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It  has  long  been  known  that  Buffon’s  needle  experiments  can  be  used  to
estimate  p.  Three  main  factors  influence  these  experiments:  grid  shape,
grid  density,  and  needle  length.  In  statistical  literature,  several  experi-
ments  depending  on  these  factors  have  been  designed  to  increase  the
efficiency  of  the  estimators  of  p  and  to  use  all  the  information as  fully  as
possible.  We wrote  the  package  BuffonNeedle  to  carry  out  the  most  com-
mon forms of Buffon’s needle experiments. In this article we review statisti-
cal aspects of the experiments, introduce the package BuffonNeedle, discuss
the  crossing  probabilities  and  asymptotic  variances  of  the  estimators,  and
describe how to calculate them using Mathematica.

‡ Introduction
Buffon’s needle problem is one of the oldest problems in the theory of geometric
probability.  It  was  first  introduced  and  solved  by  Buffon [1]  in  1777.  As  is  well
known,  it  involves  dropping  a  needle  of  length  l  at  random  on  a  plane  grid
of parallel lines of width d > l  units apart and determining the probability of the
needle crossing one of the lines. The desired probability is directly related to the
value of p, which can then be estimated by Monte Carlo experiments. This point
is one of the major aspects of its appeal. When p is treated as an unknown param-
eter,  Buffon’s  needle  experiments  can  be  seen  as  valuable  tools  in  applying  the
concepts  of  statistical  estimation  theory,  such  as  efficiency,  completeness,  and
sufficiency.  For  instance,  in  order  to  obtain  better  estimators  of  p,  Kendall  and
Moran [2]  and Diaconis  [3]  examine  several  aspects  of  the  problem with a  long
needle (l > d).  Morton [4] and Solomon [5] provide the general extension of the
problem. Perlman and Wishura [6] investigate a number of statistical estimation
procedures for p for the single, double, and triple grids. In their study, they show
that moving from single to double to triple grid, the asymptotic variances of the
estimators  get  smaller  and  hence  more  efficient  estimators  can  be  obtained.
Wood  and  Robertson  [7]  introduce  the  concept  of  grid  density  and  provide  an
alternative idea. They show that Buffon’s original single grid is actually the most
efficient if the needle length is held constant (at the distance between lines on the
single grid) and the grids are chosen to have equal grid density (i.e., equal length
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of grid material per unit area). In [8], Wood and Robertson investigate the ways
of maximizing the information in Buffon’s experiments.

We organize this article as follows. In the first three sections, we review Buffon’s
experiments on single,  double,  and triple grids and their statistical issues. In the
next  section,  we  introduce  the  features  of  the  package  BuffonNeedle.  The
functions in the package implement Monte Carlo experiments for the three types
of  grids.  The  results  of  each  experiment  are  given  in  a  table  and  in  a  picture.
When the number of the needles thrown on each grid is large, very nice pictures
exhibit  the  interface  between  chance  and  necessity.  In  the  last  two  sections,  we
describe  how  to  calculate  the  crossing  probabilities  in  single-  and  double-grid
experiments  and  the  asymptotic  variances  of  the  estimators  for  each  grid  using
Mathematica. 

‡ Single-Grid Experiment
The single-grid form is Buffon’s well-known original experiment. A plane (table
or  floor)  has  parallel  lines  on  it  at  equal  distances  d  from  each  other.  A  needle
of length l  (l < d) is thrown at random on the plane. Figure 1 shows a single grid
with two needles of length l  representing two possible outcomes. The probabili-
ties of crossing zero lines and one line are

(1)
p0 = 1 - 2 r q,
p1 = 2 r q,

where r = l ê d  and q = 1 ê p.  These results  can be found in many probability and
statistics textbooks, for instance [5, 9, 10]. They are also explained in the “Calcu-
lating  the  Crossing  Probabilities  in  Single  and  Double  Grids”  section  of  this
article.

d

d

Figure 1. Buffon’s needles on a single grid.

