
The Mathematica® Journal

MathPDE: A Package to
Solve PDEs by Finite
Differences
K. Sheshadri
Peter Fritzson

A package for solving time-dependent partial differential
equations (PDEs), MathPDE, is presented. It implements finite-
difference methods. After making a sequence of symbolic
transformations on the PDE and its initial and boundary
conditions, MathPDE automatically generates a problem-specific
set of Mathematica functions to solve the numerical problem,
which is essentially a system of algebraic equations. MathPDE
then internally calls MathCode, a Mathematica-to-C++ code
generator, to generate a C++ program for solving the algebraic
problem, and compiles it into an executable that can be run via
MathLink. When the algebraic system is nonlinear, the Newton–
Raphson method is used and SuperLU, a library for sparse
systems, is used for matrix operations. This article discusses the
wide range of PDEs that can be handled by MathPDE, the
accuracy of the finite-difference schemes used, and importantly,
the ability to handle both regular and irregular spatial domains.
Since a standalone C++ program is generated to compute the
numerical solution, the package offers portability.

‡ 1. Introduction
Mathematical problems described by partial differential equations (PDEs) are ubiquitous
in science and engineering. Examples range from the simple (but very common) diffusion
equation, through the wave and Laplace equations, to the nonlinear equations of fluid
mechanics, elasticity, and chaos theory. However, few PDEs have closed-form analytical
solutions, making numerical methods necessary. The numerical task is made difficult by
the dimensionality and geometry of the independent variables, the nonlinearities in the
system, sensitivity to boundary conditions, a lack of formal understanding of the kind of
solution method to be employed for a particular problem, and so on.

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Mathematical problems described by partial differential equations (PDEs) are ubiquitous
in science and engineering. Examples range from the simple (but very common) diffusion
equation, through the wave and Laplace equations, to the nonlinear equations of fluid
mechanics, elasticity, and chaos theory. However, few PDEs have closed-form analytical
solutions, making numerical methods necessary. The numerical task is made difficult by
the dimensionality and geometry of the independent variables, the nonlinearities in the
system, sensitivity to boundary conditions, a lack of formal understanding of the kind of
solution method to be employed for a particular problem, and so on.
A number of methods have been developed to deal with the numerical solution of PDEs.
These fall into two broad categories: the finite-difference methods and the finite-element
methods. Roughly speaking, both transform a PDE problem to the problem of solving a
system of coupled algebraic equations. In finite-difference methods, the domain of the in-
dependent variables is approximated by a discrete set of points called a grid, and the
dependent variables are defined only at these points. Any derivative then automatically
acquires the meaning of a certain kind of difference between dependent variable values at
the grid points. This identification helps us transform the PDE problem to a system of
coupled algebraic equations. In the finite-element method, the dependent variable is
approximated by an interpolation polynomial. The domain is subdivided into a set of non-
overlapping regions that completely cover it; each such region is called a finite element.
The interpolation polynomial is determined by a set of coefficients in each element; the
small size of the elements generally ensures that a low-degree polynomial is sufficient. A
weighted residual method is then used to set up a system of algebraic equations for these
coefficients. The numerical problem in both methods therefore is one of solving a system
of algebraic equations.

In this article, we present the Mathematica package MathPDE that implements the finite-
difference method for time-dependent PDE problems. We give examples of the way in
which symbolic programming lends a degree of generality to MathPDE. Before doing so,
we would like to put our work in perspective. We first review, very briefly, the extant
PDE packages that we are familiar with that have been developed over the years.
Mathematica has a built-in function NDSolve that can numerically solve a variety of
PDEs and offers the user a very simple and quick route to solving PDEs numerically. So a
natural question that arises is why another solver is needed. In this regard, we emphasize
two points. First, MathPDE is able to handle irregular spatial domains, not just rectangu-
lar or cubic domains. Second, MathPDE can produce a standalone executable that runs in-
dependently of Mathematica, providing portability.
The following systems use either a compiled language directly, or have a high-level
interface language that preprocesses the input and employs subroutines in a compiled
language. None of them uses symbolic programming.
Diffpack (see [1]) presents an object-oriented problem-solving environment for the
numerical solution of PDEs. It implements finite-difference as well as finite-element
methods and provides C++ modules with a wide selection of interchangeable and appli-
cation-independent components. ELLPACK (see [2]) presents a high-level interface
language for formulating elliptic PDE problems and presents more than 50 problem-
solving modules for handling complex elliptic boundary value problems. It is imple-
mented as a FORTRAN preprocessor and can handle a variety of system geometries in
two dimensions (both finite differences and finite elements) and rectangular geometries in
three dimensions (finite differences only). Cogito and COMPOSE were developed at
Uppsala University, Sweden (see [3, 4]). Both implement finite-difference schemes for
time-dependent problems and exploit object-oriented technology to develop a new kind of
software library with parts that can be flexibly combined, enhancing easy construction and
modification of programs. Cogito is a high-performance solver that comprises the three
layers Parallel, Grid, and Solver, the lower two layers being Fortran 90 parallel code,
while the Solver is written in C++. COMPOSE is a C++ object-oriented system that
exploits Overture [5] for grid generation.

2 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Diffpack (see [1]) presents an object-oriented problem-solving environment for the
numerical solution of PDEs. It implements finite-difference as well as finite-element
methods and provides C++ modules with a wide selection of interchangeable and appli-
cation-independent components. ELLPACK (see [2]) presents a high-level interface
language for formulating elliptic PDE problems and presents more than 50 problem-
solving modules for handling complex elliptic boundary value problems. It is imple-
mented as a FORTRAN preprocessor and can handle a variety of system geometries in
two dimensions (both finite differences and finite elements) and rectangular geometries in
three dimensions (finite differences only). Cogito and COMPOSE were developed at
Uppsala University, Sweden (see [3, 4]). Both implement finite-difference schemes for
time-dependent problems and exploit object-oriented technology to develop a new kind of

modification of programs. Cogito is a high-performance solver that comprises the three
layers Parallel, Grid, and Solver, the lower two layers being Fortran 90 parallel code,
while the Solver is written in C++. COMPOSE is a C++ object-oriented system that
exploits Overture [5] for grid generation.
The work on numerical PDE libraries is far too extensive for us to be able to present an
exhaustive review here (see [6, 7, 8, 9] for overviews). We would like to emphasize that
while MathPDE has the generality to handle a wide range of PDE problems, it is not
useful, at least in its present form, for certain problems where very specialized finite-
difference decoupling schemes are known to work much better than the straightforward
finite differencing that our approach uses. The Navier–Stokes equation is one such
example (see [4] for an approach to this problem). In general, the work discussed in this
paper is not adequate for problems where specialized numerical libraries have been
known to perform effectively. Instead, it is suitable for PDE problems that are often
encountered in engineering modeling situations. Even for such problems, several static
subroutine libraries have been developed that perform efficiently, as discussed above. On
the other hand, MathPDE can treat a wide range of spatial domains (see Section 3). There
is also the great potential to combine the enormous benefits of the interactive Mathe-
matica environment with its large library of built-in mathematical functions, which
enables the user to experiment with a large class of PDE problems. Finally, MathPDE
generates C++ source code and a standalone executable, addressing the important issue of
portability.

Our preliminary results were reported in the references [10, 11, and 12]. We now give a
brief summary of the present paper. MathPDE accepts the PDE and the initial and
boundary conditions, along with the geometry of the system, in Mathematica’s list format.
It supports geometries of fairly general shapes and dimensions. The symbolic engine
applies explicit and implicit difference methods and discretizes the geometry to a grid.
MathPDE then generates a program for solving the numerical problem, which is essen-
tially an algebraic equation system on the grid; if the system is nonlinear, then a multidi-
mensional Newton–Raphson method [7] is used to solve it. This program makes use of the
external library SuperLU to efficiently handle sparse linear algebraic systems [13].
MathPDE internally calls MathCode [14] to translate the numerical program into C++ and
then to generate an executable. All these operations are done by invoking a single function
(SetupMathPDE) provided by MathPDE. The executable can then be run either from
within Mathematica or externally to obtain the numerical solution of the PDE problem.

Here is an outline of this article. In Section 2, we provide a quick introduction to Math-
PDE with the example of a one-dimensional diffusion equation.
We discuss the ideas behind the package in Section 3. Section 3.1 is about the numerical
algorithms used, such as the discretization of derivatives, the solution of an algebraic sys-
tem, and Fourier stability. In Section 3.2, we discuss how the spatial domain is dis-
cretized. Section 3.3 discusses code generation and its translation into C++ using
MathCode.

MathPDE: A Package to Solve PDEs by Finite Differences 3

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In Section 4, we discuss application examples that illustrate the strengths and limitations
of MathPDE. The examples chosen are divided into problems in one, two, and three dimen-
sions, and there is a section on two nonlinear problems.
In Section 5, we give a summary of our work and make some concluding remarks.

‡ 2. A Quick Tour of MathPDE
In this section we provide a brief tour of MathPDE, taking the example of a one-dimen-
sional diffusion equation. We illustrate how to define the PDE problem, set up the
numerical problem using MathPDE, and generate C++ code using MathCode. The
package MathPDE is loaded in the usual way.

Needs@"MathPDE`"D;

· 2.1 Problem Definition

Let us solve the one-dimensional diffusion equation

(1)
¶∂uHx, tL

¶∂ t
=

¶∂2uHx, tL

¶∂x2
,

with Dirichlet conditions

uH0, tL = uH1, tL = 0,

at the boundaries of the domain

0 § x § 1,

and the initial condition

uHx, 0L = xH1- xL.

The problem is defined as a list.

diffusion1D = 8

8

8¶∂8t,1<u@x, tD ã ¶∂8x,2<u@x, tD<,
8x ã 0, u@x, tD ã 0<,
8x ã 1, u@x, tD ã 0<,
8t ã 0, u@x, tD ã x H1 - xL<

<,
8

88x, 0, 1<<
<

<;

4 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The list has two elements: the first element defines the PDE, the boundary conditions, and
finally the initial condition, each as a list, and the second element defines the spatial do-
main as an iterator.

