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Quasirandom simulation uses low-discrepancy or quasirandom 
sequences in place of pseudorandom sequences, producing 
faster convergence in problems of moderate dimensions. The 
objective of this article is both pedagogical and practical: to 
provide an easily understood introduction to the construction of 
Sobol sequences and a toolkit for constructing and evaluating 
such sequences.

‡ Introduction
In  the  eighteenth  century,  Georges-Louis  Leclerc,  Comte  de  Buffon,  proposed  a  novel
method  to  estimate  p—dropping  a  needle  over  and  over  again  onto  a  wooden  floor  of
parallel planks. The probability of a needle crossing a join in the floor is related to p. By
counting  the  number  of  crosses,  one  can  estimate  this  probability,  and  hence  compute  a
value for p (see [1]). Buffon is said to have tried the method by tossing baguettes over his
shoulder. A more direct way of estimating p is to throw darts randomly at a circular target
inscribed in a square, and count the proportion that land inside the circle. These are simple
examples of numerical integration by simulation.

Estimating p by simulation

Numerical  integration  requires  evaluating  a  function  at  a  number  of  distinct  points  and
computing  an  average  value.  There  are  at  least  three  ways  in  which  we  could  lay  out  a
grid of points on which to evaluate an integral, which are illustrated below. Familiar rules
of  quadrature,  such  as  Simpson’s  rule,  use  a  regular  grid  or  lattice.  The  shortcoming
of  this  approach  is  that  it  is  difficult  to  compute  a  sufficiently  dense  grid  in  higher
dimensions.  For  example,  a  grid  of  four  points  in  250  dimensions  requires  4250 =
3.27339µ 10150  points.  Furthermore,  only  a  limited  number  of  coordinate  values  are
evaluated.  Traditional  Monte  Carlo  simulation  uses  a  pseudorandom  grid,  so  that
numerous combinations of points are evaluated. We observe that the points tend to cluster,
with  many  boxes  having  no  points  while  some  boxes  have  multiple  points.  Low-
discrepancy or quasirandom sequences attempt to combine the best features of both a grid
and  pseudorandom points  while  overcoming  the  disadvantages  of  each.  They  are  specif-
ically  constructed  so  that  they  fill  the  space  in  a  “quasi”  random  but  uniform  manner.
Observe that each of the boxes in the right-hand graph has one and only one point.
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Alternative 2D sequences

The most common pseudorandom number generator is the linear congruential generator,
in which successive numbers are generated recursively by

(1)xn+1 = a xn + c Hmod mL,

starting with an initial seed x0. Dividing by m  gives a sequence of fractions ui = xi êm  in
the  unit  interval  @0, 1L.  By careful  choice  of  a,  c,  and  m,  a  sequence  of  period  m  can  be
obtained. The resulting sequence of real  numbers will  appear to be uniformly distributed
on  @0, 1L.  For  simulation,  it  is  not  sufficient  to  avoid  clustering  in  a  single  dimension.
Most  practical  problems,  from  estimating  p  to  valuing  an  exotic  financial  derivative,
require  multidimensional  random  sequences.  In  the  center  of  the  previous  figure,  we
observe the clustering that is typical of pseudorandom sequences.

Low-discrepancy sequences  are  known to  give  superior  performance  in  low-dimensional
problems,  but  their  relative  advantage  erodes  as  the  dimension  of  the  integral  increases.
One practical  area in which quasirandom simulation has shown great  promise is  finance,
where  valuation  of  derivative  instruments  requires  the  computation  of  multidimensional
expected values. Such valuations may need to be computed daily, which means that compu-
tational efficiency is  extremely important.  In this application, low-discrepancy sequences
have been shown to give improved performance even in very high-dimensional problems.
Low-discrepancy  sequences  have  been  proposed  by  Halton,  Faure,  Sobol,  and  Nieder-
reiter.  Though  not  exhibiting  the  lowest  asymptotic  discrepancy,  Sobol  sequences  have
been found in practice to yield as good or better performance, especially in financial appli-
cations.  Consequently,  this  article  focuses  on  Sobol  sequences,  although  the  tools  are
more generally applicable. The objective of this article is both pedagogical and practical:
to provide an easily understood introduction to the composition of Sobol sequences and a
toolkit for constructing and evaluating such sequences. 
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‡ The Construction of Sobol Sequences

A  Sobol  sequence  is  a  sequence  of  points  x1, x2, …, xn  in  the  unit  hypercube  @0, 1Ld,
where d  is the dimension of the problem. In other words, each element xi  of the sequence
is a d-dimensional vector whose components are fractions between 0 and 1.  A Sobol se-
quence can be computed by the simple recursion

(2)xn+1 = v jHnL Å⊕ xn.

Equation (2) is analogous to the linear congruential generator (1) for pseudorandom num-
bers. The differences are:

Ë The  coefficients  v jHnL  vary  with  n  and  also  with  the  dimension  d  (as  v jHnL  is  a
vector).

Ë The operator  Å⊕  is  bitwise  exclusive or  rather  than multiplication.  It  is  equivalent
to addition modulo 2.

The  coefficients  v jHnL  are  known as  direction  numbers.  The  index  jHnL  of  the  appropriate
element of the set of direction numbers is the rightmost zero bit in the binary expansion of
n.  Consequently,  to produce a Sobol sequence of length n  requires one direction number
for each bit in the binary expansion of n, a total of k = `log2 np direction numbers for each
dimension.  The  complicated  part  of  computing  a  Sobol  sequence  is  computing  the
direction numbers for each dimension. Once this is done, computing the series using (2) is
straightforward and fast.  First,  we load the accompanying package, assuming that it  is in
the current directory or a directory in the path.

Needs@ "QRSToolbox`"D
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The sequence  J 12 , 34 , 78 , 5
16 , 7

32 , 4364 N  is  a  valid  set  of  direction  numbers  for  generating  the

first  63 elements of a one-dimensional Sobol sequence. Here are the first  16 elements of
this sequence.

