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A package for solving time-dependent partial differential 
equations (PDEs), MathPDE, is presented. It implements finite-
difference methods. After making a sequence of symbolic 
transformations on the PDE and its initial and boundary 
conditions, MathPDE automatically generates a problem-specific 
set of Mathematica functions to solve the numerical problem, 
which is essentially a system of algebraic equations. MathPDE 
then internally calls MathCode, a Mathematica-to-C++ code 
generator, to generate a C++ program for solving the algebraic 
problem, and compiles it into an executable that can be run via 
MathLink. When the algebraic system is nonlinear, the Newton–
Raphson method is used and SuperLU, a library for sparse 
systems, is used for matrix operations. This article discusses the 
wide range of PDEs that can be handled by MathPDE, the 
accuracy of the finite-difference schemes used, and importantly, 
the ability to handle both regular and irregular spatial domains. 
Since a standalone C++ program is generated to compute the 
numerical solution, the package offers portability.

‡ 1. Introduction
Mathematical  problems described  by  partial  differential  equations  (PDEs)  are  ubiquitous
in science and engineering. Examples range from the simple (but very common) diffusion
equation,  through  the  wave  and  Laplace  equations,  to  the  nonlinear  equations  of  fluid
mechanics, elasticity, and chaos theory. However, few PDEs have closed-form analytical
solutions,  making numerical  methods  necessary.  The numerical  task  is  made difficult  by
the  dimensionality  and  geometry  of  the  independent  variables,  the  nonlinearities  in  the
system, sensitivity to boundary conditions,  a lack of formal understanding of the kind of
solution method to be employed for a particular problem, and so on.
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equation,  through  the  wave  and  Laplace  equations,  to  the  nonlinear  equations  of  fluid
mechanics, elasticity, and chaos theory. However, few PDEs have closed-form analytical
solutions,  making numerical  methods  necessary.  The numerical  task  is  made difficult  by
the  dimensionality  and  geometry  of  the  independent  variables,  the  nonlinearities  in  the
system, sensitivity to boundary conditions,  a lack of formal understanding of the kind of
solution method to be employed for a particular problem, and so on.
A number of methods have been developed to deal with the numerical solution of PDEs.
These fall  into two broad categories:  the finite-difference methods and the finite-element
methods.  Roughly  speaking,  both  transform a  PDE problem to  the  problem of  solving  a
system of coupled algebraic equations. In finite-difference methods, the domain of the in-
dependent  variables  is  approximated  by  a  discrete  set  of  points  called  a  grid,  and  the
dependent  variables  are  defined  only  at  these  points.  Any  derivative  then  automatically
acquires the meaning of a certain kind of difference between dependent variable values at
the  grid  points.  This  identification  helps  us  transform  the  PDE  problem  to  a  system  of
coupled  algebraic  equations.  In  the  finite-element  method,  the  dependent  variable  is
approximated by an interpolation polynomial. The domain is subdivided into a set of non-
overlapping regions that  completely cover  it;  each such region is  called a  finite  element.
The  interpolation  polynomial  is  determined  by  a  set  of  coefficients  in  each  element;  the
small size of the elements generally ensures that a low-degree polynomial is sufficient. A
weighted residual method is then used to set up a system of algebraic equations for these
coefficients. The numerical problem in both methods therefore is one of solving a system
of algebraic equations.

In this article, we present the Mathematica package MathPDE that implements the finite-
difference  method  for  time-dependent  PDE  problems.  We  give  examples  of  the  way  in
which symbolic programming lends a degree of generality to MathPDE. Before doing so,
we  would  like  to  put  our  work  in  perspective.  We  first  review,  very  briefly,  the  extant
PDE packages that we are familiar with that have been developed over the years. 
Mathematica  has  a  built-in  function  NDSolve  that  can  numerically  solve  a  variety  of
PDEs and offers the user a very simple and quick route to solving PDEs numerically. So a
natural question that arises is why another solver is needed. In this regard, we emphasize
two points. First, MathPDE is able to handle irregular spatial domains, not just rectangu-
lar or cubic domains. Second, MathPDE can produce a standalone executable that runs in-
dependently of Mathematica, providing portability.
The  following  systems  use  either  a  compiled  language  directly,  or  have  a  high-level
interface  language  that  preprocesses  the  input  and  employs  subroutines  in  a  compiled
language. None of them uses symbolic programming.
Diffpack  (see  [1])  presents  an  object-oriented  problem-solving  environment  for  the
numerical  solution  of  PDEs.  It  implements  finite-difference  as  well  as  finite-element
methods  and  provides  C++ modules  with  a  wide  selection  of  interchangeable  and  appli-
cation-independent  components.  ELLPACK  (see  [2])  presents  a  high-level  interface
language  for  formulating  elliptic  PDE  problems  and  presents  more  than  50  problem-
solving  modules  for  handling  complex  elliptic  boundary  value  problems.  It  is  imple-
mented  as  a  FORTRAN  preprocessor  and  can  handle  a  variety  of  system  geometries  in
two dimensions (both finite differences and finite elements) and rectangular geometries in
three  dimensions  (finite  differences  only).  Cogito  and  COMPOSE  were  developed  at
Uppsala  University,  Sweden  (see  [3,  4]).  Both  implement  finite-difference  schemes  for
time-dependent problems and exploit object-oriented technology to develop a new kind of
software library with parts that can be flexibly combined, enhancing easy construction and
modification  of  programs.  Cogito  is  a  high-performance  solver  that  comprises  the  three
layers  Parallel,  Grid,  and  Solver,  the  lower  two  layers  being  Fortran  90  parallel  code,
while  the  Solver  is  written  in  C++.  COMPOSE  is  a  C++  object-oriented  system  that
exploits Overture [5] for grid generation.
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modification  of  programs.  Cogito  is  a  high-performance  solver  that  comprises  the  three
layers  Parallel,  Grid,  and  Solver,  the  lower  two  layers  being  Fortran  90  parallel  code,
while  the  Solver  is  written  in  C++.  COMPOSE  is  a  C++  object-oriented  system  that
exploits Overture [5] for grid generation.
The work on numerical  PDE libraries is  far  too extensive for us to be able to present  an
exhaustive review here (see [6, 7, 8, 9] for overviews). We would like to emphasize that
while  MathPDE  has  the  generality  to  handle  a  wide  range  of  PDE  problems,  it  is  not
useful,  at  least  in  its  present  form,  for  certain  problems  where  very  specialized  finite-
difference  decoupling  schemes  are  known  to  work  much  better  than  the  straightforward
finite  differencing  that  our  approach  uses.  The  Navier–Stokes  equation  is  one  such
example (see [4] for an approach to this problem). In general,  the work discussed in this
paper  is  not  adequate  for  problems  where  specialized  numerical  libraries  have  been
known  to  perform  effectively.  Instead,  it  is  suitable  for  PDE  problems  that  are  often
encountered  in  engineering  modeling  situations.  Even  for  such  problems,  several  static
subroutine libraries have been developed that perform efficiently, as discussed above. On
the other hand, MathPDE can treat a wide range of spatial domains (see Section 3). There
is  also  the  great  potential  to  combine  the  enormous  benefits  of  the  interactive  Mathe-
matica  environment  with  its  large  library  of  built-in  mathematical  functions,  which
enables  the  user  to  experiment  with  a  large  class  of  PDE  problems.  Finally,  MathPDE
generates C++ source code and a standalone executable, addressing the important issue of
portability.

Our preliminary results  were reported in the references [10,  11,  and 12].  We now give a
brief  summary  of  the  present  paper.  MathPDE  accepts  the  PDE  and  the  initial  and
boundary conditions, along with the geometry of the system, in Mathematica’s list format.
It  supports  geometries  of  fairly  general  shapes  and  dimensions.  The  symbolic  engine
applies  explicit  and  implicit  difference  methods  and  discretizes  the  geometry  to  a  grid.
MathPDE  then  generates  a  program  for  solving  the  numerical  problem,  which  is  essen-
tially an algebraic equation system on the grid; if the system is nonlinear, then a multidi-
mensional Newton–Raphson method [7] is used to solve it. This program makes use of the
external  library  SuperLU  to  efficiently  handle  sparse  linear  algebraic  systems  [13].
MathPDE internally calls MathCode [14] to translate the numerical program into C++ and
then to generate an executable. All these operations are done by invoking a single function
(SetupMathPDE)  provided  by  MathPDE.  The  executable  can  then  be  run  either  from
within Mathematica or externally to obtain the numerical solution of the PDE problem.

Here is  an outline of  this  article.  In Section 2,  we provide a  quick introduction to Math-
PDE with the example of a one-dimensional diffusion equation.
We discuss the ideas behind the package in Section 3. Section 3.1 is about the numerical
algorithms used, such as the discretization of derivatives, the solution of an algebraic sys-
tem,  and  Fourier  stability.  In  Section  3.2,  we  discuss  how  the  spatial  domain  is  dis-
cretized.  Section  3.3  discusses  code  generation  and  its  translation  into  C++  using
MathCode.
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In Section 4,  we discuss application examples that  illustrate the strengths and limitations
of MathPDE. The examples chosen are divided into problems in one, two, and three dimen-
sions, and there is a section on two nonlinear problems.
In Section 5, we give a summary of our work and make some concluding remarks.

‡ 2. A Quick Tour of MathPDE
In this section we provide a brief tour of MathPDE,  taking the example of a one-dimen-
sional  diffusion  equation.  We  illustrate  how  to  define  the  PDE  problem,  set  up  the
numerical  problem  using  MathPDE,  and  generate  C++  code  using  MathCode.  The
package MathPDE is loaded in the usual way.

Needs@"MathPDE`"D;

· 2.1 Problem Definition

Let us solve the one-dimensional diffusion equation

(1)
¶∂uHx, tL

¶∂ t
=

¶∂2uHx, tL

¶∂x2
,

with Dirichlet conditions

uH0, tL = uH1, tL = 0,

at the boundaries of the domain 

0 § x § 1,

and the initial condition 

uHx, 0L = xH1- xL.