· 2.2 Setup

Once the problem is defined, the following command sets up the numerical code.

SetupMathPDE@diffusion1D, 8<D

Execute:

SolvePDE@Nx, dt, m, nD

to obtain a solution to your PDE using C code generated by
MathCode, if the C code successfully compiles. Here,

8Nx< is a list of sizes for the variables 8x<, and
dt is the step-size for the variable t.

When you execute SolvePDE for the first time,
you must set m=1, so that it first computes the
initial conditions, and then evolves them up to

t = Hn+m-1L*dt. For subsequent calls of SolvePDE,
choose any value of m other than 1, to evolve
the solution by a further n steps.

The fields 8u< are stored in UP2T, which has Nx elements H

Nx for each fieldL. Execute solutionAt@x, i, NxD
to obtain the value of the i-th field at the point

8x<Hthese must be integersL.

MathCode C++ 1.3.1 for mingw32 loaded from C:\MathCode

Successful compilation to C++: 13 functionHsL

MathPDE is installed.

In this case, the last argument 8< of SetupMathPDE is empty because there are no pa-
rameters in the input problem. If there were parameters, they could be specified in this
list. After completing the symbolic part, the command loads MathCode, which then gener-
ates C++ code and compiles it. In the present problem, the C++ code is a set of 13 func-
tions in addition to the main() function. The executable is also installed by MathCode, so
that we can run it from the notebook interface.

MathPDE: A Package to Solve PDEs by Finite Differences 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· 2.3 Numerical Computation

We can now execute the function SolvePDE to obtain a numerical solution.

SolvePDE@100, 0.01, 1, 100D;

We can extract the solution computed by this command by invoking solutionAt and
we can plot it.

ListLinePlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<DD

20 40 60 80 100

5´10-6

0.00001

0.000015

0.00002

We can uninstall the C++ program and delete all the files related to MathCode if we do
not need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before trying a new problem.

Quit

‡ 3. Design of MathPDE

· 3.1 Numerical Algorithms

ü 3.1.1 Choosing an Appropriate Finite-Difference Method

In the finite-difference method, the independent variables are regarded as discrete and the
domain becomes a grid. The derivatives of the dependent variables then automatically
become differences between values at a combination of these grid points; the actual combi-
nation depends on the nature of the difference approximation. After such an approxi-
mation is performed, no derivatives are left and only the functions are evaluated at the
grid points; the resulting system of relations between the values of dependent variables at
a set of neighboring grid points is referred to as the stencil for the PDE system. Applying
the stencil at all the grid points results in a system of coupled algebraic equations. In time-
dependent problems, to which the present work is addressed, the solution at any time tn
(which is discretized as well) is determined, in general, from the solution up to the
previous time instant tn-1; the solution values at each grid point at the time instant tn are
the unknowns in the algebraic system.

6 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In the finite-difference method, the independent variables are regarded as discrete and the

become differences between values at a combination of these grid points; the actual combi-
nation depends on the nature of the difference approximation. After such an approxi-
mation is performed, no derivatives are left and only the functions are evaluated at the
grid points; the resulting system of relations between the values of dependent variables at
a set of neighboring grid points is referred to as the stencil for the PDE system. Applying
the stencil at all the grid points results in a system of coupled algebraic equations. In time-
dependent problems, to which the present work is addressed, the solution at any time tn
(which is discretized as well) is determined, in general, from the solution up to the
previous time instant tn-1; the solution values at each grid point at the time instant tn are
the unknowns in the algebraic system.
Depending on the kind of discretization used, we may be able to explicitly solve for each
unknown from one of the algebraic equations. In such a case, the difference scheme is
called explicit. In cases where we cannot do this explicitly, we refer to the difference
scheme as implicit.
Let us illustrate this with the example of the one-dimensional diffusion equation that we
solved in Section 2. Suppose we replace utHx, tL by a first-degree forward approximation,
HuHx, t + kL- uHx, tLL ê k, and uxxHx, tL by a second-degree central approximation,
HuHx + h, tL- 2 uHx, tL+ uHx - h, tLL ë h2, where k and h are the step sizes along t and x. The
result is the difference equation

(2)HuHx, t + kL- uHx, tLL ê k = HuHx + h, tL- 2 uHx, tL+ uHx - h, tLL ë h2

that can be easily solved for uHx, t + kL to get

(3)uHx, k + tL =
h2 uHx, tL- 2 k uHx, tL+ k uH-h+ x, tL+ k uHh+ x, tL

h2
,

so we have an explicit finite-difference method. A simple but important observation is
that the right-hand side of the above equation involves dependent variable values at time t
that are already known, so we can use the right-hand side to recursively compute the depen-
dent variable at any grid point and at any time, given the initial and boundary conditions.
On the other hand, if we replace uxxHx, tL by a second-degree central approximation,
HuHx + h, t + kL- 2 uHx, t + kL+ uHx - h, t + kLL ë h2 at time t + k, rather than at time t, then
we get a difference equation

(4)HuHx, t + kL- uHx, tLL ê k = HuHx + h, t + kL- 2 uHx, t + kL+ uHx - h, t + kLL ë h2

that cannot be solved for the dependent variable uHx, t + kL in terms of uHx, tL. In this case,
we have an implicit finite-difference method, since the spatial derivative is advanced to
the highest time t + k. In this case, since we have a linear system, we can state the problem
in terms of matrices, and typically we have to solve a matrix problem of the kind
A ÿ X ‡ B. Nonlinear systems have to be handled differently; see Section 3.1.5.

MathPDE: A Package to Solve PDEs by Finite Differences 7

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In the symbolic part, MathPDE first extracts the list of all the derivatives of dependent
variables with respect to independent variables from the equations specified by the user.
This is straightforward using symbolic programming. Then an important decision to make
is to choose the finite-difference approximation (FDA) to use for each derivative. This is
based on the following simple algorithm.

Suppose we have to choose an FDA degree for the nth derivative with respect to x of
uHx, tL. We look for all the derivatives of u with respect to x in the given PDE, and find
the highest order, nmax; we use nmax as the approximation degree for all derivatives of u
with respect to x, no matter what order. The same procedure works for derivatives with re-
spect to other independent variables. The next thing to decide is which discretization to
choose among the 2 nmax + 1 possible choices for the FDA (see Section 3.1.2). We choose
a central-difference approximation scheme for derivatives with respect to spatial variables
and a forward scheme for time derivatives. Implicit schemes can be obtained by advanc-
ing spatial derivatives. It is easy to see that this algorithm leads to the approximation
schemes discussed above for the diffusion equation. MathPDE generates both explicit and
implicit schemes, and the choice between them is made at run time based on considera-
tions of numerical stability (see Section 3.1.3).
For boundary conditions, we choose a forward or a backward scheme, depending on
whether the condition applies at the left or the right boundary.
It is possible for the user to intervene and force a different scheme (see Section 3.1.4).

ü 3.1.2 Discretization of the Derivatives: Fornberg Algorithm

Once a choice has been made for the approximation degree for a derivative, we must
obtain its finite-difference approximation. A straightforward way to do this is to use the
Lagrange interpolation formula (see any text on numerical analysis, for example [7]).
However, an elegant algorithm due to Fornberg is particularly suitable for implementation
in Mathematica [15]. We have used his very simple code to discretize a derivative.

FD2@order_, degree_, kind_D :=
Module@8t, x<,
t = PadeApproximant@x^kind * Log@xD^order, 8x, 1, degree<D;
CoefficientList@Numerator@tD, xD

D

Now, if we want a second-degree (degree = 2) central approximation (kind = 2) to a
second-order (order = 2) derivative, we must use this.

FD2@2, 2, 2D

81, -2, 1<

8 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

This gives us the coefficients in the resulting stencil (compare with the coefficients on the
right-hand side of equation (2)). A MathPDE function diffApprox@D based on the
above function FD2@D can then be used to obtain the FDA of any derivative. The follow-
ing gives the second-degree (degree = 2) central approximation (kind = 2) to a sec-
ond-order (order = 2) derivative.

diffApproxAuH2,0L@x, tD, 2, 2, hE

u@-1 + x, tD - 2 u@x, tD + u@1 + x, tD

h2

This gives the first-degree forward approximation to a first-order time derivative; here h
and k are the step sizes in x and t, respectively. Mixed derivatives can be easily handled
with recursive calls to diffApprox@D, as done by the MathPDE function disÖ
cretize@D that discretizes equations involving derivatives, as illustrated by the dis-
cretization of the following PDE.

diffApproxAuH0,1L@x, tD, 1, 1, kE

-u@x, tD + u@x, 1 + tD

k

discretize@
D@u@x, y, tD, 8x, 2<D + D@u@x, y, tD, 8y, 2<D +

2 D@u@x, y, tD, 8x, 1<, 8y, 1<D ã D@u@x, y, tD, 8t, 2<D,
8u@x@82, 2<, 82, 2<D, y@82, 2<, 82, 2<D, t@82, 1<, 82, 1<DD<,
8h1, h2, k<D

u@x, -1 + y, tD - 2 u@x, y, tD + u@x, 1 + y, tD

h22
+

u@-1 + x, y, tD - 2 u@x, y, tD + u@1 + x, y, tD

h12
+

1

h1 h2

1

2
u@-1 + x, -1 + y, tD -

1

2
u@-1 + x, 1 + y, tD -

1

2
u@1 + x, -1 + y, tD +

1

2
u@1 + x, 1 + y, tD ã

u@x, y, tD - 2 u@x, y, 1 + tD + u@x, y, 2 + tD

k2

MathPDE: A Package to Solve PDEs by Finite Differences 9

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The second argument to the function discretize@D, 8u@x@82, 2<, 82, 2<D,
y@82, 2<, 82, 2<D, t@82, 1<, 82, 1<DD<, specifies the FDA to use for each
derivative that appears in the PDE. It contains the two integers degree and kind to be
passed as arguments to diffApprox@D for each derivative. Thus, the first argument
82, 2< of x means that the FDA must be second degree, central, for the first x derivative
of u; the second argument of x specifies the integers required to approximate the second
derivative of u with respect to x, and so on.