From equation (1), we can write

(2)q =
1

p
=

p1
2 r

.
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Let  N1  be  the  number  of  times  in  n  independent  tosses  that  the  needle  crosses
any line.  Then the proportion of crossings p

`
1,  a  point estimator of p1,  becomes

p
`
1 = N1 ê n. Hence, we can write the point estimator of q in equation (2) as 

(3)q
`

=
p
`
1

2 r
=

N1

2 r n
.

The random variable N1  is  binomially distributed with the parameters n  and p1.

q
`

 is  the  uniformly  minimum  variance  unbiased  estimator  (UMVUE).  Further-
more,  it  is  the  maximum likelihood  estimator  (MLE)  of  q  and  hence  has  100%
asymptotic efficiency in this experiment [6]. The variance of q

`
 is then

(4)Var Hq` L = Var 
N1

2 r n
=
p1 H1 - p1L

4 r2 n
=

q H1 - 2 r qL
2 n r

=
q

2 n
 

1

r
- 2 q ,

which is minimized by taking r  as close as possible to 1. Choosing needle length
l = d (r = 1) ensures this purpose. In this case, the variance of q

`
 becomes

(5)Var Hq` L =
q 2

2 n
 

1

q
- 2 .

In  Buffon’s  experiments,  the  parameter  of  main  interest  is  p  rather  than q.  The
estimator  of  this  parameter,  p̀ = 1 ê q

`
,  is  called  Buffon’s  estimator  and  can  be

obtained from equation (3) as

(6)p̀ =
2 r

p
`
1

.

It can also be expressed in terms of p
`
0 = N0 ê n 

(7)p̀ =
2 r

1 - p
`
0

,

where N0  is  the  number of  times in n  tosses  that  the needle  does  not  cross  any
line. Using equation (6) or (7) and Monte Carlo methods, we can obtain empir-
ical  estimates of p  for various values of r.  The best estimate is  expected at r = 1
(l = d).  Standard theory [11] ensures that Buffon’s estimator is an asymptotically
unbiased, 100% efficient estimator of 1 ê q. Applying the delta method shows that
its asymptotic variance is

(8)AVar Hp̀L =
p 2

2 n
 Kp

r
- 2O,
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which is, as expected, minimized at r = 1. For this value of r, the asymptotic vari-
ance of p̀ is

(9)AVar Hp̀L =
p 2

2 n
 Hp - 2L.

If it is evaluated at p = 3.1416, we have

(10)AVar Hp̀L =
5.63

n
.

‡ Double-Grid Experiment

In  the  double-grid  experiment,  also  called  the  Laplace  extension  of  Buffon’s
problem, a plane is covered with two sets of parallel lines where one set is orthog-
onal to the other. 

d

d

d d d

Figure 2. Buffon’s needles on a double grid.

In  Figure  2,  we  see  a  double-grid  plane  and  three  needles  of  length  l  crossing
zero, one, and two lines. These crossing probabilities are 

(11)
p 0 = 1 - r H4 - rL q,
p 1 = 2 r H2 - rL q,
p 2 = r 2 q.

Let Ni  be the number of times in n  tosses that the needle crosses exactly i  lines
(i = 0, 1, 2). Perlman and Wichura [6] showed that the random variable N1 + N2
is  distributed  binomially  with the  parameters  n  and m q  and is  completely  suffi-
cient for q where m is 4 r - r2. They also showed that the random variable

(12)q
`

=
N1 + N2

mn
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 is the UMVUE and has 100% asymptotic efficiency with the variance

(13)Var Hq` L =
q

n
 
l

m
- q .

As in the case of a single grid, the variance of q
`

 is minimized by r = 1, or equiv-
alently  by  l = d.  Replacing  N1 + N2  with  n - N0  in  the  right-hand side  of  equa-
tion (12), we have

(14)q
`

=
n - N0

mn
=

1

m
 1 -

N0

n
=

1 - p
`
0

4 r - r 2
.