The problem is defined as a list.

diffusion1D = 8

8

8¶∂8t,1<u@x, tD ã ¶∂8x,2<u@x, tD<,
8x ã 0, u@x, tD ã 0<,
8x ã 1, u@x, tD ã 0<,
8t ã 0, u@x, tD ã x H1 - xL<

<,
8

88x, 0, 1<<
<

<;
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The list has two elements: the first element defines the PDE, the boundary conditions, and
finally the initial  condition, each as a list,  and the second element defines the spatial  do-
main as an iterator.

· 2.2 Setup

Once the problem is defined, the following command sets up the numerical code.

SetupMathPDE@diffusion1D, 8<D

Execute:

SolvePDE@Nx, dt, m, nD

to obtain a solution to your PDE using C code generated by
MathCode, if the C code successfully compiles. Here,

8Nx< is a list of sizes for the variables 8x<, and
dt is the step-size for the variable t.

When you execute SolvePDE for the first time,
you must set m=1, so that it first computes the
initial conditions, and then evolves them up to

t = Hn+m-1L*dt. For subsequent calls of SolvePDE,
choose any value of m other than 1, to evolve
the solution by a further n steps.

The fields 8u< are stored in UP2T, which has Nx elements H

Nx for each fieldL. Execute solutionAt@x, i, NxD
to obtain the value of the i-th field at the point

8x<Hthese must be integersL.

MathCode C++ 1.3.1 for mingw32 loaded from C:\MathCode

Successful compilation to C++: 13 functionHsL

MathPDE is installed.

In this case, the last argument 8< of SetupMathPDE is empty because there are no pa-
rameters  in  the  input  problem.  If  there  were  parameters,  they  could  be  specified  in  this
list. After completing the symbolic part, the command loads MathCode, which then gener-
ates C++ code and compiles it. In the present problem, the C++ code is a set of 13 func-
tions in addition to the main() function. The executable is also installed by MathCode, so
that we can run it from the notebook interface.

MathPDE: A Package to Solve PDEs by Finite Differences 5

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



· 2.3 Numerical Computation

We can now execute the function SolvePDE to obtain a numerical solution.

SolvePDE@100, 0.01, 1, 100D;

We can extract  the  solution computed by this  command by invoking solutionAt  and
we can plot it.

ListLinePlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<DD

20 40 60 80 100

5´10-6

0.00001

0.000015

0.00002

We can uninstall  the  C++ program and delete  all  the  files  related to  MathCode  if  we do
not need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before trying a new problem.

Quit

‡ 3. Design of MathPDE

· 3.1 Numerical Algorithms

ü 3.1.1 Choosing an Appropriate Finite-Difference Method

In the finite-difference method, the independent variables are regarded as discrete and the
domain  becomes  a  grid.  The  derivatives  of  the  dependent  variables  then  automatically
become differences between values at a combination of these grid points; the actual combi-
nation  depends  on  the  nature  of  the  difference  approximation.  After  such  an  approxi-
mation  is  performed,  no  derivatives  are  left  and  only  the  functions  are  evaluated  at  the
grid points; the resulting system of relations between the values of dependent variables at
a set of neighboring grid points is referred to as the stencil for the PDE system. Applying
the stencil at all the grid points results in a system of coupled algebraic equations. In time-
dependent  problems,  to  which  the  present  work  is  addressed,  the  solution  at  any  time  tn
(which  is  discretized  as  well)  is  determined,  in  general,  from  the  solution  up  to  the
previous time instant tn-1;  the solution values at each grid point at the time instant tn  are
the unknowns in the algebraic system.
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previous time instant tn-1;  the solution values at each grid point at the time instant tn  are
the unknowns in the algebraic system.
Depending on the kind of discretization used, we may be able to explicitly solve for each
unknown  from  one  of  the  algebraic  equations.  In  such  a  case,  the  difference  scheme  is
called  explicit.  In  cases  where  we  cannot  do  this  explicitly,  we  refer  to  the  difference
scheme as implicit. 
Let  us  illustrate  this  with the example of  the one-dimensional  diffusion equation that  we
solved in Section 2. Suppose we replace utHx, tL  by a first-degree forward approximation,
HuHx, t + kL- uHx, tLL ê k,  and  uxxHx, tL  by  a  second-degree  central  approximation,
HuHx + h, tL- 2 uHx, tL+ uHx - h, tLL ë h2, where k and h are the step sizes along t and x. The
result is the difference equation

(2)HuHx, t + kL- uHx, tLL ê k = HuHx + h, tL- 2 uHx, tL+ uHx - h, tLL ë h2

that can be easily solved for uHx, t + kL to get

(3)uHx, k + tL =
h2 uHx, tL- 2 k uHx, tL+ k uH-h+ x, tL+ k uHh+ x, tL

h2
,

so  we  have  an  explicit  finite-difference  method.  A  simple  but  important  observation  is
that the right-hand side of the above equation involves dependent variable values at time t
that are already known, so we can use the right-hand side to recursively compute the depen-
dent variable at any grid point and at any time, given the initial and boundary conditions.
On  the  other  hand,  if  we  replace  uxxHx, tL  by  a  second-degree  central  approximation,
HuHx + h, t + kL- 2 uHx, t + kL+ uHx - h, t + kLL ë h2  at  time  t + k,  rather  than  at  time  t,  then
we get a difference equation

(4)HuHx, t + kL- uHx, tLL ê k = HuHx + h, t + kL- 2 uHx, t + kL+ uHx - h, t + kLL ë h2

that cannot be solved for the dependent variable uHx, t + kL in terms of uHx, tL. In this case,
we  have  an  implicit  finite-difference  method,  since  the  spatial  derivative  is  advanced  to
the highest time t + k. In this case, since we have a linear system, we can state the problem
in  terms  of  matrices,  and  typically  we  have  to  solve  a  matrix  problem  of  the  kind
A ÿ X ‡ B. Nonlinear systems have to be handled differently; see Section 3.1.5.
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In  the  symbolic  part,  MathPDE  first  extracts  the  list  of  all  the  derivatives  of  dependent
variables  with  respect  to  independent  variables  from the  equations  specified  by the  user.
This is straightforward using symbolic programming. Then an important decision to make
is to choose the finite-difference approximation (FDA) to use for each derivative. This is
based on the following simple algorithm.

Suppose  we  have  to  choose  an  FDA  degree  for  the  nth  derivative  with  respect  to  x  of
uHx, tL.  We look for all  the derivatives of u  with respect to x  in the given PDE, and find
the highest  order,  nmax;  we use  nmax  as  the  approximation degree for  all  derivatives  of  u
with respect to x, no matter what order. The same procedure works for derivatives with re-
spect  to  other  independent  variables.  The  next  thing  to  decide  is  which  discretization  to
choose among the 2 nmax + 1 possible choices for the FDA (see Section 3.1.2). We choose
a central-difference approximation scheme for derivatives with respect to spatial variables
and a forward scheme for time derivatives. Implicit  schemes can be obtained by advanc-
ing  spatial  derivatives.  It  is  easy  to  see  that  this  algorithm  leads  to  the  approximation
schemes discussed above for the diffusion equation. MathPDE generates both explicit and
implicit  schemes,  and  the  choice  between them is  made  at  run  time based  on  considera-
tions of numerical stability (see Section 3.1.3).
For  boundary  conditions,  we  choose  a  forward  or  a  backward  scheme,  depending  on
whether the condition applies at the left or the right boundary.
It is possible for the user to intervene and force a different scheme (see Section 3.1.4).

ü 3.1.2 Discretization of the Derivatives: Fornberg Algorithm

Once  a  choice  has  been  made  for  the  approximation  degree  for  a  derivative,  we  must
obtain  its  finite-difference  approximation.  A straightforward  way to  do  this  is  to  use  the
Lagrange  interpolation  formula  (see  any  text  on  numerical  analysis,  for  example  [7]).
However, an elegant algorithm due to Fornberg is particularly suitable for implementation
in Mathematica [15]. We have used his very simple code to discretize a derivative.

FD2@order_, degree_, kind_D :=
Module@8t, x<,
t = PadeApproximant@x^kind * Log@xD^order, 8x, 1, degree<D;
CoefficientList@Numerator@tD, xD

D

Now, if  we want a second-degree (degree = 2)  central  approximation (kind = 2)  to a
second-order (order = 2) derivative, we must use this.

FD2@2, 2, 2D

81, -2, 1<
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This gives us the coefficients in the resulting stencil (compare with the coefficients on the
right-hand  side  of  equation  (2)).  A  MathPDE  function  diffApprox@D  based  on  the
above function FD2@D can then be used to obtain the FDA of any derivative. The follow-
ing  gives  the  second-degree  (degree = 2)  central  approximation  (kind = 2)  to  a  sec-
ond-order (order = 2) derivative.

diffApproxAuH2,0L@x, tD, 2, 2, hE

u@-1 + x, tD - 2 u@x, tD + u@1 + x, tD

h2

This gives the first-degree forward approximation to a first-order time derivative;  here h
and k are the step sizes in x and t, respectively. Mixed derivatives can be easily handled
with  recursive  calls  to  diffApprox@D,  as  done  by  the  MathPDE  function  disÖ
cretize@D  that  discretizes  equations  involving  derivatives,  as  illustrated  by  the  dis-
cretization of the following PDE.

diffApproxAuH0,1L@x, tD, 1, 1, kE

-u@x, tD + u@x, 1 + tD

k

discretize@
D@u@x, y, tD, 8x, 2<D + D@u@x, y, tD, 8y, 2<D +

2 D@u@x, y, tD, 8x, 1<, 8y, 1<D ã D@u@x, y, tD, 8t, 2<D,
8u@x@82, 2<, 82, 2<D, y@82, 2<, 82, 2<D, t@82, 1<, 82, 1<DD<,
8h1, h2, k<D

u@x, -1 + y, tD - 2 u@x, y, tD + u@x, 1 + y, tD

h22
+

u@-1 + x, y, tD - 2 u@x, y, tD + u@1 + x, y, tD

h12
+

1

h1 h2

1

2
u@-1 + x, -1 + y, tD -

1

2
u@-1 + x, 1 + y, tD -

1

2
u@1 + x, -1 + y, tD +

1

2
u@1 + x, 1 + y, tD ã

u@x, y, tD - 2 u@x, y, 1 + tD + u@x, y, 2 + tD

k2
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The  second  argument  to  the  function  discretize@D,  8u@x@82, 2<, 82, 2<D,
y@82, 2<, 82, 2<D, t@82, 1<, 82, 1<DD<,  specifies  the  FDA  to  use  for  each
derivative that appears in the PDE. It contains the two integers degree and kind to be
passed  as  arguments  to  diffApprox@D  for  each  derivative.  Thus,  the  first  argument
82, 2< of x means that the FDA must be second degree, central, for the first x derivative
of u; the second argument of x  specifies the integers required to approximate the second
derivative of u with respect to x, and so on.

