
The Mathematica® Journal

A Toolbox for Quasirandom
Simulation
Michael Carter

Quasirandom simulation uses low-discrepancy or quasirandom
sequences in place of pseudorandom sequences, producing
faster convergence in problems of moderate dimensions. The
objective of this article is both pedagogical and practical: to
provide an easily understood introduction to the construction of
Sobol sequences and a toolkit for constructing and evaluating
such sequences.

‡ Introduction
In the eighteenth century, Georges-Louis Leclerc, Comte de Buffon, proposed a novel
method to estimate p—dropping a needle over and over again onto a wooden floor of
parallel planks. The probability of a needle crossing a join in the floor is related to p. By
counting the number of crosses, one can estimate this probability, and hence compute a
value for p (see [1]). Buffon is said to have tried the method by tossing baguettes over his
shoulder. A more direct way of estimating p is to throw darts randomly at a circular target
inscribed in a square, and count the proportion that land inside the circle. These are simple
examples of numerical integration by simulation.

Estimating p by simulation

Numerical integration requires evaluating a function at a number of distinct points and
computing an average value. There are at least three ways in which we could lay out a
grid of points on which to evaluate an integral, which are illustrated below. Familiar rules
of quadrature, such as Simpson’s rule, use a regular grid or lattice. The shortcoming
of this approach is that it is difficult to compute a sufficiently dense grid in higher
dimensions. For example, a grid of four points in 250 dimensions requires 4250 =
3.27339µ 10150 points. Furthermore, only a limited number of coordinate values are
evaluated. Traditional Monte Carlo simulation uses a pseudorandom grid, so that
numerous combinations of points are evaluated. We observe that the points tend to cluster,
with many boxes having no points while some boxes have multiple points. Low-
discrepancy or quasirandom sequences attempt to combine the best features of both a grid
and pseudorandom points while overcoming the disadvantages of each. They are specif-
ically constructed so that they fill the space in a “quasi” random but uniform manner.
Observe that each of the boxes in the right-hand graph has one and only one point.

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Numerical integration requires evaluating a function at a number of distinct points and
computing an average value. There are at least three ways in which we could lay out a
grid of points on which to evaluate an integral, which are illustrated below. Familiar rules
of quadrature, such as Simpson’s rule, use a regular grid or lattice. The shortcoming
of this approach is that it is difficult to compute a sufficiently dense grid in higher
dimensions. For example, a grid of four points in 250 dimensions requires 4250 =
3.27339µ 10150 points. Furthermore, only a limited number of coordinate values are
evaluated. Traditional Monte Carlo simulation uses a pseudorandom grid, so that
numerous combinations of points are evaluated. We observe that the points tend to cluster,
with many boxes having no points while some boxes have multiple points. Low-
discrepancy or quasirandom sequences attempt to combine the best features of both a grid
and pseudorandom points while overcoming the disadvantages of each. They are specif-
ically constructed so that they fill the space in a “quasi” random but uniform manner.
Observe that each of the boxes in the right-hand graph has one and only one point.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Grid

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pseudorandom

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Quasirandom

Alternative 2D sequences

The most common pseudorandom number generator is the linear congruential generator,
in which successive numbers are generated recursively by

(1)xn+1 = a xn + c Hmod mL,

starting with an initial seed x0. Dividing by m gives a sequence of fractions ui = xi êm in
the unit interval @0, 1L. By careful choice of a, c, and m, a sequence of period m can be
obtained. The resulting sequence of real numbers will appear to be uniformly distributed
on @0, 1L. For simulation, it is not sufficient to avoid clustering in a single dimension.
Most practical problems, from estimating p to valuing an exotic financial derivative,
require multidimensional random sequences. In the center of the previous figure, we
observe the clustering that is typical of pseudorandom sequences.

Low-discrepancy sequences are known to give superior performance in low-dimensional
problems, but their relative advantage erodes as the dimension of the integral increases.
One practical area in which quasirandom simulation has shown great promise is finance,
where valuation of derivative instruments requires the computation of multidimensional
expected values. Such valuations may need to be computed daily, which means that compu-
tational efficiency is extremely important. In this application, low-discrepancy sequences
have been shown to give improved performance even in very high-dimensional problems.
Low-discrepancy sequences have been proposed by Halton, Faure, Sobol, and Nieder-
reiter. Though not exhibiting the lowest asymptotic discrepancy, Sobol sequences have
been found in practice to yield as good or better performance, especially in financial appli-
cations. Consequently, this article focuses on Sobol sequences, although the tools are
more generally applicable. The objective of this article is both pedagogical and practical:
to provide an easily understood introduction to the composition of Sobol sequences and a
toolkit for constructing and evaluating such sequences.

2 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Low-discrepancy sequences have been proposed by Halton, Faure, Sobol, and Nieder-
reiter. Though not exhibiting the lowest asymptotic discrepancy, Sobol sequences have
been found in practice to yield as good or better performance, especially in financial appli-
cations. Consequently, this article focuses on Sobol sequences, although the tools are
more generally applicable. The objective of this article is both pedagogical and practical:
to provide an easily understood introduction to the composition of Sobol sequences and a
toolkit for constructing and evaluating such sequences.

‡ The Construction of Sobol Sequences

A Sobol sequence is a sequence of points x1, x2, …, xn in the unit hypercube @0, 1Ld,
where d is the dimension of the problem. In other words, each element xi of the sequence
is a d-dimensional vector whose components are fractions between 0 and 1. A Sobol se-
quence can be computed by the simple recursion

(2)xn+1 = v jHnL Å⊕ xn.

Equation (2) is analogous to the linear congruential generator (1) for pseudorandom num-
bers. The differences are:

Ë The coefficients v jHnL vary with n and also with the dimension d (as v jHnL is a
vector).

Ë The operator Å⊕ is bitwise exclusive or rather than multiplication. It is equivalent
to addition modulo 2.

The coefficients v jHnL are known as direction numbers. The index jHnL of the appropriate
element of the set of direction numbers is the rightmost zero bit in the binary expansion of
n. Consequently, to produce a Sobol sequence of length n requires one direction number
for each bit in the binary expansion of n, a total of k = `log2 np direction numbers for each
dimension. The complicated part of computing a Sobol sequence is computing the
direction numbers for each dimension. Once this is done, computing the series using (2) is
straightforward and fast. First, we load the accompanying package, assuming that it is in
the current directory or a directory in the path.