TableForm@
8Sobol@816, 1<, InitialValues Ø 8811, 81, 3, 7<<<,

Offset Ø 0D êê Flatten<,
TableHeadings Ø 8None, Range@0, 15D<D
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The seventh element in this sequence is 78 .  The binary expansion of 7 is 0111; the right-
most  zero  bit  is  four  from  the  end.  Therefore  the  appropriate  direction  number  is  the
fourth, namely 516 . From (2), the eighth element is

x8 = v4Å⊕ x7 =
5

16
Å⊕

7

8
=

5

16
Å⊕

14

16
=

01012
16

Å⊕
11102

16
=

10112
16

=
11

16
.

We now turn to the computation of direction numbers, the essential ingredients of a Sobol
sequence. A degree k polynomial

xk + a1 xk-1 + a2 xk-2 +…+ ak-1 x + ak
defines a unique recursive sequence of order k

x j = a1 x j-1 + a2 x j-2 +…+ ak-1 x j-k+1 + ak x j-k

requiring k initial values. Direction numbers for a Sobol sequence are computed by a spe-
cial recursive sequence

v j = a1 v j-1Å⊕ a2 v j-2Å⊕…Å⊕ ak-1 v j-k+1Å⊕ ak v j-k Å⊕
v j-k

2k

such that:

Ë The class of polynomials is restricted to the primitive polynomials mod 2 (defined
in the next section).

Ë Addition (+) is replaced with bitwise or (Å⊕).

Ë An extra term is added.

Computationally, it is convenient to use the equivalent recursion, which requires only inte-
ger arithmetic:

(3)m j = 2 a1 m j-1Å⊕ 22 a2 m j-2Å⊕…Å⊕ 2k-1 ak-1 m j-k+1Å⊕ 2k ak m j-k Å⊕m j-k.
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Seeded with k non-negative odd integers m1, m2, m3, …, mk  with mi < 2i, subsequent val-
ues  generated by (3)  are  also  non-negative  odd integers  with  m j < 2 j  for  all  j.  Direction
numbers are obtained by dividing each term by 2 j, that is

Hv1, v2, …, vM L = K
m1

2
,

m2

4
,

m3

8
, …,

mM

2M
O.

To illustrate, the direction numbers used above were generated from the third-degree primi-
tive  polynomial  x3 + x + 1,  in  which  a1 = 0  and  a2 = a3 = 1.  The  corresponding  recur-
rence relation is 

m j = 22 m j-2Å⊕ 23 m j-3Å⊕m j-3.

Starting  with  the  initial  values  81, 3, 7<,  this  recurrence  generates  the  sequence
81, 3, 7, 5, 7, 43<, which consists of the numerators of the direction numbers used above.

CirclePlus@i_Integer, j_IntegerD := BitXor@i, jD

f@j_D := 4 f@j - 2D Å⊕ H8 f@j - 3D Å⊕ f@j - 3DL
f@1D = 1; f@2D = 3; f@3D = 7;
Table@f@jD, 8j, 1, 6<D

81, 3, 7, 5, 7, 43<

Each dimension of the Sobol sequence requires a different primitive polynomial, and each
degree  k  polynomial  requires  k  initial  values,  odd  integers  less  than  2, 4, …, 2k,  respec-
tively. The choice of initial values is the one area of discretion left to the modeler. Indeed,
the choice of initial  values is the most important issue in successful application of Sobol
sequences.
Consequently, a toolbox for quasirandom simulation using Sobol sequences needs to pro-
vide for the following:

Ë identifying primitive polynomials modulo 2 to specify the recursions for generat-
ing direction numbers

Ë selecting appropriate initial values to seed the recursions

Ë computing the direction numbers

Ë generating the resulting multidimensional Sobol sequence
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These ingredients are depicted schematically in the following diagram.

Direction numbers Sobol sequencePrimitive polynomials Recursive function

Initial numbers

In  addition,  our  toolbox  provides  functions  for  computing  the  discrepancy  on  any  se-
quence, which can be used to evaluate initial values for computing Sobol sequences and to
compare the effectiveness of pseudorandom and quasirandom sequences.

‡ Primitive Polynomials Mod 2
A polynomial modulo 2 is a polynomial

xk + a1 xk-1 +…+ ak-1 x + ak
whose coefficients a1, a2, …, ak  are either zero or one. The highest power is the degree of
the polynomial. There are 23 third-degree polynomials mod 2, namely

x3, x3 + 1, x3 + x2, x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1, x3 + x, x3 + x + 1.
The term primitive polynomial has two distinct meanings in algebra (see [2]). For our pur-
poses, a polynomial mod 2 is primitive if (in binary arithmetic):

Ë it is irreducible (cannot be factored)

Ë the smallest power q for which the polynomial divides xq + 1 is q = 2k - 1

Only two of the eight third-degree polynomials are primitive, namely

x3 + x2 + 1, x3 + x + 1.
Note that a polynomial with no constant term can always be factored as

xk + a1 xk-1 +…+ ak-1 x = xIxk-1 + a1 xk-2 +…+ ak-1M.

Therefore, every primitive polynomial has a constant term. For the rest of this article, poly-
nomial means polynomial modulo 2.
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· Encoding

Any polynomial mod 2 can be uniquely encoded as an integer by interpreting the coeffi-
cients  (0 or  1)  as  bits.  For  example,  the primitive third-degree polynomial  x3 + x + 1 can
be  encoded  as  binary  1011b  or  decimal  11.  The  Mathematica  functions  EncodeP  and
DecodeP encode and decode polynomials.
The two primitive third-degree polynomials are encoded.

EncodePA9x3 + x + 1, x3 + x2 + 1=E

811, 13<

They can be decoded.

DecodeP êü %

91 + x + x3, 1 + x2 + x3=

For  the  remainder  of  the  article,  we  will  call  a  polynomial’s  unique  decimal  code  its
p-number.