ü 3.1.3 Fourier Stability

MathPDE performs a Fourier stability test (see [6] for example) for simple explicit meth-
ods when the PDE problem is linear. To understand the underlying ideas, consider again
the one-dimensional diffusion equation (3). If we use an explicit method described in Sec-
tion 3.1.1, we get the stencil (equation (2)):

(5)uHx, k + tL =
uHx, tL h2 - 2 k uHx, tL+ k uHx - h, tL+ k uHh+ x, tL

h2
.

To understand the behavior of the solution obtained by using this difference equation in
the limit as t Ø ¶, let us assume the solution for u is like a plane wave:

(6)uHx, tL ~ eÂ Hq x+t wL,
where q and w are the wave vector and frequency of the plane wave. We then obtain from
equation (5),

(7)eÂ w k~I1- 2 k ë h2M+ I2 k ë h2M cosHq hL.

For the solution to be stable, it is necessary that the absolute value of the right-hand side
of equation (7) is less than unity, or equivalently,

(8)-1 § I1- 2 k ë h2M+ I2 k ë h2M cosHq hL § 1.

From the inequality on the left, we get k ë h2 § 1 ê H1- cosHq hLL. Since the smallest value
of cosHq hL is -1, we get

(9)k ë h2 § 1 ê 2

as the criterion for the difference equation (5) to have a stable solution.

Based on this kind of analysis, MathPDE provides a function stabineq@D that returns
the stability criterion for simple PDEs like diffusion and wave equations. This is used to
help eliminate computational procedures that could be unstable when the step sizes cho-
sen violate the criterion; in such cases, MathPDE selects an appropriate implicit scheme.

10 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü 3.1.4 Higher-Degree Approximation

Finite-difference approximation of a derivative leads to truncation errors because the
approximation is based on truncating the series expansion of a function to a certain
number of terms determined by the approximation degree. To get a smaller truncation
error, we can specify a higher-degree finite-difference approximation. We illustrate this
with a simple example. Suppose we would like to solve the one-dimensional diffusion
equation by using fourth-degree spatial discretization. The following sets up this problem.

SetupMathPDE@diffusion1D, 8<, 88x, 4<<D

There is an important issue that arises in the case of a higher-degree FDA. Let us consider
a fourth-degree central approximation of a spatial derivative.

diffApproxAuH2,0L@x, tD, 4, 3, hE

1

h2
-
1

12
u@-2 + x, tD +

4

3
u@-1 + x, tD -

5

2
u@x, tD +

4

3
u@1 + x, tD -

1

12
u@2 + x, tD

Note that this is a five-point scheme: it involves the grid points x - 2, x - 1, x, x + 1,
and x + 2. Now suppose x varies from 1 to N on a grid. When x = 2, which is immedi-
ately next to the boundary x = 1, the above stencil would involve the point -1 outside the
grid. Therefore we use a second-degree FDA for the point x = 2, with the fourth-degree
FDA taking over from x = 3 onward. A similar device is used to eliminate the point
N + 1 at the other end. In general, the number of layers near the boundary where a lower-
degree FDA is used depends on the degree of FDA desired.

ü 3.1.5 Nonlinear Equations: Newton–Raphson Method

When the PDE is nonlinear, it is easy to see that the algebraic problem is nonlinear as
well. Let us consider Burger’s equation,

(10)
¶∂uHx, tL

¶∂ t
+
¶∂uHx, tL

¶∂x
uHx, tL = 0.

When we discretize it using a difference method automatically selected by MathPDE, we
get the following difference equation, which is nonlinear in u.

discretizeAuH0,1L@x, tD + u@x, tD uH1,0L@x, tD ã 0,

8u@x@81, 1<D, t@81, 1<DD<, 8dx, dt<E

-u@x, tD + u@x, 1 + tD

dt
+
u@x, tD H-u@x, tD + u@1 + x, tDL

dx
ã 0

MathPDE: A Package to Solve PDEs by Finite Differences 11

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We then have a system of N nonlinear algebraic equations to be solved at each point in
time. MathPDE handles such a system using the multidimensional Newton–Raphson
method (see [7]). We briefly summarize this method. Suppose we want to solve a system
of N equations

(11)fiHxL = 0, i = 1, 2, …, N,

where x is N-dimensional. The Newton–Raphson method is an iterative scheme in which
the solution at the nth iteration is

(12)xn = xn-1 -Gn
-1 Fn, n = 1, 2, 3, …,

where Fn
¬ = H f1HxnL, f2HxnL, …, fNHxnLL, and Gn is the Jacobian

(13)

f1£HxnL f1£HxnL … f1£Hxn L
f2£HxnL f2£HxnL … f2£HxnL

…
fN £HxnL fN £HxnL … fN £HxnL

When we attempt to perform the iteration equation (12), we must know the initial guess
x0. MathPDE uses the solution at the previous time step as the initial guess for iteratively
solving the nonlinear system at every time instant. In particular, for t = 1, the initial condi-
tions specified as part of the PDE problem are used as the initial guess. The iteration can
be terminated when the difference between successive approximations xn and xn-1 is less
than a certain small number.
The numerical part involves a matrix problem for both linear and nonlinear PDEs: for the
linear case, we have to solve a matrix equation of the kind A ÿ x = B; for the nonlinear
case, we have to solve such a problem for each iteration. Further, it can be seen that the
matrices involved are very sparse, the number of nonzero elements in each row being
roughly equal to the degree of FDA. We can thus employ efficient numerical routines to
handle sparse matrix systems.

ü 3.1.6 Solution of Sparse Matrix Systems

MathPDE uses the SuperLU numerical library for sparse matrix systems [13]. This
optimized library is based on a variation of the Gaussian elimination algorithm adapted
for sparse systems, and is actually a collection of three libraries: sequential, multithreaded,
and distributed. MathPDE employs a few subroutines of sequential SuperLU to solve
matrix equations of the kind A ÿ X = B that we referred to in Section 3.1.5. The sequential
library, implemented in C, supports real and complex data types in both single and double
precision.

12 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here is the basic algorithm on which SuperLU is based, which is a sparse Gaussian elimi-
nation procedure to solve a matrix equation A ÿ X = B.

Ë Compute an LU decomposition of A, Pr Dr APc Dc = L U. Here, Pr and Pc are row
and column permutation matrices and Dr and Dc are the so-called equilibration ma-
trices, both diagonal. These four matrices are suitably chosen so as to enhance the
sparsity of L and U, numerical stability, and parallelism. In a simple implementa-
tion offered in the subroutine dgssv, the equilibration matrices Dr and Dc are
taken to be identity matrices.

Ë Once we have the LU decomposition, the solution vector X can be efficiently com-
puted using X = Dc Pc U-1 L-1 Pr Dr B, multiplying from right to left.

The sparse matrix A must be provided in the Harwell–Boeing column-compressed format
to save storage. A row-compressed format is also possible, that is, in which A¬ is in col-
umn-compressed format, but involves some preprocessing to transform into the Harwell–
Boeing format; this is followed in the data structure SuperMatrix. In this storage format,
an N µ N sparse matrix A, in which only nnz elements are nonzero, is specified in terms of
three row vectors a@0 : nnz- 1D, asub@0 : nnz- 1D, and xa@0 : ND (that have, respectively,
nnz, nnz, and N + 1 elements).

Ë The successive elements of a@0 : nnz- 1D are obtained by sequentially going over
the columns of A, running down each column, and picking the nonzero elements
of A.

Ë The elements of asub@0 : nnz- 1D are simply the row indices in A of the elements
of a@0 : nnz- 1D .

Ë The kth element of xa@0 : ND, xa@kD, for 1 § k § N, is the total number of nonzero el-
ements of A up to and including the kth column, and xa@0D = 0.

Let us illustrate this storage format for the following sparse matrix (taken from the Su-
perLU user guide [13]).

A =

s 0 u u 0
l u 0 0 0
0 l p 0 0
0 0 0 e u
l l 0 0 r

For this choice of A, N = 5, nnz = 12, and using the indexing conventions of C,
a = Hs l l u l l u p u e u rL, asub = H0 1 4 1 2 4 0 2 0 3 3 4L, and xa = H0 3 6 8 10 12L.

Matrices such as these, along with other information like N, nnz, and the matrix B (that
can be specified as a simple row vector of length N) are required by the SuperLU subrou-
tine dgssv that solves the matrix system A ÿ X = B.

MathPDE: A Package to Solve PDEs by Finite Differences 13

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· 3.2 Domains and Boundaries

ü 3.2.1 Domain Discretization

An important aspect of MathPDE is its ability to handle a wide range of spatial domains.
We explain the ideas with the example of a two-dimensional circular domain behind the
way MathPDE discretizes domains. Let us therefore begin with a circular domain on
which we overlay a grid with 11×11 grid points.

Graphics@8Circle@86, 6<, 5D<,
GridLines Ø 8Range@11D, Range@11D<, Frame Ø True,
FrameTicks Ø 8Range@11D, Range@11D<D

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11
1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

The domain is a circle of radius 1, centered at the origin (the point H6, 6L in the grid). The
bounding box is a square with vertices at the points H1, 1L, H11, 1L, H11, 11L, H1, 11L.

In MathPDE, this domain is specified in the format 888x, - 1 - y2 ,

1 - y2 <<, 88y, -1, 1<<<. When we treat this domain descriptor as an iterator, it
is clear that all the points inside the unit circle as well as those on its circumference are
covered. Furthermore, only these points, and no other, are covered. In other words, the
actual domain is a subset of the bounding box. For rectangular domains, the actual domain
is the bounding box, whereas for other kinds of geometry, the actual domain is a proper
subset of the bounding box. This is made possible because the limits of one of the inde-
pendent variables, x, are treated as functions of the other independent variable, y.

14 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

In MathPDE, this domain is specified in the format 888x, - 1 - y2 ,

1 - y2 <<, 88y, -1, 1<<<. When we treat this domain descriptor as an iterator, it
is clear that all the points inside the unit circle as well as those on its circumference are

actual domain is a subset of the bounding box. For rectangular domains, the actual domain
is the bounding box, whereas for other kinds of geometry, the actual domain is a proper
subset of the bounding box. This is made possible because the limits of one of the inde-
pendent variables, x, are treated as functions of the other independent variable, y.