Needs@ "QRSToolbox`"D

A Toolbox for Quasirandom Simulation 3

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The sequence J 12 , 34 , 78 , 5
16 , 7

32 , 4364 N is a valid set of direction numbers for generating the

first 63 elements of a one-dimensional Sobol sequence. Here are the first 16 elements of
this sequence.

TableForm@
8Sobol@816, 1<, InitialValues Ø 8811, 81, 3, 7<<<,

Offset Ø 0D êê Flatten<,
TableHeadings Ø 8None, Range@0, 15D<D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

2

1

4

3

4

1

8

5

8

3

8

7

8

11

16

3

16

15

16

7

16

9

16

1

16

13

16

5

16

The seventh element in this sequence is 78 . The binary expansion of 7 is 0111; the right-
most zero bit is four from the end. Therefore the appropriate direction number is the
fourth, namely 516 . From (2), the eighth element is

x8 = v4Å⊕ x7 =
5

16
Å⊕

7

8
=

5

16
Å⊕

14

16
=

01012
16

Å⊕
11102

16
=

10112
16

=
11

16
.

We now turn to the computation of direction numbers, the essential ingredients of a Sobol
sequence. A degree k polynomial

xk + a1 xk-1 + a2 xk-2 +…+ ak-1 x + ak
defines a unique recursive sequence of order k

x j = a1 x j-1 + a2 x j-2 +…+ ak-1 x j-k+1 + ak x j-k

requiring k initial values. Direction numbers for a Sobol sequence are computed by a spe-
cial recursive sequence

v j = a1 v j-1Å⊕ a2 v j-2Å⊕…Å⊕ ak-1 v j-k+1Å⊕ ak v j-k Å⊕
v j-k

2k

such that:

Ë The class of polynomials is restricted to the primitive polynomials mod 2 (defined
in the next section).

Ë Addition (+) is replaced with bitwise or (Å⊕).

Ë An extra term is added.

Computationally, it is convenient to use the equivalent recursion, which requires only inte-
ger arithmetic:

(3)m j = 2 a1 m j-1Å⊕ 22 a2 m j-2Å⊕…Å⊕ 2k-1 ak-1 m j-k+1Å⊕ 2k ak m j-k Å⊕m j-k.

4 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Seeded with k non-negative odd integers m1, m2, m3, …, mk with mi < 2i, subsequent val-
ues generated by (3) are also non-negative odd integers with m j < 2 j for all j. Direction
numbers are obtained by dividing each term by 2 j, that is

Hv1, v2, …, vM L = K
m1

2
,

m2

4
,

m3

8
, …,

mM

2M
O.

To illustrate, the direction numbers used above were generated from the third-degree primi-
tive polynomial x3 + x + 1, in which a1 = 0 and a2 = a3 = 1. The corresponding recur-
rence relation is

m j = 22 m j-2Å⊕ 23 m j-3Å⊕m j-3.

Starting with the initial values 81, 3, 7<, this recurrence generates the sequence
81, 3, 7, 5, 7, 43<, which consists of the numerators of the direction numbers used above.

CirclePlus@i_Integer, j_IntegerD := BitXor@i, jD

f@j_D := 4 f@j - 2D Å⊕ H8 f@j - 3D Å⊕ f@j - 3DL
f@1D = 1; f@2D = 3; f@3D = 7;
Table@f@jD, 8j, 1, 6<D

81, 3, 7, 5, 7, 43<

Each dimension of the Sobol sequence requires a different primitive polynomial, and each
degree k polynomial requires k initial values, odd integers less than 2, 4, …, 2k, respec-
tively. The choice of initial values is the one area of discretion left to the modeler. Indeed,
the choice of initial values is the most important issue in successful application of Sobol
sequences.
Consequently, a toolbox for quasirandom simulation using Sobol sequences needs to pro-
vide for the following:

Ë identifying primitive polynomials modulo 2 to specify the recursions for generat-
ing direction numbers

Ë selecting appropriate initial values to seed the recursions

Ë computing the direction numbers

Ë generating the resulting multidimensional Sobol sequence

A Toolbox for Quasirandom Simulation 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

These ingredients are depicted schematically in the following diagram.

Direction numbers Sobol sequencePrimitive polynomials Recursive function

Initial numbers

In addition, our toolbox provides functions for computing the discrepancy on any se-
quence, which can be used to evaluate initial values for computing Sobol sequences and to
compare the effectiveness of pseudorandom and quasirandom sequences.

‡ Primitive Polynomials Mod 2
A polynomial modulo 2 is a polynomial

xk + a1 xk-1 +…+ ak-1 x + ak
whose coefficients a1, a2, …, ak are either zero or one. The highest power is the degree of
the polynomial. There are 23 third-degree polynomials mod 2, namely

x3, x3 + 1, x3 + x2, x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1, x3 + x, x3 + x + 1.
The term primitive polynomial has two distinct meanings in algebra (see [2]). For our pur-
poses, a polynomial mod 2 is primitive if (in binary arithmetic):

Ë it is irreducible (cannot be factored)

Ë the smallest power q for which the polynomial divides xq + 1 is q = 2k - 1

Only two of the eight third-degree polynomials are primitive, namely

x3 + x2 + 1, x3 + x + 1.
Note that a polynomial with no constant term can always be factored as

xk + a1 xk-1 +…+ ak-1 x = xIxk-1 + a1 xk-2 +…+ ak-1M.

Therefore, every primitive polynomial has a constant term. For the rest of this article, poly-
nomial means polynomial modulo 2.

6 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· Encoding

Any polynomial mod 2 can be uniquely encoded as an integer by interpreting the coeffi-
cients (0 or 1) as bits. For example, the primitive third-degree polynomial x3 + x + 1 can
be encoded as binary 1011b or decimal 11. The Mathematica functions EncodeP and
DecodeP encode and decode polynomials.
The two primitive third-degree polynomials are encoded.

EncodePA9x3 + x + 1, x3 + x2 + 1=E

811, 13<

They can be decoded.

DecodeP êü %

91 + x + x3, 1 + x2 + x3=

For the remainder of the article, we will call a polynomial’s unique decimal code its
p-number.