· Polynomials of Degree k

A polynomial with p-number p is of degree k if and only if 2k § p < 2k+1. This provides a
very straightforward method for generating all the polynomials of a given degree, namely
by decoding the consecutive integers between 2k and 2k+1. For example, here are the third-
degree polynomials.

DecodeP êü RangeA23, 23+1 - 1E

9x3, 1 + x3, x + x3, 1 + x + x3,

x2 + x3, 1 + x2 + x3, x + x2 + x3, 1 + x + x2 + x3=

We  note  that  a  polynomial  has  a  constant  term  if  and  only  if  it  has  an  odd  p-number.
Therefore,  to  compute  primitive  polynomials  we  need  consider  only  those  with  an  odd
p-number.

DecodeP êü RangeA23 + 1, 23+1 - 1, 2E

91 + x3, 1 + x + x3, 1 + x2 + x3, 1 + x + x2 + x3=
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The function PolynomialMod2@kD generates the polynomials of degree k. By default,
PolynomialMod2  gives  only  polynomials  with  a  constant  term,  which  are  candidates
for being primitive.

PolynomialMod2@3D

91 + x3, 1 + x + x3, 1 + x2 + x3, 1 + x + x2 + x3=

Setting the option WithConstantTerm to False generates all polynomials of the spec-
ified degree, including those with no constant term.

PolynomialMod2@3, WithConstantTerm Ø FalseD

9x3, 1 + x3, x + x3, 1 + x + x3,

x2 + x3, 1 + x2 + x3, x + x2 + x3, 1 + x + x2 + x3=

· Irreducible Polynomials

Suppose we attempt to factor the third-degree polynomials with constant term.

Textü
TableForm@TraditionalForm êü 8Ò, Factor@Ò, Modulus Ø 2D< & êü

PolynomialMod2@3D,
TableHeadings Ø 8None, 8"Polynomial", "Factorization"<<D

Polynomial Factorization
x3 + 1 Hx + 1L Ix2 + x + 1M

x3 + x + 1 x3 + x + 1
x3 + x2 + 1 x3 + x2 + 1
x3 + x2 + x + 1 Hx + 1L3

We observe that the first and last polynomials can be factored, while the other two are irre-
ducible. Now examine the heads of the expressions after attempted factorization.

HeadüFactor@Ò, Modulus Ø 2D & êü PolynomialMod2@3D

8Times, Plus, Plus, Power<
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The  irreducible  polynomials  have  a  head  of  Plus,  while  the  other  two  have  heads  of
Times or Power. We can use this to identify irreducible polynomials.

IrreducibleQ@poly_D := Head@Factor@poly, Modulus Ø 2DD === Plus

Here are the irreducible third-degree polynomials.

Select@PolynomialMod2@3D, IrreducibleQD

91 + x + x3, 1 + x2 + x3=

· Primitive Polynomials

If q = 2k - 1 is prime, all the irreducible polynomials of degree k are primitive. If not, we
must test each of the prime factors of q.  For example, 24 - 1 = 15 is not prime. Here are
the irreducible polynomials of degree four.

irreducible4 = Select@PolynomialMod2@4D, IrreducibleQD

91 + x + x4, 1 + x3 + x4, 1 + x + x2 + x3 + x4=

For  each  prime  factor  m  of  q = 2k - 1,  we  have  to  test  whether  the  polynomial  divides
xqêm + 1. For k = 4 and q = 15, the prime factors are 3 and 5, and their cofactors are 5 and
3,  respectively.  That  is,  we  need  to  check  whether  each  polynomial  divides  x5 + 1  or
x3 + 1. Clearly, a fourth-degree polynomial cannot divide x3 + 1. Therefore, we need only
check those cofactors less  than k.  That  is,  we check whether the irreducible polynomials
of degree 4 divide x5 + 1.

PolynomialRemainderAx5 + 1, Ò, x, Modulus Ø 2E & êü

irreducible4

91 + x + x2, x + x3, 0=

This reveals that the third irreducible polynomial divides x5 + 1. We conclude that the first
and second polynomials are primitive, while the third is not.
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All  fifth-degree  irreducible  polynomials  are  primitive,  since  25 - 1 = 31  is  prime.  Con-
sidering  the  sixth-degree  polynomials,  the  prime  factors  of  26 - 1 = 63  are  3  and  7,  and
their cofactors are 21 and 9. Consequently, we need to consider the divisibility of the poly-
nomials x21 + 1 and x9 + 1.

irreducible6 = Select@PolynomialMod2@6D, IrreducibleQD;

PolynomialRemainderAx21 + 1, Ò, x, Modulus Ø 2E & êü

irreducible6

9x + x3 + x4 + x5, 1 + x3, 0, 1 + x + x2 + x3,

x3 + x4 + x5, 1 + x2 + x3 + x5, x + x2 + x4, x3 + x4, 0=

PolynomialRemainderAx9 + 1, Ò, x, Modulus Ø 2E & êü

irreducible6

91 + x3 + x4, 0, 1 + x + x2 + x4, x2 + x4 + x5,

x + x2 + x3 + x5, x2 + x3, 1 + x + x2, x + x2 + x5, x3=

Remove@irreducible4, irreducible6D

We observe that the third and last polynomial divide x21 + 1, while the second polynomial
divides x9 + 1. The remaining six polynomials are primitive. We summarize this test in the
function PrimitiveQ.

? PrimitiveQ

Assuming poly is a polynomial modulo 2, PrimitiveQ@polyD
gives True if poly is primitive, and False otherwise.

The following function generates the primitive polynomials of degree k.

PrimitivePolynomialsMod2@k_Integer, x_D :=
Select@PolynomialMod2@kD, PrimitiveQ@Ò, xD &D

PrimitivePolynomialsMod2@1, x_D := 81 + x<
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Here are p-numbers of the 52 primitive polynomials up to degree eight.

