
The Mathematica” Journal

MathCode: A System
for C++ or Fortran
Code Generation from
Mathematica
Peter Fritzson
Vadim Engelson
Krishnamurthy Sheshadri
MathCode is a package that translates a subset of Mathematica into a com-
piled language like Fortran or C++. The chief goal of the design of Math-
Code is to add extra performance and portability to the symbolic prototyp-
ing capabilities offered by Mathematica. This article discusses several
important features of MathCode, such as adding type declarations, exam-
ples of functions that can be translated, ways to extend the compilable
subset, and generating a stand-alone executable, and presents a few applica-
tion examples.

‡ Introduction
MathCode is a Mathematica add-on that translates a Mathematica program into
C++ or Fortran 90. The subset of Mathematica that MathCode is able to translate
involves purely numerical operations, and no symbolic operations. In the
following sections we provide a variety of examples that show precisely what we
mean. The code that is generated can be called and run from within Mathematica,
as if you were running a Mathematica function.
There are two important purposes that are served by MathCode. Firstly, the C++/
Fortran 90 code runs faster, typically by a factor of about a few hundreds (or
about 50 to 100) over interpreted (compiled) Mathematica code, resulting in
considerable performance gains, while still requiring hardly any knowledge
of C++/Fortran 90 on the part of the user. Secondly, the generated code can also
be executed as a stand-alone program outside Mathematica, offering a portability
otherwise not possible. You should note, however, that these advantages come at
some loss of generality since integer and floating point overflow are not trapped
and switched to arbitrary precision as in standard Mathematica code. Here the
user is responsible for ensuring an appropriate choice of scaling and input data to

matica 6.

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

There are two important purposes that are served by MathCode. Firstly, the C++/
Fortran 90 code runs faster, typically by a factor of about a few hundreds (or
about 50 to 100) over interpreted (compiled) Mathematica code, resulting in
considerable performance gains, while still requiring hardly any knowledge
of C++/Fortran 90 on the part of the user. Secondly, the generated code can also
be executed as a stand-alone program outside Mathematica, offering a portability
otherwise not possible. You should note, however, that these advantages come at
some loss of generality since integer and floating point overflow are not trapped
and switched to arbitrary precision as in standard Mathematica code. Here the

avoid such problems. The measurements in this article were made using Mathe-
matica 6.
There are situations in which having a system such as MathCode can be particu-
larly helpful and effective, like when a certain calculation involves a symbolic
phase followed by a numerical one. In such a hybrid situation, Mathematica can
be employed for the symbolic part to give a set of expressions involving only
numerical operations that can be made part of a Mathematica function, which can
then be translated into C++/Fortran 90 using MathCode.
In this article, we describe some of the more important features of MathCode. For
a more detailed discussion the reader is referred to [1]. For brevity, we simply say
C++ when we actually mean C++ or Fortran 90: MathCode can generate code in
both C++ and Fortran, although we illustrate C++ code generation in this article.
In Section 2, we show how to quickly get started with MathCode using a simple
example of a function to add integers.
Section 3 presents many useful features of MathCode. In Section 3.1, we discuss
the way the system works, the various auxiliary files generated and what to make
of them, and how to build C++ code and install the executable. We then compare
the execution times of the interpreted Mathematica code and the compiled C++
code. This section also illustrates how MathCode works with packages.
Section 3.2 briefly makes a few points about types and type declarations in Math-
Code. There are two ways to declare argument types and return types of a func-
tion mentioned in this section.
In Section 3.3, we show how to generate a stand-alone C++ executable. This
executable can be run outside of Mathematica. We illustrate how to design a suit-
able main program that the executable runs.
It should be emphasized that MathCode can generate C++ for only that subset
of Mathematica functions referred to as the compilable subset. Section 3.4 gives a
sample of this subset, while Section 3.5 presents three ways to extend it with the
already-available features of MathCode: Sections 3.5.1 through 3.5.3 discuss,
respectively, symbolic expansion of function bodies, callbacks to Mathematica,
and handling external functions. Each of these extensions has its own strengths
and limitations.
Section 3.6 discusses common subexpression elimination, a feature that is aimed
at enhancing the efficiency of generated code.
Section 3.7 presents some shortcuts available in MathCode to extract and make
assignments to elements of matrices and submatrices, while Section 3.8 is about
array declarations.
In Section 4, we present several examples of effectively using MathCode.
Section 4.1 provides a summary of the examples.

Section 4.2 discusses an essentially simple example, that of computing the func-
tion sinHx + yL over a grid in the x- y plane, but done in a somewhat roundabout
manner so as to illustrate various features of MathCode.

Section 4.3 discusses an implementation of the Gaussian elimination algorithm
[2] to solve matrix systems of the type A.X = B, where A is a square matrix
of size n and X (the solution vector) and B are vectors of size n. In this section,
we make a detailed performance study by computing the solution of a matrix

make comparisons with LinearSolve.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 741

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Section 4.3 discusses an implementation of the Gaussian elimination algorithm
[2] to solve matrix systems of the type A.X = B, where A is a square matrix
of size n and X (the solution vector) and B are vectors of size n. In this section,

system by turning on a few compilation options available in MathCode, and also
make comparisons with LinearSolve.

In Section 4.4, we show how to call external libraries and object files from a C++
program that is automatically generated by MathCode. We take the example of a
well-known matrix library called SuperLU [3], and demonstrate how to solve,
using one of its object modules, a sparse matrix system arising from a partial differ-
ential equation.
The MathCode User Guide that is available online discusses more advanced
aspects, like a detailed account of types and declarations, the numerous options
available in MathCode with the aid of which the user can control code generation
and compilation, and other features. We refer interested readers to [1].

In Section 5, we summarize the salient aspects of MathCode and discuss the kinds
of applications for which MathCode is particularly useful. We conclude the article
with a brief summary of various points made. The first version of MathCode,
released in 1998, was partly developed from the code generator in the Object-
Math environment [4, 5]. The current version is almost completely rewritten and
very much improved.

‡ 2. Getting Started with MathCode
· 2.1. An Example Function

In this section we take the reader on a quick tour of MathCode using the simple
example of a function to add integers.
The following command loads MathCode.

In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

MathCode works by generating a set of files in the current directory (see
Section 3.1). We can set the directory in the standard way as follows; here,
$MCRoot is the MathCode root directory. The user can, however, use any other
directory to store the files.

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
Let us now define a Mathematica function sumint to add the first n natural
numbers.
In[3]:= sumint@n_D :=

Module@8res = 0, i<, For@i = 1, i § n, i++, res = res + iD; resD
Note that the body of this function has purely numerical operations, like incre-
menting the loop index i, adding two numbers, and assigning the result to a
variable.

742 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

· 2.2. Declaration of Types

We must now declare the data types of the parameter n and the local variables res
and i; we must also specify the return type of the function. We do this using the
function Declare that MathCode provides.
In[4]:= Declare@sumint@Integer n_D Ø Integer, 8Integer, Integer<D;

Note that Integer n_ does not mean Integer*n_; the function Declare creates
an environment in which this is interpreted as a type declaration, that is, an
integer variable n is being declared in the example. The type Integer is trans-
lated to a native C int type, and the type Real to a native C double type.

· 2.3. C++ Code

To generate and compile the C++ code, we execute the following command.

In[5]:= BuildCode@"Global`"D;

Successful compilation to C++: 1 functionHsL

Since we have not specified the context of sumint, its default context is Global.
We could, therefore, have simply executed the following command instead.
In[6]:= BuildCode@D;

Successful compilation to C++: 1 functionHsL

With the following command, we seamlessly integrate an external program with
Mathematica.
In[7]:= InstallCode@D;

Global is installed.

We can now run the external program in the same way that we would execute a
Mathematica command.
In[8]:= sumint@1000D

Out[8]= 500 500

If we want to run the Mathematica code (and not the generated C++ code) for
sumint, we must first uninstall the C++ executable.
In[9]:= UninstallCode@D;

Now the Mathematica code for sumint will run.

In[10]:= sumint@1000D
Out[10]= 500 500

MathCode: A System for C++ or Fortran Code Generation from Mathematica 743

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

‡ 3. A Tour of MathCode
· 3.1. How the MathCode System Works

MathCode works by generating a set of files in the home directory. In the
example of sumint, the default context is Global and the files generated by Math-
Code are: Global.cc (the C++ source file), Global.h and Global.mh (the header
files), Globaltm.c, Global.tm and Globalif.cc (the MathLink”-related files that
enable transparently calling C++ versions of the function sumint from Mathe-
matica), and Globalmain.cc, which contains the function main() needed when
building a stand-alone executable.