ü 3.1.3 Fourier Stability

MathPDE performs a Fourier stability test (see [6] for example) for simple explicit meth-
ods when the PDE problem is linear.  To understand the underlying ideas,  consider again
the one-dimensional diffusion equation (3). If we use an explicit method described in Sec-
tion 3.1.1, we get the stencil (equation (2)):

(5)uHx, k + tL =
uHx, tL h2 - 2 k uHx, tL+ k uHx - h, tL+ k uHh+ x, tL

h2
.

To  understand  the  behavior  of  the  solution  obtained  by  using  this  difference  equation  in
the limit as t Ø ¶, let us assume the solution for u is like a plane wave:

(6)uHx, tL ~ eÂ Hq x+t wL,
where q and w are the wave vector and frequency of the plane wave. We then obtain from
equation (5),

(7)eÂ w k~I1- 2 k ë h2M+ I2 k ë h2M cosHq hL.

For the solution to be stable, it is necessary that the absolute value of the right-hand side
of equation (7) is less than unity, or equivalently,

(8)-1 § I1- 2 k ë h2M+ I2 k ë h2M cosHq hL § 1.

From the inequality on the left, we get k ë h2 § 1 ê H1- cosHq hLL. Since the smallest value
of cosHq hL is -1, we get

(9)k ë h2 § 1 ê 2

as the criterion for the difference equation (5) to have a stable solution.

Based on this kind of analysis, MathPDE  provides a function stabineq@D  that returns
the stability criterion for simple PDEs like diffusion and wave equations.  This is  used to
help  eliminate  computational  procedures  that  could be  unstable  when the  step sizes  cho-
sen violate the criterion; in such cases, MathPDE selects an appropriate implicit scheme.
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ü 3.1.4 Higher-Degree Approximation

Finite-difference  approximation  of  a  derivative  leads  to  truncation  errors  because  the
approximation  is  based  on  truncating  the  series  expansion  of  a  function  to  a  certain
number  of  terms  determined  by  the  approximation  degree.  To  get  a  smaller  truncation
error,  we  can  specify  a  higher-degree  finite-difference  approximation.  We  illustrate  this
with  a  simple  example.  Suppose  we  would  like  to  solve  the  one-dimensional  diffusion
equation by using fourth-degree spatial discretization. The following sets up this problem.

SetupMathPDE@diffusion1D, 8<, 88x, 4<<D

There is an important issue that arises in the case of a higher-degree FDA. Let us consider
a fourth-degree central approximation of a spatial derivative.

diffApproxAuH2,0L@x, tD, 4, 3, hE

1

h2
-
1

12
u@-2 + x, tD +

4

3
u@-1 + x, tD -

5

2
u@x, tD +

4

3
u@1 + x, tD -

1

12
u@2 + x, tD

Note  that  this  is  a  five-point  scheme:  it  involves  the  grid  points  x - 2,  x - 1,  x,  x + 1,
and x + 2.  Now suppose x  varies from 1  to N  on a grid. When x = 2,  which is immedi-
ately next to the boundary x = 1, the above stencil would involve the point -1 outside the
grid.  Therefore we use a second-degree FDA for the point  x = 2,  with the fourth-degree
FDA  taking  over  from  x = 3  onward.  A  similar  device  is  used  to  eliminate  the  point
N + 1 at the other end. In general, the number of layers near the boundary where a lower-
degree FDA is used depends on the degree of FDA desired.

ü 3.1.5 Nonlinear Equations: Newton–Raphson Method

When  the  PDE  is  nonlinear,  it  is  easy  to  see  that  the  algebraic  problem  is  nonlinear  as
well. Let us consider Burger’s equation,

(10)
¶∂uHx, tL

¶∂ t
+
¶∂uHx, tL

¶∂x
uHx, tL = 0.

When we discretize it using a difference method automatically selected by MathPDE, we
get the following difference equation, which is nonlinear in u. 

discretizeAuH0,1L@x, tD + u@x, tD uH1,0L@x, tD ã 0,

8u@x@81, 1<D, t@81, 1<DD<, 8dx, dt<E

-u@x, tD + u@x, 1 + tD

dt
+
u@x, tD H-u@x, tD + u@1 + x, tDL

dx
ã 0
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We then have  a  system of  N  nonlinear  algebraic  equations  to  be  solved at  each point  in
time.  MathPDE  handles  such  a  system  using  the  multidimensional  Newton–Raphson
method (see [7]). We briefly summarize this method. Suppose we want to solve a system
of N equations

(11)fiHxL = 0, i = 1, 2, …, N,

where x  is N-dimensional. The Newton–Raphson method is an iterative scheme in which
the solution at the nth iteration is

(12)xn = xn-1 -Gn
-1 Fn, n = 1, 2, 3, …,

where Fn
¬ = H f1HxnL, f2HxnL, …, fNHxnLL, and Gn is the Jacobian

(13)

f1£HxnL f1£HxnL … f1£Hxn L
f2£HxnL f2£HxnL … f2£HxnL

…
fN £HxnL fN £HxnL … fN £HxnL

When we attempt  to  perform the iteration equation (12),  we must  know the initial  guess
x0. MathPDE uses the solution at the previous time step as the initial guess for iteratively
solving the nonlinear system at every time instant. In particular, for t = 1, the initial condi-
tions specified as part of the PDE problem are used as the initial guess. The iteration can
be terminated when the difference between successive approximations xn  and xn-1  is less
than a certain small number.
The numerical part involves a matrix problem for both linear and nonlinear PDEs: for the
linear  case,  we  have  to  solve  a  matrix  equation  of  the  kind  A ÿ x = B;  for  the  nonlinear
case,  we have to solve such a problem for each iteration.  Further,  it  can be seen that  the
matrices  involved  are  very  sparse,  the  number  of  nonzero  elements  in  each  row  being
roughly equal to the degree of FDA. We can thus employ efficient numerical routines to
handle sparse matrix systems.

ü 3.1.6 Solution of Sparse Matrix Systems

MathPDE  uses  the  SuperLU  numerical  library  for  sparse  matrix  systems  [13].  This
optimized  library  is  based  on  a  variation  of  the  Gaussian  elimination  algorithm  adapted
for sparse systems, and is actually a collection of three libraries: sequential, multithreaded,
and  distributed.  MathPDE  employs  a  few  subroutines  of  sequential  SuperLU  to  solve
matrix equations of the kind A ÿ X = B that we referred to in Section 3.1.5. The sequential
library, implemented in C, supports real and complex data types in both single and double
precision.

12 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



Here is the basic algorithm on which SuperLU is based, which is a sparse Gaussian elimi-
nation procedure to solve a matrix equation A ÿ X = B. 

Ë Compute an LU decomposition of A, Pr Dr APc Dc = L U. Here, Pr and Pc are row
and column permutation matrices and Dr and Dc are the so-called equilibration ma-
trices, both diagonal. These four matrices are suitably chosen so as to enhance the
sparsity of L and U, numerical stability, and parallelism. In a simple implementa-
tion  offered  in  the  subroutine  dgssv,  the  equilibration  matrices  Dr  and  Dc  are
taken to be identity matrices.

Ë Once we have the LU decomposition, the solution vector X can be efficiently com-
puted using X = Dc Pc U-1 L-1 Pr Dr B, multiplying from right to left.

The sparse matrix A must be provided in the Harwell–Boeing column-compressed format
to save storage. A row-compressed format is also possible, that is,  in which A¬  is in col-
umn-compressed format, but involves some preprocessing to transform into the Harwell–
Boeing format;  this  is  followed in the data structure SuperMatrix.  In this  storage format,
an N µ N sparse matrix A, in which only nnz elements are nonzero, is specified in terms of
three  row  vectors  a@0 : nnz- 1D,  asub@0 : nnz- 1D,  and  xa@0 : ND  (that  have,  respectively,
nnz, nnz, and N + 1 elements).

Ë The successive elements of a@0 : nnz- 1D  are obtained by sequentially going over
the columns of  A,  running down each column,  and picking the  nonzero elements
of A.

Ë The elements of asub@0 : nnz- 1D  are simply the row indices in A  of the elements
of a@0 : nnz- 1D . 

Ë The kth element of xa@0 : ND, xa@kD, for 1 § k § N, is the total number of nonzero el-
ements of A up to and including the kth column, and xa@0D = 0. 

Let  us  illustrate  this  storage  format  for  the  following  sparse  matrix  (taken  from  the  Su-
perLU user guide [13]).

A =

s 0 u u 0
l u 0 0 0
0 l p 0 0
0 0 0 e u
l l 0 0 r

For  this  choice  of  A,  N = 5,  nnz = 12,  and  using  the  indexing  conventions  of  C,
a = Hs l l u l l u p u e u rL, asub = H0 1 4 1 2 4 0 2 0 3 3 4L, and xa = H0 3 6 8 10 12L.