Table@8k, PrimitivePolynomialsMod2@kD êê EncodeP<, 8k, 8<D êê

Column

81, 83<<
82, 87<<
83, 811, 13<<
84, 819, 25, 31<<
85, 837, 41, 47, 55, 59, 61<<
86, 867, 73, 87, 91, 97, 103, 109, 115, 117<<
87, 8131, 137, 143, 145, 157, 167, 171, 185,

191, 193, 203, 211, 213, 229, 239, 241, 247, 253<<
88, 8283, 285, 299, 301, 313, 319, 333, 351, 355, 357,

361, 369, 375, 379, 391, 395, 397, 415, 419, 425,
433, 445, 451, 463, 471, 477, 487, 499, 501, 505<<

The number N  of primitive polynomials of degree k  can be easily computed from Euler’s
totient function f. Specifically,

NHkL =
f I2k - 1M

k
.

There are some published sources for  primitive polynomials.  Numerical  Recipes  [3]  lists
all 160 primitive polynomials of degree 10 or less (but note that they use a different encod-
ing). Joe and Kuo [4] provide a list of the 1111 primitive polynomials through degree 13,
which  they  have  recently  extended  to  degree  18  [5].  The  CD  accompanying  Jäckel  [6]
lists  all  primitive  polynomials  up  to  degree  27,  a  mammoth  eight  million  primitive
polynomials.

‡ Implementation
We now give details of the Mathematica implementation of these components.

· Direction Numbers

Recall that direction numbers are computed by the recursive sequence (3)

m j = 2 a1 m j-1Å⊕ 22 a2 m j-2Å⊕…Å⊕ 2k-1 ak-1 m j-k+1Å⊕ 2k m j-k Å⊕m j-k,

where  a1, a2, …, ak-1  are  the  coefficients  of  a  degree  k  primitive  polynomial  Hak = 1).
Each  recursion  of  order  k  requires  k  initial  values,  which  are  arbitrary  odd  integers  less
than 2, 4, …, 2k, respectively. To implement this, we extract the binary digits from the p-
number of the specified polynomial, use them to define an appropriate recursive function,
initialize the function with the vector M  of initial values, and then map this function over
the integers 1, 2, …, n. The resulting function is called DirectionNumbers.
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initialize the function with the vector M  of initial values, and then map this function over
the integers 1, 2, …, n. The resulting function is called DirectionNumbers.

? DirectionNumbers

DirectionNumbers@8p,M<,nD computes n direction numbers for polynomial
p using the initial values M. DirectionNumbers@p,nD computes
n direction numbers for polynomial p using unit initial values.

Here are the first six direction numbers for the third primitive polynomial x3 + x2 + 1 with
initial values 81, 3, 7<.

DirectionNumbers@811, 81, 3, 7<<, 6D

81, 3, 7, 5, 7, 43<

Note that DirectionNumbers returns the (integer) numerators of the direction number
sequence, which is the form in which they will be used for generating the Sobol sequence.
If no direction numbers are specified, the function assumes all initial values are one (unit
initialization). 

· Recursive Sobol Sequence

It is most efficient to compute all d dimensions of a Sobol sequence in parallel, which is es-
pecially convenient in Mathematica.  To illustrate, we take the primitive polynomials and
initial  values  listed  in  Numerical  Recipes,  which  are  sufficient  to  generate  a  six-dimen-
sional sequence.

NRInitialValues =

3 81<
7 81, 1<
11 81, 3, 7<
13 81, 3, 3<
19 81, 1, 3, 13<
25 81, 1, 5, 9<

;

SetOptions@Sobol, InitialValues Ø NRInitialValuesD;
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To generate 10 points requires k = 4 sets of direction numbers, each set containing direc-
tion numbers for six dimensions.

Transpose@DirectionNumbers@Ò, 4D & êü NRInitialValuesD

881, 1, 1, 1, 1, 1<, 83, 1, 3, 3, 1, 1<,
85, 7, 7, 3, 3, 5<, 815, 11, 5, 15, 13, 9<<

To enable integer computation, it is convenient to scale the first set of direction numbers
by 2k-1 = 23 = 8, the second by 2k-2 = 22 = 4, and so on.

WithA8k = 4<,

scaledDN = TableA2j, 8j, k - 1, 0, -1<E *

Transpose@DirectionNumbers@Ò, kD & êü NRInitialValuesDE

888, 8, 8, 8, 8, 8<, 812, 4, 12, 12, 4, 4<,
810, 14, 14, 6, 6, 10<, 815, 11, 5, 15, 13, 9<<

The sequence can then be computed efficiently using FoldList to implement (2) across
all  dimensions  in  parallel,  then  converted  to  fractions  by  multiplying  each  result  by
2-k = 24 = 16.  Here  are  the  first  10  points  of  the  six-dimensional  Sobol  sequence  using
the initial values listed in Numerical Recipes.

WithA8n = 10, k = 4<,

2-k FoldList@BitXor, scaledDN@@1DD,
scaledDN@@RightMostZero êü Range@1, n - 1DDDDE

::
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
>, :

1

4
,
3

4
,
1

4
,
1

4
,
3

4
,
3

4
>,

:
3

4
,
1

4
,
3

4
,
3

4
,
1

4
,
1

4
>, :

3

8
,
5

8
,
1

8
,
5

8
,
1

8
,
7

8
>,

:
7

8
,
1

8
,
5

8
,
1

8
,
5

8
,
3

8
>, :

1

8
,
3

8
,
3

8
,
7

8
,
7

8
,
1

8
>,

:
5

8
,
7

8
,
7

8
,
3

8
,
3

8
,
5

8
>, :

5

16
,

5

16
,
11

16
,

9

16
,
11

16
,

3

16
>,

:
13

16
,
13

16
,

3

16
,

1

16
,

3

16
,
11

16
>, :

1

16
,

9

16
,
15

16
,
13

16
,

7

16
,
15

16
>>

Sobol@8n, s<D generates a Sobol sequence of n points of dimension s. We give the ar-
guments Hn, sL  as a list  to conform with the pseudorandom generator RandomReal,  and
also to suggest that the result is an nµ s matrix of real numbers. 
We now describe a number of useful variants of the basic function.
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· Nonrecursive Sobol Sequence

The  recursive  construction  of  the  Sobol  sequence  (2)  was  proposed  by  Antonov  and
Saleev [7]. The original construction of Sobol is

(4)xn = b1 v1Å⊕ b2 v2Å⊕…Å⊕ bk vk,

where  b1, b2, …, bk  are  the  binary  digits  of  n,  that  is  n = b1 20 + b2 21 + b3 22 +
…+ bk 2k-1. The recursive definition (2) is obtained from (4) using a Gray code encoding
of  n.  This  alters  the  order  of  the  sequence without  changing the asymptotic  discrepancy.
The original definition is useful for constructing single elements of the sequence.