We can also create a package (let us call it foo) that defines its own context foo
instead of the default context Global. See Figure 1 for a block diagram of the
way the overall system works. The MathCode code generator translates the Mathe-
matica package to a corresponding C++ source file foo.cc. Additional files are
automatically generated: the header file foo.h, the MathCode header file foo.mh,
the MathLink-related files footm.c, foo.tm, foo.icc, and fooif.cc, which enable
calling the C++ versions from Mathematica, and foomain.cc, which contains the
function main that is needed when building a stand-alone executable for foo (see
Section 3.3). The generated file foo.cc created from the package foo, the header
file foo.h, and additional files are compiled and linked into two executables. In
the case of MathCode F90, Fortran 90 is generated and a file foo.f90 is created.
No header file is generated in that case since Fortran 90 provides directives for
the use of module. External numerical libraries may be included in the linking
process by specifying their inclusion (Sections 3.5.3 and 4.5). The executable
produced, foo.exe, can be used for stand-alone execution, whereas fooml.exe is
used when calling on the compiled C++ functions from Mathematica via
MathLink.

Mathematica
MathCode
Generator

Call symbolic evaluation

Mathematica
packages, expressions

foo.cc, foo.h, foomain.cc, footm.c, foo.tm, fooif.cc, foo.mh

Figure 1. Generating C++ code with MathCode for a package called foo.

Let us see how to work with a package again using the same sumint example.

In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;

744 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

If we are compiling the package foo using MathCode, we also need to mention
MathCodeContexts within the path of the package.
In[3]:= BeginPackage@"foo`", 8MathCodeContexts<D;

We define the function sumint

In[4]:= sumint@n_D :=

Module@8res = 0, i<, For@i = 1, i § n, i++, res = res + iD; resD;
and close the context foo.

In[5]:= EndPackage@D;
We next declare the types, and then build and install as before.

In[6]:= Declare@sumint@Integer x_D Ø Integer, 8Integer, Integer<D;
In[7]:= BuildCode@"foo`"D;

Successful compilation to C++: 1 functionHsL

Again, since the package foo has been defined, it is the default context, and so we
could simply have executed the following command.
In[8]:= BuildCode@D;

Successful compilation to C++: 1 functionHsL

To run the executable from the notebook, we must install it.

In[9]:= InstallCode@D;

foo is installed.

Now the following command runs the C++ executable fooml.exe. The call to
sumint via MathLink is executed 1000 times. The timing measurement includes
MathLink overhead, which typically for small functions is much more than the
execution time for the compiled function. This can be avoided if the loop is
executed within the external function itself, as in the example in Section 4.2.5.
In[10]:= Timing@Do@res = sumint@1000D, 81000<D; resD

Out[10]= 81.392, 500 500<

MathCode: A System for C++ or Fortran Code Generation from Mathematica 745

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Here is the C++ code that was generated.

In[11]:= FilePrint@"foo.cc"D

#include "foo.h"

#include "foo.icc"

#include <math.h>
void foo_TfooInit ()
{
;
}

int foo_Tsumint (const int &n)
{
 int res = 0;
 int i;
 i = 1;
 while (i <= n)
 {
 res = res+i;
 i = i+1;
 }
 return res;
}

Note that the function sumint appears as foo_Tsumint in the generated code.
This is because the full name of the function is in fact foo`sumint, and Math-
Code replaces the backquote "`" by "_T" in the C++ code.
To run the Mathematica function (and not its C++ equivalent) sumint, we must
use the following command to uninstall the C++ code.
In[12]:= UninstallCode@D;
Now it is the Mathematica code that runs when you execute sumint.

In[13]:= Timing@Do@res = sumint@1000D, 81000<D; resD
Out[13]= 822.161, 500 500<
You can see that the C++ executable together with the MathLink overhead runs
about 15 times faster than the Mathematica code. The factor by which the perfor-
mance is enhanced is problem dependent, however. The performance of the
Mathematica code could also have been improved by using the built-in Compile
function. In Section 4 we will see many more examples, some quite involved,
where we get a range of performance enhancements, also including usage of the
Compile function.
We clean up the current directory by removing the files automatically generated
by MathCode.
In[14]:= CleanMathCodeFiles@Confirm Ø False, CleanAllBut Ø 8<D;

746 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

· 3.2. Types and Declarations

To be able to generate efficient code, the types of function arguments and return
values must be specified, as we have seen in the preceding examples. The basic
types used by MathCode are

8Real, Integer, Null<
Arrays (vectors and matrices) of these types can also be declared.

8Real@5D, Real@3, 4D, Real@_D, Integer@m, nD, Integer@2, 3, n_D<
Type declarations can be given in two different ways:

Ë Directly in the function definition

f@Real x_D Ø Real := x2

Ë In a separate command

g@x_D := Sin @xD
Declare@g@Real x_D Ø RealD

The latter construction can be useful if you want to separate already existing
Mathematica code with the type information needed to be able to generate C++
code using MathCode.

· 3.3. Generating a Stand-Alone Program

So far we have only seen examples in which the installed C++ code can be run
within Mathematica. However, we can also produce a stand-alone executable.
This offers a degree of portability that can be useful in practice.
To illustrate, we take the same example function sumint that we discussed in the
previous sections. The sequence of commands is very much as in the previous
section, except for the option StandAloneExecutableØTrue for the MathCode
function MakeBinary, and an appropriate option MainFileAndFunction for the
function SetCompilationOptions immediately after BeginPackage. Figure 2
illustrates the process of building the two kinds of executable, namely fooml.exe
and foo.exe (on some systems foomain.exe) from a package called foo.

In[15]:= Needs@"MathCode`"D;
In[16]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
In[17]:= BeginPackage@"foo`", 8MathCodeContexts<D;
The option MainFileAndFunction is used to specify the main file. The func-
tions defined in Mathematica must have the prefix Global_T (packagename_T in
general) to be recognized in the main file.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 747

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Numerical
Library
PackageHsL

MathLink
Library

fooml.exe

foo.exe
foomain.cc

foo.cc
foo.h
foolm.h
foo.icc

footm.c
fooif.cc

foo.tm

Figure 2. Building two executables from the package foo, possibly including numerical
libraries.

In[18]:= SetCompilationOptions@
MainFileAndFunctionØ "Òinclude <stdio.h>\n int mainHL

8int n;printfH\"give an integer:\"L;scanfH\"%d\",&nL;printfH\"the
sum is %d.\n\",foo_TsumintHnLL;return 0;<

"D;
In[19]:= sumint@n_D :=

Module@8res = 0, i<, For@i = 1, i § n, i++, res = res + iD; resD;
In[20]:= EndPackage@D;
In[21]:= Declare@sumint@Integer x_D Ø Integer, 8Integer, Integer<D;
Now we are ready to generate and compile the C++ code for the package foo.
We can do this in two ways: we can either employ the MathCode function BuildÖ
Code, as in the previous examples, or first execute CompilePackage (which gener-
ates the C++ source and header files) and then the function MakeBinary (which
creates the executable).
In[22]:= CompilePackage@"foo`"D;

Successful compilation to C++: 1 functionHsL

In[23]:= MakeBinary@"foo`", StandAloneExecutableØ TrueD;
The last command generates the stand-alone executable foo.exe that can be
executed from a command line, or, alternatively, by using the Mathematica func-
tion Run.
In[24]:= Run@"foo.exe"D

Out[24]= 0

If you desire, you can, in addition to the stand-alone executable foo.exe, also
generate fooml.exe that can be run from within Mathematica, just like before.
In[25]:= MakeBinary@"foo`"D;

748 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[26]:= InstallCode@D;

foo is installed.

Now the following command runs the C++ program foo.cc.

In[27]:= sumint@1000D
Out[27]= 500 500

3.3.1. Generating a DLL
Here we briefly mention the possibility of generating a DLL, without giving a
full example. To generate a DLL from a package, you have to write a file
containing one simple wrapper function in order to make a generated function
visible outside the DLL. You write a wrapper function for each generated func-
tion. The flags used are as follows:

CompilePackage@NeedsExternalObjectModuleØ "ext"D;
MakeBinary@StandAloneExecutableØ True, LinkerOptions Ø "êDLL"D

Here "ext.cpp" is a C++ file with wrapper functions, and "/DLL" is a flag for the
Visual C++ linker. For other C++ compilers this procedure is not automatic and
requires several operating system commands, but the wrapper functions are not
needed.

· 3.4. The Compilable Subset

MathCode generates C++ code for a subset of Mathematica functions, called the
compilable subset. The following items give a sample of the compilable subset. For
a complete list of Mathematica functions in the compilable subset, see [1].