Matrices  such as  these,  along with  other  information like  N,  nnz,  and the  matrix  B  (that
can be specified as a simple row vector of length N) are required by the SuperLU subrou-
tine dgssv that solves the matrix system A ÿ X = B.
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· 3.2 Domains and Boundaries

ü 3.2.1 Domain Discretization

An important aspect of MathPDE is its ability to handle a wide range of spatial domains.
We explain the ideas with the example of  a  two-dimensional  circular  domain behind the
way  MathPDE  discretizes  domains.  Let  us  therefore  begin  with  a  circular  domain  on
which we overlay a grid with 11×11 grid points.

Graphics@8Circle@86, 6<, 5D<,
GridLines Ø 8Range@11D, Range@11D<, Frame Ø True,
FrameTicks Ø 8Range@11D, Range@11D<D

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11
1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

The domain is a circle of radius 1, centered at the origin (the point H6, 6L in the grid). The
bounding box is a square with vertices at the points H1, 1L, H11, 1L, H11, 11L, H1, 11L.

In  MathPDE,  this  domain  is  specified  in  the  format  888x, - 1 - y2 ,

1 - y2 <<, 88y, -1, 1<<<. When we treat this domain descriptor as an iterator, it
is  clear  that  all  the  points  inside the unit  circle  as  well  as  those on its  circumference are
covered.  Furthermore,  only  these  points,  and  no  other,  are  covered.  In  other  words,  the
actual domain is a subset of the bounding box. For rectangular domains, the actual domain
is  the bounding box, whereas for other kinds of geometry,  the actual domain is  a proper
subset  of the bounding box. This is  made possible because the limits of one of the inde-
pendent variables, x, are treated as functions of the other independent variable, y.
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In  MathPDE,  this  domain  is  specified  in  the  format  888x, - 1 - y2 ,

1 - y2 <<, 88y, -1, 1<<<. When we treat this domain descriptor as an iterator, it
is  clear  that  all  the  points  inside the unit  circle  as  well  as  those on its  circumference are

actual domain is a subset of the bounding box. For rectangular domains, the actual domain
is  the bounding box, whereas for other kinds of geometry,  the actual domain is  a proper
subset  of the bounding box. This is  made possible because the limits of one of the inde-
pendent variables, x, are treated as functions of the other independent variable, y.

For our example, here is the lower limit for x.

xLeft1@yD = - 1 - y2 ;

It is easy to discretize the domain now. Since we know the bounding box, we can obtain
the discretized lower limit of x.

xLeft1@y_, Nx_, Ny_D :=

1 - RoundB
1

2
H-1 + NxL -1 + 2 AbsB

HNy - yL H-1 + yL

H-1 + NyL2
F F

Here Nx and Ny are the number of grid points in the bounding box in the x and y direc-
tions, respectively. Arguing in the same manner, we have the following formula for the up-
per limit of x.

xRight1@y_, Nx_, Ny_D :=

1 + RoundB
1

2
H-1 + NxL 1 + 2 AbsB

HNy - yL H-1 + yL

H-1 + NyL2
F F

This is the overall algorithm we use for discretizing spatial domains. When the domain in
question  is  nonrectangular,  there  are  some  issues  that  we  need  to  be  careful  about.  We
now elaborate on some of these, continuing with the example of a circular domain.
Let us list the points lying on the left and right boundaries of the circle.

Table@8xLeft1@y, 11, 11D, y<, 8y, 1, 11<D

886, 1<, 83, 2<, 82, 3<, 81, 4<, 81, 5<,
81, 6<, 81, 7<, 81, 8<, 82, 9<, 83, 10<, 86, 11<<

Table@8xRight1@y, 11, 11D, y<, 8y, 1, 11<D

886, 1<, 89, 2<, 810, 3<, 811, 4<, 811, 5<,
811, 6<, 811, 7<, 811, 8<, 810, 9<, 89, 10<, 86, 11<<

MathPDE: A Package to Solve PDEs by Finite Differences 15

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



Here, there is a danger if one is not careful. If the point 86, 1< alone is chosen as being
on the circumference on the line y == 1,  as is done above, then the lower y  neighbor of
85, 2< ( in the interior) is the point 85, 1<, which would be outside the domain. There-
fore, it is necessary to keep all the points 84, 1<, 85, 1<, …, 88, 1< on the circumfer-
ence. Here are improved versions of the definitions for xLeft1 and xRight1.

xL1@y_, Nx_, Ny_D := Min@1 + xLeft1@-1 + y, Nx, NyD,
xLeft1@y, Nx, NyD, 1 + xLeft1@1 + y, Nx, NyDD;

xR1@y_, Nx_, Ny_D := Max@-1 + xRight1@-1 + y, Nx, NyD,
xRight1@y, Nx, NyD, -1 + xRight1@1 + y, Nx, NyDD;

We  remark  here  that  formulas  xL1  and  xR1  lead  to  extra  computation  compared  with
xLeft1  and  xRight1.  However,  since  these  computations  are  performed  only  on  the
domain  boundaries,  and  not  at  all  the  points,  the  additional  burden  of  this  improvised
algorithm is insignificant for large grids.
Let us once again look at the left and right boundaries of the circular domain.

Table@8xL1@y, 11, 11D, y<, 8y, 1, 11<D

884, 1<, 83, 2<, 82, 3<, 81, 4<, 81, 5<,
81, 6<, 81, 7<, 81, 8<, 82, 9<, 83, 10<, 84, 11<<

Table@8xR1@y, 11, 11D, y<, 8y, 1, 11<D

888, 1<, 89, 2<, 810, 3<, 811, 4<, 811, 5<,
811, 6<, 811, 7<, 811, 8<, 810, 9<, 89, 10<, 88, 11<<

Although the differences are only on the lines y = 1  and y = Nx,  it  is  important that  the
neighbors of all interior points are now treated as being on the boundary, and not outside. 
There is  a  shortcoming of  this  improvised algorithm: since the points  84, 1<,  85, 1<,
…, 88, 1<are all treated as being on the circumference of the circular domain, the actual
domain used in computations is therefore not exactly circular, but a distorted circle. This
is a price we pay for describing nonrectangular domains using a Cartesian system of coordi-
nates.  It  can  be  noted,  however,  that  the  extent  of  this  distortion  is  negligible  for  large
grids. In cases where such a distortion affects the quality of solution obtained, one needs
to be more careful.
One  last  point  we  would  like  to  discuss  concerns  the  notion  of  subdomains.  Above,  we

mentioned  that  the  domain  is  specified  as  888x, - 1 - y2 , 1 - y2 <<,

88y, -1, 1<<<,  so one could ask why this format is used instead of a simpler iterator

like 88x, - 1 - y2 , 1 - y2 <<, 88y, -1, 1<<.

16 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



The reason is that we want to be able to describe more involved domains like this irregu-
lar domain (boundaries shown in solid lines).

Graphics@
8Line@884, 0<, 86, 0<, 86, 4<, 84, 4<, 84, 3<, 80, 3<,

80, 1<, 82, 1<, 82, 2<, 84, 2<, 84, 0<<D, Dashed,
Line@880, 1<, 80, 0<, 84, 0<<D, Line@882, 0<, 82, 1<<D,
Line@880, 4<, 84, 4<<D,
Style@8Text@"x0", 80, 0< - 80, .3<D,

Text@"x1", 82, 0< - 80, .3<D,
Text@"x2", 84, 0< - 80, .3<D,
Text@"x3", 86, 0< - 80, .3<D,
Text@"y0", 80, 0< - 8.3, 0<D,
Text@"y1", 80, 1< - 8.3, 0<D,
Text@"y2", 80, 2< - 8.3, 0<D,
Text@"y3", 80, 3< - 8.3, 0<D,
Text@"y4", 80, 4< - 8.3, 0<D<, FontFamily Ø "Courier",

12D
<, ImageSize Ø 8300, 200<D

x0 x1 x2 x3
y0

y1

y2

y3

y4
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This domain can be described using the following list,  in which there are two sublists in
the x part of the domain descriptor. We call these sublists subdomains. On the other hand,
the y  part has only one subdomain. It is clear that with this approach, we are able to de-
scribe and discretize a wide range of geometries, regular and irregular. The user needs to
be  able  to  describe  the  functional  dependence  (between  independent  variables)  that  de-
fines the nature of geometry.

888x, If@And@y > y1, y < y3D, x0, 1D,
If@And@y > y1, y < y3D, x1, 0D<,

8x, If@And@y > y2, y < y3D, x1, x2D, x3<<, 88y, y0, y4<<<

One last point related to the notion of subdomains concerns the way to describe boundary
conditions on a segment of the boundary. Suppose we want to apply a Dirichlet boundary
condition  u@x, y, tD ã c1  on  the  line  joining  the  points  8x 1, y 2<  and
8x 2, y 2<, which is a segment of the boundary of the domain shown. This is done by in-
cluding  a  boundary  condition  like  8888x, x1, x2<<, 88y, y2, y2<<<,
u@x, y, tD == c1<  in  the  problem  list.  The  iterator  corresponding  to  the  boundary
above generates the grid points that lie on this boundary segment.

ü 3.2.2 Domain Decomposition: Boundary and Interior Regions

We  now  discuss  the  issue  of  decomposition  of  the  domain  into  boundary  and  interior
regions,  and  how  to  apply  the  discretized  boundary  conditions  and  the  difference
equations  in  the  respective  regions.  Let  us  consider  the  example  of  a  two-dimensional
diffusion equation in a circular domain to illustrate the ideas.

diffusion2dcircle = 9

9

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD=,

8x == -Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8x == Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8t == 0, u@x, y, tD ==

If@x^2 + y^2 < 0.5, 1. - x^2 - y^2, 0D<
=,

8

88x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<
<

=;
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The  domain  888x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<<  de-
scribes a circle that we discussed in the previous subsection. When discretized, it becomes
888x, xL1@y, Nx, NyD, xR1@y, Nx, NyD<<, 88y, 1, Ny<<<, where the func-
tions  xL1  and  xR1  were  defined  earlier.  Having  discretized  the  domain,  there  now  re-
mains  the  problem  of  decomposing  it  into  boundary  and  interior  regions,  where  the
boundary conditions and the difference equations (corresponding to the PDE) must be ap-
plied. We now describe the way in which this is done in MathPDE.
Let us begin by examining the boundary conditions. In the present example, we have two
Dirichlet boundary conditions for  u@x, y, tD = 0  at the left and right branches of the
circular domain, x = xL1@y, Nx, NyD and x = xR1@y, Nx, NyD.