Then Buffon’s estimator, p̀ = 1 ê q
`
, can be expressed as

(15)p̀ =
4 r - r 2

1 - p
`
0

,

which  can  be  used  to  obtain  empirical  estimates  of  p.  By  the  delta  method,  we
can obtain the asymptotic variance of p̀ as

(16)AVar Hp̀L =
p 2 I4 r - r 2 - pM
n r Hr - 4L ,

which is minimized at r = 1. For this value of r, it becomes

(17)AVar Hp̀L =
p 2

3 n
 Hp - 3L.

When evaluated at p = 3.1416, it is

(18)AVar Hp̀L =
0.466

n
.

Compare the last equation with equation (10). Buffon’s estimator in the double-
grid  experiment  is  5.63 ê 0.466 > 12  times  as  efficient  as  that  in  the  single-grid
experiment.

‡ Triple-Grid Experiment
In the triple-grid experiment, a plane is covered with equilateral triangles of alti-
tude d and hence of side 2 d ë 3 .
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Figure 3. Buffon’s needles on a triple grid.

Figure 3 shows a triple-grid plane and four needles of length l crossing zero, one,
two, and three lines. In [7], the crossing probabilities are given as 

(19)

p 0 = 1 +
r 2

2
-

3

2
 r 4 -

3

2
 r  q,

p 1 = -
5

4
 r 2 +

3

2
 r 4 -

3

2
 r  q,

p 2 = r 2 -
3 3

4
 r 2 q,

p 3 = -
r 2

4
+

3 3

4
 r 2 q.

Let  Ni  denote  the  number  of  times  in  n  tosses  that  the  needle  crosses  exactly  i
lines  (i = 0, 1, 2, 3).  For  this  experiment,  Perlman and Wichura [6]  investigated
the  random  variable  N1 + N2 + N3  which  is  distributed  binomially  with  the  pa-
rameters n and a q - 1 ê 2 where a = 3 r ê 2 I4 - 3  r ê 2M.  They proposed, among
others, the following unbiased estimator of q as a function of N1 + N2 + N3

(20)q
`

=
1

a
 
N1 + N2 + N3

n
+

1

2
.
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By  replacing  N1 + N2 + N3  with  n - N0,  as  in  the  other  experiments,  we  obtain
the same estimator as a function of N0

(21)q
`

=
1

a
 
n - N0

n
+

1

2
=

1

a
 

3

2
- p

`
0 .

The variance of q
`
 is

(22)Var Hq` L =
H2 a q - 3L H2 a q - 1L

4 a2 n
.

As  in  the  cases  of  the  single-  and  double-grid  experiments,  the  variance  of  q
`

 is
minimized by taking r = 1 (l = d).
From equation (21), Buffon’s estimator can be written as

(23)p̀ =
2 a

3 - 2 p
`
0

=
3 r I8 - 3  rM

2 I3 - 2 p
`
0M

.

For this experiment, the asymptotic variance of Buffon’s estimator is

(24)

AVar Hp̀L = -K2 p2 K-3 3 + pO K-3 3 + 4 pO
K-24 + 3 3 r + 5 p rO K3 r K-8 + 3 rO + 2 p I2 + r2MOOì
K9 n r K54 K64 - 16 3 r + 3 r2O + p2 K512 - 128 3 r -

270 r2 + 96 3 r3 + 27 r4O + 6 p K-320 3 +

168 r + 234 3 r2 - 306 r3 + 27 3 r4OOO.
For r = 1 and p = 3.1416, it is

(25)AVar Hp̀L =
0.015781

n
.