For our example, here is the lower limit for x.

xLeft1@yD = - 1 - y2 ;

It is easy to discretize the domain now. Since we know the bounding box, we can obtain
the discretized lower limit of x.

xLeft1@y_, Nx_, Ny_D :=

1 - RoundB
1

2
H-1 + NxL -1 + 2 AbsB

HNy - yL H-1 + yL

H-1 + NyL2
F F

Here Nx and Ny are the number of grid points in the bounding box in the x and y direc-
tions, respectively. Arguing in the same manner, we have the following formula for the up-
per limit of x.

xRight1@y_, Nx_, Ny_D :=

1 + RoundB
1

2
H-1 + NxL 1 + 2 AbsB

HNy - yL H-1 + yL

H-1 + NyL2
F F

This is the overall algorithm we use for discretizing spatial domains. When the domain in
question is nonrectangular, there are some issues that we need to be careful about. We
now elaborate on some of these, continuing with the example of a circular domain.
Let us list the points lying on the left and right boundaries of the circle.

Table@8xLeft1@y, 11, 11D, y<, 8y, 1, 11<D

886, 1<, 83, 2<, 82, 3<, 81, 4<, 81, 5<,
81, 6<, 81, 7<, 81, 8<, 82, 9<, 83, 10<, 86, 11<<

Table@8xRight1@y, 11, 11D, y<, 8y, 1, 11<D

886, 1<, 89, 2<, 810, 3<, 811, 4<, 811, 5<,
811, 6<, 811, 7<, 811, 8<, 810, 9<, 89, 10<, 86, 11<<

MathPDE: A Package to Solve PDEs by Finite Differences 15

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here, there is a danger if one is not careful. If the point 86, 1< alone is chosen as being
on the circumference on the line y == 1, as is done above, then the lower y neighbor of
85, 2< (in the interior) is the point 85, 1<, which would be outside the domain. There-
fore, it is necessary to keep all the points 84, 1<, 85, 1<, …, 88, 1< on the circumfer-
ence. Here are improved versions of the definitions for xLeft1 and xRight1.

xL1@y_, Nx_, Ny_D := Min@1 + xLeft1@-1 + y, Nx, NyD,
xLeft1@y, Nx, NyD, 1 + xLeft1@1 + y, Nx, NyDD;

xR1@y_, Nx_, Ny_D := Max@-1 + xRight1@-1 + y, Nx, NyD,
xRight1@y, Nx, NyD, -1 + xRight1@1 + y, Nx, NyDD;

We remark here that formulas xL1 and xR1 lead to extra computation compared with
xLeft1 and xRight1. However, since these computations are performed only on the
domain boundaries, and not at all the points, the additional burden of this improvised
algorithm is insignificant for large grids.
Let us once again look at the left and right boundaries of the circular domain.

Table@8xL1@y, 11, 11D, y<, 8y, 1, 11<D

884, 1<, 83, 2<, 82, 3<, 81, 4<, 81, 5<,
81, 6<, 81, 7<, 81, 8<, 82, 9<, 83, 10<, 84, 11<<

Table@8xR1@y, 11, 11D, y<, 8y, 1, 11<D

888, 1<, 89, 2<, 810, 3<, 811, 4<, 811, 5<,
811, 6<, 811, 7<, 811, 8<, 810, 9<, 89, 10<, 88, 11<<

Although the differences are only on the lines y = 1 and y = Nx, it is important that the
neighbors of all interior points are now treated as being on the boundary, and not outside.
There is a shortcoming of this improvised algorithm: since the points 84, 1<, 85, 1<,
…, 88, 1<are all treated as being on the circumference of the circular domain, the actual
domain used in computations is therefore not exactly circular, but a distorted circle. This
is a price we pay for describing nonrectangular domains using a Cartesian system of coordi-
nates. It can be noted, however, that the extent of this distortion is negligible for large
grids. In cases where such a distortion affects the quality of solution obtained, one needs
to be more careful.
One last point we would like to discuss concerns the notion of subdomains. Above, we

mentioned that the domain is specified as 888x, - 1 - y2 , 1 - y2 <<,

88y, -1, 1<<<, so one could ask why this format is used instead of a simpler iterator

like 88x, - 1 - y2 , 1 - y2 <<, 88y, -1, 1<<.

16 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The reason is that we want to be able to describe more involved domains like this irregu-
lar domain (boundaries shown in solid lines).

Graphics@
8Line@884, 0<, 86, 0<, 86, 4<, 84, 4<, 84, 3<, 80, 3<,

80, 1<, 82, 1<, 82, 2<, 84, 2<, 84, 0<<D, Dashed,
Line@880, 1<, 80, 0<, 84, 0<<D, Line@882, 0<, 82, 1<<D,
Line@880, 4<, 84, 4<<D,
Style@8Text@"x0", 80, 0< - 80, .3<D,

Text@"x1", 82, 0< - 80, .3<D,
Text@"x2", 84, 0< - 80, .3<D,
Text@"x3", 86, 0< - 80, .3<D,
Text@"y0", 80, 0< - 8.3, 0<D,
Text@"y1", 80, 1< - 8.3, 0<D,
Text@"y2", 80, 2< - 8.3, 0<D,
Text@"y3", 80, 3< - 8.3, 0<D,
Text@"y4", 80, 4< - 8.3, 0<D<, FontFamily Ø "Courier",

12D
<, ImageSize Ø 8300, 200<D

x0 x1 x2 x3
y0

y1

y2

y3

y4

MathPDE: A Package to Solve PDEs by Finite Differences 17

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

This domain can be described using the following list, in which there are two sublists in
the x part of the domain descriptor. We call these sublists subdomains. On the other hand,
the y part has only one subdomain. It is clear that with this approach, we are able to de-
scribe and discretize a wide range of geometries, regular and irregular. The user needs to
be able to describe the functional dependence (between independent variables) that de-
fines the nature of geometry.

888x, If@And@y > y1, y < y3D, x0, 1D,
If@And@y > y1, y < y3D, x1, 0D<,

8x, If@And@y > y2, y < y3D, x1, x2D, x3<<, 88y, y0, y4<<<

One last point related to the notion of subdomains concerns the way to describe boundary
conditions on a segment of the boundary. Suppose we want to apply a Dirichlet boundary
condition u@x, y, tD ã c1 on the line joining the points 8x 1, y 2< and
8x 2, y 2<, which is a segment of the boundary of the domain shown. This is done by in-
cluding a boundary condition like 8888x, x1, x2<<, 88y, y2, y2<<<,
u@x, y, tD == c1< in the problem list. The iterator corresponding to the boundary
above generates the grid points that lie on this boundary segment.

ü 3.2.2 Domain Decomposition: Boundary and Interior Regions

We now discuss the issue of decomposition of the domain into boundary and interior
regions, and how to apply the discretized boundary conditions and the difference
equations in the respective regions. Let us consider the example of a two-dimensional
diffusion equation in a circular domain to illustrate the ideas.

diffusion2dcircle = 9

9

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD=,

8x == -Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8x == Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8t == 0, u@x, y, tD ==

If@x^2 + y^2 < 0.5, 1. - x^2 - y^2, 0D<
=,

8

88x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<
<

=;

18 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The domain 888x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<< de-
scribes a circle that we discussed in the previous subsection. When discretized, it becomes
888x, xL1@y, Nx, NyD, xR1@y, Nx, NyD<<, 88y, 1, Ny<<<, where the func-
tions xL1 and xR1 were defined earlier. Having discretized the domain, there now re-
mains the problem of decomposing it into boundary and interior regions, where the
boundary conditions and the difference equations (corresponding to the PDE) must be ap-
plied. We now describe the way in which this is done in MathPDE.
Let us begin by examining the boundary conditions. In the present example, we have two
Dirichlet boundary conditions for u@x, y, tD = 0 at the left and right branches of the
circular domain, x = xL1@y, Nx, NyD and x = xR1@y, Nx, NyD.

Clearly, the interior region begins with the point x = xL1@y, Nx, NyD + 1 and ends
with the point x = xR1@y, Nx, NyD - 1 at each value of y. Furthermore, the points on
the circumference for y = 1, namely, 884, 1<, 85, 1<, 86, 1<, 87, 1<, 88, 1<< (for
Nx = Ny = 11), as well as the points on the circumference for y = Ny,
884, 11<, 85, 11<, 86, 11<, 87, 11<, 88, 11<<, must be part of the boundary. As a result, the
boundaries are described by list1 and list2 and the interior region described by
list3 .

list1 = 888x, xL1@y, Nx, NyD, xL1@y, Nx, NyD<<, 88y, 1, Ny<<<;

list2 = 888x, xR1@y, Nx, NyD, xR1@y, Nx, NyD<<, 88y, 1, Ny<<<;

list3 = 888x, xL1@y, Nx, NyD + 1, xR1@y, Nx, NyD - 1<<,
88y, 2, Ny - 1<<<;

This is the overall domain decomposition algorithm that MathPDE implements. We now
elaborate on a few issues that arise in connection with matching the difference equations
and the boundary conditions at the boundary.
When the lowest-degree difference approximation is used to generate the difference
equations from the PDE (see Section 3.1.1), the domain for the circle above determines
the set of grid points at which the difference equations apply. However, when we use a
higher-degree difference approximation, matching the difference equations with the
boundary conditions is a tricky issue. As we have already mentioned in Section 3.1.4, we
use the lowest-degree stencil on a few grid layers near the boundary, with the higher-
degree stencil taking over beyond this region into the interior. As a result, the interior
region for the circle must be further decomposed into two subregions: a few layers near
the boundary where the lowest-degree difference equations apply, and the rest of the
interior region where higher-degree equations apply.

MathPDE: A Package to Solve PDEs by Finite Differences 19

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

For example, here is the difference equation when a fourth-degree spatial scheme is used
for the two-dimensional diffusion equation.