Clearly,  the  interior  region  begins  with  the  point  x = xL1@y, Nx, NyD + 1  and  ends
with the point x = xR1@y, Nx, NyD - 1 at each value of y. Furthermore, the points on
the  circumference  for  y = 1,  namely,  884, 1<, 85, 1<, 86, 1<, 87, 1<, 88, 1<<  (for
Nx = Ny = 11),  as  well  as  the  points  on  the  circumference  for  y = Ny,
884, 11<, 85, 11<, 86, 11<, 87, 11<, 88, 11<<,  must  be  part  of  the  boundary.  As  a  result,  the
boundaries  are  described  by  list1  and  list2  and  the  interior  region  described  by
list3 . 

list1 = 888x, xL1@y, Nx, NyD, xL1@y, Nx, NyD<<, 88y, 1, Ny<<<;

list2 = 888x, xR1@y, Nx, NyD, xR1@y, Nx, NyD<<, 88y, 1, Ny<<<;

list3 = 888x, xL1@y, Nx, NyD + 1, xR1@y, Nx, NyD - 1<<,
88y, 2, Ny - 1<<<;

This is the overall  domain decomposition algorithm that MathPDE  implements. We now
elaborate on a few issues that arise in connection with matching the difference equations
and the boundary conditions at the boundary.
When  the  lowest-degree  difference  approximation  is  used  to  generate  the  difference
equations  from the  PDE (see  Section  3.1.1),  the  domain  for  the  circle  above  determines
the  set  of  grid  points  at  which  the  difference  equations  apply.  However,  when  we  use  a
higher-degree  difference  approximation,  matching  the  difference  equations  with  the
boundary conditions is a tricky issue. As we have already mentioned in Section 3.1.4, we
use  the  lowest-degree  stencil  on  a  few  grid  layers  near  the  boundary,  with  the  higher-
degree  stencil  taking  over  beyond  this  region  into  the  interior.  As  a  result,  the  interior
region  for  the  circle  must  be  further  decomposed into  two subregions:  a  few layers  near
the  boundary  where  the  lowest-degree  difference  equations  apply,  and  the  rest  of  the
interior region where higher-degree equations apply.
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For example, here is the difference equation when a fourth-degree spatial scheme is used
for the two-dimensional diffusion equation.

-u@x, y, tD + u@x, y, 1 + tD

dt
ã

1

dy2
-
1

12
u@x, -2 + y, tD +

4

3
u@x, -1 + y, tD -

5

2
u@x, y, tD +

4

3
u@x, 1 + y, tD -

1

12
u@x, 2 + y, tD +

1

dx2
-
1

12
u@-2 + x, y, tD +

4

3
u@-1 + x, y, tD -

5

2
u@x, y, tD +

4

3
u@1 + x, y, tD -

1

12
u@2 + x, y, tD

This  equation  has  the  y  values  8y - 2, y - 1, y, y + 1, y + 2<.  Since  the  lowest
grid value of y is 1, it is clear that this equation can be applied only for y beginning with
y = 3.  Similarly,  the  highest  grid  value  of  y  at  which  the  equation  can  be  applied  is
Ny - 2. We can argue in the same way for the x limits, and as a result, the interior region
where the fourth-degree stencil applies is stencil4.

stencil4 = 888x, xL1@y, Nx, NyD + 2, xR1@y, Nx, NyD - 2<<,
88y, 3, Ny - 2<<<

The region where the lowest-degree (i.e., second-degree in this case) stencil applies is this
set of four regions, which is the difference between the regions list3 and stencil4.

888y, 3, -2 + Ny<, 8x, xL1@y, Nx, NyD + 1, xL1@y, Nx, NyD + 1<<,
88y, 3, -2 + Ny<, 8x, xR1@y, Nx, NyD - 1, xR1@y, Nx, NyD - 1<<,
88y, 2, 2<, 8x, xL1@y, Nx, NyD + 1, xR1@y, Nx, NyD - 1<<,
88y, -1 + Ny, -1 + Ny<,
8x, xL1@y, Nx, NyD + 1, xR1@y, Nx, NyD - 1<<<
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Finally, we comment on a correction required in the definitions of xL1 and xR1 that de-
scribe the boundary region. The left and right boundaries that make up the circular domain
meet  on the lines  y = 1  and y = Ny.  As we argued in  Section 3.2.1,  the boundary inter-
sects each of these lines at a set of points, and not just one point. As a result, all the points
from xL1@1, Nx, NyD to xR1@1, Nx, NyD must be included in the boundary region;
similarly, all the points from xL1@Ny, Nx, NyD to xR1@Ny, Nx, NyD must also be in-
cluded in the boundary region. The original definitions of xL1 and xR1 do not include all
these points,  and we must  therefore  replace them by the set  of  regions that  correctly  de-
scribes the boundary region.

8

88x, xL1@y, Nx, NyD, xL1@y, Nx, NyD<, 8y, 2, Ny - 1<<,
88x, xL1@y, Nx, NyD, xR1@y, Nx, NyD - 1<, 8y, 1, 1<<,
88x, xL1@y, Nx, NyD, xR1@y, Nx, NyD - 1<, 8y, Ny, Ny<<,
88x, xR1@y, Nx, NyD, xR1@y, Nx, NyD<, 8y, 1, Ny<<,

<

This list also ensures that points where two boundaries intersect are included in only one
of  them,  and  not  counted  twice.  The  domain  decomposition  algorithm  implemented  by
MathPDE takes this into account.

· 3.3 Code Generation Algorithms

ü 3.3.1 Automatic Function Generation

In  the  previous  two  sections,  3.1  and  3.2,  we  discussed  at  length  the  numerical  and
domain-related  algorithms  that  MathPDE  implements.  A  third  important  component  of
MathPDE  is  its  ability  to  generate  a  problem-specific  program  by  stitching  together  the
numerical  and  domain  parts  in  an  appropriate  manner.  This  program  is  a  set  of  inde-
pendent  and  interrelated  Mathematica  functions  that  work  to  compute  a  numerical
solution of the PDE problem. Each function performs a very specific task. 
For  example,  consider  the  function  xL1@D  that  we  discussed  in  Section  3.2.1,  which
computes the lower limit of the iterator for x in a circular domain. This is one of the many
functions  that  are  automatically  generated  by  MathPDE  for  the  PDE  problem
diffusion2dcircle.  The  way  we  do  this  is  by  manipulating  the  DownValues  of
the  function.  Since  DownValues@xL1D  is  a  list  of  elements  of  the  form
HoldPattern@lhsD ß rhs, we can define lhs and rhs suitably, and generate a defi-
nition of the function xL1. Let us briefly explain how we do it.
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We first generate the list deflist after creating a context MathPDE`, whose elements
are of the form 8head, lhs Ø rhs<.

BeginPackage@"MathPDE`"D;

deflist =

:8xL1, xL1@y, Nx, NyD Ø Min@1 + xLeft1@-1 + y, Nx, NyD,

xLeft1@y, Nx, NyD, 1 + xLeft1@1 + y, Nx, NyDD<,

:xLeft1, xLeft1@y, Nx, NyD Ø

1 - RoundB
1

2
H-1 + NxL -1 + 2

HNy - yL H-1 + yL

H-1 + NyL2
F>>;

This list is generated based on the domain-discretization algorithm as explained in Section
3.2.1. Here, lhs contains information about the input syntax (the function prototype, with-
out  type  information)  of  the  function  head,  and  rhs  contains  what  is  going  to  be  the
body  of  the  function  definition.  Note  that  the  Rule  format  ensures  delayed  evaluation.
Once we have a list like deflist, it is easy to generate function definitions. We can, for
instance, define a function-defining function called DefineFunction that can generate
the definition of a function based on information like deflist.

DefineFunction@head_, rule_D :=
Module@8pat<,
DownValues@headD = 8<;
pat = Map@ToExpression@StringJoin@ToString@Ò1D, "_"DD &,

ruleP1TD;
DownValues@headD =
8RuleDelayed üü 8HoldPattern üü 8pat<, ruleP2T<<;

D

Off@General::"spell1"D;
Attributes@DefineFunctionD = 8HoldAll<;
DefineFunction@head_, rule_D :=
Module@8pat, min, max, rhs<,
DownValues@headD = 8<;
pat = Map@ToExpression@StringJoin@ToString@Ò1D, "_"DD &,

ruleP1TD;
rhs = ruleP2T ê. Min ß min ê. Max ß max;
DownValues@headD =
8HRuleDelayed üü 8HoldPattern üü 8pat<,

rhs ê. min@a_, b_, c_D ß min@8a, b, c<D ê.
max@a_, b_, c_D ß max@8a, b, c<D<L ê. min ß Min ê.

max ß Max<;
D

22 K. Sheshadri and Peter Fritzson

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



Now, we can execute the following commands.

Begin@"MathPDE`Private`"D;

Map@DefineFunction üü Ò &, deflistD;

After which, the functions xL1 and xLeft1 will be defined.