Comparing this with equations (10) and (18), we can infer that Buffon’s estimator
in the triple-grid experiment is  0.466 ê 0.015781 > 29 times as  efficient  as  in the
double-grid  experiment  and  5.63 ê 0.015781 > 356  times  as  efficient  as  in  the
single-grid  experiment  (see  Table  1).  Now,  we  can  conclude  that  when  we
increase the complexity of the grid, we can obtain tighter estimators of p. Wood
and  Robertson  [7]  investigated  this  conclusion.  They  introduced  the  notion
of grid density, which is the average length of grid in a unit area and showed that
when the experiments are standardized, Buffon’s estimator in a single grid is the
most  efficient.  In their  approach, when d = 1,  the single  grid  has unit  grid den-
sity, the double grid has grid density of two, and the triple grid has grid density
of  three.  Hence,  the  standardization of  experiments  corresponds  to  r = 1 in  the
single  grid,  r = 1 ê 2  in  the  double  grid  and,  finally,  r = 1 ê 3  in  the  triple  grid.
Replacing these values of r in equations (8), (16), and (24) and evaluating them at
p = 3.1416  yields  the  values  of  AVarHp̀L  given  in  Table  2.  As  Wood  and  Rob-
ertson claimed, the tightest estimator is obtained in the single-grid experiment. 
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Grid Type Single Hr = 1L Double Hr = 1L Triple Hr = 1L
AVarHp̀L 5.63 ê n 0.466 ê n 0.015781 ê n

Table 1. Asymptotic variances of Buffon’s estimator for three grids. 

Grid Type Single Hr = 1L Double Hr = 1 ê 2L Triple Hr = 1 ê 3L
AVarHp̀L 5.63 ê n 7.85 ê n 5.91 ê n

Table 2. Asymptotic variances of Buffon’s estimator for three standardized grids.

‡ The Package
The  BuffonNeedle  package  is  designed  to  throw  needles  on  single,  double,  and
triple  grids.  Copy  the  file  BuffonNeedle.m  (see  Additional  Material)  into  the
Mathematica @ AddOns @ Applications folder. The following command loads the
program.

In[18]:= << BuffonNeedle.m

There are three functions in this package: SingleGrid[n,r], DoubleGrid[n,r],
and  TripleGrid[n,r].  Here,  n  is  the  number  of  needles  and  r  is  the  ratio
of needle length to grid height (i.e., r = l ê d), where n can be any integer, while r
is a real number on the interval H0, 1D. 
SingleGrid[n,r] implements a single-grid Buffon’s experiment. It gives a table
showing the number and frequency ratios of the two possible outcomes, together
with  the  theoretical  probabilities  and  the  estimate  of  p  defined  in  equation  (7).
The  function  also  gives  a  picture  of  the  simulation  results.  In  the  picture,  the
midpoints of the needles crossing any line are colored red, while those of needles
crossing no line are colored green. The functions DoubleGrid[n,r] and TripleÖ
Grid[n,r] carry out similar processes for double and triple grids, respectively. In
the picture of a double-grid experiment, the midpoints of the needles are colored
green,  blue,  and red to show the three possible outcomes of zero,  one,  and two
crossings. The estimate of p in this experiment is defined in equation (15). As in
the  other  two  cases,  in  a  triple-grid  experiment  carried  out  by  the  function
TripleGrid[n,r], the four possible outcomes of zero, one, two, and three cross-
ings are represented by four different colors of the midpoints of the needles. The
estimate of p given in the table is defined in equation (23).

For each grid,  as  n  gets  larger,  it  could be expected that the difference between
the estimated and actual values of p would get smaller. You can also check some
statistical results discussed in the previous sections by trying different values of r.
Additionally,  for  large  values  of  n,  very  nice  pictures  that  exhibit  the  interface
between  randomness  and  determinism  can  be  obtained.  Some  examples  for
various values of n and r are given below.
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In[19]:= SingleGrid@10, .87D

*** Results of throwing 10 needles

of length l = 0.87.d on a single grid ***

Zero
Crossing

One
Crossing

Number of Crossings 4 6

Frequency Ratio 0.4000 0.6000

Theoretical Probability 0.4461 0.5539

Estimate of Pi:2.9

Out[19]=

In[20]:= DoubleGrid@15, .76D

*** Results of throwing 15 needles

of length l = 0.76.d on a double grid ***

Zero
Crossing

One
Crossing

Two
Crossings

Number of Crossings 2 11 2

Frequency Ratio 0.1333 0.7333 0.1333

Theoretical Probability 0.2162 0.6000 0.1839

Estimate of Pi:2.84123

Out[20]=
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In[21]:= TripleGrid@12, .70D