Sobol@n, sD  gives  the  nth  element  in  the  (recursive)  Sobol  sequence.  Sobol@n, s,

GrayCode Ø FalseD  gives  the  nth  element  in  the  original  Sobol  sequence.  For  ex-
ample,  here  is  the  10th  element  in  the  recursive  sequence  we  computed  in  the  previous
subsection.

Sobol@10, 6D

:
1

16
,

9

16
,
15

16
,
13

16
,

7

16
,
15

16
>

This is the 15th element in the sequence constructed using (4).

Sobol@15, 6, GrayCode Ø FalseD

:
1

16
,

9

16
,
15

16
,
13

16
,

7

16
,
15

16
>

Equation (4) is useful for initiating the sequence at an arbitrary starting point. 

· Initial Offset

Note the repetition of coordinates in the initial points of the sequence. For example, in the
first  10  points  of  a  three-dimensional  sequence,  many  of  the  coordinates  appear  three
times.

Sobol@810, 3<D êê Flatten êê Sort

:
1

16
,
1

8
,
1

8
,
1

8
,

3

16
,
1

4
,
1

4
,
1

4
,

5

16
,

5

16
,
3

8
,
3

8
,
3

8
,
1

2
,
1

2
,

1

2
,

9

16
,
5

8
,
5

8
,
5

8
,
11

16
,
3

4
,
3

4
,
3

4
,
13

16
,
13

16
,
7

8
,
7

8
,
7

8
,
15

16
>
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To avoid this repetition, many authors recommend discarding the first m points in a Sobol
sequence, although the choice of m is arbitrary. To this end, we modify the definition to al-
low setting an initial offset as an option. Setting this option Offset Ø m  will  use (4) to
generate the first point of the sequence and then use (2) to generate the remaining points
of the sequence.
Strictly  speaking,  the  Sobol  sequence  begins  with  the  point  H0, 0, …, 0L,  although  most
implementations  exclude  this  point.  A sequence  beginning  with  zero  can  be  obtained  by
setting the Offset Ø 0.

Sobol@84, 6<, Offset Ø 0D

:80, 0, 0, 0, 0, 0<, :
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
>,

:
1

4
,
3

4
,
1

4
,
1

4
,
3

4
,
3

4
>, :

3

4
,
1

4
,
3

4
,
3

4
,
1

4
,
1

4
>>

The  default  value  of  Offset  is  1,  generating  a  sequence  beginning  with  J 12 , 12 , …, 12 N.

That is, Offset specifies the ordinal number of the first element in the sequence.

· Specifying the Polynomials and Initial Values

We show below that selection of the initial values is important in determining the quality
of  the  Sobol  sequence.  We next  allow for  the  initial  values  to  be  specified  as  an  option.
This is useful for selecting particular dimensions, such as portraying 2D projections.  Ini-
tial  values  are  specified  as  a  list,  each  element  of  which  is  a  polynomial  p-number  fol-
lowed by a list of initial values equal in number to the degree of the polynomial.
The following is the two-dimensional sequence extracted from the third and fourth coordi-
nates of the Numerical Recipes implementation.

SobolB810, 2<, InitialValues Ø
11 81, 3, 7<
13 81, 3, 3<

F

::
1

2
,
1

2
>, :

1

4
,
1

4
>, :

3

4
,
3

4
>, :

1

8
,
5

8
>, :

5

8
,
1

8
>,

:
3

8
,
7

8
>, :

7

8
,
3

8
>, :

11

16
,

9

16
>, :

3

16
,

1

16
>, :

15

16
,
13

16
>>
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The alternative initial values proposed by Joe and Kuo [5] give a different sequence.

SobolB810, 2<, InitialValues Ø
11 81, 3, 1<
13 81, 1, 1<

F

::
1

2
,
1

2
>, :

1

4
,
3

4
>, :

3

4
,
1

4
>, :

7

8
,
3

8
>, :

3

8
,
7

8
>,

:
5

8
,
5

8
>, :

1

8
,
1

8
>, :

7

16
,

9

16
>, :

15

16
,

1

16
>, :

3

16
,

5

16
>>

· Specifying the Polynomials

For some purposes, it will be useful to select only the primitive polynomials and have the
initial values supplied by the default value of the InitialValues  option. The follow-
ing input gives the third and fourth coordinates of the Numerical Recipes sequence.

Sobol@810, 2<, Polynomials Ø 811, 13<D

::
1

2
,
1

2
>, :

1

4
,
1

4
>, :

3

4
,
3

4
>, :

1

8
,
5

8
>, :

5

8
,
1

8
>,

:
3

8
,
7

8
>, :

7

8
,
3

8
>, :

11

16
,

9

16
>, :

3

16
,

1

16
>, :

15

16
,
13

16
>>

This gives a two-dimensional sequence based on the same polynomials, but with different
starting values.

SobolB810, 2<, Polynomials Ø 811, 13<,

InitialValues Ø
11 81, 3, 1<
13 81, 1, 1<

F

::
1

2
,
1

2
>, :

1

4
,
3

4
>, :

3

4
,
1

4
>, :

7

8
,
3

8
>, :

3

8
,
7

8
>,

:
5

8
,
5

8
>, :

1

8
,
1

8
>, :

7

16
,

9

16
>, :

15

16
,

1

16
>, :

3

16
,

5

16
>>
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· Unit Initialization

Recall that kth-order recursion for building direction numbers requires k initial values that
are odd integers less than 2, 4, …, 2k. The simplest valid choice for the initial values is to
set them all equal to one, which we will call unit initialization. We add this as an option.
We will demonstrate in the next section that unit initialization does not produce sequences
with the lowest discrepancy.