Map@Information, 8xL1, xLeft1<D

MathPDE`xL1

xL1@y_, Nx_, Ny_D := Min@81 + xLeft1@-1 + y, Nx, NyD, xLeft1@y, Nx, NyD

MathPDE`xLeft1

xLeft1@y_, Nx_, Ny_D := 1 - RoundB 1

2
H-1 + NxL -1 + 2

HNy-yL H-1+yL

H-1+NyL2
F

End@D;
EndPackage@D;

We  note  one  more  thing  here.  Since  the  body  of  xL1  depends  explicitly  on  another
function,  xLeft1,  it  is  important  that  the  latter  be  still  undefined  when  the  former  is
defined.  The  sequence  of  function  generations  must  therefore  be  arranged  with  proper
regard  for  their  interdependence.  One  more  thing  to  note  is  that  the  body of  each  of  the
functions  automatically  generated  must  involve  purely  numerical  operations  and  no
symbolic ones. This is important, since we are finally interested in translating the program
into  a  compiled  language  (like  C++  or  Fortran  90)  by  employing  the  code  generator
MathCode [14].
Some  of  the  functions  automatically  generated  do  not  have  such  a  simple  structure  as
xL1. These include, for instance, the function SolvePDE that we encountered in Section
2.  Such  functions  perform more  complicated  operations,  and  involve  local  variables  that
must be declared in a Module. Such definitions are generated using special-purpose func-
tions  available  in  MathPDE,  and  functions  like  DefineFunction  above  will  not  do.
However,  the essential  idea is  still  the same,  and is  based on delayed evaluation and the
use of DownValues.
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ü 3.3.2 Translation into C++ Using MathCode

MathCode  is  a  system  for  translating  Mathematica  functions  into  C++/Fortran  90  [14].
The functions must be purely numerical,  as we mentioned in Section 3.3.1. We must de-
clare the prototype information of the functions for MathCode  to translate them. The nu-
merical functions that MathPDE generates are then passed on to MathCode, which in turn
translates them into C++ or Fortran 90. 
The reason for translating the Mathematica functions is twofold. Firstly, it lends portabil-
ity  to  the  solver:  the  C++ code  that  is  generated  is  completely  self-contained.  Secondly,
MathCode enables us to run the generated code from the notebook as well. Typically, this
leads to performance gains of several times compared with original Mathematica code.
We now illustrate the way MathPDE employs MathCode to generate C++ code.

Needs@"MathCode`"D;

MathCode version 1.2 loaded.

SetDirectory@$MCRoot <> "êDemosêSimplestExample"D;

We have to start the context MathPDE`, and mention MathCodeContexts within the
path of the package.

BeginPackage@"MathPDE`", 8MathCodeContexts<D;

However,  since  the  functions  xL1  and  xLeft1  have  already  been  defined,  we  simply
end the package.

EndPackage@D;

We next declare the function prototypes. This specifies the data types of all the arguments
and the output. In our simple example, all data types involved are integers.

Declare@xL1@Integer y_, Integer Nx_, Integer Ny_D Ø IntegerD;

Declare@xLeft1@Integer y_, Integer Nx_, Integer Ny_D Ø

IntegerD;

We  then  build  the  C++  code  for  the  functions  xL1  and  xLeft1  with  the  following
 command.

BuildCode@"MathPDE`"D;

Successful compilation to C++: 2 functionHsL
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The next command runs the Mathematica code for the function xL1.

Timing@Do@xL1@2, 11, 11D, 81000<DD

80.691 Second, Null<

If we want to run the C++ executable instead, we must install it.

InstallCode@D;

MathPDE is installed.

Now this runs the C++ executable.

Timing@Do@xL1@2, 11, 11D, 81000<DD

80.35 Second, Null<

It can be seen that there is a slight enhancement in speed; however, the enhancement fac-
tor depends on the problem. Here is the C++ code generated.

!! MathPDE.cc

#include "MathPDE.h"

#include "MathPDE.icc"

#include <math.h>
void MathPDE_TMathPDEInit ()
{
; 
}

int MathPDE_TxL1 ( const int &y, const int &Nx, const int &Ny)
{
    return LightMin( make_lightN(3, 1+MathPDE_TxLeft1 (-1+y, 
Nx, Ny), 
        MathPDE_TxLeft1 (y, Nx, Ny), 1+MathPDE_TxLeft1 (1+y, 
Nx, Ny) ));
}

int MathPDE_TxLeft1 ( const int &y, const int &Nx, const int 
&Ny)
{
    return 1+-irint(((-1+Nx)*(-1+2*pow(pow(-1+Ny, -2)*(Ny+-
y)*(-1+y), 
                               0.5)))/2);
}

We compiled just two functions, xL1 and xLeft1. MathPDE automates this sequence of
commands and generates, compiles, and installs code for all the numerical functions auto-
matically  generated  for  the  given  PDE  problem  (nine  functions,  for  the  example  of  the
one-dimensional diffusion equation; see Section 2.2). The resulting code computes the so-
lution to the PDE, as demonstrated in Section 2.3.
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We compiled just two functions, xL1 and xLeft1. MathPDE automates this sequence of
commands and generates, compiles, and installs code for all the numerical functions auto-
matically  generated  for  the  given  PDE  problem  (nine  functions,  for  the  example  of  the
one-dimensional diffusion equation; see Section 2.2). The resulting code computes the so-
lution to the PDE, as demonstrated in Section 2.3.

‡ 4. Examples
This  section  presents  a  range  of  example  PDE  problems  solved  using  MathPDE:  the
examples  are  chosen  to  illustrate  the  many  features  of  MathPDE;  for  example,  higher-
degree  approximation  schemes,  nonlinear  problems,  different  kinds  of  boundary
condition,  non-rectangular  geometries,  and  so  on.  All  the  problems  are  time-dependent
PDE problems, mainly of the parabolic and hyperbolic types.
We  now solve  a  variety  of  PDE problems  using  MathPDE.  The  solution  steps  involved
are much like in Section 2, and are obvious from the context. If MathPDE is installed on
your system, all the commands should work when executed in the sequence they are given
in below.

· 4.1 One-Dimensional Problems

ü 4.1.1 Diffusion Equation with Derivative Boundary Conditions

We must first load the package MathPDE.

Needs@"MathPDE`"D;

diffusion2 = 8

8

8¶∂8t,1<u@x, tD == ¶∂8x,2<u@x, tD<,
8x == 0, ¶∂8x,1<u@x, tD == 0.<,
8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == If@x < .15, x, 1 - xD<

<,
8

88x, 0, 1<<
<

<;

SetupMathPDE@diffusion2, 8<D
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To save space here as well as in the rest of Section 4, we have cut out the detailed com-
ments returned by MathPDE when the function SetupMathPDE is executed.

AbsTime@SolvePDE@100, 0.01, 1, 200D;D

81.0715408 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD

20 40 60 80 100

0.001
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0.003

0.004

The difference here from the example presented in Section 4 is  that  the derivative at  the
left end of the system is zero, which leads to a different solution profile. In both cases, how-
ever, the solutions decay to a uniform concentration distribution in the long time limit.
We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit
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ü 4.1.2 Wave Equation

We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave = 8

8

8¶∂8t,2<u@x, tD == H1 ê c^2L ¶∂8x,2<u@x, tD<,
8x == 0, u@x, tD == 0<,
8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == x H1 - xL, ¶∂8t,1<u@x, tD ã der1<

<,
8

88x, 0, 1<<
<

<;

SetupMathPDE@wave, 8c, der1<D

In this case, we can choose numerical values for c and der1 at run time; the code gener-
ated for SolvePDE  is  such that these parameters can be passed as real  arguments when
we execute the program. We now run SolvePDE by choosing numerical values for these
parameters.

AbsTime@SolvePDE@100, 0.01, 1000., 0.001, 1, 500D;D

81.5322032 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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0.25
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We can choose a different set of values for the parameters of the problem.

AbsTime@SolvePDE@100, 0.01, 1., 0.001, 1, 500D;D

82.4034560 Second, Null<

The solution is now different.

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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-0.1

-0.05

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit
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· 4.2 Two-Dimensional Problems

ü 4.2.1 Diffusion Equation in a Rectangular Domain

We  now  take  the  example  of  a  two-dimensional  diffusion  equation  and  compare
MathPDE and NDSolve, the built-in Mathematica function to solve time-dependent PDE
problems. We take the initial condition that is a Gaussian with its peak at the center of the
domain, and Dirichlet boundary conditions.
NDSolve  uses  the  numerical  method  of  lines,  while  MathPDE  uses  a  finite-difference
time  stepping.  This  could  partly  explain  the  differences  in  the  solutions  obtained  by  the
two approaches. 
We must first load the package MathPDE.

Needs@"MathPDE`"D;

diffusion2d = 9

9

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD=,

8x == 0, u@x, y, tD == 0<,
8x == 1, u@x, y, tD == 0<,
8y == 0, u@x, y, tD == 0<,
8y == 1, u@x, y, tD == 0<,
8t == 0, u@x, y, tD ==

Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D<
=,

8

88x, 0, 1<<, 88y, 0, 1<<
<

=;

Let us set up the problem in MathPDE.

AbsTime@SetupMathPDE@diffusion2d, 8<DD

8148.7438832 Second, Null<

Now let us evolve the solution by 10 time steps.

8tot1, tot2< = 820, 20<;
AbsTime@SolvePDE@tot1, tot2, 0.01, 1, 10D;D

81.9327792 Second, Null<
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We plot the solution.

ListPlot3D@
list = Table@solutionAt@i, j, 1, tot1, tot2D, 8i, 1, tot1<,

8j, 1, tot2<D,
PlotRange Ø 880, tot1<, 80, tot2<,

80, 0.03781262962361607`<<D
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We can try this example using NDSolve as well. Let us choose the same step sizes as cho-
sen above for MathPDE so as to compare the two solutions.

TimingA

soln =
Quietü
NDSolveA

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD,

u@0, y, tD == 0, u@x, 0, tD == 0, u@1, y, tD == 0,
u@x, 1, tD == 0,
u@x, y, 0D == Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D=,

u, 8x, 0, 1<, 8y, 0, 1<, 8t, 0, 0.5<,
MaxSteps Ø 820, 20, 50<EE

80.132172, 88u Ø InterpolatingFunction@
880., 1.<, 80., 1.<, 80., 0.0185968<<, <>D<<<
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We plot the solution at t = 0.1.