*** Results of throwing 12 needles

of length l = 0.7.d on a triple grid ***

Zero
Crossing

One
Crossing

Two
Crossings

Three
Crossings

Number of Crossings 2 8 2 0

Frequency Ratio 0.1667 0.6667 0.1667 0

Theoretical Probability 0.1107 0.5218 0.2874 0.08011

Estimate of Pi:2.6726

Out[21]=

In[22]:= SingleGrid@10 000, .91D

*** Results of throwing 10000 needles

of length l = 0.91.d on a single grid ***

Zero
Crossing

One
Crossing

Number of Crossings 4145 5855

Frequency Ratio 0.4145 0.5855

Theoretical Probability 0.4207 0.5793

Estimate of Pi:3.10845

Out[22]=
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In[23]:= DoubleGrid@38 000, .85D

*** Results of throwing 38000 needles

of length l = 0.85.d on a double grid ***

Zero
Crossing

One
Crossing

Two
Crossings

Number of Crossings 5675 23 577 8748

Frequency Ratio 0.1493 0.6204 0.2302

Theoretical Probability 0.1477 0.6223 0.2300

Estimate of Pi:3.14756

Out[23]=

In[24]:= TripleGrid@28 000, 1D

*** Results of throwing 28000 needles

of length l = 1.d on a triple grid ***

Zero
Crossing

One
Crossing

Two
Crossings

Three
Crossings

Number of Crossings 97 7000 16 392 4508

Frequency Ratio 0.003464 0.2500 0.5854 0.1610

Theoretical Probability 0.003637 0.2464 0.5865 0.1635

Estimate of Pi:3.14123

Out[24]=
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‡ Calculating the Crossing Probabilities in Single and
Double Grids
In this section, we show how to calculate the crossing probabilities in single- and
double-grid experiments using Mathematica. 

· Single-Grid Probabilities

In  the  single-grid  experiment,  two  independent  random  variables  with  uniform
distribution  are  defined  to  determine  the  relative  position  of  the  needle  to  the
lines:  the  distance  X  of  the  needle’s  midpoint  to  the  closest  line  and  the  acute
angle a formed by the needle (or its extension) and the line (Figure 4). It is seen
that X  can take any value between 0 and d ê 2 and a can take any value between 0
and p ê 2. The density functions of X  and a are then given by

In[25]:= gdist1 = UniformDistributionB:0, d

2
>F;

fX = PDF@gdist1, xD

Out[26]= µ 2

d
0 § x § d

2

In[27]:= gdist2 = UniformDistributionB:0, Pi

2
>F;

fa = PDF@gdist2, aD

Out[28]= µ 2

p
0 § a § p

2

Since X  and a  are independent,  the joint  density  function is  the product of the
density function of X  alone and the density function of a alone:

In[29]:= fX,a =
2

d
 
2

p

Out[29]=
4

d p

for 0 § x § d ê 2, 0 § a § p ê 2.

From  Figure  4,  it  is  clear  that  the  needle  crosses  the  line  when  X § l ê 2 sin a.
The probability of this event is then 

In[30]:= p1 = ‡
0

pê2
‡
0

Hlê2L*Sin@aD
fX,a „x „a

Out[30]=
2 l

d p
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As there are two possible outcomes in the single-grid experiment, the probability
that the needle does not cross any line is given by 
In[31]:= p0 = 1 - p1

Out[31]= 1 -
2 l

d p

which can alternatively be calculated by

In[32]:= p0 = ‡
0

pê2
‡
Hlê2L*Sin@aD

dê2
fX,a „x „a

Out[32]= 1 -
2 l

d p

The  probabilities  p0  and  p1  can  be  written  as  a  function  of  q  and  r  as  in
equation (1).