Ë Statically typed functions, where the types of function arguments and
return values are given by the types discussed in Section 3.2

Ë Scoping constructs: BeginPackage[], EndPackage[], Module[],
Block[], With[]

Ë Procedural constructs: For[], While[], If[], Which[], Do[]

Ë Lists and tables: List[], Table[], Array[], Range[], IdentityÖ
Matrix[]

Ë Size functions: Dimensions[], Length[]

Ë Arithmetic and logical expressions, for example: +, -, *, /, ==, !=, >, !,
&&, ||, and so forth

Ë Elementary functions and some others, for example: Sin[], Exp[],
ArcSin[], Sqrt[], Round[], Max[], Cross[], Transpose[], Dot[]

Ë Constants: True, False, E, Pi

Ë Assignments: :=, =

MathCode: A System for C++ or Fortran Code Generation from Mathematica 749

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Ë Functional commands: Map[], Apply[]

Ë Some special commands: Sum[], Product[]

Functions not in the compilable subset can be used in external code by callbacks
to Mathematica (see Section 3.5.2 for an example).
Examples of functions that are not a part of the compilable subset include:
Integrate[], Solve[], FindRoot[], LinearSolve[], Expand[], Factor[].
These functions can be used if Mathematica can evaluate them at compile time to
expressions that belong to the compilable subset. In general, Mathematica func-
tions that perform symbolic operations are not in the compilable subset. Also,
many functions in the subset are implemented with limitations, that is, more diffi-
cult cases are not always supported. However, MathCode currently provides
several ways to extend the compilable subset, as we discuss in the next section.

· 3.5 Ways to Extend the Compilable Subset
3.5.1. Symbolic Expansion of Function Bodies
Functions not entirely written using Mathematica code in the compilable subset,
but whose definitions can be evaluated symbolically to expressions that belong to
the compilable subset, can be handled by MathCode.
In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
In[3]:= f@Real a_, Real b_D Ø Real := Integrate@x Sin@xD, 8x, a, b<D
In[4]:= f@1., 2.D

Out[4]= 1.44042

In[5]:= ?f

Global`f

f@a_, b_D := Ÿ
a

b
x Sin@xD „x

Generate C++ code and compile it to an executable file.

In[6]:= BuildCode@EvaluateFunctions Ø 8f<D

Successful compilation to C++: 1 functionHsL

The option EvaluateFunctions tells MathCode to let Mathematica expand the
function body as much as possible. Everything works fine because the result
belongs to the compilable subset.
In[7]:= Integrate@x Sin@xD, 8x, a, b<D

Out[7]= a Cos@aD - b Cos@bD - Sin@aD + Sin@bD

750 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The generated executable is connected to Mathematica:

In[8]:= InstallCode@D;

Global is installed.

In[9]:= f@1., 2.D
Out[9]= 1.44042

3.5.2. Callbacks to Mathematica
Consider the following function whose definition includes the Zeta function,
which does not belong to the compilable subset.
In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D
Out[2]= C:\MathCode\Demos\SimplestExample

In[3]:= f@x_D :=
Sin@xD Cos@xD
1 + Tan@xD2

 ‰-x2 Zeta@xD

Let us plot the function:

In[4]:= Plot@f@xD, 8x, 2, 4<, PlotRange Ø AllD

Out[4]=

2.5 3.0 3.5 4.0

-0.0020

-0.0015

-0.0010

-0.0005

We now make the declarations:

In[5]:= Declare@f@Real x_D Ø RealD
In[6]:= Declare@Zeta@Real x_D Ø RealD

These declare statements do not change the way Mathematica computes the
function.

In[7]:= :f@2.5D, fB5

2
F>

Out[7]= :-0.000796932,
CosA 5

2
E SinA 5

2
E ZetaA 5

2
E

‰25ê4 J1 + TanA 5

2
E2N

>

Let us now generate C++ code and compile it to an executable file. The option
CallBackFunctions tells MathCode which functions have to be evaluated by
Mathematica. As a result, although the function Zeta is not in the compilable
subset, an executable is still generated and communicates with the kernel to eval-
uate Zeta.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 751

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Let us now generate C++ code and compile it to an executable file. The option
CallBackFunctions tells MathCode which functions have to be evaluated by
Mathematica. As a result, although the function Zeta is not in the compilable
subset, an executable is still generated and communicates with the kernel to eval-
uate Zeta.
In[8]:= BuildCode@CallBackFunctions Ø 8Zeta<D

Successful compilation to C++: 2 functionHsL

The generated executable is connected to Mathematica:

In[9]:= InstallCode@D;

Global is installed.

Now it is the external code that is used to compute the function:

In[10]:= :f@2.5D, fB5

2
F>

Out[10]= :-0.000796932, fB5

2
F>

In this case the external code calls Mathematica when the Zeta function has to be
evaluated. After the evaluation the computation proceeds in the external code.
Note that it is the installed code for the function f that is executed above, and
not the original Mathematica function. In the installed code, the argument of f
must be real, according to our declaration. As a result, f[5/2], in which we pass
a rational number as an argument, is left unevaluated.
We again plot the function, but this time using the external code to evaluate it:

In[11]:= Plot@f@xD, 8x, 2, 4<, PlotRange Ø AllD

Out[11]=

2.5 3.0 3.5 4.0

-0.0020

-0.0015

-0.0010

-0.0005

3.5.3. External Functions
We can have references to external objects in C++ code generated by MathCode.
Let us consider three very simple external functions that compute x2, ex, and
sinHxL to illustrate the idea. These must be defined as follows in an external
source file that must be in the working directory.

752 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêOverview"D;
In[3]:= FilePrint@"external1.cc"D

#include <math.h>

extern double extsqr(const double &x) {
 return x*x;
}

extern double extexp(const double &x) {
 return exp(x);
}

extern double extoscillation(const double &x)
{
 return sin(x);
}

Observe here that each function definition, which is in C language syntax, is
followed by a “wrapper” that enables MathCode to recognize the object as
external. We can then create an object file corresponding to these functions and
link the object as follows.

In[4]:= extsqr@Real x_D Ø Real := ExternalFunction@D;
extexp@Real x_D Ø Real := ExternalFunction@D;
extoscillation@Real x_D Ø Real := ExternalFunction@D;

We define a function to create a list of numbers using the external functions.

In[7]:= Makeplot@Integer n_D Ø Real@nD := Module@8Integer i, Real@_D arr<,
arr = Table@extsqr@extoscillation@0.1 iDD

extexp@-extsqr@0.03 iDD, 8i, n<D; arrD
We now compile the package. Since this is a very small example, we do not
bother to create a special package for the code.
In[8]:= CompilePackage@D

Successful compilation to C++: 4 functionHsL

Let us now create the MathLink binary; to do this when there are external func-
tions, we must specify the option NeedsExternalObjectModule as follows.
In[9]:= MakeBinary@NeedsExternalObjectModuleØ 8"external1"<D

Here, as we noted above, external1 and external2 represent the external
object modules external1.o and external2.o. Install the MathCode-compiled code
so it is called using MathLink.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 753

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[10]:= InstallCode@D;

Global is installed.

When we make the following plot, it is the external code for extsqr, extexp,
and extoscillation that is used.
In[11]:= ListPlot@Makeplot@100D, Joined Ø TrueD

Out[11]=

20 40 60 80 100

0.2

0.4

0.6

0.8

· 3.6. Common Subexpression Elimination

Consider the following function whose definition contains a number of common

subexpressions (e.g., 1 + x2 and 1 + x2).

In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= g@Real x_D Ø Real :=

x Cos@xD CosB 1 + x2 F

H1 + x2L3ê2 I1 + Cos@xD2M
-
2 x Cos@xD SinB 1 + x2 F

H1 + x2L2 I1 + Cos@xD2M
+

2 Cos@xD2 Sin@xD SinB 1 + x2 F

H1 + x2L I1 + Cos@xD2M2
-

Sin@xD SinB 1 + x2 F
H1 + x2L I1 + Cos@xD2M

There are very efficient algorithms to evaluate functions containing common
subexpressions. The basic idea is to evaluate common subexpressions only once
and put the results in temporary variables.
Now we generate C++ code using MathCode and run it.

In[3]:= BuildCode@D

Successful compilation to C++: 1 functionHsL

In[4]:= InstallCode@D;

Global is installed.

754 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[5]:= Timing@Do@g@3.0D, 8100<DD
Out[5]= 80.15, Null<
MathCode does common subexpression elimination (CSE) when the option
EvaluateFunctions is given to CompileCode[] or BuildCode[]. This basic
strategy could be further improved for special cases in future versions of Math-
Code. Moreover, since mathematical expressions are intrinsically free of side
effects and do not have a specific evaluation order, the CSE optimization may
change the order of computing subexpressions if this improves performance.
Changing the order can sometimes have a small influence on the result when
floating-point arithmetic is used.

