê.

¶ε Ø 1, ioE;

CL@x_, k_D := Collect@x, nD ê. ni_ê;i<-k Ø 0;
H@q_ w_D := q H@wD ê; FreeQ@q, UD;
H@q___, w_ t_, s___D := Apply@H, Sort@8q, w, t, s<DD;

HAw___, q_i_, t___E :=

Apply@H, Sort@8w, Table@q, 8i<D, t< êê FlattenDD;
Quiet@Needs@"Combinatorica`"DD;
Q@q__D := ModuleA8k = Length@8q<D, r, s<,

r = Select@SetPartitions@8q<D,
FreeQ@Map@Length, ÒD, 1D &D; s = Apply@Fa, r, 82<D;
r = Apply@Times, s, 81<D Map@P, Map@Length, sDD ë nk;

Total@CL@r, ioDD ê. Fa Ø FE;

P@i_D := Product@n + 1 - j, 8j, i<D;
F@q__D := Module@8w = 8q< ê. a_ Ø a<, L@Apply@Times, wDDD;

The second argument of EV specifies the accuracy to be achieved (up to 1n  when the argu-

ment is equal to 1, up to 1
n2

 when it is equal to 2, etc.). At this point, ¶ε becomes a redun-
dant parameter and is eliminated by setting it to 1.
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We can thus get the expected value, variance, and the next two cumulants of G
`
.

k1 = 1 + EV@G1, 1D
k2 = EVAG12, 2E - EV@G1, 1D2

k3 = EVAG13, 2E - 3 EVAG12, 1E EV@G1, 1D

k4 = CLAEVAG14, 3E - 4 EVAG13, 2E EV@G1, 1D +

6 EVAG12, 1E EV@G1, 1D2 - 3 k2
2, 3E

1 +
1

n

7

n2
+
2

n

12

n2

138

n3

· Edgeworth Expansion

One can show [2] that a good approximation to the probability density function of

(17)Z ª
G
`
- k1

k2

is provided by

(18)
exp J- z2

2 N

2 p
1+

g3

6
H3HzL+

g4

24
H4HzL+

g32

72
H6HzL+… ,

where g3 ª
k3
k23ê2

 and g4 ª
k4
k22

 are the normalized cumulants, and HiHzL are simple polynomi-

als defined by

(19)HiHzL ª H-1Li exp
z2

2
ÿ

di expJ- z2

2 N

dzi
.

Sampling Distribution of ML Estimators: Cauchy Example 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



These are closely related to Hermite polynomials; the exact correspondence is clear from
the first command.

Hi_@z_D := HermiteHBi,
z

2
F 2-iê2 êê Expand;

pst =

ExpA-z2 ë 2E

2 p
1 +

k3

6 k23ê2
H3@zD +

k4

24 k22
H4@zD +

k32

72 k23
H6@zD ;

The resulting expression can be easily  transformed into  a  probability  density  function of
G
`
, which can then be plotted for n = 5, for example.

pdf = pst ê. z Ø
s - k1

k2

ì k2 ;

Plot@pdf ê. n Ø 5 êê Simplify, 8s, 0, 4.5<D

1 2 3 4

0.1

0.2

0.3

0.4

0.5
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‡ Comparison with Empirical Distribution
The best way of verifying the accuracy of this approximation is to generate a large collec-
tion of random independent samples of size five from a Cauchy distribution (with the loca-
tion and scale  parameters  equal  to  0  and 1,  respectively),  for  each such sample  compute
the value of G

`
 by solving (10), and then display these G

`
-values in a histogram.

res = Table@0, 810 000<D;

DoBu = RandomReal@CauchyDistribution@0, 1D, 5D;

res@@iDD =

Abs@GD ê. FindRootBTotalAG2 ë IG2 + u2ME ==
5

2
, 8G, 1<F,

8i, 10 000<F

hist = Histogram@resD;

We are now in a position to check how well our approximate probability density function,
correspondingly rescaled, matches this histogram (which, for large total frequency, repre-
sents—up to small statistical fluctuations—the exact distribution of G

`
).

Show@hist, Plot@2000 pdf ê. n Ø 5, 8s, 0, 4.5<D,
PlotRange Ø 880, 4.5<, 80, 1600<<D

Even  though  this  is  an  improvement  over  the  usual  normal  approximation,  it  is  still  far
from a reasonably good match (but one should remember that five is an extremely small
sample size—things do improve, rather dramatically, as n increases).

Nevertheless,  there is  one particular technique one can employ to achieve a substantially
better agreement, even with the current value of n = 5.
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· Transforming s̀

We can use the same approach and program to find an approximation for the distribution
of THs̀L,  where T  is  an arbitrary (preferably increasing)  function of  a  non-negative argu-
ment. This can be achieved by defining Ts and computing its first four cumulants.