-u@x, y, tD + u@x, y, 1 + tD

dt
ã

1

dy2
-
1

12
u@x, -2 + y, tD +

4

3
u@x, -1 + y, tD -

5

2
u@x, y, tD +

4

3
u@x, 1 + y, tD -

1

12
u@x, 2 + y, tD +

1

dx2
-
1

12
u@-2 + x, y, tD +

4

3
u@-1 + x, y, tD -

5

2
u@x, y, tD +

4

3
u@1 + x, y, tD -

1

12
u@2 + x, y, tD

This equation has the y values 8y - 2, y - 1, y, y + 1, y + 2<. Since the lowest
grid value of y is 1, it is clear that this equation can be applied only for y beginning with
y = 3. Similarly, the highest grid value of y at which the equation can be applied is
Ny - 2. We can argue in the same way for the x limits, and as a result, the interior region
where the fourth-degree stencil applies is stencil4.

stencil4 = 888x, xL1@y, Nx, NyD + 2, xR1@y, Nx, NyD - 2<<,
88y, 3, Ny - 2<<<

The region where the lowest-degree (i.e., second-degree in this case) stencil applies is this
set of four regions, which is the difference between the regions list3 and stencil4.

888y, 3, -2 + Ny<, 8x, xL1@y, Nx, NyD + 1, xL1@y, Nx, NyD + 1<<,
88y, 3, -2 + Ny<, 8x, xR1@y, Nx, NyD - 1, xR1@y, Nx, NyD - 1<<,
88y, 2, 2<, 8x, xL1@y, Nx, NyD + 1, xR1@y, Nx, NyD - 1<<,
88y, -1 + Ny, -1 + Ny<,
8x, xL1@y, Nx, NyD + 1, xR1@y, Nx, NyD - 1<<<

20 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Finally, we comment on a correction required in the definitions of xL1 and xR1 that de-
scribe the boundary region. The left and right boundaries that make up the circular domain
meet on the lines y = 1 and y = Ny. As we argued in Section 3.2.1, the boundary inter-
sects each of these lines at a set of points, and not just one point. As a result, all the points
from xL1@1, Nx, NyD to xR1@1, Nx, NyD must be included in the boundary region;
similarly, all the points from xL1@Ny, Nx, NyD to xR1@Ny, Nx, NyD must also be in-
cluded in the boundary region. The original definitions of xL1 and xR1 do not include all
these points, and we must therefore replace them by the set of regions that correctly de-
scribes the boundary region.

8

88x, xL1@y, Nx, NyD, xL1@y, Nx, NyD<, 8y, 2, Ny - 1<<,
88x, xL1@y, Nx, NyD, xR1@y, Nx, NyD - 1<, 8y, 1, 1<<,
88x, xL1@y, Nx, NyD, xR1@y, Nx, NyD - 1<, 8y, Ny, Ny<<,
88x, xR1@y, Nx, NyD, xR1@y, Nx, NyD<, 8y, 1, Ny<<,

<

This list also ensures that points where two boundaries intersect are included in only one
of them, and not counted twice. The domain decomposition algorithm implemented by
MathPDE takes this into account.

· 3.3 Code Generation Algorithms

ü 3.3.1 Automatic Function Generation

In the previous two sections, 3.1 and 3.2, we discussed at length the numerical and
domain-related algorithms that MathPDE implements. A third important component of
MathPDE is its ability to generate a problem-specific program by stitching together the
numerical and domain parts in an appropriate manner. This program is a set of inde-
pendent and interrelated Mathematica functions that work to compute a numerical
solution of the PDE problem. Each function performs a very specific task.
For example, consider the function xL1@D that we discussed in Section 3.2.1, which
computes the lower limit of the iterator for x in a circular domain. This is one of the many
functions that are automatically generated by MathPDE for the PDE problem
diffusion2dcircle. The way we do this is by manipulating the DownValues of
the function. Since DownValues@xL1D is a list of elements of the form
HoldPattern@lhsD ß rhs, we can define lhs and rhs suitably, and generate a defi-
nition of the function xL1. Let us briefly explain how we do it.

MathPDE: A Package to Solve PDEs by Finite Differences 21

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We first generate the list deflist after creating a context MathPDE`, whose elements
are of the form 8head, lhs Ø rhs<.

BeginPackage@"MathPDE`"D;

deflist =

:8xL1, xL1@y, Nx, NyD Ø Min@1 + xLeft1@-1 + y, Nx, NyD,

xLeft1@y, Nx, NyD, 1 + xLeft1@1 + y, Nx, NyDD<,

:xLeft1, xLeft1@y, Nx, NyD Ø

1 - RoundB
1

2
H-1 + NxL -1 + 2

HNy - yL H-1 + yL

H-1 + NyL2
F>>;

This list is generated based on the domain-discretization algorithm as explained in Section
3.2.1. Here, lhs contains information about the input syntax (the function prototype, with-
out type information) of the function head, and rhs contains what is going to be the
body of the function definition. Note that the Rule format ensures delayed evaluation.
Once we have a list like deflist, it is easy to generate function definitions. We can, for
instance, define a function-defining function called DefineFunction that can generate
the definition of a function based on information like deflist.

DefineFunction@head_, rule_D :=
Module@8pat<,
DownValues@headD = 8<;
pat = Map@ToExpression@StringJoin@ToString@Ò1D, "_"DD &,

ruleP1TD;
DownValues@headD =
8RuleDelayed üü 8HoldPattern üü 8pat<, ruleP2T<<;

D

Off@General::"spell1"D;
Attributes@DefineFunctionD = 8HoldAll<;
DefineFunction@head_, rule_D :=
Module@8pat, min, max, rhs<,
DownValues@headD = 8<;
pat = Map@ToExpression@StringJoin@ToString@Ò1D, "_"DD &,

ruleP1TD;
rhs = ruleP2T ê. Min ß min ê. Max ß max;
DownValues@headD =
8HRuleDelayed üü 8HoldPattern üü 8pat<,

rhs ê. min@a_, b_, c_D ß min@8a, b, c<D ê.
max@a_, b_, c_D ß max@8a, b, c<D<L ê. min ß Min ê.

max ß Max<;
D

22 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Now, we can execute the following commands.

Begin@"MathPDE`Private`"D;

Map@DefineFunction üü Ò &, deflistD;

After which, the functions xL1 and xLeft1 will be defined.

Map@Information, 8xL1, xLeft1<D

MathPDE`xL1

xL1@y_, Nx_, Ny_D := Min@81 + xLeft1@-1 + y, Nx, NyD, xLeft1@y, Nx, NyD

MathPDE`xLeft1

xLeft1@y_, Nx_, Ny_D := 1 - RoundB 1

2
H-1 + NxL -1 + 2

HNy-yL H-1+yL

H-1+NyL2
F

End@D;
EndPackage@D;

We note one more thing here. Since the body of xL1 depends explicitly on another
function, xLeft1, it is important that the latter be still undefined when the former is
defined. The sequence of function generations must therefore be arranged with proper
regard for their interdependence. One more thing to note is that the body of each of the
functions automatically generated must involve purely numerical operations and no
symbolic ones. This is important, since we are finally interested in translating the program
into a compiled language (like C++ or Fortran 90) by employing the code generator
MathCode [14].
Some of the functions automatically generated do not have such a simple structure as
xL1. These include, for instance, the function SolvePDE that we encountered in Section
2. Such functions perform more complicated operations, and involve local variables that
must be declared in a Module. Such definitions are generated using special-purpose func-
tions available in MathPDE, and functions like DefineFunction above will not do.
However, the essential idea is still the same, and is based on delayed evaluation and the
use of DownValues.

MathPDE: A Package to Solve PDEs by Finite Differences 23

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü 3.3.2 Translation into C++ Using MathCode

MathCode is a system for translating Mathematica functions into C++/Fortran 90 [14].
The functions must be purely numerical, as we mentioned in Section 3.3.1. We must de-
clare the prototype information of the functions for MathCode to translate them. The nu-
merical functions that MathPDE generates are then passed on to MathCode, which in turn
translates them into C++ or Fortran 90.
The reason for translating the Mathematica functions is twofold. Firstly, it lends portabil-
ity to the solver: the C++ code that is generated is completely self-contained. Secondly,
MathCode enables us to run the generated code from the notebook as well. Typically, this
leads to performance gains of several times compared with original Mathematica code.
We now illustrate the way MathPDE employs MathCode to generate C++ code.

Needs@"MathCode`"D;

MathCode version 1.2 loaded.

SetDirectory@$MCRoot <> "êDemosêSimplestExample"D;

We have to start the context MathPDE`, and mention MathCodeContexts within the
path of the package.

BeginPackage@"MathPDE`", 8MathCodeContexts<D;

However, since the functions xL1 and xLeft1 have already been defined, we simply
end the package.

EndPackage@D;

We next declare the function prototypes. This specifies the data types of all the arguments
and the output. In our simple example, all data types involved are integers.

Declare@xL1@Integer y_, Integer Nx_, Integer Ny_D Ø IntegerD;

Declare@xLeft1@Integer y_, Integer Nx_, Integer Ny_D Ø

IntegerD;

We then build the C++ code for the functions xL1 and xLeft1 with the following
 command.

BuildCode@"MathPDE`"D;

Successful compilation to C++: 2 functionHsL

24 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

The next command runs the Mathematica code for the function xL1.

Timing@Do@xL1@2, 11, 11D, 81000<DD

80.691 Second, Null<

If we want to run the C++ executable instead, we must install it.

InstallCode@D;

MathPDE is installed.

Now this runs the C++ executable.

Timing@Do@xL1@2, 11, 11D, 81000<DD

80.35 Second, Null<

It can be seen that there is a slight enhancement in speed; however, the enhancement fac-
tor depends on the problem. Here is the C++ code generated.