In[6]:= UninstallCode@D;
In[7]:= CleanMathCodeFiles@Confirm Ø False, CleanAllBut Ø 8<D;
In[8]:= BuildCode@EvaluateFunctions Ø 8g<D

Successful compilation to C++: 1 functionHsL

In[9]:= InstallCode@D;

Global is installed.

In[10]:= Timing@Do@g@3.0D, 8100<DD
Out[10]= 80.21, Null<
We take a look at the generated C++ file.

In[11]:= FilePrint@"Global.cc"D

#include "Global.h"

#include "Global.icc"

#include <math.h>
void Global_TGlobalInit ()
{
;
}

double Global_Tg (const double &x)
{
 double mc_T1;
 double mc_T2;
 double mc_T3;
 double mc_T4;
 double mc_T5;
 double mc_T6;
 double mc_T7;
 double mc_T8;
 double mc_T9;
 double mc_T10;
 double mc_T11;
 double mc_T12;
 double mc_T13;
 double mc_T14;
 double mc_T15;
 double mc_T16;
 double mc_T17;
 double mc_T18;
 double mc_T19;
 double mc_T20;
 double mc_T21;
 double mc_T22;
 double mc_T23;
 double mc_T24;
 double mc_T25;
 mc_T1 = (x*x);
 mc_T2 = 1+mc_T1;
 mc_T3 = cos(x);
 mc_T4 = (mc_T3*mc_T3);
 mc_T5 = 1+mc_T4;
 mc_T6 = mc_T5*mc_T2;
 mc_T7 = 0.5;
 mc_T8 = pow(mc_T2, mc_T7);
 mc_T9 = sin(mc_T8);
 mc_T10 = sin(x);
 mc_T11 = mc_T10*mc_T9;
 mc_T12 = mc_T11/mc_T6;
 mc_T13 = -mc_T12;
 mc_T14 = pow(mc_T5, -2);
 mc_T15 = 2*mc_T4*mc_T14*mc_T10*mc_T9;
 mc_T16 = mc_T15/mc_T2;
 mc_T17 = pow(mc_T2, -2);
 mc_T18 = -2*x*mc_T17*mc_T3*mc_T9;
 mc_T19 = mc_T18/mc_T5;
 mc_T20 = cos(mc_T8);
 mc_T21 = -1.5;
 mc_T22 = pow(mc_T2, mc_T21);
 mc_T23 = x*mc_T22*mc_T3*mc_T20;
 mc_T24 = mc_T23/mc_T5;
 mc_T25 = mc_T24+mc_T19+mc_T16+mc_T13;
 return mc_T25;
}

MathCode: A System for C++ or Fortran Code Generation from Mathematica 755

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

#include "Global.h"

#include "Global.icc"

#include <math.h>
void Global_TGlobalInit ()
{
;
}

double Global_Tg (const double &x)
{
 double mc_T1;
 double mc_T2;
 double mc_T3;
 double mc_T4;
 double mc_T5;
 double mc_T6;
 double mc_T7;
 double mc_T8;
 double mc_T9;
 double mc_T10;
 double mc_T11;
 double mc_T12;
 double mc_T13;
 double mc_T14;
 double mc_T15;
 double mc_T16;
 double mc_T17;
 double mc_T18;
 double mc_T19;
 double mc_T20;
 double mc_T21;
 double mc_T22;
 double mc_T23;
 double mc_T24;
 double mc_T25;
 mc_T1 = (x*x);
 mc_T2 = 1+mc_T1;
 mc_T3 = cos(x);
 mc_T4 = (mc_T3*mc_T3);
 mc_T5 = 1+mc_T4;
 mc_T6 = mc_T5*mc_T2;
 mc_T7 = 0.5;
 mc_T8 = pow(mc_T2, mc_T7);
 mc_T9 = sin(mc_T8);
 mc_T10 = sin(x);
 mc_T11 = mc_T10*mc_T9;
 mc_T12 = mc_T11/mc_T6;
 mc_T13 = -mc_T12;
 mc_T14 = pow(mc_T5, -2);
 mc_T15 = 2*mc_T4*mc_T14*mc_T10*mc_T9;
 mc_T16 = mc_T15/mc_T2;
 mc_T17 = pow(mc_T2, -2);
 mc_T18 = -2*x*mc_T17*mc_T3*mc_T9;
 mc_T19 = mc_T18/mc_T5;
 mc_T20 = cos(mc_T8);
 mc_T21 = -1.5;
 mc_T22 = pow(mc_T2, mc_T21);
 mc_T23 = x*mc_T22*mc_T3*mc_T20;
 mc_T24 = mc_T23/mc_T5;
 mc_T25 = mc_T24+mc_T19+mc_T16+mc_T13;
 return mc_T25;
}

Note how the computation of the function has been divided into small subexpres-
sions that are evaluated only once and then stored in temporary variables for
future use. This gives very efficient code for large functions. The speed enhance-
ment of roughly 150% brought about by CSE in this example is not appreciable
because the example itself is rather small.

· 3.7. Extended Matrix Operations

When dealing with matrices, it is very convenient to have a short notation for
part extraction. MathCode extends the functionality of Part[] or [[]] to achieve
this.

756 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Consider the following 4 µ 5 matrix:

In[12]:= A = Table@a@i, jD, 8i, 4<, 8j, 5<D; A êê MatrixForm

Out[12]//MatrixForm=

a@1, 1D a@1, 2D a@1, 3D a@1, 4D a@1, 5D
a@2, 1D a@2, 2D a@2, 3D a@2, 4D a@2, 5D
a@3, 1D a@3, 2D a@3, 3D a@3, 4D a@3, 5D
a@4, 1D a@4, 2D a@4, 3D a@4, 4D a@4, 5D

We can extract rows 2 to 4 as follows, with the shorthand available in MathCode.

In[13]:= AP2 » 4T êê MatrixForm

Out[13]//MatrixForm=

a@2, 1D a@2, 2D a@2, 3D a@2, 4D a@2, 5D
a@3, 1D a@3, 2D a@3, 3D a@3, 4D a@3, 5D
a@4, 1D a@4, 2D a@4, 3D a@4, 4D a@4, 5D

We can extract the elements in all rows that belong to column 3 and higher:

In[14]:= AP_, 3 » _T êê MatrixForm

Out[14]//MatrixForm=

a@1, 3D a@1, 4D a@1, 5D
a@2, 3D a@2, 4D a@2, 5D
a@3, 3D a@3, 4D a@3, 5D
a@4, 3D a@4, 4D a@4, 5D

We can assign values to a submatrix of A.

In[15]:= AP2 » 3, 2 » 3T = 881, 2<, 83, 4<<;
In[16]:= A êê MatrixForm

Out[16]//MatrixForm=

a@1, 1D a@1, 2D a@1, 3D a@1, 4D a@1, 5D
a@2, 1D 1 2 a@2, 4D a@2, 5D
a@3, 1D 3 4 a@3, 4D a@3, 5D
a@4, 1D a@4, 2D a@4, 3D a@4, 4D a@4, 5D

All these operations belong to the compilable subset and can result in compact
code. Note: A[[2|4]]] denotes the same Mathematica computation as
Take[A,{2,4},All], and A[[_, 3|_]] is equivalent to Take[A,All,{3,-1}].

· 3.8. Array Declaration and Dimension

In this subsection, we give a few examples of array declarations. There are two
main cases to consider.

Ë Arrays that are passed as function parameters or returned as function
values, where the actual array size has been previously allocated

Ë Declaration of array variables, usually specifying both the type and the
allocation of the declared array

MathCode: A System for C++ or Fortran Code Generation from Mathematica 757

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

There are five allowed ways to specify array dimension sizes in array types for
function arguments and results.

Ë Integer constant dimension sizes, for example: Real[3,4]

Ë Symbolic-constant dimension sizes, for example: Real[three, four]

Ë Unknown dimension sizes with unnamed placeholders, for example:
Real[_, _]

Ë Unknown dimension sizes with named placeholders, for example:
Real[n_, m_]

Ë Unknown dimension sizes with variables as dimension sizes, for exam-
ple: Real[n, m]

The dimension sizes can be constant, in which case the size information is part
of the type. Alternatively, the sizes are unknown and thus fixed later at runtime
when the array is allocated. Such unknown dimension sizes are specified through
named (e.g., n_) or unnamed (_) placeholders.