· Polynomials of Degree k

A polynomial with p-number p is of degree k if and only if 2k § p < 2k+1. This provides a
very straightforward method for generating all the polynomials of a given degree, namely
by decoding the consecutive integers between 2k and 2k+1. For example, here are the third-
degree polynomials.

DecodeP êü RangeA23, 23+1 - 1E

9x3, 1 + x3, x + x3, 1 + x + x3,

x2 + x3, 1 + x2 + x3, x + x2 + x3, 1 + x + x2 + x3=

We note that a polynomial has a constant term if and only if it has an odd p-number.
Therefore, to compute primitive polynomials we need consider only those with an odd
p-number.

DecodeP êü RangeA23 + 1, 23+1 - 1, 2E

91 + x3, 1 + x + x3, 1 + x2 + x3, 1 + x + x2 + x3=

A Toolbox for Quasirandom Simulation 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The function PolynomialMod2@kD generates the polynomials of degree k. By default,
PolynomialMod2 gives only polynomials with a constant term, which are candidates
for being primitive.

PolynomialMod2@3D

91 + x3, 1 + x + x3, 1 + x2 + x3, 1 + x + x2 + x3=

Setting the option WithConstantTerm to False generates all polynomials of the spec-
ified degree, including those with no constant term.

PolynomialMod2@3, WithConstantTerm Ø FalseD

9x3, 1 + x3, x + x3, 1 + x + x3,

x2 + x3, 1 + x2 + x3, x + x2 + x3, 1 + x + x2 + x3=

· Irreducible Polynomials

Suppose we attempt to factor the third-degree polynomials with constant term.

Textü
TableForm@TraditionalForm êü 8Ò, Factor@Ò, Modulus Ø 2D< & êü

PolynomialMod2@3D,
TableHeadings Ø 8None, 8"Polynomial", "Factorization"<<D

Polynomial Factorization
x3 + 1 Hx + 1L Ix2 + x + 1M

x3 + x + 1 x3 + x + 1
x3 + x2 + 1 x3 + x2 + 1
x3 + x2 + x + 1 Hx + 1L3

We observe that the first and last polynomials can be factored, while the other two are irre-
ducible. Now examine the heads of the expressions after attempted factorization.

HeadüFactor@Ò, Modulus Ø 2D & êü PolynomialMod2@3D

8Times, Plus, Plus, Power<

8 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The irreducible polynomials have a head of Plus, while the other two have heads of
Times or Power. We can use this to identify irreducible polynomials.

IrreducibleQ@poly_D := Head@Factor@poly, Modulus Ø 2DD === Plus

Here are the irreducible third-degree polynomials.

Select@PolynomialMod2@3D, IrreducibleQD

91 + x + x3, 1 + x2 + x3=

· Primitive Polynomials

If q = 2k - 1 is prime, all the irreducible polynomials of degree k are primitive. If not, we
must test each of the prime factors of q. For example, 24 - 1 = 15 is not prime. Here are
the irreducible polynomials of degree four.

irreducible4 = Select@PolynomialMod2@4D, IrreducibleQD

91 + x + x4, 1 + x3 + x4, 1 + x + x2 + x3 + x4=

For each prime factor m of q = 2k - 1, we have to test whether the polynomial divides
xqêm + 1. For k = 4 and q = 15, the prime factors are 3 and 5, and their cofactors are 5 and
3, respectively. That is, we need to check whether each polynomial divides x5 + 1 or
x3 + 1. Clearly, a fourth-degree polynomial cannot divide x3 + 1. Therefore, we need only
check those cofactors less than k. That is, we check whether the irreducible polynomials
of degree 4 divide x5 + 1.

PolynomialRemainderAx5 + 1, Ò, x, Modulus Ø 2E & êü

irreducible4

91 + x + x2, x + x3, 0=

This reveals that the third irreducible polynomial divides x5 + 1. We conclude that the first
and second polynomials are primitive, while the third is not.

A Toolbox for Quasirandom Simulation 9

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

All fifth-degree irreducible polynomials are primitive, since 25 - 1 = 31 is prime. Con-
sidering the sixth-degree polynomials, the prime factors of 26 - 1 = 63 are 3 and 7, and
their cofactors are 21 and 9. Consequently, we need to consider the divisibility of the poly-
nomials x21 + 1 and x9 + 1.

irreducible6 = Select@PolynomialMod2@6D, IrreducibleQD;

PolynomialRemainderAx21 + 1, Ò, x, Modulus Ø 2E & êü

irreducible6

9x + x3 + x4 + x5, 1 + x3, 0, 1 + x + x2 + x3,

x3 + x4 + x5, 1 + x2 + x3 + x5, x + x2 + x4, x3 + x4, 0=

PolynomialRemainderAx9 + 1, Ò, x, Modulus Ø 2E & êü

irreducible6

91 + x3 + x4, 0, 1 + x + x2 + x4, x2 + x4 + x5,

x + x2 + x3 + x5, x2 + x3, 1 + x + x2, x + x2 + x5, x3=

Remove@irreducible4, irreducible6D

We observe that the third and last polynomial divide x21 + 1, while the second polynomial
divides x9 + 1. The remaining six polynomials are primitive. We summarize this test in the
function PrimitiveQ.

? PrimitiveQ

Assuming poly is a polynomial modulo 2, PrimitiveQ@polyD
gives True if poly is primitive, and False otherwise.

The following function generates the primitive polynomials of degree k.

PrimitivePolynomialsMod2@k_Integer, x_D :=
Select@PolynomialMod2@kD, PrimitiveQ@Ò, xD &D

PrimitivePolynomialsMod2@1, x_D := 81 + x<

10 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here are p-numbers of the 52 primitive polynomials up to degree eight.

Table@8k, PrimitivePolynomialsMod2@kD êê EncodeP<, 8k, 8<D êê

Column

81, 83<<
82, 87<<
83, 811, 13<<
84, 819, 25, 31<<
85, 837, 41, 47, 55, 59, 61<<
86, 867, 73, 87, 91, 97, 103, 109, 115, 117<<
87, 8131, 137, 143, 145, 157, 167, 171, 185,

191, 193, 203, 211, 213, 229, 239, 241, 247, 253<<
88, 8283, 285, 299, 301, 313, 319, 333, 351, 355, 357,

361, 369, 375, 379, 391, 395, 397, 415, 419, 425,
433, 445, 451, 463, 471, 477, 487, 499, 501, 505<<

The number N of primitive polynomials of degree k can be easily computed from Euler’s
totient function f. Specifically,

NHkL =
f I2k - 1M

k
.