!! MathPDE.cc

#include "MathPDE.h"

#include "MathPDE.icc"

#include <math.h>
void MathPDE_TMathPDEInit ()
{
;
}

int MathPDE_TxL1 (const int &y, const int &Nx, const int &Ny)
{
 return LightMin(make_lightN(3, 1+MathPDE_TxLeft1 (-1+y,
Nx, Ny),
 MathPDE_TxLeft1 (y, Nx, Ny), 1+MathPDE_TxLeft1 (1+y,
Nx, Ny)));
}

int MathPDE_TxLeft1 (const int &y, const int &Nx, const int
&Ny)
{
 return 1+-irint(((-1+Nx)*(-1+2*pow(pow(-1+Ny, -2)*(Ny+-
y)*(-1+y),
 0.5)))/2);
}

We compiled just two functions, xL1 and xLeft1. MathPDE automates this sequence of
commands and generates, compiles, and installs code for all the numerical functions auto-
matically generated for the given PDE problem (nine functions, for the example of the
one-dimensional diffusion equation; see Section 2.2). The resulting code computes the so-
lution to the PDE, as demonstrated in Section 2.3.

MathPDE: A Package to Solve PDEs by Finite Differences 25

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We compiled just two functions, xL1 and xLeft1. MathPDE automates this sequence of
commands and generates, compiles, and installs code for all the numerical functions auto-
matically generated for the given PDE problem (nine functions, for the example of the
one-dimensional diffusion equation; see Section 2.2). The resulting code computes the so-
lution to the PDE, as demonstrated in Section 2.3.

‡ 4. Examples
This section presents a range of example PDE problems solved using MathPDE: the
examples are chosen to illustrate the many features of MathPDE; for example, higher-
degree approximation schemes, nonlinear problems, different kinds of boundary
condition, non-rectangular geometries, and so on. All the problems are time-dependent
PDE problems, mainly of the parabolic and hyperbolic types.
We now solve a variety of PDE problems using MathPDE. The solution steps involved
are much like in Section 2, and are obvious from the context. If MathPDE is installed on
your system, all the commands should work when executed in the sequence they are given
in below.

· 4.1 One-Dimensional Problems

ü 4.1.1 Diffusion Equation with Derivative Boundary Conditions

We must first load the package MathPDE.

Needs@"MathPDE`"D;

diffusion2 = 8

8

8¶∂8t,1<u@x, tD == ¶∂8x,2<u@x, tD<,
8x == 0, ¶∂8x,1<u@x, tD == 0.<,
8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == If@x < .15, x, 1 - xD<

<,
8

88x, 0, 1<<
<

<;

SetupMathPDE@diffusion2, 8<D

26 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

To save space here as well as in the rest of Section 4, we have cut out the detailed com-
ments returned by MathPDE when the function SetupMathPDE is executed.

AbsTime@SolvePDE@100, 0.01, 1, 200D;D

81.0715408 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

0.001

0.002

0.003

0.004

The difference here from the example presented in Section 4 is that the derivative at the
left end of the system is zero, which leads to a different solution profile. In both cases, how-
ever, the solutions decay to a uniform concentration distribution in the long time limit.
We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

MathPDE: A Package to Solve PDEs by Finite Differences 27

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü 4.1.2 Wave Equation

We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave = 8

8

8¶∂8t,2<u@x, tD == H1 ê c^2L ¶∂8x,2<u@x, tD<,
8x == 0, u@x, tD == 0<,
8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == x H1 - xL, ¶∂8t,1<u@x, tD ã der1<

<,
8

88x, 0, 1<<
<

<;

SetupMathPDE@wave, 8c, der1<D

In this case, we can choose numerical values for c and der1 at run time; the code gener-
ated for SolvePDE is such that these parameters can be passed as real arguments when
we execute the program. We now run SolvePDE by choosing numerical values for these
parameters.

AbsTime@SolvePDE@100, 0.01, 1000., 0.001, 1, 500D;D

81.5322032 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

28 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We can choose a different set of values for the parameters of the problem.

AbsTime@SolvePDE@100, 0.01, 1., 0.001, 1, 500D;D

82.4034560 Second, Null<

The solution is now different.

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

-0.2

-0.15

-0.1

-0.05

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

MathPDE: A Package to Solve PDEs by Finite Differences 29

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

· 4.2 Two-Dimensional Problems

ü 4.2.1 Diffusion Equation in a Rectangular Domain

We now take the example of a two-dimensional diffusion equation and compare
MathPDE and NDSolve, the built-in Mathematica function to solve time-dependent PDE
problems. We take the initial condition that is a Gaussian with its peak at the center of the
domain, and Dirichlet boundary conditions.
NDSolve uses the numerical method of lines, while MathPDE uses a finite-difference
time stepping. This could partly explain the differences in the solutions obtained by the
two approaches.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

diffusion2d = 9

9

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD=,

8x == 0, u@x, y, tD == 0<,
8x == 1, u@x, y, tD == 0<,
8y == 0, u@x, y, tD == 0<,
8y == 1, u@x, y, tD == 0<,
8t == 0, u@x, y, tD ==

Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D<
=,

8

88x, 0, 1<<, 88y, 0, 1<<
<

=;

Let us set up the problem in MathPDE.

AbsTime@SetupMathPDE@diffusion2d, 8<DD

8148.7438832 Second, Null<

Now let us evolve the solution by 10 time steps.

8tot1, tot2< = 820, 20<;
AbsTime@SolvePDE@tot1, tot2, 0.01, 1, 10D;D

81.9327792 Second, Null<

30 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We plot the solution.

ListPlot3D@
list = Table@solutionAt@i, j, 1, tot1, tot2D, 8i, 1, tot1<,

8j, 1, tot2<D,
PlotRange Ø 880, tot1<, 80, tot2<,

80, 0.03781262962361607`<<D

0

5

10

15

20 0

5

10

15

20

0

0.01

0.02

0.03

0

5

10

15

20

We can try this example using NDSolve as well. Let us choose the same step sizes as cho-
sen above for MathPDE so as to compare the two solutions.

TimingA

soln =
Quietü
NDSolveA

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD,

u@0, y, tD == 0, u@x, 0, tD == 0, u@1, y, tD == 0,
u@x, 1, tD == 0,
u@x, y, 0D == Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D=,

u, 8x, 0, 1<, 8y, 0, 1<, 8t, 0, 0.5<,
MaxSteps Ø 820, 20, 50<EE

80.132172, 88u Ø InterpolatingFunction@
880., 1.<, 80., 1.<, 80., 0.0185968<<, <>D<<<

MathPDE: A Package to Solve PDEs by Finite Differences 31

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We plot the solution at t = 0.1.

QuietüPlot3D@Hu@x, y, 0.1D ê.solnLP1T, 8x, 0, 1<,
8y, 0, 1<, PlotRange Ø 880, 1<, 80, 1<, 80, 2.3`<<D

The solution has not homogenized yet, although the solution obtained using MathPDE
was more spread out. However, suppose we let NDSolve automatically choose its step
sizes.

TimingA

soln =
Quietü
NDSolveA

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD,

u@0, y, tD == 0, u@x, 0, tD == 0, u@1, y, tD == 0,
u@x, 1, tD == 0,
u@x, y, 0D == Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D=,

u, 8x, 0, 1<, 8y, 0, 1<, 8t, 0, 5<EE

89.51483, 88u Ø InterpolatingFunction@
880., 1.<, 80., 1.<, 80., 5.<<, <>D<<<

32 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We now plot the solution profile at t = 0.1.

Plot3D@Hu@x, y, 0.1D ê.solnLP1T, 8x, 0, 1<, 8y, 0, 1<D

Now the solution is more spread out, and agrees with the solution produced by MathPDE.

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

MathPDE: A Package to Solve PDEs by Finite Differences 33

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü 4.2.2 Diffusion Equation on a Circle

We now consider an example PDE problem with a circular domain; apart from that, the
problem is essentially the same as in the previous example. This is a problem that
NDSolve cannot handle, since the spatial geometry is not rectangular.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

diffusion2dcircle = 9

9

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD=,

8x == -Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8x == Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8t == 0, u@x, y, tD ==

Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D<
=,

8

88x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<
<

=;

The boundary conditions are specified on the left and right semicircles. Since we describe
a nonrectangular domain using Cartesian coordinates, one of the coordinates, x, has been
made to depend on the other, y, in the domain description.
We now set up the problem using MathPDE.

AbsTime@SetupMathPDE@diffusion2dcircle, 8<D;D

8184.9960112 Second, Null<

In this case MathPDE has generated 21 functions (as opposed to 13 in the previous exam-
ple) that are translated into C++ code and compiled by MathCode. The extra functions in
this case are required to compute the grid for the circular domain.

34 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We compute the solution and plot it.

8tot1, tot2< = 850, 50<;
AbsTime@SolvePDE@tot1, tot2, 0.01, 1, 100D;D

8343.4338336 Second, Null<

ListPlot3D@Table@solutionAt@i, j, 1, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<DD

10
20

30
40

50

10

20

30

40

50

0
0.00002
0.00004
0.00006
0.00008

10
20

30
40

50

Although we use Cartesian coordinates to describe a circular domain, the jagged nature of
the circular boundary is not predominant at this level of granularity (50 grid steps in each
of the two directions), and the solution appears fairly smooth.
We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

MathPDE: A Package to Solve PDEs by Finite Differences 35

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ü 4.2.3 A Two-Variable Problem: Wave Equation in a Circular Domain

We now study the example of the two-dimensional wave equation, in which there are two
dependent variables. Let us first consider a rectangular domain.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave2drectangle = 9

9

9H1 ê c^2L ¶∂8t,2<u@x, y, tD ==

A1 I¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tDM +

A2 I¶∂8x,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM,

H1 ê c^2L ¶∂8t,2<v@x, y, tD ==

A1 I¶∂8x,2<v@x, y, tD + ¶∂8y,2<v@x, y, tDM +

A2 I¶∂8y,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM=,

8x == 0, u@x, y, tD == 0, v@x, y, tD == 0<,
8x == 1, u@x, y, tD == 0, v@x, y, tD == 0<,
8y == 0, u@x, y, tD == 0, v@x, y, tD == 0<,
8y == 1, u@x, y, tD == 0, v@x, y, tD == 0<,
8t == 0, u@x, y, tD == H1 - xL x H1 - yL y,
¶∂8t,1<u@x, y, tD == 0.1, v@x, y, tD ã H1 - xL x H1 - yL y,
¶∂8t,1<v@x, y, tD == 0.2<

=,

8

88x, 0, 1<<, 88y, 0, 1<<
<

=;

In this problem, there are some parameters, and so we have to input them in a list as an ar-
gument to the setup function.