All arrays that are passed as arguments to functions have already been allocated
at runtime. Thus, their sizes are already determined. These sizes might, however,
be different for different calls. Therefore it is not allowed to specify conflicting
dimension sizes through integer variables (e.g., Real[n, m]) in array types
of function parameters or results, as can be done for ordinary declared variables.
Only constants and named, or unnamed, placeholders are allowed.

We now give examples of the five different ways of specifying array dimension
information in variable declarations. The examples show a global variable declara-
tion using Declare, but the same kinds of declarations can also be used for local
declarations in functions.
The fifth case is where sizes are specified through integer variables. This is
needed to handle declaration and allocation of arrays for which the sizes are not
determined until runtime.

Ë Integer constant dimension sizes using the array arr:

Declare@Real@3, 4D arrD;
Ë Symbolic constant dimension sizes:

Declare@Real@three, fourD arrD;
Ë Unknown dimension sizes with unnamed placeholders:

Declare@Real@_, _D arrD;
Ë Unknown dimension sizes with named placeholders:

Declare@Real@k_, m_D arrD;
Ë Unknown dimension sizes that are specified and fixed to the values

of integer variables, for example, n, m (e.g., function parameters, local or
global variables that are visible from the declaration):

Declare@Real@n, mD arrD;

758 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Integer variables, such as n and m, are assumed to be assigned once; that is, their
values are not changed after the initial assignment, so that the declared sizes
of allocated arrays are kept consistent with the values of those variables. This
single-assignment property is not checked by the current version of the system,
however. Thus, the user is responsible for maintaining such consistency.

‡ 4. Application Examples
· 4.1. Summary of Examples

In the following we present a few complete application examples using MathCode.
The first example application is a small Mathematica program called SinSurface
(Section 4.2), which has been designed to illustrate two basic modes of the code
generator: compiling without symbolic evaluation (the default mode, in which
the function body is translated into C++ as it is), and compilation preceded by
symbolic expansion, which is indicated by setting the option EvaluateFuncÖ
tionsØTrue (the function body is expanded using symbolic operations, simpli-
fied, and then translated).
The second example, presented in Section 4.3, is an implementation of the
Gaussian elimination procedure to solve a linear algebraic system of equations
(see any standard text on numerical techniques for a discussion of the procedure,
e.g., [2]). Here we compile generated C++ code with various options and do a
detailed performance analysis.

In Section 4.4, we discuss the example of SuperLU, an external library [3] that
performs efficient sparse matrix operations. We give an example of a program
useful in solving partial differential equations that calls the SuperLU library and
some of its object modules to solve a matrix equation of the type A.X = B, where
A is a very sparse square matrix.

· 4.2. The SinSurface Application Example

Here we describe the SinSurface program example. The actual computation is
performed by the functions calcPlot, sinFun2, and their helper functions. The
two functions calcPlot and sinFun2 in the SinSurface package will be trans-
lated into C++ and are declared together with a global array xyMatrix.
The array xyMatrix represents a 21 µ 21 grid on which the numerical function
sinFun2 will be computed. The function calcPlot accepts five arguments: four
of these are coordinates describing a square in the x- y plane and one is a counter
(iter) to make the function repeat the computation as many times as necessary
in order to measure execution time. For each point on a 21 µ 21 grid, the
numeric function sinFun2 is called to compute a value that is stored as an
element in the matrix representing the grid.

4.2.1. Introduction
The SinSurface example application computes a function (here sinFun2) over a
two-dimensional grid. The function values are stored in the matrix xyMatrix.
The execution of compiled C++ code for the function sinFun2 is over 500 times
faster than evaluating the same function interpretively within Mathematica.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 759

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The function sinFun2 computes essentially the same values as sinHx + yL, but in a
more complicated way, using a rather large expression obtained through
converting the arguments into polar coordinates (through ArcTan) and then
using a series expansion of both Sin and Cos, up to 10 terms. The resulting large
symbolic expression (more than a page) becomes the body of sinFun2, and is
then used as input to CompileEvaluateFunction to generate efficient C++
code. The symbolic expression and the call to CompileEvaluateFunction is in-
itiated by using the EvaluateFunctions option.

4.2.2. Initialization
We first set the directory in which MathCode will store the auxiliary files, the
C++ code, and executable, and then load MathCode.
In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êtest"D;
The SinSurface package starts in the usual way with a BeginPackage declara-
tion that references other packages. MathCodeContexts is needed in order to call
the code generation related functions.
In[3]:= BeginPackage@"SinSurface`", 8MathCodeContexts<D;

Clear@"SinSurface`*"D;
Next we define possibly exported symbols. Even though it is not necessary here,
we enclose these names within Begin["SinSurface‘"] … End[] as a kind
of context bracket, since this can be put into a cell, which can be conveniently re-
evaluated by itself if new names are added to the list.

In[5]:= Begin@"SinSurface`"D
xyMatrix;

calcPlot;
sinFun1;
sinFun2;
arcTan;
sin;
cos;
plot;
cplus;
plotfile;
End@D

Out[5]= SinSurface`

Now we set compilation options as follows. This defines how the functions and
variables in the package should be compiled to C++. By default, all typed vari-
ables and functions are compiled. However, the compilation process can be
controlled in a more detailed way by giving compilation options to CompileÖ
Package or via SetCompilationOptions . For example, in this package the func-
tion sinFun2 should be symbolically evaluated before being translated to code,
because it contains symbolic operations; the functions sin, cos, and arcTan
should not be compiled at all, because they are expanded within the body
of sinFun2. The remaining typed function, calcPlot, will be compiled in the
normal way.

760 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Now we set compilation options as follows. This defines how the functions and
variables in the package should be compiled to C++. By default, all typed vari-
ables and functions are compiled. However, the compilation process can be
controlled in a more detailed way by giving compilation options to CompileÖ
Package or via SetCompilationOptions . For example, in this package the func-
tion sinFun2 should be symbolically evaluated before being translated to code,

sin cos arcTan
should not be compiled at all, because they are expanded within the body
of sinFun2. The remaining typed function, calcPlot, will be compiled in the
normal way.

In[6]:= SetCompilationOptions@EvaluateFunctions Ø 8sinFun2<,
UnCompiledFunctionsØ 8sin, cos, arcTan<,
MainFileAndFunctionØ "int mainHL8return 0;<"D;

4.2.3. The Body of the SinSurface Package
We begin the implementation section of the SinSurface package, where func-
tions are defined. This is usually private, to avoid accidental name shadowing due
to identical local variables in several packages.
In[7]:= Begin@"SinSurface`Private "̀D;

Declare public global variables and private package-global variables:

In[8]:= Declare@Real@21, 21D xyMatrixD;
Taylor-expanded sin and cos functions called by sinFun2 are now defined, just
for the sake of the example, even though such a series gives lower relative accu-
racy close to zero. A substitution of the symbol z for the actual parameter x is
necessary to force the series expansion before replacing with the actual parameter.
In[9]:= sin@Real@x_DD Ø Real := Normal@Series@Sin@zD, 8z, 0, 10<DD ê. z Ø x;

cos@Real@x_DD Ø Real := Normal@Series@Cos@zD, 8z, 0, 10<DD ê. z Ø x;

Define arcTan, which converts a grid point to an angle, called by sinFun2:

In[11]:= arcTan@Real@x_D, Real@y_DD Ø Real :=

If@x < 0, p, 0D + IfBx ã 0,
1

2
Sign@yD p, ArcTanBy

x
FF;

sinFun2 is the function to be computed and plotted, called by calcPlot. It pro-
vides a computationally heavy (series expansion) and complicated way of calcu-
lating an approximation to sinHx + yL. This gives an example of a combination
of symbolic and numeric operations as well as a rather standard mix of arith-
metic operations. The expanded symbolic expression, which comprises the body
of sinFun2, is about two pages long when printed.