There are some published sources for primitive polynomials. Numerical Recipes [3] lists
all 160 primitive polynomials of degree 10 or less (but note that they use a different encod-
ing). Joe and Kuo [4] provide a list of the 1111 primitive polynomials through degree 13,
which they have recently extended to degree 18 [5]. The CD accompanying Jäckel [6]
lists all primitive polynomials up to degree 27, a mammoth eight million primitive
polynomials.

‡ Implementation
We now give details of the Mathematica implementation of these components.

· Direction Numbers

Recall that direction numbers are computed by the recursive sequence (3)

m j = 2 a1 m j-1Å⊕ 22 a2 m j-2Å⊕…Å⊕ 2k-1 ak-1 m j-k+1Å⊕ 2k m j-k Å⊕m j-k,

where a1, a2, …, ak-1 are the coefficients of a degree k primitive polynomial Hak = 1).
Each recursion of order k requires k initial values, which are arbitrary odd integers less
than 2, 4, …, 2k, respectively. To implement this, we extract the binary digits from the p-
number of the specified polynomial, use them to define an appropriate recursive function,
initialize the function with the vector M of initial values, and then map this function over
the integers 1, 2, …, n. The resulting function is called DirectionNumbers.

A Toolbox for Quasirandom Simulation 11

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

where a1, a2, …, ak-1 are the coefficients of a degree k primitive polynomial Hak = 1).
Each recursion of order k requires k initial values, which are arbitrary odd integers less
than 2, 4, …, 2k, respectively. To implement this, we extract the binary digits from the p-

initialize the function with the vector M of initial values, and then map this function over
the integers 1, 2, …, n. The resulting function is called DirectionNumbers.

? DirectionNumbers

DirectionNumbers@8p,M<,nD computes n direction numbers for polynomial
p using the initial values M. DirectionNumbers@p,nD computes
n direction numbers for polynomial p using unit initial values.

Here are the first six direction numbers for the third primitive polynomial x3 + x2 + 1 with
initial values 81, 3, 7<.

DirectionNumbers@811, 81, 3, 7<<, 6D

81, 3, 7, 5, 7, 43<

Note that DirectionNumbers returns the (integer) numerators of the direction number
sequence, which is the form in which they will be used for generating the Sobol sequence.
If no direction numbers are specified, the function assumes all initial values are one (unit
initialization).

· Recursive Sobol Sequence

It is most efficient to compute all d dimensions of a Sobol sequence in parallel, which is es-
pecially convenient in Mathematica. To illustrate, we take the primitive polynomials and
initial values listed in Numerical Recipes, which are sufficient to generate a six-dimen-
sional sequence.

NRInitialValues =

3 81<
7 81, 1<
11 81, 3, 7<
13 81, 3, 3<
19 81, 1, 3, 13<
25 81, 1, 5, 9<

;

SetOptions@Sobol, InitialValues Ø NRInitialValuesD;

12 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

To generate 10 points requires k = 4 sets of direction numbers, each set containing direc-
tion numbers for six dimensions.

Transpose@DirectionNumbers@Ò, 4D & êü NRInitialValuesD

881, 1, 1, 1, 1, 1<, 83, 1, 3, 3, 1, 1<,
85, 7, 7, 3, 3, 5<, 815, 11, 5, 15, 13, 9<<

To enable integer computation, it is convenient to scale the first set of direction numbers
by 2k-1 = 23 = 8, the second by 2k-2 = 22 = 4, and so on.

WithA8k = 4<,

scaledDN = TableA2j, 8j, k - 1, 0, -1<E *

Transpose@DirectionNumbers@Ò, kD & êü NRInitialValuesDE

888, 8, 8, 8, 8, 8<, 812, 4, 12, 12, 4, 4<,
810, 14, 14, 6, 6, 10<, 815, 11, 5, 15, 13, 9<<

The sequence can then be computed efficiently using FoldList to implement (2) across
all dimensions in parallel, then converted to fractions by multiplying each result by
2-k = 24 = 16. Here are the first 10 points of the six-dimensional Sobol sequence using
the initial values listed in Numerical Recipes.

WithA8n = 10, k = 4<,

2-k FoldList@BitXor, scaledDN@@1DD,
scaledDN@@RightMostZero êü Range@1, n - 1DDDDE

::
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
>, :

1

4
,
3

4
,
1

4
,
1

4
,
3

4
,
3

4
>,

:
3

4
,
1

4
,
3

4
,
3

4
,
1

4
,
1

4
>, :

3

8
,
5

8
,
1

8
,
5

8
,
1

8
,
7

8
>,

:
7

8
,
1

8
,
5

8
,
1

8
,
5

8
,
3

8
>, :

1

8
,
3

8
,
3

8
,
7

8
,
7

8
,
1

8
>,

:
5

8
,
7

8
,
7

8
,
3

8
,
3

8
,
5

8
>, :

5

16
,

5

16
,
11

16
,

9

16
,
11

16
,

3

16
>,

:
13

16
,
13

16
,

3

16
,

1

16
,

3

16
,
11

16
>, :

1

16
,

9

16
,
15

16
,
13

16
,

7

16
,
15

16
>>

Sobol@8n, s<D generates a Sobol sequence of n points of dimension s. We give the ar-
guments Hn, sL as a list to conform with the pseudorandom generator RandomReal, and
also to suggest that the result is an nµ s matrix of real numbers.
We now describe a number of useful variants of the basic function.

A Toolbox for Quasirandom Simulation 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· Nonrecursive Sobol Sequence

The recursive construction of the Sobol sequence (2) was proposed by Antonov and
Saleev [7]. The original construction of Sobol is

(4)xn = b1 v1Å⊕ b2 v2Å⊕…Å⊕ bk vk,

where b1, b2, …, bk are the binary digits of n, that is n = b1 20 + b2 21 + b3 22 +
…+ bk 2k-1. The recursive definition (2) is obtained from (4) using a Gray code encoding
of n. This alters the order of the sequence without changing the asymptotic discrepancy.
The original definition is useful for constructing single elements of the sequence.