QuietüPlot3D@Hu@x, y, 0.1D ê.solnLP1T, 8x, 0, 1<,
8y, 0, 1<, PlotRange Ø 880, 1<, 80, 1<, 80, 2.3`<<D

The  solution  has  not  homogenized  yet,  although  the  solution  obtained  using  MathPDE
was  more  spread  out.  However,  suppose  we  let  NDSolve  automatically  choose  its  step
sizes.

TimingA

soln =
Quietü
NDSolveA

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD,

u@0, y, tD == 0, u@x, 0, tD == 0, u@1, y, tD == 0,
u@x, 1, tD == 0,
u@x, y, 0D == Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D=,

u, 8x, 0, 1<, 8y, 0, 1<, 8t, 0, 5<EE

89.51483, 88u Ø InterpolatingFunction@
880., 1.<, 80., 1.<, 80., 5.<<, <>D<<<
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We now plot the solution profile at t = 0.1.

Plot3D@Hu@x, y, 0.1D ê.solnLP1T, 8x, 0, 1<, 8y, 0, 1<D

Now the solution is more spread out, and agrees with the solution produced by MathPDE. 

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit
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ü 4.2.2 Diffusion Equation on a Circle

We now consider  an  example  PDE problem with  a  circular  domain;  apart  from that,  the
problem  is  essentially  the  same  as  in  the  previous  example.  This  is  a  problem  that
NDSolve cannot handle, since the spatial geometry is not rectangular.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

diffusion2dcircle = 9

9

9¶∂8t,1<u@x, y, tD == ¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tD=,

8x == -Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8x == Sqrt@1 - y^2D, u@x, y, tD == 0.<,
8t == 0, u@x, y, tD ==

Exp@-HHx - 0.5L^2 + Hy - 0.5L^2L ê 0.02D<
=,

8

88x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<
<

=;

The boundary conditions are specified on the left and right semicircles. Since we describe
a nonrectangular domain using Cartesian coordinates, one of the coordinates, x, has been
made to depend on the other, y, in the domain description.
We now set up the problem using MathPDE.

AbsTime@SetupMathPDE@diffusion2dcircle, 8<D;D

8184.9960112 Second, Null<

In this case MathPDE has generated 21 functions (as opposed to 13 in the previous exam-
ple) that are translated into C++ code and compiled by MathCode. The extra functions in
this case are required to compute the grid for the circular domain.
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We compute the solution and plot it.

8tot1, tot2< = 850, 50<;
AbsTime@SolvePDE@tot1, tot2, 0.01, 1, 100D;D

8343.4338336 Second, Null<

ListPlot3D@Table@solutionAt@i, j, 1, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<DD
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Although we use Cartesian coordinates to describe a circular domain, the jagged nature of
the circular boundary is not predominant at this level of granularity (50 grid steps in each
of the two directions), and the solution appears fairly smooth.
We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit
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ü 4.2.3 A Two-Variable Problem: Wave Equation in a Circular Domain

We now study the example of the two-dimensional wave equation, in which there are two
dependent variables. Let us first consider a rectangular domain.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave2drectangle = 9

9

9H1 ê c^2L ¶∂8t,2<u@x, y, tD ==

A1 I¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tDM +

A2 I¶∂8x,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM,

H1 ê c^2L ¶∂8t,2<v@x, y, tD ==

A1 I¶∂8x,2<v@x, y, tD + ¶∂8y,2<v@x, y, tDM +

A2 I¶∂8y,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM=,

8x == 0, u@x, y, tD == 0, v@x, y, tD == 0<,
8x == 1, u@x, y, tD == 0, v@x, y, tD == 0<,
8y == 0, u@x, y, tD == 0, v@x, y, tD == 0<,
8y == 1, u@x, y, tD == 0, v@x, y, tD == 0<,
8t == 0, u@x, y, tD == H1 - xL x H1 - yL y,
¶∂8t,1<u@x, y, tD == 0.1, v@x, y, tD ã H1 - xL x H1 - yL y,
¶∂8t,1<v@x, y, tD == 0.2<

=,

8

88x, 0, 1<<, 88y, 0, 1<<
<

=;

In this problem, there are some parameters, and so we have to input them in a list as an ar-
gument to the setup function.

AbsTime@SetupMathPDE@wave2drectangle, 8c, A1, A2<D;D

8159.6295360 Second, Null<

Let us now compute the solution for a set of values of the parameters.

8tot1, tot2< = 820, 20<;
AbsTime@SolvePDE@tot1, tot2, 0.1, 1., .1, 0.5, 1, 10D;D

872.3940976 Second, Null<
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Here is the plot of the dependent variable u.

ListPlot3D@Table@solutionAt@i, j, 1, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<DD
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And here is the plot of the dependent variable v.

ListPlot3D@Table@solutionAt@i, j, 2, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<DD
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We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

Now consider a similar problem in a circular domain.

We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave2d2circle = 9

9

9H1 ê c^2L ¶∂8t,2<u@x, y, tD ==

A1 I¶∂8x,2<u@x, y, tD + ¶∂8y,2<u@x, y, tDM +

A2 I¶∂8x,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM,

H1 ê c^2L ¶∂8t,2<v@x, y, tD ==

A1 I¶∂8x,2<v@x, y, tD + ¶∂8y,2<v@x, y, tDM +

A2 I¶∂8y,1<I¶∂8x,1<u@x, y, tD + ¶∂8y,1<v@x, y, tDMM=,

8x == -Sqrt@1 - y^2D, u@x, y, tD == 0, v@x, y, tD == 0<,
8x == Sqrt@1 - y^2D, u@x, y, tD == 0, v@x, y, tD == 0<,
8t == 0, u@x, y, tD == Exp@-HHx - 0.4L^2 + Hy - 0.4L^2L ê 0.1D,
¶∂8t,1<u@x, y, tD == 0.1,
v@x, y, tD == Exp@-HHx + 0.4L^2 + Hy + 0.4L^2L ê 0.1D,
¶∂8t,1<v@x, y, tD == 0.2<

=,

8

88x, -Sqrt@1 - y^2D, Sqrt@1 - y^2D<<, 88y, -1, 1<<
<

=;

AbsTime@SetupMathPDE@wave2d2circle, 8c, A1, A2<D;D

8162.5937984 Second, Null<

8tot1, tot2< = 820, 20<;
AbsTime@SolvePDE@tot1, tot2, 0.1, 1., .1, 0.5, 1, 10D;D

829.2420480 Second, Null<
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Here is the plot of the dependent variable u.

ListPlot3D@Table@solutionAt@i, j, 1, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<D,

PlotRange Ø 881, 20<, 81, 20<, Automatic<D
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And here is the plot of the dependent variable v.

ListPlot3D@Table@solutionAt@i, j, 2, tot1, tot2D,
8i, 1, tot1<, 8j, 1, tot2<D,

PlotRange Ø 881, 20<, 81, 20<, Automatic<D

5

10

15

20

5

10

15

20

-0.2

0

0.2

5

10

15

20

MathPDE: A Package to Solve PDEs by Finite Differences 39

The Mathematica Journal 13 © 2011 Wolfram Media, Inc.



We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

· 4.3 A Three-Dimensional Problem

ü 4.3.1 Three-Dimensional Wave Equation

Let us now consider the wave equation

1

c2
¶∂2F

¶∂ t2
= A1 !2F+ A2 !H! .FL

for the spatial and temporal variations of F = Hu, v, wL, the three-dimensional vector of dis-
placements in a solid. Here, c is the speed of sound in the material, and A1 and A2 are con-
stants that depend on the Poisson ratio. This equation arises in many contexts, for example
when we have a  shaft  that  rests  on ball  bearings and is  connected to wheels  at  the ends.
We  can  describe  this  problem  in  a  cubic  geometry  in  the  form  of  the  following  list,  in
which we have expanded the vector equation into components.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

wave3d =
9

9

9H1 ê c^2L ¶∂8t,2<u@x, y, z, tD ==

A1 I¶∂8x,2<u@x, y, z, tD + ¶∂8y,2<u@x, y, z, tD +

¶∂8z,2<u@x, y, z, tDM +

A2
I¶∂8x,1<I¶∂8x,1<u@x, y, z, tD + ¶∂8y,1<v@x, y, z, tD +

¶∂8z,1<w@x, y, z, tDMM,

H1 ê c^2L ¶∂8t,2<v@x, y, z, tD ==

A1 I¶∂8x,2<v@x, y, z, tD + ¶∂8y,2<v@x, y, z, tD +

¶∂8z,2<v@x, y, z, tDM +
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A2
I¶∂8y,1<I¶∂8x,1<u@x, y, z, tD + ¶∂8y,1<v@x, y, z, tD +

¶∂8z,1<w@x, y, z, tDMM,

H1 ê c^2L ¶∂8t,2<w@x, y, z, tD ==

A1 I¶∂8x,2<w@x, y, z, tD + ¶∂8y,2<w@x, y, z, tD +

¶∂8z,2<w@x, y, z, tDM +

A2
I¶∂8z,1<I¶∂8x,1<u@x, y, z, tD + ¶∂8y,1<v@x, y, z, tD +

¶∂8z,1<w@x, y, z, tDMM

=,

8x == -0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8x == 0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8y == -0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8y == 0.5, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8z == -2, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8z == 2, u@x, y, z, tD == 0, v@x, y, z, tD == 0,
w@x, y, z, tD == 0<,

8t == 0, u@x, y, z, tD ==
Exp@-HHx - 0.04L^2 + Hy - 0.04L^2L ê 0.01D,

¶∂8t,1<u@x, y, z, tD == 0.1,
v@x, y, z, tD == Exp@-HHx + 0.04L^2 + Hy + 0.04L^2L ê 0.01D,
¶∂8t,1<v@x, y, z, tD == 0.2,
w@x, y, z, tD == Exp@-Hz^2L ê 0.01D,
¶∂8t,1<w@x, y, z, tD == 0.3<

=,

8

88x, -0.5, 0.5<<, 88y, -0.5, 0.5<<, 88z, -2, 2<<
<

=;

Here we have taken simple Dirichlet boundary conditions; the practically interesting cases
could  have  Robin  boundary  conditions  involving  normal  derivatives  of  the  fields,  in
which  case  we  would  need  to  do  a  little  more  work  to  transform the  normal  derivatives
into suitable combinations of derivatives with respect to Cartesian coordinates.
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For  this  problem,  we  use  a  slightly  different  version  of  the  setup  function  that  does  not
make  MathCode-related  declarations;  it  returns  a  list  that  has  the  prototype  information
about the functions for which C++ code is desired.