Note that the types of local variables to sinFun2 need not be declared, since
setting the EvaluateFunctions option will make the whole function body be
symbolically expanded before translation.
Note also that a function should be without side effects in order to be symboli-
cally expanded before final code generation. For example, there should be no
assignments to global variables or input/output, since the relative order of these
actions when executing the code often changes when the symbolic expression is
created and later rearranged and optimized by the code generator.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 761

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[12]:= sinFun2@Real x_, Real y_D Ø Real :=

BlockB8r, xx, yy<,

r = x2 + y2 ;

xx = r cos@arcTan@x, yDD;
yy = r sin@arcTan@x, yDD;
sin@xx + yyDF

The function calcPlot calculates data for a plot of sinFun2 over a 21 µ 21 grid,
which is returned as a 21 µ 21 array.
In[13]:= calcPlot@Real xmin_, Real xmax_, Real ymin_,

Real ymax_, Integer iter_D Ø Real@21, 21D :=

ModuleB8Integer n = 20, Real 8x, y<, Integer 8i, j, count<<,
ForBcount = 1, count § iter, count = count + 1,

ForBi = 1, i § n + 1, i = i + 1,

ForBj = 1, j § n + 1, j = j + 1,

x = xmin +
Hxmax - xminL Hi - 1L

n
; y = ymin +

Hymax - yminL Hj - 1L
n

;

xyMatrixPi, jT = sinFun2@x, yDFFF;
xyMatrixF

In[14]:= End@D
EndPackage@D;

Out[14]= SinSurface`Private`

4.2.4. Execution
We first execute the application interpretively within Mathematica, and then use
Compile on the key function and execute the application again. Then we compile
the application to C++, build an executable, and call the same functions from
Mathematica via MathLink.
Let us first do the Mathematica evaluation and plot.

In[16]:= meval = Timing@plot = calcPlot@-2., 2., -2., 2., 20DDP1T ê20

Out[16]= 0.1305

762 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[17]:= ListPlot3D@plotD

Out[17]=

Next, we redefine sinFun2 to become a compiled version, using Mathematica’s
standard Compile.
In[18]:= sinFun2 = Compile@8x, y<, Evaluate@sinFun2@x, yDDD;
In[19]:= compeval = Timing@plot = calcPlot@-2., 2., -2., 2., 100D;D

Out[19]= 87.109, Null<
In[20]:= compeval = compevalP1Tê100

Out[20]= 0.07109

In[21]:= sinFun2=.

4.2.5. Using the MathCode Code Generator
Compile the SinSurface package.

In[22]:= CompilePackage@"SinSurface"D

MathCodeConv`defConv::untypedlocalvars : Warning: Untyped local variableHsL:
8SinSurface`Private`r, SinSurface`Private`xx, SinSurface`Private`yy< in function with
head sinFun2@SinSurface`Private`x_, SinSurface`Private`y_D. Real typeHsL assumed

Successful compilation to C++: 2 functionHsL

The warnings concern local variables in sinFun2 that have no type information.
This is not important because those variables disappear upon symbolic expansion.
The command MakeBinary compiles the generated code using a compiler (g++
in the present case). The object code is by default linked into the executable
SinSurfaceml.exe for calling the compiled code via MathLink.
In[23]:= MakeBinary@D;
If any problems are encountered during code compilation, then warning and
error messages are shown. Otherwise no messages are shown. When MakeÖ
Binary is called without arguments, the call applies to the current package.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 763

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The command InstallCode installs and connects the external process
containing the compiled and linked SinSurface code.
In[24]:= InstallCode@"SinSurface"D

SinSurface is installed.

Out[24]= LinkObject@".\SinSurfaceml.exe", 14, 7D
Execute the generated C++ code for calcPlot.

In[25]:= AbsoluteTiming@plot = calcPlot@-2.0, 2.0, -2.0, 2.0, 3000D;D
Out[25]= 83.6408347, Null<
Since the external computation was performed 3000 times, the time needed for
one external computation is

In[26]:= externaleval =
%P1T
3000

Out[26]= 0.0012136116

Check that the result appears graphically the same.

In[27]:= ListPlot3D@plotD

Out[27]=

4.2.6. Performance Comparison
Let us now compare the running times for the three cases, the standard Mathe-
matica, compiled Mathematica, and the generated C++ code.
In[28]:= 8mevalêexternaleval, compevalêexternaleval<

Out[28]= 8107.53, 58.5772<
The performance between the three forms of execution are compared in Table 1.
The generated C++ code for this example is roughly 100 times faster than
standard interpreted Mathematica code, and 50 times faster than code compiled
by the internal Mathematica Compile command. This is on a Toshiba Satel-
lite-2100, 400 Mhz AMD-K6, running Windows XP Pro SP2 and
Mathematica 6, without inline and norange optimization. If the inline is specified,

764 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

The performance between the three forms of execution are compared in Table 1.

-

the inline directive is passed to the C++ compiler for all functions to be
compiled. If norange is specified, array element index range checking is turned
off in the code generated by the C++ compiler, resulting in faster but less safe
code.

We should emphasize that the comparisons in Table 1 are rather crude for
several reasons. From a separate measurement, the loop part of calcPlot
excluding the call to sinFun2 comprises 25% of the total calcPlot time
executed in interpreted Mathematica. The calcPlot function itself cannot be
compiled using Compile, since it contains an assignment to a global matrix vari-
able that cannot currently be handled by Compile. This might be regarded as
unfair to Compile. On the other hand, a MathLink overhead (divided by 500) in
returning the 21 µ 21 matrix is embedded in the figure for MathCode, which can
be regarded as unfair to MathCode. A better comparison for another small applica-
tion example is available in Section 4.3.6.
In[29]:= TableForm@8

8"Execution Form", "Time consumed", "Relative"<,
8"Standard Mathematica", meval, mevalêexternaleval<,
8"Compile@D", compeval, compevalêexternaleval<,
8"External C++ via MathLink", externaleval, 1<<D

Out[29]//TableForm=

Execution Form Time consumed Relative

Standard Mathematica 0.1305 107.53

Compile@D 0.07109 58.5772

External C++ via MathLink 0.0012136116 1

Table 1. Approximate performance comparison for the calcPlot example.

· 4.3. Gauss Application Example
4.3.1. Introduction
In this section, we present a textbook algorithm, Gaussian elimination (e.g., [2]),
to solve a linear equation system. The given linear system, represented by a
matrix equation of the type A.X = B, is subjected to a sequence of transforma-
tions involving a pivot, resulting in the solution to the system, contained in the
matrix X .
The following subsections illustrate the various aspects of the application.

4.3.2. Initialization
In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> $PathnameSeparator<>

"Demos" <> $PathnameSeparator<> "Gauss"D;
In[3]:= BeginPackage@"Gauss`", 8MathCodeContexts<D;

MathCode: A System for C++ or Fortran Code Generation from Mathematica 765

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

Define exported symbols:

In[4]:= Begin@"Gauss`"D;
GaussSolveArraySlice;

End@D;

4.3.3. Body of the Package
We now define the function GaussSolveArraySlice , based on the Gaussian
elimination algorithm.
In[7]:= Begin@"`Private`"D;

GaussSolveArraySlice@Real@n_, n_D ain_, Real@n_, m_D bin_,

Integer iterations_D Ø Real@n, mD :=

Module@8Real@nD dumc, Real@n, nD a, Real@n, mD b,
Integer@nD 8ipiv, indxr, indxc<, Integer 8i, k, l, irow, icol<,
Real 8pivinv, amax, tmp<, Integer 8beficol, afticol, count<<,

For@count = 1, count § iterations, count = count + 1, Ha = ain;
b = bin;
For@k = 1, k § n, k = k + 1, ipiv@@kDD = 0D;
For@i = 1, i § n, i = i + 1,
H*find the matrix element with largest absolute value*L
amax = 0.0;
For@k = 1, k § n, k = k + 1,
If@ipiv@@kDD ã 0,
For@l = 1, l § n, l = l + 1, If@ipiv@@lDD ã 0,

If@Abs@a@@k, lDDD > amax, amax = Abs@a@@k, lDDD;
irow = k;
icol = lDD

D
D

D;
ipiv@@icolDD = ipiv@@icolDD + 1;
If@ipiv@@icolDD > 1, "*** Gauss2 input data error ***" >> "";
BreakD;

H*if irow ≠ icol,
then interchange rows irow and icol in both a and b*L
If@irow ≠ icol, For@k = 1, k § n, k = k + 1, tmp = a@@irow, kDD;

a@@irow, kDD = a@@icol, kDD;
a@@icol, kDD = tmpD;

For@k = 1, k § m, k = k + 1, tmp = b@@irow, kDD;
b@@irow, kDD = b@@icol, kDD;
b@@icol, kDD = tmpDD;

indxr@@iDD = irow;
indxc@@iDD = icol;
If@a@@icol, icolDD ã 0,
Print@"*** Gauss2 input data error 2 ***"D;
BreakD;

H*prepare to divide by the

pivot and subsequent row transformations*L
pivinv = 1.0êa@@icol, icolDD;
a@@icol, icolDD = 1.0;

;

766 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[7]:=

a@@icol, icolDD = 1.0;
a@@icol, _DD = a@@icol, _DD*pivinv;

b@@icol, _DD = b@@icol, _DD*pivinv;

dumc = a@@_, icolDD;
For@k = 1, k § n, k = k + 1, a@@k, icolDD = 0D;
a@@icol, icolDD = pivinv;
For@k = 1, k § n, k = k + 1,
If@k ≠ icol, a@@k, _DD = a@@k, _DD - dumc@@kDD*a@@icol, _DD;
b@@k, _DD = b@@k, _DD - dumc@@kDD*b@@icol, _DDDD

D;
For@l = n, l ¥ 1, l = l - 1,
For@k = 1, k § n, k = k + 1, tmp = a@@k, indxr@@lDDDD;
a@@k, indxr@@lDDDD = a@@k, indxc@@lDDDD;
a@@k, indxc@@lDDDD = tmpDDL

D;
bD;

End@D;
EndPackage@D;

This function accepts three arguments in an attempt to solve a matrix equation
of the form A.X = B. The first two arguments are essentially the matrices A and
B. The third argument specifies the number of times the body of the function
must run; this is useful for an accurate measurement of the running time. The
function output (X) has the same shape as the second argument (B).