Sobol@n, sD gives the nth element in the (recursive) Sobol sequence. Sobol@n, s,

GrayCode Ø FalseD gives the nth element in the original Sobol sequence. For ex-
ample, here is the 10th element in the recursive sequence we computed in the previous
subsection.

Sobol@10, 6D

:
1

16
,

9

16
,
15

16
,
13

16
,

7

16
,
15

16
>

This is the 15th element in the sequence constructed using (4).

Sobol@15, 6, GrayCode Ø FalseD

:
1

16
,

9

16
,
15

16
,
13

16
,

7

16
,
15

16
>

Equation (4) is useful for initiating the sequence at an arbitrary starting point.

· Initial Offset

Note the repetition of coordinates in the initial points of the sequence. For example, in the
first 10 points of a three-dimensional sequence, many of the coordinates appear three
times.

Sobol@810, 3<D êê Flatten êê Sort

:
1

16
,
1

8
,
1

8
,
1

8
,

3

16
,
1

4
,
1

4
,
1

4
,

5

16
,

5

16
,
3

8
,
3

8
,
3

8
,
1

2
,
1

2
,

1

2
,

9

16
,
5

8
,
5

8
,
5

8
,
11

16
,
3

4
,
3

4
,
3

4
,
13

16
,
13

16
,
7

8
,
7

8
,
7

8
,
15

16
>

14 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

To avoid this repetition, many authors recommend discarding the first m points in a Sobol
sequence, although the choice of m is arbitrary. To this end, we modify the definition to al-
low setting an initial offset as an option. Setting this option Offset Ø m will use (4) to
generate the first point of the sequence and then use (2) to generate the remaining points
of the sequence.
Strictly speaking, the Sobol sequence begins with the point H0, 0, …, 0L, although most
implementations exclude this point. A sequence beginning with zero can be obtained by
setting the Offset Ø 0.

Sobol@84, 6<, Offset Ø 0D

:80, 0, 0, 0, 0, 0<, :
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
>,

:
1

4
,
3

4
,
1

4
,
1

4
,
3

4
,
3

4
>, :

3

4
,
1

4
,
3

4
,
3

4
,
1

4
,
1

4
>>

The default value of Offset is 1, generating a sequence beginning with J 12 , 12 , …, 12 N.

That is, Offset specifies the ordinal number of the first element in the sequence.

· Specifying the Polynomials and Initial Values

We show below that selection of the initial values is important in determining the quality
of the Sobol sequence. We next allow for the initial values to be specified as an option.
This is useful for selecting particular dimensions, such as portraying 2D projections. Ini-
tial values are specified as a list, each element of which is a polynomial p-number fol-
lowed by a list of initial values equal in number to the degree of the polynomial.
The following is the two-dimensional sequence extracted from the third and fourth coordi-
nates of the Numerical Recipes implementation.

SobolB810, 2<, InitialValues Ø
11 81, 3, 7<
13 81, 3, 3<

F

::
1

2
,
1

2
>, :

1

4
,
1

4
>, :

3

4
,
3

4
>, :

1

8
,
5

8
>, :

5

8
,
1

8
>,

:
3

8
,
7

8
>, :

7

8
,
3

8
>, :

11

16
,

9

16
>, :

3

16
,

1

16
>, :

15

16
,
13

16
>>

A Toolbox for Quasirandom Simulation 15

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The alternative initial values proposed by Joe and Kuo [5] give a different sequence.

SobolB810, 2<, InitialValues Ø
11 81, 3, 1<
13 81, 1, 1<

F

::
1

2
,
1

2
>, :

1

4
,
3

4
>, :

3

4
,
1

4
>, :

7

8
,
3

8
>, :

3

8
,
7

8
>,

:
5

8
,
5

8
>, :

1

8
,
1

8
>, :

7

16
,

9

16
>, :

15

16
,

1

16
>, :

3

16
,

5

16
>>

· Specifying the Polynomials

For some purposes, it will be useful to select only the primitive polynomials and have the
initial values supplied by the default value of the InitialValues option. The follow-
ing input gives the third and fourth coordinates of the Numerical Recipes sequence.

Sobol@810, 2<, Polynomials Ø 811, 13<D

::
1

2
,
1

2
>, :

1

4
,
1

4
>, :

3

4
,
3

4
>, :

1

8
,
5

8
>, :

5

8
,
1

8
>,

:
3

8
,
7

8
>, :

7

8
,
3

8
>, :

11

16
,

9

16
>, :

3

16
,

1

16
>, :

15

16
,
13

16
>>

This gives a two-dimensional sequence based on the same polynomials, but with different
starting values.

SobolB810, 2<, Polynomials Ø 811, 13<,

InitialValues Ø
11 81, 3, 1<
13 81, 1, 1<

F

::
1

2
,
1

2
>, :

1

4
,
3

4
>, :

3

4
,
1

4
>, :

7

8
,
3

8
>, :

3

8
,
7

8
>,

:
5

8
,
5

8
>, :

1

8
,
1

8
>, :

7

16
,

9

16
>, :

15

16
,

1

16
>, :

3

16
,

5

16
>>

16 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· Unit Initialization

Recall that kth-order recursion for building direction numbers requires k initial values that
are odd integers less than 2, 4, …, 2k. The simplest valid choice for the initial values is to
set them all equal to one, which we will call unit initialization. We add this as an option.
We will demonstrate in the next section that unit initialization does not produce sequences
with the lowest discrepancy.

Sobol@810, 2<, Polynomials Ø 811, 13<, InitialValues Ø UnitD

::
1

2
,
1

2
>, :

3

4
,
3

4
>, :

1

4
,
1

4
>, :

3

8
,
3

8
>, :

7

8
,
7

8
>,

:
5

8
,
5

8
>, :

1

8
,
1

8
>, :

15

16
,

9

16
>, :

7

16
,

1

16
>, :

3

16
,

5

16
>>

· Summary

Sobol@8n, s<D generates a Sobol sequence of n points of dimension s, while
Sobol@n, sD gives the nth element in the same sequence. The function Sobol has the
following options, which are listed with their default values:

Option Default
InitialValues JK2007InitialValues

Offset 1
Polynomials Automatic
GrayCode True

The initial values listed in Numerical Recipes [3] are only sufficient to generate a se-
quence of six dimensions. Consequently, we adopt the initial values provided by Joe and
Kuo [5] as the default option for generating Sobol sequences.
Joe and Kuo provide optimized initial values sufficient for 7800 dimensions on their web-
site at web.maths.unsw.edu.au/~fkuo/sobol/index.html. For economy, we have incorpo-
rated only the first 100 values into this accompanying package.