AbsTime@mcode = SetupMathPDE2@wave3d, 8c, A1, A2<D;D

820.5996208 Second, Null<

We now apply the function MathCodePart to the list mcode to make declarations, gen-
erate C++ code, compile it, and install the executable.

AbsTime@MathCodePart üü mcodeD

8187.3093376 Second, Null<

Let us run SolvePDE  by taking Nx = Ny = Nz = 8,  and Dt = 0.1.  The parameter val-
ues are 8c, A1, A2< = 81., .1, 0.5<.

8tot1, tot2, tot3< = 88, 8, 8<;
AbsTime@SolvePDE@tot1, tot2, tot3, 0.1, 1., .1, 0.5, 1, 10D;D

8275.7665328 Second, Null<

Let  us  define  a  function  to  extract  function  values  (for  u)  over  a  two-dimensional  cross
section.

plotlistu@z_D :=
Table@solutionAt@i, j, z, 1, tot1, tot2, tot3D,
8i, 1, tot1<, 8j, 1, tot2<D;

Here  is  the  plot  of  the  dependent  variable  u  over  a  two-dimensional  cross  section  for
z = H4 - 1L * H1.0 ê 8.0L = 0.375.

ListPlot3D@plotlistu@4DD
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We can plot  the  other  dependent  variables  v  and w  in  the  same manner.  Let  us  define  a
function to extract function values for v over a two-dimensional cross section.

plotlistv@z_D :=
Table@solutionAt@i, j, z, 2, tot1, tot2, tot3D,
8i, 1, tot1<, 8j, 1, tot2<D;

Here  is  the  plot  of  the  dependent  variable  v  over  a  two-dimensional  cross  section  for
z = H4 - 1L * H1.0 ê 8.0L = 0.375.

ListPlot3D@plotlistv@4DD
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Finally,  let  us  define  a  function  to  extract  function  values  for  w  over  a  two-dimensional
cross section.

plotlistw@z_D :=
Table@solutionAt@i, j, z, 3, tot1, tot2, tot3D,
8i, 1, tot1<, 8j, 1, tot2<D;
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Here  is  the  plot  of  the  dependent  variable  w  over  a  two-dimensional  cross  section  for
z = H4 - 1L * H1.0 ê 8.0L = 0.375.

ListPlot3D@plotlistw@4DD

2

4

6

8

2

4

6

8

0

0.1

0.2

2

4

6

8

We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

· 4.4 Nonlinear Problems

ü 4.4.1 Advection-Diffusion and Inviscid Burgerʼs Equations

Let us now consider the following PDE

uHx, tL
¶∂uHx, tL

¶∂ t
+
¶∂uHx, tL

¶∂ t
= c

¶∂2uHx, tL

¶∂x2
,

where c  is  a constant.  When c = 0, the equation becomes the inviscid Burger’s equation,
and when c = 1, the equation becomes the advection-diffusion equation. Let us define this
PDE  problem  with  Dirichlet  boundary  conditions  and  a  simple  space-dependent  initial
condition.
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where c  is  a constant.  When c = 0, the equation becomes the inviscid Burger’s equation,
and when c = 1, the equation becomes the advection-diffusion equation. Let us define this
PDE  problem  with  Dirichlet  boundary  conditions  and  a  simple  space-dependent  initial
condition.
We must first load the package MathPDE.

Needs@"MathPDE`"D;

nonlinear =
8

8

8¶∂8t,1<u@x, tD + u@x, tD ¶∂8x,1<u@x, tD == c * ¶∂8x,2<u@x, tD<,
8x == 0, u@x, tD == u1<,
8x == 1, u@x, tD == u1<,
8t == 0, u@x, tD == u1 + x H1 - xL<

<,
8

88x, 0, 1<<
<

<;

SetupMathPDE@nonlinear, 8u1, c<D

In this case, the PDE leads to a nonlinear algebraic system that must be solved iteratively.
Let us choose a small time step of 0.01 and evolve the solution by 100 time steps (i.e., up
to t = 1) for a spatial size of 100 grid points. We first choose c = 1, so we have the advec-
tion-diffusion limit.

AbsTime@SolvePDE@100, 0.01, 0.0, 1.0, 1, 100, 0.001, 10D;D

82.4234848 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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We  now  solve  the  problem  with  c = 0:  in  this  limit,  we  have  the  inviscid  Burger’s
equation.

AbsTime@SolvePDE@100, 0.01, .0, .0, 1, 100, 0.001, 10D;D

84.5865952 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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The solution varies very strongly in space near the right boundary. This indicates that fi-
nite-difference  approximation  is  not  very  good  for  such  problems.  Indeed,  if  we  evolve
the solution by a further 15 time steps,  we can see the quality of the solution deteriorate
further.

AbsTime@SolvePDE@100, 0.01, .0, .0, 0, 15, 0.001, 10D;D

80.7110224 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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Now there are  wild fluctuations near  the right  boundary,  and the solution is  not  reliable.
Let us solve the problem using NDSolve.

soln = NDSolve@8¶∂8t,1<u@x, tD + u@x, tD ¶∂8x,1<u@x, tD == 0,
u@0, tD == 0, u@1, tD == 0, u@x, 0D == x H1 - xL<, u,

8x, 0, 1<, 8t, 0, 10<D

88u Ø InterpolatingFunction@880., 1.<, 80., 10.<<, <>D<<

At t = 1, let us plot the solution.

Plot@Hu@x, 1D ê.solnLP1T, 8x, 0, 1<D
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This  agrees  well  with  the  solution  obtained  using  MathPDE,  and  the  rapid  fall  near  the
right  end  of  the  system  must  be  noticed.  Let  us  now  plot  the  solution  at  a  later  time,
t = 1.15.

Plot@Hu@x, 1.5`D ê.solnLP1T, 8x, 0, 1<D
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Now we  can  see  that  there  are  regions  where  the  solution  shows  strong  fluctuations,  al-
though there are differences between the solutions obtained by MathPDE and NDSolve.
Examples such as these illustrate the limitations of MathPDE, based as it is on finite-differ-
ence discretization.
We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

ü 4.4.2 A Nonlinear Variant of the Diffusion Equation

Now let us try a nonlinear variant of the diffusion equation.

We must first load the package MathPDE.

Needs@"MathPDE`"D;

nonlinear1 =
9

9

9uH0,1L@x, tD == IuH2,0L@x, tDM^2 + c * uH1,0L@x, tD=,

8x == 0, u@x, tD == 0<,
8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == x H1 - xL<

=,

8

88x, 0, 1<<
<

=;

SetupMathPDE@nonlinear1, 8c<D

AbsTime@SolvePDE@100, 0.01, 1.0, 1, 100, 0.001, 10D;D

81.5221888 Second, Null<
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ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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When we take c = 0, the solution is very different.

AbsTime@SolvePDE@100, 0.01, 0.0, 1, 100, 0.001, 10D;D

AbsTime@NullD

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;
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We must quit the kernel before testing a new problem.

Quit

Consider the same PDE, but with a derivative boundary condition at x = 0.

We must first load the package MathPDE.

Needs@"MathPDE`"D;

nonlinear2 =
9

9

9uH0,1L@x, tD == IuH2,0L@x, tDM^2 + c * uH1,0L@x, tD=,

9x == 0, uH1,0L@x, tD == 0.=,

8x == 1, u@x, tD == 0<,
8t == 0, u@x, tD == x H1 - xL<

=,

8

88x, 0, 1<<
<

=;

SetupMathPDE@nonlinear2, 8c<D

We solve it for c = 1.

AbsTime@SolvePDE@100, 0.01, 1.0, 1, 100, 0.001, 10D;D

88.4521536 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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Now the solution profile is  different,  because the derivative at  the left  boundary must be
zero, according to the boundary condition. Finally, we solve it for c = 0.
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Now the solution profile is  different,  because the derivative at  the left  boundary must be
zero, according to the boundary condition. Finally, we solve it for c = 0.

AbsTime@SolvePDE@100, 0.01, 0.0, 1, 100, 0.001, 10D;D

82.7439456 Second, Null<

ListPlot@Table@solutionAt@i, 1, 100D, 8i, 1, 100<D,
Joined Ø TrueD
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We can uninstall the C++ program, and delete all the MathCode-related files if we do not
need them.

UninstallCode@D;

CleanMathCodeFiles@Confirm -> False, CleanAllBut -> 8<D;

We must quit the kernel before testing a new problem.

Quit

‡ 5. Conclusion
In this article, we have presented a PDE solving system, MathPDE, that is based on Mathe-
matica.  We  have  demonstrated  it  for  a  variety  of  time-dependent  PDE  problems,  and
made comparisons with NDSolve in a few cases.
We have discussed at  length the basic  ideas underlying the design of  MathPDE.  We be-
lieve  that  there  is  scope  for  improvement  in  many  areas,  like  the  adaptive  step  sizes  for
space and time, the way in which higher-degree approximations are implemented, and so
on. The limitations of MathPDE  for nonlinear problems are obvious, based as it is on fi-
nite differences. 
The main attractions of MathPDE are its ability to handle a wide range of spatial domains
and the generation of a standalone C++ program for performing numerical computation. 
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