Sobol@810, 2<, Polynomials Ø 811, 13<, InitialValues Ø UnitD

::
1

2
,
1

2
>, :

3

4
,
3

4
>, :

1

4
,
1

4
>, :

3

8
,
3

8
>, :

7

8
,
7

8
>,

:
5

8
,
5

8
>, :

1

8
,
1

8
>, :

15

16
,

9

16
>, :

7

16
,

1

16
>, :

3

16
,

5

16
>>

· Summary

Sobol@8n, s<D  generates  a  Sobol  sequence  of  n  points  of  dimension  s,  while
Sobol@n, sD gives the nth  element in the same sequence. The function Sobol has the
following options, which are listed with their default values:

Option Default
InitialValues JK2007InitialValues

Offset 1
Polynomials Automatic
GrayCode True

The  initial  values  listed  in  Numerical  Recipes  [3]  are  only  sufficient  to  generate  a  se-
quence of six dimensions. Consequently, we adopt the initial values provided by Joe and
Kuo [5] as the default option for generating Sobol sequences.
Joe and Kuo provide optimized initial values sufficient for 7800 dimensions on their web-
site  at  web.maths.unsw.edu.au/~fkuo/sobol/index.html.  For  economy,  we  have  incorpo-
rated only the first 100 values into this accompanying package.

SetOptions@Sobol, InitialValues Ø JK2007InitialValuesD;
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‡ Evaluation
There are at least three ways in which the performance of low-discrepancy sequences can
be evaluated:

Ë viewing two-dimensional projections

Ë measuring discrepancy

Ë evaluating performance in application

We illustrate each in turn.

· Projections

A graphic way to explore the discrepancy of pseudorandom and quasirandom sequences is
to plot two-dimensional projections. The following graph shows a striking example of the
failure  of  a  Sobol  sequence  to  approximate  a  uniform  distribution  in  particular  dimen-
sions. The graph on the left shows the clustering of the first 4096 points in the sequence.
The graph on the right shows that the distribution of the next 4096 points exactly comple-
ments the distribution of the first 4096 points. 

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
First 212 points

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Next 212 points

Dimensions 19 and 28 of a standard Sobol sequence

This particular example, taken from Joe and Kuo [5], uses the initial values given by Brat-
ley  and  Fox [8]  in  their  well-known implementation.  Below,  we depict  two other  exam-
ples drawn from [5].
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0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6
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1.0
Figures 1 and 4 from Joe and Kuo H2007L
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These examples underline the importance of the choice of initial values. Joe and Kuo [5]
select the initial values specifically to improve these two-dimensional projections. We re-
store these as the default.

SetOptions@Sobol, InitialValues -> JK2007InitialValuesD;

· Measuring Discrepancy

Discrepancy is a measure of the difference between the actual distribution of points and a
uniform distribution in which the number of points in any set A is proportional to its size.
Specifically, let A be a collection of subsets of the hypercube @0, 1Ld. The discrepancy of
the sequence x1, x2, …, xn relative to A is 

(5)D = sup
AœA

Ò 8xi œ A<

n
- mHAL ,

where  Ò 8xi œ A<  denotes  the  number  of  points  in  A  and  mHAL  is  the  measure  of  A.
Different  collections  A  of  sets  give  rise  to  different  measures.  Taking  A  to  be  the
collection  of  all  rectangles  ¤j=1

d Au j, v jM  in  @0, 1Ld  gives  the  ordinary  discrepancy;  taking

A  to  be  the  collection  of  all  rectangles  ¤j=1
d A0, v jM  in  @0, 1Ld  gives  the  star  discrepancy.

The L¶  norm in (5)  is  useful  in theoretical  evaluation,  but  impractical  for  measuring the
discrepancy of specific sequences. If we substitute the Euclidean L2  norm, it is possible to
derive  explicit  formulas  for  both  ordinary  Tn  and  the  star  Tn*  discrepancy  of  a  given
sequence [9]:

(6)

HTnL2 =
1

n2
S
i=1

n
S
j=1

n
P
k=1

d
I1-maxIxi,k, x j,kMM ÿminIxi,k, x j,kM-

21-d

n
S
i=1

n
P
k=1

d
xi,kH1- xi,kL+ 12-d,

HTn*L2 =
1

n2
S
i=1

n
S
j=1

n
P
k=1

d
I1-maxIxi,k, x j,kMM-

21-d

n
S
i=1

n
P
k=1

d
I1- xi,k2M+ 3-d.

These calculations are implemented in the functions DiscrepancySqd and StarDisÖ
crepancySqd.

? DiscrepancySqd

DiscrepancySqd@XD computes the discrepancy
HsquaredL of X, a sequence of n points in the d dimensional
unit hypercube @0,1Ld, where n µ d are the dimensions of X.
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We can  also  calculate  the  expected  value  of  these  quantities  for  a  genuinely  random se-
quence [9]:

(7)EATN2E =
1

N
6-d I1- 2-dM, EAHTN* L2E =

1

N
I2-d - 3-dM.

These  formulas  are  implemented  in  the  corresponding  functions  EDiscrepancySqd
and EStarDiscrepancySqd.
To  illustrate,  the  following  computation  shows  the  discrepancy  of  a  three-dimensional
Sobol sequence relative to that expected of a purely random sequence. Remember that dis-
crepancy  measures  the  degree  of  nonuniformity  in  the  distribution  of  the  sequence.  By
this  measure,  we  observe  that  the  quasirandom sequence  is  three  to  six  times  more  uni-
form than what would be expected of a purely random sequence. However, the advantage
of the quasirandom sequence erodes as the number of dimensions is increased. (This input
takes a long time to evaluate.)