SetOptions@Sobol, InitialValues Ø JK2007InitialValuesD;

A Toolbox for Quasirandom Simulation 17

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Evaluation
There are at least three ways in which the performance of low-discrepancy sequences can
be evaluated:

Ë viewing two-dimensional projections

Ë measuring discrepancy

Ë evaluating performance in application

We illustrate each in turn.

· Projections

A graphic way to explore the discrepancy of pseudorandom and quasirandom sequences is
to plot two-dimensional projections. The following graph shows a striking example of the
failure of a Sobol sequence to approximate a uniform distribution in particular dimen-
sions. The graph on the left shows the clustering of the first 4096 points in the sequence.
The graph on the right shows that the distribution of the next 4096 points exactly comple-
ments the distribution of the first 4096 points.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
First 212 points

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Next 212 points

Dimensions 19 and 28 of a standard Sobol sequence

This particular example, taken from Joe and Kuo [5], uses the initial values given by Brat-
ley and Fox [8] in their well-known implementation. Below, we depict two other exam-
ples drawn from [5].

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Figures 1 and 4 from Joe and Kuo H2007L

18 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

These examples underline the importance of the choice of initial values. Joe and Kuo [5]
select the initial values specifically to improve these two-dimensional projections. We re-
store these as the default.

SetOptions@Sobol, InitialValues -> JK2007InitialValuesD;

· Measuring Discrepancy

Discrepancy is a measure of the difference between the actual distribution of points and a
uniform distribution in which the number of points in any set A is proportional to its size.
Specifically, let A be a collection of subsets of the hypercube @0, 1Ld. The discrepancy of
the sequence x1, x2, …, xn relative to A is

(5)D = sup
AœA

Ò 8xi œ A<

n
- mHAL ,

where Ò 8xi œ A< denotes the number of points in A and mHAL is the measure of A.
Different collections A of sets give rise to different measures. Taking A to be the
collection of all rectangles ¤j=1

d Au j, v jM in @0, 1Ld gives the ordinary discrepancy; taking

A to be the collection of all rectangles ¤j=1
d A0, v jM in @0, 1Ld gives the star discrepancy.

The L¶ norm in (5) is useful in theoretical evaluation, but impractical for measuring the
discrepancy of specific sequences. If we substitute the Euclidean L2 norm, it is possible to
derive explicit formulas for both ordinary Tn and the star Tn* discrepancy of a given
sequence [9]:

(6)

HTnL2 =
1

n2
S
i=1

n
S
j=1

n
P
k=1

d
I1-maxIxi,k, x j,kMM ÿminIxi,k, x j,kM-

21-d

n
S
i=1

n
P
k=1

d
xi,kH1- xi,kL+ 12-d,

HTn*L2 =
1

n2
S
i=1

n
S
j=1

n
P
k=1

d
I1-maxIxi,k, x j,kMM-

21-d

n
S
i=1

n
P
k=1

d
I1- xi,k2M+ 3-d.

These calculations are implemented in the functions DiscrepancySqd and StarDisÖ
crepancySqd.

? DiscrepancySqd

DiscrepancySqd@XD computes the discrepancy
HsquaredL of X, a sequence of n points in the d dimensional
unit hypercube @0,1Ld, where n µ d are the dimensions of X.

A Toolbox for Quasirandom Simulation 19

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We can also calculate the expected value of these quantities for a genuinely random se-
quence [9]:

(7)EATN2E =
1

N
6-d I1- 2-dM, EAHTN* L2E =

1

N
I2-d - 3-dM.

These formulas are implemented in the corresponding functions EDiscrepancySqd
and EStarDiscrepancySqd.
To illustrate, the following computation shows the discrepancy of a three-dimensional
Sobol sequence relative to that expected of a purely random sequence. Remember that dis-
crepancy measures the degree of nonuniformity in the distribution of the sequence. By
this measure, we observe that the quasirandom sequence is three to six times more uni-
form than what would be expected of a purely random sequence. However, the advantage
of the quasirandom sequence erodes as the number of dimensions is increased. (This input
takes a long time to evaluate.)

WithB8X = Sobol@81024, 3<D<,

:
DiscrepancySqd@NüXD

EDiscrepancySqd@XD
,

StarDiscrepancySqd@NüXD

EStarDiscrepancySqd@XD
>F

80.295287, 0.14947<

Since computing discrepancy using (6) requires combining every pair of random vectors
xi, x j, the time required increases linearly with the dimension s but quadratically with n.
Computation of (6) in Mathematica will run significantly faster if we ensure that floating-
point rather than exact arithmetic is used, which is why we apply N to the arguments of
DiscrepancySqd and StarDiscrepancySqd in the previous calculation.
Our implementation of DiscrepancySqd and StarDiscrepancySqd is a straight-
forward translation of the expressions in (6). These functions can be written more effi-
ciently and then compiled to improve their execution speed by an order of magnitude. (I
am grateful to the referee for demonstrating this.) However, the compiled functions are
still too slow to be practical for large values of n. Consequently, the following graphs
were produced using discrepancy functions implemented in C++ and accessed through
MathLink. The source code and the MathLink executable together with instructions for its
use are available from the author on request.

20 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The following graph compares the discrepancy of Sobol sequences of varying length rela-
tive to the expected discrepancy of a purely random sequence, using the two measures of
discrepancy. We observe that the two measures are broadly consistent, both indicating
that the relative advantage of the quasirandom sequence dissipates with increasing dimen-
sion. (The horizontal axis is scaled in binary thousands, that is 1024.) Star discrepancy has
generally been favored as a measure because it can be used to bound integration error (see
[9, 10]).