In[33]:= p0 ê. Pi Ø
1

q
ê. l Ø r*d

Out[33]= 1 - 2 r q

In[34]:= p1 ê. Pi Ø
1

q
ê. l Ø r*d

Out[34]= 2 r q

d

d

X

lê2

lê2

a

Figure 4. The random variables in the single-grid experiment.

· Double-Grid Probabilities

In  the  double-grid  experiment,  three  independent  random  variables  with  uni-
form distribution can be defined to determine the relative position of the needle
to  the  lines:  the  distance  X  of  the  needle’s  midpoint  to  the  closest  horizontal
line, the distance Y  of the needle’s midpoint to the closest vertical  line, and the
acute angle  a  formed by the needle and the horizontal  line,  as  in Figure 5. It  is
seen  that  X  and  Y  can  take  any  value  between  0  and  d ê 2  and  a  can  take  any
value between 0 and p ê 2. The density functions of X , Y , and a are given by 
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In[38]:= gdist1 = UniformDistributionB:0, d

2
>F;

fX = PDF@gdist1, xD

Out[39]= µ 2

d
0 § x § d

2

In[40]:= fY = PDF@gdist1, yD

Out[40]= µ 2

d
0 § y § d

2

In[41]:= gdist2 = UniformDistributionB:0, Pi

2
>F;

fa = PDF@gdist2, aD

Out[42]= µ 2

p
0 § a § p

2

As in the case of the single-grid experiment,  the joint density function of X ,  Y ,
and a is the product of the density functions of X , Y , and a: 

In[43]:= fX,Y,a =
2

d
 
2

d
 
2

p

Out[43]=
8

d2 p

for 0 § x § d ê 2, 0 § y § d ê 2, 0 § a § p ê 2.

In the double-grid experiment, there are four possible outcomes: 

Ë The needle crosses a horizontal line while not crossing a vertical line.

Ë The needle crosses a vertical line while not crossing a horizontal line.

Ë The needle crosses both a vertical line and a horizontal line or, equiva-
lently, the needle crosses two lines.

Ë The  needle  crosses  neither  a  vertical  line  nor  a  horizontal  line  or,
equivalently, the needle crosses no line.

The  needle  crosses  a  horizontal  line  but  does  not  cross  a  vertical  line  when
X § l ê 2 sin a and Y > l ê 2 cos a. The probability of this event is given by 

In[44]:= p
X Y

ê = ‡
0

pê2
‡
Hlê2L*Cos@aD

dê2
‡
0

Hlê2L*Sin@aD
fX,Y,a „x „y „a

Out[44]=
H2 d - lL l

d2 p
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The  needle  crosses  a  vertical  line  but  does  not  cross  a  horizontal  line  when
X > l ê 2 sin a and Y § l ê 2 cos a. The probability of this event is given by 

In[45]:= p
X
ê

 Y = ‡
0

pê2
‡
0

Hlê2L*Cos@aD
‡
Hlê2L*Sin@aD

dê2
fX,Y,a „x „y „a

Out[45]=
H2 d - lL l

d2 p

Thus, the probability that the needle crosses exactly one line is

In[46]:= p1 = p
X Y

ê + p
X
ê

 Y

Out[46]=
2 H2 d - lL l

d2 p

The  needle  crosses  both  the  vertical  line  and  the  horizontal  line  when
X § l ê 2 sin a and Y § l ê 2 cos a. The probability of this event is 

In[47]:= p2 = ‡
0

pê2
‡
0

Hlê2L*Cos@aD
‡
0

Hlê2L*Sin@aD
fX,Y,a „x „y „a

Out[47]=
l2

d2 p

Finally,  the needle crosses neither the vertical  line nor the horizontal line when
X > l ê 2 sin a and Y > l ê 2 cos a. The probability of this event is 

In[48]:= p0 = ‡
0

pê2
‡
Hlê2L*Cos@aD

dê2
‡
Hlê2L*Sin@aD

dê2
fX,Y,a „x „y „a

Out[48]= 1 +
l H-4 d + lL

d2 p

The probabilities p0, p1, and p2  can be written as functions of q and r, as in equa-
tion (11). 