AbsTime@SetupMathPDE@wave2drectangle, 8c, A1, A2<D;D

8159.6295360 Second, Null<

Let us now compute the solution for a set of values of the parameters.

8tot1, tot2< = 820, 20<;
AbsTime@SolvePDE@tot1, tot2, 0.1, 1., .1, 0.5, 1, 10D;D

872.3940976 Second, Null<

36 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here is the plot of the dependent variable u.

ListPlot3D@Table@solutionAt@i, j, 1, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<DD

5

10

15

20

5

10

15

20

-0.03

-0.02

-0.01

0

5

10

15

20

And here is the plot of the dependent variable v.

ListPlot3D@Table@solutionAt@i, j, 2, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<DD

5

10

15

20

5

10

15

20

-0.02

0

0.02

5

10

15

20

MathPDE: A Package to Solve PDEs by Finite Differences 37

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

Now consider a similar problem in a circular domain.

We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave2d2circle = 9

9

9H1 ê c^2L ¶∂8t,2<u@x, y, tD ==

A1 I¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tDM +

A2 I¶∂8x,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM,

H1 ê c^2L ¶∂8t,2<v@x, y, tD ==

A1 I¶∂8x,2<v@x, y, tD + ¶∂8y,2<v@x, y, tDM +

A2 I¶∂8y,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM=,

8x == -Sqrt@1 - y^2D, u@x, y, tD == 0, v@x, y, tD == 0<,
8x == Sqrt@1 - y^2D, u@x, y, tD == 0, v@x, y, tD == 0<,
8t == 0, u@x, y, tD == Exp@-HHx - 0.4L^2 + Hy - 0.4L^2L ê 0.1D,
¶∂8t,1<u@x, y, tD == 0.1,
v@x, y, tD == Exp@-HHx + 0.4L^2 + Hy + 0.4L^2L ê 0.1D,
¶∂8t,1<v@x, y, tD == 0.2<

=,

8

88x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<
<

=;

AbsTime@SetupMathPDE@wave2d2circle, 8c, A1, A2<D;D

8162.5937984 Second, Null<

8tot1, tot2< = 820, 20<;
AbsTime@SolvePDE@tot1, tot2, 0.1, 1., .1, 0.5, 1, 10D;D

829.2420480 Second, Null<

38 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here is the plot of the dependent variable u.

ListPlot3D@Table@solutionAt@i, j, 1, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<D,

PlotRange Ø 881, 20<, 81, 20<, Automatic<D

5

10

15

20

5

10

15

20

-0.2

0

0.2

5

10

15

20

And here is the plot of the dependent variable v.

ListPlot3D@Table@solutionAt@i, j, 2, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<D,

PlotRange Ø 881, 20<, 81, 20<, Automatic<D

5

10

15

20

5

10

15

20

-0.2

0

0.2

5

10

15

20

MathPDE: A Package to Solve PDEs by Finite Differences 39

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

· 4.3 A Three-Dimensional Problem

ü 4.3.1 Three-Dimensional Wave Equation

Let us now consider the wave equation

1

c2
¶∂2F

¶∂ t2
= A1 !2F+ A2 !H! .FL

for the spatial and temporal variations of F = Hu, v, wL, the three-dimensional vector of dis-
placements in a solid. Here, c is the speed of sound in the material, and A1 and A2 are con-
stants that depend on the Poisson ratio. This equation arises in many contexts, for example
when we have a shaft that rests on ball bearings and is connected to wheels at the ends.
We can describe this problem in a cubic geometry in the form of the following list, in
which we have expanded the vector equation into components.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave3d =
9

9

9H1 ê c^2L ¶∂8t,2<u@x, y, z, tD ==

A1 I¶∂8x,2<u@x, y, z, tD + ¶∂8y,2<u@x, y, z, tD +

¶∂8z,2<u@x, y, z, tDM +

A2
I¶∂8x,1<I¶∂8x,1<u@x, y, z, tD + ¶∂8y,1<v@x, y, z, tD +

¶∂8z,1<w@x, y, z, tDMM,

H1 ê c^2L ¶∂8t,2<v@x, y, z, tD ==

A1 I¶∂8x,2<v@x, y, z, tD + ¶∂8y,2<v@x, y, z, tD +

¶∂8z,2<v@x, y, z, tDM +

40 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

A2
I¶∂8y,1<I¶∂8x,1<u@x, y, z, tD + ¶∂8y,1<v@x, y, z, tD +

¶∂8z,1<w@x, y, z, tDMM,

H1 ê c^2L ¶∂8t,2<w@x, y, z, tD ==

A1 I¶∂8x,2<w@x, y, z, tD + ¶∂8y,2<w@x, y, z, tD +

¶∂8z,2<w@x, y, z, tDM +

A2
I¶∂8z,1<I¶∂8x,1<u@x, y, z, tD + ¶∂8y,1<v@x, y, z, tD +

¶∂8z,1<w@x, y, z, tDMM

=,

8x == -0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8x == 0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8y == -0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8y == 0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8z == -2, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8z == 2, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8t == 0, u@x, y, z, tD ==
Exp@-HHx - 0.04L^2 + Hy - 0.04L^2L ê 0.01D,

¶∂8t,1<u@x, y, z, tD == 0.1,
v@x, y, z, tD == Exp@-HHx + 0.04L^2 + Hy + 0.04L^2L ê 0.01D,
¶∂8t,1<v@x, y, z, tD == 0.2,
w@x, y, z, tD == Exp@-Hz^2L ê 0.01D,
¶∂8t,1<w@x, y, z, tD == 0.3<

=,

8

88x, -0.5, 0.5<<, 88y, -0.5, 0.5<<, 88z, -2, 2<<
<

=;

Here we have taken simple Dirichlet boundary conditions; the practically interesting cases
could have Robin boundary conditions involving normal derivatives of the fields, in
which case we would need to do a little more work to transform the normal derivatives
into suitable combinations of derivatives with respect to Cartesian coordinates.

MathPDE: A Package to Solve PDEs by Finite Differences 41

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

For this problem, we use a slightly different version of the setup function that does not
make MathCode-related declarations; it returns a list that has the prototype information
about the functions for which C++ code is desired.

AbsTime@mcode = SetupMathPDE2@wave3d, 8c, A1, A2<D;D

820.5996208 Second, Null<

We now apply the function MathCodePart to the list mcode to make declarations, gen-
erate C++ code, compile it, and install the executable.

AbsTime@MathCodePart üü mcodeD

8187.3093376 Second, Null<

Let us run SolvePDE by taking Nx = Ny = Nz = 8, and Dt = 0.1. The parameter val-
ues are 8c, A1, A2< = 81., .1, 0.5<.

8tot1, tot2, tot3< = 88, 8, 8<;
AbsTime@SolvePDE@tot1, tot2, tot3, 0.1, 1., .1, 0.5, 1, 10D;D

8275.7665328 Second, Null<

Let us define a function to extract function values (for u) over a two-dimensional cross
section.

plotlistu@z_D :=
Table@solutionAt@i, j, z, 1, tot1, tot2, tot3D,
8i, 1, tot1<, 8j, 1, tot2<D;

Here is the plot of the dependent variable u over a two-dimensional cross section for
z = H4 - 1L * H1.0 ê 8.0L = 0.375.

ListPlot3D@plotlistu@4DD

2

4

6

8

2

4

6

8

-0.1

-0.05

0

2

4

6

8

42 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We can plot the other dependent variables v and w in the same manner. Let us define a
function to extract function values for v over a two-dimensional cross section.

plotlistv@z_D :=
Table@solutionAt@i, j, z, 2, tot1, tot2, tot3D,
8i, 1, tot1<, 8j, 1, tot2<D;

Here is the plot of the dependent variable v over a two-dimensional cross section for
z = H4 - 1L * H1.0 ê 8.0L = 0.375.

ListPlot3D@plotlistv@4DD

2

4

6

8

2

4

6

8

-0.05

0

2

4

6

8

Finally, let us define a function to extract function values for w over a two-dimensional
cross section.

plotlistw@z_D :=
Table@solutionAt@i, j, z, 3, tot1, tot2, tot3D,
8i, 1, tot1<, 8j, 1, tot2<D;

MathPDE: A Package to Solve PDEs by Finite Differences 43

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Here is the plot of the dependent variable w over a two-dimensional cross section for
z = H4 - 1L * H1.0 ê 8.0L = 0.375.

ListPlot3D@plotlistw@4DD

2

4

6

8

2

4

6

8

0

0.1

0.2

2

4

6

8

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

· 4.4 Nonlinear Problems

ü 4.4.1 Advection-Diffusion and Inviscid Burgerʼs Equations

Let us now consider the following PDE

uHx, tL
¶∂uHx, tL

¶∂ t
+
¶∂uHx, tL

¶∂ t
= c

¶∂2uHx, tL

¶∂x2
,

where c is a constant. When c = 0, the equation becomes the inviscid Burger’s equation,
and when c = 1, the equation becomes the advection-diffusion equation. Let us define this
PDE problem with Dirichlet boundary conditions and a simple space-dependent initial
condition.

44 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

where c is a constant. When c = 0, the equation becomes the inviscid Burger’s equation,
and when c = 1, the equation becomes the advection-diffusion equation. Let us define this
PDE problem with Dirichlet boundary conditions and a simple space-dependent initial
condition.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

nonlinear =
8

8

8¶∂8t,1<u@x, tD + u@x, tD ¶∂8x,1<u@x, tD == c * ¶∂8x,2<u@x, tD<,
8x == 0, u@x, tD == u1<,
8x == 1, u@x, tD == u1<,
8t == 0, u@x, tD == u1 + x H1 - xL<

<,
8

88x, 0, 1<<
<

<;

SetupMathPDE@nonlinear, 8u1, c<D

In this case, the PDE leads to a nonlinear algebraic system that must be solved iteratively.
Let us choose a small time step of 0.01 and evolve the solution by 100 time steps (i.e., up
to t = 1) for a spatial size of 100 grid points. We first choose c = 1, so we have the advec-
tion-diffusion limit.