2 4 6 8 10 12
n H000L

0.05
0.10
0.15
0.20
0.25
0.30

d = 3

Star discrepancy

Ordinary discrepancy

2 4 6 8 10 12
n H000L

0.2
0.4
0.6
0.8
1.0

d = 15

Star discrepancy

Ordinary discrepancy

Relative discrepancy: Sobol sequence

The following graph compares the discrepancy of pseudorandom and quasirandom se-
quences relative to the expected discrepancy of a purely random sequence as we vary the
dimension d. This confirms the conventional wisdom that low-discrepancy sequences
(blue) outperform pseudorandom sequences (red) for low dimensions, but that their advan-
tage is eroded as the dimension is increased, with the crossover around d = 12 ([11,
p. 75]). The measured discrepancy of the pseudorandom sequence (red) hovers around
its expected value, so its relative discrepancy is close to the horizontal axis located at 1.
The dashed curve shows the discrepancy of a Sobol sequence constructed using unit
initialization.

5 10 15 20 25 30
d

0.0
0.5

1.5
2.0
2.5
3.0
3.5

n = 8k

5 10 15 20 25 30
d

0.5

1.5

n = 32k
Relative discrepancy: Sobol versus pseudorandom

A Toolbox for Quasirandom Simulation 21

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The next graph makes the same comparison using the star discrepancy. Under this
measure, the quasirandom sequence (blue) appears to remain competitive with the pseudo-
random sequence (red) for higher dimensions. We conclude that the evaluation of the rela-
tive performance of quasirandom versus pseudorandom sequences at higher dimensions
depends upon the measure of discrepancy used. This graph emphasizes the importance of
initial values. The dashed curve shows the relative star discrepancy of a Sobol sequence
constructed with unit initialization deteriorates dramatically at higher dimensions.

5 10 15 20 25 30
d

0.0

0.5

1.5

2.0
n = 8k

5 10 15 20 25 30
d

0.0

0.5

1.5

n = 32k
Relative star discrepancy: Sobol versus pseudorandom

Jäckel [6] includes a more extensive range of comparisons, covering a greater variety of di-
mensions and other low-discrepancy sequences.

· Performance in Practice

The following graph compares three methods of estimating p by simulation. The blue line
shows the estimate of p from a low-discrepancy sequence of varying sizes, bracketed by
the estimates from a rectangular grid (green) and a pseudorandom sequence (red) of
identical size. We observe that the low-discrepancy sequence generally provides a more
accurate estimate than the rectangular grid, and a significantly better estimate than the pseu-
dorandom sequence. (This input takes a long time to evaluate.)

22 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

RadiusSqr@8x_, y_<D := Hx - 1 ê 2L^2 + Hy - 1 ê 2L^2
PRandom@8n_, s_<D := RandomReal@1, 8n, 2<D
EstimatePi@method_, n_D :=
4 Length@Select@method@8n, 2<D, RadiusSqr@ÒD < 1 ê 4 &DD ê n

SobolPi = Table@EstimatePi@Sobol, 1024 nD, 8n, 1, 40<D;
PRandomPi = BlockRandom@SeedRandom@123D;

Table@EstimatePi@PRandom, 1024 nD, 8n, 1, 40<DD;
GridPi = Table@EstimatePi@RGrid, 1024 nD, 8n, 1, 40<D;
Show@
ListLinePlot@SobolPi, PlotStyle Ø Blue,
PlotRange Ø 83.10, 3.18<D,

ListPlot@PRandomPi, PlotStyle Ø RedD,
ListPlot@GridPi, PlotStyle Ø GreenD,
AxesOrigin Ø 80, p<,
AxesLabel Ø 8Row@8Style@"n", ItalicD, " H000L"<D, None<,
PlotLabel Ø "Estimating p by simulation",
PlotRange Ø 83.10, 3.18<D

10 20 30 40
n H000L

3.10

3.12

3.16

3.18
Estimating p by simulation

The estimation of p is a one-dimensional problem, where the advantage of low-discrep-
ancy sequences is most pronounced. The world of finance provides a host of multidimen-
sional problems of immense practical importance. A derivative is a financial instrument
whose value depends upon the evolution of the price of some underlying asset. Estimating
its current value by simulation requires calculating its hypothetical value for each realiza-
tion, averaging and discounting back to the current time. In the case of a vanilla European
option, the payoff of the derivative depends only on the price of the underlying asset at the
maturity of the option. For an Asian option, in contrast, the payoff of the derivative de-
pends upon the average price over the term of the option. In effect, estimating the value of
an Asian option by simulation amounts to computing a multidimensional integral, with the
number of dimensions equal to the number of prices included in the average.

Specifically, the payoff of an Asian option depends upon the average price S of the under-
lying asset during the life of the option. For example, the payoff at maturity of an average
price call option is maxIS -K, 0M, where K is the strike price. There are two ways of calcu-

lating the average S—arithmetic or geometric:

A Toolbox for Quasirandom Simulation 23

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Specifically, the payoff of an Asian option depends upon the average price S of the under-
lying asset during the life of the option. For example, the payoff at maturity of an average
price call option is maxIS -K, 0M, where K is the strike price. There are two ways of calcu-

lating the average S—arithmetic or geometric:

A =
1

m+ 1
HS0 + S2 +…+ SmL ¥ G = HS0äS1ä…äSmL

1
m+1 .

Arithmetic averaging is almost universal in practice. However, geometric averaging is
more tractable; indeed, the value of a geometric Asian option is given by an analytical
formula. One of the most successful techniques for valuing arithmetic Asian options is
simulation, using the known value of a corresponding geometric average option to reduce
the simulation error. Consequently, geometric Asian options provide a useful financial test
bed for evaluating different simulation methods.
The following graph compares pseudorandom and quasirandom simulations of a one-year
geometric average Asian option for varying sample sizes. In the left-hand graphic, the
number of dimensions d = 12, corresponding to monthly averaging. In the right-hand
graphic, d = 52, simulating weekly averaging. The axes are drawn at the true value. The
law of large numbers ensures that simulated value will converge to the true value even-
tually. However, as we observe in this diagram, this convergence may be very slow. In
both cases, the quasirandom simulation (blue) converges faster than the pseudorandom
simulation (red), though the advantage erodes as the number of dimensions increases. We
find that the superiority of Sobol sequences in practical applications extends to higher
dimensions than might be suggested by considering discrepancy alone. In this example,
quasirandom simulation based on a Sobol sequence shows markedly better convergence
than pseudorandom simulation, even in a problem of 52 dimensions. Galanti and Jung
[11] report extensive comparisons of pseudorandom and quasirandom simulation in
financial applications. They observe that quasirandom simulation remains competitive
with pseudorandom simulation up to at least 250 dimensions, which would correspond to
daily averaging in a one-year option. (This input takes a long time to evaluate.)