In[49]:= p0 ê. Pi Ø
1

q
ê. l Ø r*d êê Simplify

Out[49]= 1 - 4 r q + r2 q

In[50]:= p1 ê. Pi Ø
1

q
ê. l Ø r*d êê Simplify

Out[50]= -2 H-2 + rL r q

In[51]:= p2 ê. Pi Ø
1

q
ê. l Ø r*d êê Simplify

Out[51]= r2 q
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X
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Figure 5. The random variables in the double-grid experiment.

‡ Delta Method and Asymptotic Variance
Let  a  random  variable  Y  be  a  function  of  the  random  variable  X ,  that  is,
Y = HHX L.  When  the  function  HHX L  is  nonlinear,  it  may  not  be  possible  to
compute the true mean and the true variance of Y .  One can, however, calculate
estimates of the true mean and true variance.  The delta method is  a very useful
way to  find such estimates  [12,  13]  and is  based on the  Taylor  expansion about
the  mean of  X .  Let  the  mean of  X  be  m  and the variance s2.  Then the Taylor
expansion of the function HHX L about m to the third term is

(26)H  HX L = H  HmL + H£ HX - mL +
1

2
 H″ HX - mL2.

Taking  the  expectation  of  both  sides,  we  obtain  the  approximate  mean  of  Y =
HHX L as

(27)AMean@H  HX LD = E@H  HX LD = H  HmL +
1

2
 H″ HmL s2.

From the well-known identity of statistics

(28)Var@H  HX LD = E 8H  HX L - E@H  HX LD< 2,
the approximate variance, also called asymptotic variance, of Y = HHX L is

(29)AVar@H  HX LD = @H£ HmLD 2 s2.

Thus, we can say that the random variable Y  is distributed with the approximate
mean HHmL + 1 ê 2 H″HmL s2 and the approximate variance @H£HmLD2 s2.

Buffon’s  estimator  is  a  nonlinear  function  of  the  random  variable  q
`

(p̀ = HHq` L = 1 ê q
`
); hence, the delta method can be used to find its asymptotic vari-

ance. From the previous sections, for each grid, we know EHq` L and VarHq` L. Then,
in  equation  (29),  substituting  HHX L = p̀,  m = q,  and  s2 = VarHq` L  from
equations (5), (13), and (22), we can obtain the asymptotic variances of p̀ in equa-
tions (8), (16), and (24) for each grid. 
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Buffon’s  estimator  is  a  nonlinear  function  of  the  random  variable  q
`

(p̀ = HHq` L = 1 ê q
`
); hence, the delta method can be used to find its asymptotic vari-

ance. From the previous sections, for each grid, we know EHq` L and VarHq` L. Then,
in  equation  (29),  substituting  HHX L = p̀,  m = q,  and  s2 = VarHq` L  from
equations (5), (13), and (22), we can obtain the asymptotic variances of p̀ in equa-
tions (8), (16), and (24) for each grid. 

Alternatively, asymptotic variances of p̀ can be computed as follows [7, 11]

(30)AVar@p̀D =
@H£ HqLD2
n I  HqL .

Here IHqL is the Fisher information number, given by

(31)I  HqL = ‚
i

Api″ HqLE2
pi  HqL

,

where piHqL  is  the  probability  that  the needle  crosses  i  lines.  These probabilities
given in equations (1), (11), and (19) actually define a list for each grid as follows:

In[53]:= ProbSingle = 81 - 2 r q, 2 r q<;
ProbDouble = 91 - r H4 - rL q, 2 r H2 - rL q, r2 q=;

ProbTriple = :1 +
r2

2
-
3

2
 r 4 -

3

2
 r  q,

-
5

4
 r2 +

3

2
 r 4 -

3

2
 r  q, r2 -

3 3

4
 r2 q, -

r2

4
+
3 3

4
 r2 q>;