Ts = Series@T@H1 + G1L sD - T@sD, 8¶ε, 0, 3<D êê Normal

-4 ¶ε s -
1

2
+

1

1 + U2
T£@sD +

¶ε2 32 s -
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
+ 8 s -

1

2
+

1

1 + U2

2

T£@sD +

8 s2 -
1

2
+

1

1 + U2

2

T££@sD +

¶ε3 -256 s -
1

16
+

U2

I1 + U2M3
-
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
-

256 s -
1

16
+

U4

I1 + U2M3
-
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
+

128 s -
1

16
+

U2

I1 + U2M3
-
1

2
+

1

1 + U2

2

- 128 s -
1

16
+

U4

I1 + U2M3

-
1

2
+

1

1 + U2

2

- 128 s -
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2

2

-

16 s -
1

2
+

1

1 + U2

3

T£@sD - 4 s -
1

2
+

1

1 + U2

32 s -
1

8
+

U2

I1 + U2M2
-
1

2
+

1

1 + U2
+ 8 s -

1

2
+

1

1 + U2

2

T££@sD -

32

3
s3 -

1

2
+

1

1 + U2

3

TH3L@sD
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k1 = T@sD + EV@Ts, 1D
k2 = CollectAEVATs2, 2E - EV@Ts, 1D2, n, SimplifyE

k3 = EVATs3, 2E - 3 EVATs2, 1E EV@Ts, 1D êê Simplify

k4 =

CLAEVATs4, 3E - 4 EVATs3, 2E EV@Ts, 1D + 6 EVATs2, 1E EV@Ts, 1D2 -

3 k2
2, 3E êê Simplify

T@sD +
s T£@sD + s2 T££@sD

n

2 s2 T£@sD2

n
+

1

n2

s2 I7 T£@sD2 + 2 s2 T££@sD2 + 4 s T£@sD I4 T££@sD + s TH3L@sDMM

12 s3 T£@sD2 HT£@sD + s T££@sDL

n2

1

n3

2 s4 T£@sD2 I69 T£@sD2 + 48 s2 T££@sD2 + 16 s T£@sD I9 T££@sD + s TH3L@sDMM

The third cumulant can be thus made equal to zero for any s by solving the following dif-
ferential equation.

DSolve@T£@sD + s T££@sD == 0, T@sD, sD

88T@sD Ø C@2D + C@1D Log@sD<<

The simplest nontrivial solution is clear.

T@s_D := Log@sD
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Now, we have to recompute the first four cumulants of Ts.

k1 = T@sD + EV@Ts, 1D
k2 = CollectAEVATs2, 2E - EV@Ts, 1D2, n, SimplifyE

k3 = EVATs3, 2E - 3 EVATs2, 1E EV@Ts, 1D êê Simplify

k4 =

CLAEVATs4, 3E - 4 EVATs3, 2E EV@Ts, 1D + 6 EVATs2, 1E EV@Ts, 1D2 -

3 k2
2, 3E êê Simplify

Log@sD

1

n2
+
2

n

0

10

n3

Having reduced k3  to zero not only greatly simplifies the approximate probability density
function of

(20)

lnHs̀L- lnHsL

2
n + 1

n2

,

but it also makes the corresponding approximation substantially more accurate. 

This is now the new approximate probability density function.

pst =
ExpA-z2 ë 2E

2 p
SeriesB1 +

k4

24 k22
H4@zD, 8n, Infinity, 1<F êê

Normal

‰-
z2

2

2 p
+
5 ‰-

z2

2 I3 - 6 z2 + z4M

48 n 2 p
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The improvement can be seen by converting the previous probability density function of
(20) to that of G

`
.

pdf = pst ê. z Ø
Log@sD

k2

ì k2 ì s;

Let us now compare the last function to the original histogram.

Show@hist, Plot@2000 pdf ê. n Ø 5, 8s, 0, 4.5<D,
PlotRange Ø 880, 4.5<, 80, 1600<<D

This  has  now  produced  a  rather  respectable  agreement  between  the  new  approximation
and the exact distribution.

· Potential Extensions

In  a  similar  manner,  one  can  construct  an  approximate  joint  probability  density  function
for  both  m̀  and  s̀.  This  requires  the  corresponding  generalization  of  cumulants,  Hermite
polynomials,  and  the  Edgeworth  expansion.  Readers  with  enough  statistical  expertise
should have no difficulty pursuing that  direction on their  own since,  surprisingly,  the re-
quired modifications of the program presented in this article would not be that substantial.
The most difficult part,  namely the routine for computing the expected value of products
and powers of sample averages, needs no change at all.
The same technique can also be used to find a good approximation to a probability density
function of almost any parameter estimator of a specific distribution. 
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