40000 60000 80000 100000
n

16.35

16.40

16.45

Value
d = 12

40000 60000 80000 100000
n

16.50

16.55

16.60

16.65

16.75

Value
d = 52

Evaluation of a geometric Asian option

24 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ Selection of Initial Values
The preceding section emphasized that initial values must be selected cautiously. Sobol
proposed property A to guide the selection of initial values. To understand property A,
consider the following diagram, which shows the unit square divided into four subsquares.
The blue points are four successive points in a Sobol sequence (starting at n = 64), and the
red points are the next four points. In the left-hand graphic, we observe that the blue
points belong to different subsquares, as do the red points. This conforms with property A.
This is not the case in the graphic on the right, which is constructed from analogous points
in a sequence with unit initialization. The second sequence does not satisfy property A.

0 1
2

1
0

1
2

1
0

1
2 1

0

1
2

1

Standard initialization

0 1
2

1
0

1
2

1
0

1
2 1

0

1
2

1

Unit initialization

Generalizing to d dimensions, divide the hypercube @0, 1Ld into 2d equally sized subcubes
and partition a sequence of points in @0, 1Ld into blocks of 2d points. The sequence satis-
fies property A if each of the points in any block belongs to a different subcube. An analo-
gous property A' applies when each dimension is divided into quarters. These properties
can be verified by evaluating determinants.
Bratley and Fox [8] give initial values for 40 dimensions that are claimed to satisfy
property A; Joe and Kuo [4] extend this to 1111 dimensions. However, property A is of
limited value in high dimensions, since it is computationally infeasible to use sufficient
points to reap an advantage. To benefit from property A in a problem with 250 dimen-
sions would require using 2250 = 1075 points of the sequence, which is larger than the esti-
mated number of particles in the known universe!
Joe and Kuo [5] provide a set of initial values designed to minimize bad projections
between pairs of variables. They provide initial values for all polynomials up to degree 18
(21200 dimensions), and claim that they satisfy property A up to 1111 dimensions. The
implementation of Lemieux, Cieslak, and Luttmer [12] gives values for 360 dimensions
selected on the basis of an optimization. The British–Russian Offshore Development
Agency (BRODA)—with which Sobol is affiliated—sells proprietary software to generate
sequences with up to 1024 dimensions. Alternatively, Jäckel [6] advocates a randomiza-
tion procedure to select initial values in higher dimensions.

A Toolbox for Quasirandom Simulation 25

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Starting with Version 6, Mathematica includes an option for producing Sobol and Nieder-
reiter sequences as part of its random number generation facility. This comes courtesy of
the Intel MKL libraries, which are available for Microsoft Windows (32-bit, 64-bit),
Linux x86 (32-bit, 64-bit), and Linux Itanium systems. Specifics of the implementation,
such as choice of initial values, are not documented. Evaluation of this implementation in
terms of discrepancy, projections, and performance in application remains for future work.

‡ Acknowledgments
I gratefully acknowledge the very helpful comments of two anonymous referees.

‡ References
[1] E. Siniksaran, “Throwing Buffon s Needle with Mathematica,” The Mathematica Journal,

11(1), 2008 pp. 71–90.
www.mathematica-journal.com/2009/01/throwing-buffons-needle-with-mathematica.

[2] D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 2nd ed.,
Reading, MA: Addison-Wesley, 1981.

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C:
The Art of Scientific Computing, 2nd ed., New York: Cambridge University Press, 1992.

[4] S. Joe and F. Y. Kuo, “Remark on Algorithm 659: Implementing Sobolʼs Quasirandom Se-
quence Generator,” ACM Transactions on Mathematical Software, 29(1), 2003 pp. 49–57.
doi:10.1145/641876.641879.

[5] S. Joe and F. Y. Kuo, “Constructing Sobol Sequences with Better Two-Dimensional Projec-
tions,” SIAM Journal on Scientific Computing, 30(5), 2007 pp. 2635–2654.
doi:10.1137/070709359.

[6] P. Jäckel, Monte Carlo Methods in Finance, Chichester, England: Wiley, 2002.

[7] I. A. Antonov and V. M. Saleev, “An Economic Method of Computing LPt Sequences,” USSR
Journal of Computational Mathematics and Mathematical Physics, 19(1), 1979 pp. 252–256
(English translation). doi:10.1016/0041-5553(79)90085-5.

[8] P. Bratley and B. L. Fox, “Algorithm 659: Implementing Sobolʼs Quasirandom Sequence Gen-
erator,” ACM Transactions on Mathematical Software 14(1), 1988 pp. 88–100.
doi:10.1145/42288.214372.

[9] W. J. Morokoff and R. E. Caflisch, “Quasi-Random Sequences and Their Discrepancies,”
SIAM Journal on Scientific Computing 15(6), 1994 pp. 1251–1279. doi:10.1137/0915077.

[10] P. Glasserman, Monte Carlo Methods in Financial Engineering, New York: Springer, 2003.

[11] S. Galanti and A. Jung, “Low-Discrepancy Sequences: Monte Carlo Simulation of Option
Prices,” Journal of Derivatives 5(1), 1997 pp. 63–83. doi:10.3905/jod.1997.407985.

[12] C. Lemieux, M. Cieslak, and K. Luttmer, RandQMC Userʼs Guide: A Package for Random-
ized Quasi-Monte Carlo Methods in C, Technical report 2002-712-15, Department of Com-
puter Science, University of Calgary, 2002. hdl.handle.net/1880/46569.

M. Carter, “A Toolbox for Quasirandom Simulation,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.13-21.

26 Michael Carter

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

About the Author

Michael Carter (Ph.D. in economics, Stanford University) has taught in Asia, Europe, and
the U.S. His research interests include computational finance, industrial and mathematical
economics, and game theory. He has previously published articles in The Mathematica
Journal on game theory and optimization.
Michael Carter
Adjunct Professor of Finance
Indian Institute of Management, Ahmedabad
carter@iimahd.ernet.in or carter@uni-hohenheim.de

A Toolbox for Quasirandom Simulation 27

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