From equations  (30)  and  (31),  one  can  define  the  following  functions  to  obtain
the asymptotic variances:

In[56]:= deriv@expr_, var_D :=
HD@expr, varDL2

HexprL ;

fisherInfo@list_, var_D :=

Total@Table@deriv@list@@iDD, varD, 8i, Length@listD<DD;

aVar@list_, var_D :=
HD@1êvar, varDL2

Hn fisherInfo@list, varDL;

For each grid, therefore, the asymptotic variances are

In[59]:= aVar@ProbSingle, qD

Out[59]=
1

n q4 J 2 r

q
+ 4 r2

1-2 r q
N

In[60]:= aVar@ProbDouble, qD

Out[60]=
1

n q4 J 2 H2-rL r

q
+ r2

q
+ H4-rL2 r2

1-H4-rL r q
N

Throwing Buffon’s Needle With Mathematica 87

The Mathematica Journal 11:1  © 2008 Wolfram Media, Inc.



In[61]:= aVar@ProbTriple, qD

Out[61]= 1 ì n q4
27 r4

16 Jr2 - 3

4
3 r2 qN

+
27 r4

16 J- r2

4
+ 3

4
3 r2 qN

+

9 r2 K4 - 3 r

2
O
2

4 K1 + r2

2
- 3

2
r K4 - 3 r

2
O qO

+

9 r2 K4 - 3 r

2
O
2

4 K- 5 r2

4
+ 3

2
r K4 - 3 r

2
O qO

Substituting q = 1 ê p and factoring the expressions, we have

In[62]:= aVar@ProbSingle, qD ê. q Ø
1

p
êê Factor

aVar@ProbDouble, qD ê. q Ø
1

p
êê Factor

aVar@ProbTriple, qD ê. q Ø
1

p
êê Factor

Out[62]=
p2 Hp - 2 rL

2 n r

Out[63]= -
p2 Hp - 4 r + r2L
n H-4 + rL r

Out[64]= -J2 p2 J-3 3 + pN J-3 3 + 4 pN
J-24 + 3 3 r + 5 p rN J4 p - 24 r + 3 3 r2 + 2 p r2NN í

J9 n r J3456 - 1920 3 p + 512 p2 - 864 3 r + 1008 p r -

128 3 p2 r + 162 r2 + 1404 3 p r2 - 270 p2 r2 -

1836 p r3 + 96 3 p2 r3 + 162 3 p r4 + 27 p2 r4NN

which  were  previously  given  in  equations  (8),  (16),  and  (24),  respectively.  For
r = 1 and p = 3.1416, we obtain the same values given in Table 1 for each grid.

In[65]:= aVar@ProbSingle, qD ê. q Ø
1

p
ê. r Ø 1 ê. p Ø 3.1416

Out[65]=
5.6336

n

In[66]:= aVar@ProbDouble, qD ê. q Ø
1

p
ê. r Ø 1 ê. p Ø 3.1416

Out[66]=
0.465848

n
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In[67]:= aVar@ProbTriple, qD ê. q Ø
1

p
ê. r Ø 1 ê. p Ø 3.1416

Out[67]=
0.0157809

n

For the standardized experiments of Wood and Robertson [7], we can obtain the
asymptotic  variances  given  in  Table  2  by  substituting  r = 1,  1 ê 2,  and  1 ê 3  for
single, double, and triple grids, respectively. 

In[68]:= aVar@ProbSingle, qD ê. q Ø
1

p
ê. r Ø 1 ê. p Ø 3.1416

Out[68]=
5.6336

n

In[69]:= aVar@ProbDouble, qD ê. q Ø
1

p
ê. r Ø

1

2
ê. p Ø 3.1416

Out[69]=
7.84835

n

In[70]:= aVar@ProbTriple, qD ê. q Ø
1

p
ê. r Ø

1

3
ê. p Ø 3.1416

Out[70]=
5.90518

n
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