WithB8X = Sobol@81024, 3<D<,

:
DiscrepancySqd@NüXD

EDiscrepancySqd@XD
,

StarDiscrepancySqd@NüXD

EStarDiscrepancySqd@XD
>F

80.295287, 0.14947<

Since computing discrepancy using (6)  requires  combining every pair  of  random vectors
xi,  x j,  the time required increases linearly with the dimension s  but  quadratically with n.
Computation of (6) in Mathematica will run significantly faster if we ensure that floating-
point  rather  than exact  arithmetic  is  used,  which is  why we apply N  to  the  arguments  of
DiscrepancySqd and StarDiscrepancySqd in the previous calculation.
Our implementation of DiscrepancySqd  and StarDiscrepancySqd  is  a  straight-
forward  translation  of  the  expressions  in  (6).  These  functions  can  be  written  more  effi-
ciently and then compiled to improve their  execution speed by an order of magnitude. (I
am  grateful  to  the  referee  for  demonstrating  this.)  However,  the  compiled  functions  are
still  too  slow  to  be  practical  for  large  values  of  n.  Consequently,  the  following  graphs
were  produced  using  discrepancy  functions  implemented  in  C++  and  accessed  through
MathLink. The source code and the MathLink executable together with instructions for its
use are available from the author on request.
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The following graph compares the discrepancy of Sobol sequences of varying length rela-
tive to the expected discrepancy of a purely random sequence, using the two measures of
discrepancy.  We  observe  that  the  two  measures  are  broadly  consistent,  both  indicating
that the relative advantage of the quasirandom sequence dissipates with increasing dimen-
sion. (The horizontal axis is scaled in binary thousands, that is 1024.) Star discrepancy has
generally been favored as a measure because it can be used to bound integration error (see
[9, 10]).

2 4 6 8 10 12
n H000L

0.05
0.10
0.15
0.20
0.25
0.30

d = 3

Star discrepancy

Ordinary discrepancy

2 4 6 8 10 12
n H000L

0.2
0.4
0.6
0.8
1.0

d = 15

Star discrepancy

Ordinary discrepancy

Relative discrepancy: Sobol sequence

The  following  graph  compares  the  discrepancy  of  pseudorandom  and  quasirandom  se-
quences relative to the expected discrepancy of a purely random sequence as we vary the
dimension  d.  This  confirms  the  conventional  wisdom  that  low-discrepancy  sequences
(blue) outperform pseudorandom sequences (red) for low dimensions, but that their advan-
tage  is  eroded  as  the  dimension  is  increased,  with  the  crossover  around  d = 12  ([11,
p.  75]).  The  measured  discrepancy  of  the  pseudorandom  sequence  (red)  hovers  around
its  expected value,  so its  relative discrepancy is  close to  the horizontal  axis  located at  1.
The  dashed  curve  shows  the  discrepancy  of  a  Sobol  sequence  constructed  using  unit
initialization.

5 10 15 20 25 30
d

0.0
0.5
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2.0
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d

0.5
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n = 32k
Relative discrepancy: Sobol versus pseudorandom
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The  next  graph  makes  the  same  comparison  using  the  star  discrepancy.  Under  this
measure, the quasirandom sequence (blue) appears to remain competitive with the pseudo-
random sequence (red) for higher dimensions. We conclude that the evaluation of the rela-
tive  performance  of  quasirandom  versus  pseudorandom  sequences  at  higher  dimensions
depends upon the measure of discrepancy used. This graph emphasizes the importance of
initial  values.  The dashed curve shows the  relative  star  discrepancy of  a  Sobol  sequence
constructed with unit initialization deteriorates dramatically at higher dimensions.

5 10 15 20 25 30
d

0.0

0.5

1.5

2.0
n = 8k

5 10 15 20 25 30
d

0.0

0.5

1.5

n = 32k
Relative star discrepancy: Sobol versus pseudorandom

Jäckel [6] includes a more extensive range of comparisons, covering a greater variety of di-
mensions and other low-discrepancy sequences.

· Performance in Practice

The following graph compares three methods of estimating p by simulation. The blue line
shows the estimate of p  from a low-discrepancy sequence of varying sizes,  bracketed by
the  estimates  from  a  rectangular  grid  (green)  and  a  pseudorandom  sequence  (red)  of
identical  size.  We  observe  that  the  low-discrepancy  sequence  generally  provides  a  more
accurate estimate than the rectangular grid, and a significantly better estimate than the pseu-
dorandom sequence. (This input takes a long time to evaluate.)
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RadiusSqr@8x_, y_<D := Hx - 1 ê 2L^2 + Hy - 1 ê 2L^2
PRandom@8n_, s_<D := RandomReal@1, 8n, 2<D
EstimatePi@method_, n_D :=
4 Length@Select@method@8n, 2<D, RadiusSqr@ÒD < 1 ê 4 &DD ê n

SobolPi = Table@EstimatePi@Sobol, 1024 nD, 8n, 1, 40<D;
PRandomPi = BlockRandom@SeedRandom@123D;

Table@EstimatePi@PRandom, 1024 nD, 8n, 1, 40<DD;
GridPi = Table@EstimatePi@RGrid, 1024 nD, 8n, 1, 40<D;
Show@
ListLinePlot@SobolPi, PlotStyle Ø Blue,
PlotRange Ø 83.10, 3.18<D,

ListPlot@PRandomPi, PlotStyle Ø RedD,
ListPlot@GridPi, PlotStyle Ø GreenD,
AxesOrigin Ø 80, p<,
AxesLabel Ø 8Row@8Style@"n", ItalicD, " H000L"<D, None<,
PlotLabel Ø "Estimating p by simulation",
PlotRange Ø 83.10, 3.18<D

10 20 30 40
n H000L

3.10

3.12

3.16

3.18
Estimating p by simulation

The  estimation  of  p  is  a  one-dimensional  problem,  where  the  advantage  of  low-discrep-
ancy sequences is most pronounced. The world of finance provides a host of multidimen-
sional  problems  of  immense  practical  importance.  A  derivative  is  a  financial  instrument
whose value depends upon the evolution of the price of some underlying asset. Estimating
its current value by simulation requires calculating its hypothetical value for each realiza-
tion, averaging and discounting back to the current time. In the case of a vanilla European
option, the payoff of the derivative depends only on the price of the underlying asset at the
maturity  of  the  option.  For  an  Asian  option,  in  contrast,  the  payoff  of  the  derivative  de-
pends upon the average price over the term of the option. In effect, estimating the value of
an Asian option by simulation amounts to computing a multidimensional integral, with the
number of dimensions equal to the number of prices included in the average.