4.3.4. Mathematica Execution
Let us create two random matrices.

In[10]:= a = RandomReal@80, 1<, 810, 10<D;
b = RandomReal@80, 1<, 810, 2<D;

In the following, loops=1 factor specifies the number of times the body
of GaussSolveArraySlice runs. The appropriate value of loops for reliable
estimates of running time is system dependent. A reasonable value of factor for
a 1.5 GHz computer is about 10. The output checks that the solution obtained
is correct.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 767

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[12]:= factor = 30; loops = 2 factor;
s = Timing@c = GaussSolveArraySlice@a, b, loopsD;D;
meval = sP1Têloops;
Print@"TIMING FOR NON-COMPILED VERSION= ", mevalD;
MatrixForm@a.c - bD
TIMING FOR NON-COMPILED VERSION= 0.1401

Out[16]//MatrixForm=

0. 0.

-1.33227µ 10-15 0.

2.22045µ 10-16 -1.11022µ 10-16

6.66134µ 10-16 -2.22045µ 10-16

2.22045µ 10-15 -3.33067µ 10-16

2.22045µ 10-16 -1.249 µ 10-16

-2.22045µ 10-15 5.55112µ 10-17

1.77636µ 10-15 -1.11022µ 10-16

-2.66454µ 10-15 0.

-1.77636µ 10-15 -1.66533µ 10-16

4.3.5. Generating and Running the C++ Code
The command BuildCode translates the package and produces an executable.

In[17]:= BuildCode@"Gauss"D

Successful compilation to C++: 1 functionHsL

Interpreted versions are removed, and compiled ones are used instead.

In[18]:= InstallCode@"Gauss"D

Gauss is installed.

Out[18]= LinkObject@".\Gaussml.exe", 14, 7D
In[19]:= c = GaussSolveArraySlice@a, b, 1D;
We now make two runs of the C++ code for the package Gauss. The first run
evaluates the body of GaussSolveArraySlice loops times, and returns the solu-
tion only once. The second run evaluates the body of GaussSolveArraySlice
only once, but does this inside a Do-loop for loops times, returning the solution
loops times as a result. Clearly, there is overhead in the second run, and the
time taken is expected to be higher, as can be seen from the following.

768 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[20]:= loops = 800*factor;
externaleval =
HHc = GaussSolveArraySlice@a, b, loopsD;L êê AbsoluteTimingL@@1DDê
loops

Out[21]= 0.00029885107

In[22]:= loops = 500*factor;
externalevalPass =
HHDo@c = GaussSolveArraySlice@a, b, 1D, 8loops<D;L êê

AbsoluteTimingL@@1DDêloops

Out[23]= 0.00110737671

We now also solve the same system using LinearSolve.

In[24]:= loops = 10 000*factor;
internalEval =
HHDo@c = LinearSolve@a, bD, 8loops<D;L êê AbsoluteTimingL@@1DDê
loops

Out[25]= 0.000031044051

In[26]:= UninstallCode@"Gauss"D;
In[27]:= Map@DeleteFile, FileNames@"*.o"DD;

Map@DeleteFile, FileNames@"*.obj"DD;
Map@DeleteFile, FileNames@"*.exe"DD;

4.3.6. Performance Comparison
We present the performance analysis in Table 2. As we observe from the table, a
performance enhancement by a factor of approximately 500 can be obtained for
the compiled C++ code over interpreted Mathematica. More importantly, we are
able to get a performance close to LinearSolve, although we have implemented
a simple version of a Gaussian elimination algorithm directly from a textbook as
straight-line code without any attempts at tuning or optimization. Also note that
LinearSolve is more general in that it can also handle sparse arrays efficiently
using the SuperLU package linked into the Mathematica kernel. To achieve
similar generality with the MathCode package, the example would need to be
extended and a SuperLU routine, for example, called as an external function from
the generated code. In general, it is better to use already implemented robust and
reliable routines from packages like LAPACK and SuperLU, which also can be
called as external functions from MathCode-generated code. The Gauss example
in this article is not intended to replace such routines but to be a simple example
of using MathCode.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 769

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[29]:= TableForm@88"", "TimeHsecondsL", "Relative"<,
8"Standard interpreted Mathematica", meval, mevalêexternaleval<,
8"C++ with call overhead",
externalevalPass, externalevalPassêexternaleval<,

8"C++ without call overhead", externaleval, 1<,
8"LinearSolve", internalEval, internalEvalêexternaleval<<D

Out[29]//TableForm=

TimeHsecondsL Relative

Standard interpreted Mathematica 0.1401 468.795

C++ with call overhead 0.00110737671 3.7054466

C++ without call overhead 0.00029885107 1

LinearSolve 0.000031044051 0.103877996

Table 2. Performance comparison for the Gauss example.

· 4.4. External Libraries and Functions

We now demonstrate how to call external functions and libraries using Math-
Code. We have already presented an example of how to do this for three very
simple functions, x, expHxL, and sinHxL, in Section 3.5.3. In this section we present
a more realistic application example that illustrates how to employ an external
library for handling sparse matrix systems that arise in the solution of partial
differential equations [6].

We take as our example the problem of solving the one-dimensional diffusion
equation using the method of finite differences.

∂u Hx, tL
∂ t

ã
∂2 u Hx, tL

∂x2

In this method, the continuous x domain is approximated by a set of discrete
points called a grid, and each derivative is replaced by a certain linear function
of values of the dependent variables, called a finite difference. For the previous
equation, a variant of this method gives

u Hx, t + 1L - u Hx, tL
k

ã
u Hx - 1, tL - 2 u Hx, tL + u Hx + 1, tL

h2
,

where now x and t are assumed to take integer values, and k and h are step sizes
along x and t directions, respectively. The algebraic equation must be solved at
each grid point, thus resulting in a simultaneous system of equations, which is
essentially a matrix system of the form A.X = B. Since the matrix system in this
case is very sparse, we solve it using the sparse matrix library called SuperLU [3].

The rest of this section assumes that the SuperLU library has been compiled.
We now explain how to call the external objects based on this library using
MathCode.
In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

770 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[2]:= SetDirectory@$MCRoot<> "\Demos\ExternalFunction"D;
In[3]:= BeginPackage@"foo`", 8MathCodeContexts<D;

Here is the Mathematica code to solve the one-dimensional diffusion equation.

In[4]:= SolveDiffusion1D@Nx_, dt_, nnz_, xasize_, U_D :=

ModuleA8k, x, dx, kt, rhsmat,

colmat, rowmat, valmat, amat, asubmat, xamat<,
H*initialize variables and arrays*L
kt = 0; dx = 1êHNx - 1L; rhsmat = Table@0., 8Nx<D;
colmat = Table@0, 8nnz<D;
rowmat = Table@0, 8nnz<D; valmat = Table@1., 8nnz<D;
amat = Table@1., 8nnz<D; asubmat = Table@0, 8nnz<D;
xamat = Table@0, 8xasize<D;
H*define the matrices*L
For@x = 1, x < 2, x = 1 + x, rhsmatPxT = 0.; H++kt; colmatPktT = x;

rowmatPktT = x; valmatPktT = 1LD; ForAx = 2, x < Nx, x = 1 + x,

rhsmatPxT = UPxTêdt + HUP-1 + xT - 2 UPxT + UP1 + xTLë dx2;

H++kt; colmatPktT = x; rowmatPktT = x; valmatPktT = 1êdtLE;
For@x = Nx, x < 1 + Nx, x = 1 + x, rhsmatPxT = 0.;
H++kt; colmatPktT = x; rowmatPktT = x; valmatPktT = 1LD;