AbsTime@SolvePDE@100, 0.01, 0.0, 1.0, 1, 100, 0.001, 10D;D

82.4234848 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

5´10-6

0.00001

0.000015

0.00002

MathPDE: A Package to Solve PDEs by Finite Differences 45

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We now solve the problem with c = 0: in this limit, we have the inviscid Burger’s
equation.

AbsTime@SolvePDE@100, 0.01, .0, .0, 1, 100, 0.001, 10D;D

84.5865952 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

The solution varies very strongly in space near the right boundary. This indicates that fi-
nite-difference approximation is not very good for such problems. Indeed, if we evolve
the solution by a further 15 time steps, we can see the quality of the solution deteriorate
further.

AbsTime@SolvePDE@100, 0.01, .0, .0, 0, 15, 0.001, 10D;D

80.7110224 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

46 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Now there are wild fluctuations near the right boundary, and the solution is not reliable.
Let us solve the problem using NDSolve.

soln = NDSolve@8¶∂8t,1<u@x, tD + u@x, tD ¶∂8x,1<u@x, tD == 0,
u@0, tD == 0, u@1, tD == 0, u@x, 0D == x H1 - xL<, u,

8x, 0, 1<, 8t, 0, 10<D

88u Ø InterpolatingFunction@880., 1.<, 80., 10.<<, <>D<<

At t = 1, let us plot the solution.

Plot@Hu@x, 1D ê.solnLP1T, 8x, 0, 1<D

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

This agrees well with the solution obtained using MathPDE, and the rapid fall near the
right end of the system must be noticed. Let us now plot the solution at a later time,
t = 1.15.

Plot@Hu@x, 1.5`D ê.solnLP1T, 8x, 0, 1<D

0.2 0.4 0.6 0.8 1

0.125

0.15

0.175

0.2

0.225

0.25

MathPDE: A Package to Solve PDEs by Finite Differences 47

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Now we can see that there are regions where the solution shows strong fluctuations, al-
though there are differences between the solutions obtained by MathPDE and NDSolve.
Examples such as these illustrate the limitations of MathPDE, based as it is on finite-differ-
ence discretization.
We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

ü 4.4.2 A Nonlinear Variant of the Diffusion Equation

Now let us try a nonlinear variant of the diffusion equation.

We must first load the package MathPDE.

Needs@"MathPDE`"D;

nonlinear1 =
9

9

9uH0,1L@x, tD == IuH2,0L@x, tDM^2 + c * uH1,0L@x, tD=,

8x == 0, u@x, tD == 0<,
8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == x H1 - xL<

=,

8

88x, 0, 1<<
<

=;

SetupMathPDE@nonlinear1, 8c<D

AbsTime@SolvePDE@100, 0.01, 1.0, 1, 100, 0.001, 10D;D

81.5221888 Second, Null<

48 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

-0.00075

-0.0005

-0.00025

0.00025

0.0005

0.00075

When we take c = 0, the solution is very different.

AbsTime@SolvePDE@100, 0.01, 0.0, 1, 100, 0.001, 10D;D

AbsTime@NullD

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

-0.008

-0.006

-0.004

-0.002

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

MathPDE: A Package to Solve PDEs by Finite Differences 49

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

We must quit the kernel before testing a new problem.

Quit

Consider the same PDE, but with a derivative boundary condition at x = 0.

We must first load the package MathPDE.

Needs@"MathPDE`"D;

nonlinear2 =
9

9

9uH0,1L@x, tD == IuH2,0L@x, tDM^2 + c * uH1,0L@x, tD=,

9x == 0, uH1,0L@x, tD == 0.=,

8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == x H1 - xL<

=,

8

88x, 0, 1<<
<

=;

SetupMathPDE@nonlinear2, 8c<D

We solve it for c = 1.

AbsTime@SolvePDE@100, 0.01, 1.0, 1, 100, 0.001, 10D;D

88.4521536 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

-0.025

-0.02

-0.015

-0.01

-0.005

Now the solution profile is different, because the derivative at the left boundary must be
zero, according to the boundary condition. Finally, we solve it for c = 0.

50 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

Now the solution profile is different, because the derivative at the left boundary must be
zero, according to the boundary condition. Finally, we solve it for c = 0.

AbsTime@SolvePDE@100, 0.01, 0.0, 1, 100, 0.001, 10D;D

82.7439456 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

-0.01

-0.008

-0.006

-0.004

-0.002

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

‡ 5. Conclusion
In this article, we have presented a PDE solving system, MathPDE, that is based on Mathe-
matica. We have demonstrated it for a variety of time-dependent PDE problems, and
made comparisons with NDSolve in a few cases.
We have discussed at length the basic ideas underlying the design of MathPDE. We be-
lieve that there is scope for improvement in many areas, like the adaptive step sizes for
space and time, the way in which higher-degree approximations are implemented, and so
on. The limitations of MathPDE for nonlinear problems are obvious, based as it is on fi-
nite differences.
The main attractions of MathPDE are its ability to handle a wide range of spatial domains
and the generation of a standalone C++ program for performing numerical computation.

MathPDE: A Package to Solve PDEs by Finite Differences 51

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

‡ References
[1] H. P. Langtangen, “Computational Partial Differential Equations: Numerical Methods and Diff-

pack Programming,” Lecture Notes in Computational Science and Engineering, Vol. 2,
Berlin: Springer-Verlag, 1999.

[2] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, New York:
Springer, 1985. www.cs.purdue.edu/ellpack/ellpack.html.

[3] E. Mossberg, K. Otto, and M. Thuné, “Object-Oriented Software Tools for the Construction
of Preconditioners,” Scientific Programming, 6(3), 1997 pp. 285–295.
www.informatik.uni-trier.de/~ley/db/journals/sp/sp6.html.

[4] K. Åhlander, “An Object-Oriented Framework for PDE Solvers,” Ph.D. thesis, Department of
Scientific Computing, Uppsala University, Sweden, 1999.
uu.diva-portal.org/smash/record.jsf?pid=diva2:162116.

[5] W. D. Henshaw. “Overture Documentation, LLNL Overlapping Grid Project.” (May 23, 2011)
www.llnl.gov/CASC/Overture/henshaw/overtureDocumentation/overtureDocumentation.html.

[6] W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., San Diego: Aca-
demic Press, 1992.

[7] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 5th ed., Reading, MA: Addi-
son-Wesley, 1994.

[8] B. Gustafsson, H.-O. Kreiss, and J. Oliger, Time Dependent Problems and Difference Meth-
ods, New York: Wiley, 1995.

[9] M. Oh, “Modeling and Simulation of Combined Lumped and Distributed Processes,” Ph.D.
thesis, University of London, 1995.

[10] K. Sheshadri and P. Fritzson, “A Mathematica-Based PDE Solver Generator,” Proceedings
of SIMSʼ99, Conference of the Scandinavian Simulation Society, Linköping, Sweden, 1999
pp. 66–78.

[11] K. Sheshadri and P. Fritzson, “A General Symbolic PDE Solver Generator: Explicit
Schemes,” Scientific Programming, 11(1), 2003 pp. 39–55.
dl.acm.org/citation.cfm?id=1240066&CFID=40011545&CFTOKEN=28188005.

[12] K. Sheshadri and P. Fritzson, “A General Symbolic PDE Solver Generator: Beyond Explicit
Schemes,” Scientific Programming, 11(3), 2003 pp. 225–235.
dl.acm.org/citation.cfm?id=1240103.

[13] J. W. Demmel, J. R. Gilbert, and X. S. Li, SuperLU Usersʼ Guide.
crd.lbl.gov/~xiaoye/SuperLU.

[14] P. Fritzson, MathCode C++, Linköping, Sweden: MathCore Engineering AB, 1998.
www.mathcore.com.

[15] B. Fornberg, “Calculation of Weights in Finite Difference Formulas,” SIAM Review, 40(3),
1998 pp. 685–691. amath.colorado.edu/faculty/fornberg/Docs/sirev_cl.pdf.

K. Sheshadri and P. Fritzson, “MathPDE: A Package to Solve PDEs by Finite Differences,” The Mathematica
Journal, 2011. dx.doi.org/doi:10.3888/tmj.13-20.

About the Authors

K. Sheshadri works on computational algorithms for network biology problems. In the
past he has worked on statistical mechanics of quantum condensed-matter systems. He
was a guest researcher with Linköping University, Sweden in 1999, and had a collabora-
tion with the university from 2000 to 2005, when the present work was done. Currently he
is a lead scientist at Connexios Life Sciences, Bangalore, India.

52 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

K. Sheshadri works on computational algorithms for network biology problems. In the

was a guest researcher with Linköping University, Sweden in 1999, and had a collabora-
tion with the university from 2000 to 2005, when the present work was done. Currently he
is a lead scientist at Connexios Life Sciences, Bangalore, India.
Peter Fritzson is a professor and research director of the Programming Environment
Laboratory at Linköping University. He is also director of the Open Source Modelica
Consortium, director of the MODPROD center for model-based product development,
and vice chairman of the Modelica Association, organizations he helped to establish.
During 1999–2007 he served as chairman of the Scandinavian Simulation Society and
secretary of the European simulation organization, EuroSim. Fritzson’s current research
interests are in software technology, especially programming languages, tools, and
environments; parallel and multicore computing; compilers and compiler generators; and
high-level specification and modeling languages, with special emphasis on tools for
object-oriented modeling and simulation, where he is one of the main contributors and
founders of the Modelica language. Fritzson has authored or coauthored more than 210
technical publications, including 16 books or proceedings.
K. Sheshadri
Peter Fritzson
Programming Environment Laboratory
Department of Computer and Information Science,
Linköping University, S-581 83 Linköping, Sweden
kshesh@gmail.com
peter.fritzson@liu.se

MathPDE: A Package to Solve PDEs by Finite Differences 53

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.