Specifically, the payoff of an Asian option depends upon the average price S of the under-
lying asset during the life of the option. For example, the payoff at maturity of an average
price call option is maxIS -K, 0M, where K is the strike price. There are two ways of calcu-

lating the average S—arithmetic or geometric:
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Specifically, the payoff of an Asian option depends upon the average price S of the under-
lying asset during the life of the option. For example, the payoff at maturity of an average
price call option is maxIS -K, 0M, where K is the strike price. There are two ways of calcu-

lating the average S—arithmetic or geometric:

A =
1

m+ 1
HS0 + S2 +…+ SmL ¥ G = HS0äS1ä…äSmL

1
m+1 .

Arithmetic  averaging  is  almost  universal  in  practice.  However,  geometric  averaging  is
more  tractable;  indeed,  the  value  of  a  geometric  Asian  option  is  given  by  an  analytical
formula.  One  of  the  most  successful  techniques  for  valuing  arithmetic  Asian  options  is
simulation, using the known value of a corresponding geometric average option to reduce
the simulation error. Consequently, geometric Asian options provide a useful financial test
bed for evaluating different simulation methods.
The following graph compares pseudorandom and quasirandom simulations of a one-year
geometric  average  Asian  option  for  varying  sample  sizes.  In  the  left-hand  graphic,  the
number  of  dimensions  d = 12,  corresponding  to  monthly  averaging.  In  the  right-hand
graphic,  d = 52, simulating weekly averaging.  The axes are drawn at  the true value.  The
law of  large  numbers  ensures  that  simulated  value  will  converge  to  the  true  value  even-
tually.  However,  as  we  observe  in  this  diagram,  this  convergence  may  be  very  slow.  In
both  cases,  the  quasirandom  simulation  (blue)  converges  faster  than  the  pseudorandom
simulation (red), though the advantage erodes as the number of dimensions increases. We
find  that  the  superiority  of  Sobol  sequences  in  practical  applications  extends  to  higher
dimensions  than  might  be  suggested  by  considering  discrepancy  alone.  In  this  example,
quasirandom  simulation  based  on  a  Sobol  sequence  shows  markedly  better  convergence
than  pseudorandom  simulation,  even  in  a  problem  of  52  dimensions.  Galanti  and  Jung
[11]  report  extensive  comparisons  of  pseudorandom  and  quasirandom  simulation  in
financial  applications.  They  observe  that  quasirandom  simulation  remains  competitive
with pseudorandom simulation up to at least 250 dimensions, which would correspond to
daily averaging in a one-year option. (This input takes a long time to evaluate.)
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Evaluation of a geometric Asian option
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‡ Selection of Initial Values
The  preceding  section  emphasized  that  initial  values  must  be  selected  cautiously.  Sobol
proposed  property  A  to  guide  the  selection  of  initial  values.  To  understand  property  A,
consider the following diagram, which shows the unit square divided into four subsquares.
The blue points are four successive points in a Sobol sequence (starting at n = 64), and the
red  points  are  the  next  four  points.  In  the  left-hand  graphic,  we  observe  that  the  blue
points belong to different subsquares, as do the red points. This conforms with property A.
This is not the case in the graphic on the right, which is constructed from analogous points
in a sequence with unit initialization. The second sequence does not satisfy property A.
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Generalizing to d  dimensions, divide the hypercube @0, 1Ld  into 2d  equally sized subcubes
and partition a sequence of points in @0, 1Ld  into blocks of 2d  points. The sequence satis-
fies property A if each of the points in any block belongs to a different subcube. An analo-
gous  property  A'  applies  when each dimension is  divided into  quarters.  These  properties
can be verified by evaluating determinants.
Bratley  and  Fox  [8]  give  initial  values  for  40  dimensions  that  are  claimed  to  satisfy
property A;  Joe and Kuo [4]  extend this  to  1111 dimensions.  However,  property A is  of
limited  value  in  high  dimensions,  since  it  is  computationally  infeasible  to  use  sufficient
points  to  reap  an  advantage.  To  benefit  from  property  A  in  a  problem  with  250  dimen-
sions would require using 2250 = 1075 points of the sequence, which is larger than the esti-
mated number of particles in the known universe!
Joe  and  Kuo  [5]  provide  a  set  of  initial  values  designed  to  minimize  bad  projections
between pairs of variables. They provide initial values for all polynomials up to degree 18
(21200  dimensions),  and  claim that  they  satisfy  property  A  up  to  1111  dimensions.  The
implementation  of  Lemieux,  Cieslak,  and  Luttmer  [12]  gives  values  for  360  dimensions
selected  on  the  basis  of  an  optimization.  The  British–Russian  Offshore  Development
Agency (BRODA)—with which Sobol is affiliated—sells proprietary software to generate
sequences  with  up  to  1024 dimensions.  Alternatively,  Jäckel  [6]  advocates  a  randomiza-
tion procedure to select initial values in higher dimensions.
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Starting with Version 6, Mathematica includes an option for producing Sobol and Nieder-
reiter sequences as part of its random number generation facility. This comes courtesy of
the  Intel  MKL  libraries,  which  are  available  for  Microsoft  Windows  (32-bit,  64-bit),
Linux  x86  (32-bit,  64-bit),  and  Linux  Itanium systems.  Specifics  of  the  implementation,
such as choice of initial values, are not documented. Evaluation of this implementation in
terms of discrepancy, projections, and performance in application remains for future work.
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