H*transform the matrices into SuperLU format*L
kt = 0; Do@Do@If@colmatPk1T ã k, ++kt; amatPktT = valmatPk1T;

asubmatPktT = -1 + rowmatPk1TD, 8k1, 1, nnz<D, 8k, 1, Nx<D;
kt = 0; Do@Do@If@colmatPk1T ã k, ++ktD, 8k1, 1, nnz<D;
xamatP1 + kT = kt, 8k, 1, Nx<D;

H*call SuperLU-based function to solve the matrix system A.x=B*L
linsolvepp@Nx, Nx, nnz, 1, amat, asubmat, xamat, rhsmatD

E

MathCode: A System for C++ or Fortran Code Generation from Mathematica 771

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[5]:= FilePrint@$MCRoot<> "êDemosêExternalFunctionêlinsolvepp.cc"D

#include <math.h>
#define LM_NNNN
#include "lightmat.h"

extern "C" void linsolve(int m, int n, int nnz, int nrhs, double *a,
int *asub, int *xa, double *rhs);

void linsolvepp(const int &nx, const int &nx1, const int &nx2,
const int &one, const doubleN &expamat, const intN &expasubmat,
const intN &expxamat, doubleN &exprhsmat)
{

 double * expamat_c = new double [expamat.dimension(1)];
 int * expasubmat_c = new int [expasubmat.dimension(1)];
 int * expxamat_c = new int [expxamat.dimension(1)];
 double * exprhsmat_c = new double [exprhsmat.dimension(1)];

 expamat.Get(expamat_c);
 expasubmat.Get(expasubmat_c);
 expxamat.Get(expxamat_c);
 exprhsmat.Get(exprhsmat_c);

 linsolve(nx, nx1, nx2, one, expamat_c, expasubmat_c, expxamat_c,
exprhsmat_c);

 exprhsmat.Set(exprhsmat_c);

};

Note that this source file is somewhat different from the one in Section 3.5.3,
mainly because arrays are involved here. This wrapper function makes a refer-
ence to a C function linsolve() that is defined in the following source file.

772 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

In[6]:= FilePrint@$MCRoot<> "êDemosêExternalFunctionêlinsolve.c"D

/*
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 */
#include "dsp_defs.h"

/**/
/* a function to solve AX = B using SuperLU library */
/* (based on SuperLU_3.0\EXAMPLE\superlu.c) */
/**/

void linsolve(int m, int n, int nnz, int nrhs, double *a, int *asub,
int *xa, double *rhs)
{
 SuperMatrix A, L, U, B;
 int info, permc_spec;
 int *perm_r; /* row permutations from partial pivoting */
 int *perm_c; /* column permutation vector */
 superlu_options_t options;
 SuperLUStat_t stat;

 /* Create matrices A and B in the format expected by SuperLU. */

 dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D,
SLU_GE);

 dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);

 if (!(perm_r = intMalloc(m))) ABORT("Malloc fails for
perm_r[].");
 if (!(perm_c = intMalloc(n))) ABORT("Malloc fails for
perm_c[].");

 /* Set the default input options. */
 set_default_options(&options);
 options.ColPerm = NATURAL;

 /* Initialize the statistics variables. */
 StatInit(&stat);

 dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);

 /* De-allocate storage */
 SUPERLU_FREE (rhs);
 SUPERLU_FREE (perm_r);
 SUPERLU_FREE (perm_c);
 Destroy_CompCol_Matrix(&A);
 Destroy_SuperMatrix_Store(&B);
 Destroy_SuperNode_Matrix(&L);
 Destroy_CompCol_Matrix(&U);
 StatFree(&stat);
}

It is the function linsolve() that solves the matrix equation A.X = B by calling
other object modules of the SuperLU library; from these two C/C++ source
codes, object files must be generated using suitable makefiles.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 773

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

It is the function linsolve() that solves the matrix equation A.X = B by calling
other object modules of the SuperLU library; from these two C/C++ source
codes, object files must be generated using suitable makefiles.
The matrices are expected to be in a special format called “column-compressed
storage format,” so as to minimize storage space. Thus, the Nx * Nx matrix
elements of A need not all be specified, since only a small number, nnz, of them
are nonzero; here Nx is the number of spatial grid points. The matrix A is
specified through three row matrices amat and asubmat (that have a length nn),
and xamat (that has a length xasize = Nx + 1). Our function takes these integers
Nx, nnz, and xasize as parameters; in addition, we must pass as parameters the
time step dt and the solution vector of the PDE at time t; the function then
returns the solution vector at time t + d t.
The function linsolvepp must now be defined as an external procedure using
the following command.
In[7]:= linsolvepp@ nx_, nx1_, nx2_, one_,

expamat_, expasubmat_, expxamat_, exprhsmat_D :=

ExternalProcedure@nx, nx1, nx2, one, expamat,
expasubmat, expxamat, InOut exprhsmatD;

Note the keyword InOut preceding the last argument of ExternalProcedure : in
the calling function SolveDiffusion1D , the array rhsmat is passed to linÖ
solvepp as input, but linsolvepp also returns the solution vector by destroying
rhsmat and using it to store the solution vector. As a result, the array rhsmat is
both an input and an output. The way to declare this is by using the keyword
InOut.
In[8]:= EndPackage@D;

We next declare the types, and then build and install.

In[9]:= Declare@SolveDiffusion1D@Integer Nx_, Real dt_, Integer nnz_,

Integer xasize_, Real@_D U_D Ø Real @NxD, 8Integer, Integer,

Real, Integer, Real@NxD, Integer@nnzD, Integer@nnzD,
Real@nnzD, Real@nnzD, Integer@nnzD, Integer@xasizeD<D;

In[10]:= Declare@
linsolvepp@Integer nx_, Integer nx1_, Integer nx2_,

Integer one_, Real@_D expamat_, Integer@_D expasubmat_,

Integer@_D expxamat_, Real@_D exprhsmat_D Ø Real@nxD;
D;

In[11]:= CompilePackage@"foo`"D;

Successful compilation to C++: 2 functionHsL

774 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

We now create the executable. Note that an additional option NeedsExÖ
ternalLibrary must also be specified in this example, since the external objects
depend on other objects of the SuperLU library.

In[12]:= MakeBinary@"foo`", NeedsExternalObjectModuleØ

8$MCRoot<> "\Demos\ExternalFunction\linsolve", $MCRoot<>
"\Demos\ExternalFunction\linsolvepp"<, NeedsExternalLibraryØ

8$MCRoot<> "êPDESOLVERêMathPDE2êSuperLU_3.0êsuperlu_cygwin.a",

$MCRoot<> "êPDESOLVERêMathPDE2êSuperLU_3.0êblas_cygwin.a"<D;
In[13]:= InstallCode@D;

foo is installed.

We take the following initial conditions.

In[14]:= soln = Table@Hx - 1L*H-x + 100LêH99.0*99.0L, 8x, 1, 100<D;
Now the following command runs the C++ executable fooml.exe. We evolve
from t = 0 to t = 1000 dt with dt = 0.00001.
In[15]:= Timing@

Do@soln = SolveDiffusion1D@100, 0.00001, 100, 101, solnD, 81000<D;D
Out[15]= 86.8 Second, Null<
In[16]:= soln êê ListPlot

Out[16]=

20 40 60 80 100

0.05

0.10

0.15

0.20

0.25

‡ 5. Summary and Conclusions
MathCode is an application package that generates optimized Fortran/C++ code
for numerical computations. The code can be either compiled and run from
within a notebook environment, or ported, and typically runs several hundred
times faster than original Mathematica code.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 775

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

MathCode is easy to use, since only the following three simple steps are involved
for most applications:

Ë Add type declarations.

Ë Execute BuildCode[] to generate C++ code and an executable program.

Ë Execute InstallCode[] to connect the executable program to
Mathematica.

It must be remembered that only a subset of Mathematica functions and opera-
tions are translated into C++ by MathCode. However, MathCode also provides
these ways to extend the subset:

Ë Symbolic evaluation

Ë Callbacks to Mathematica

Ë Use of external code

To conclude, we remark that MathCode can turn Mathematica into a powerful
environment for prototyping advanced numerical algorithms and production
code development. Since it can generate stand-alone code, applications that use
Mathematica as an environment for development and need to automatically
generate efficient C++ code as embedded code in large software systems can
greatly benefit.
MathCode is a product available both for purchase and free trial (see the website
of MathCore Engineering, [1]). Currently, both the C++ and Fortran 90 versions
of the code generator are available.

‡ References
[1] P. Fritzson, MathCode C++, Linköping, Sweden: MathCore Engineering AB, 1998

www.mathcore.com.

[2] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 5th ed., Reading, MA:
Addison-Wesley, 1994.

[3] The SuperLU package is available for download at crd.lbl.gov/~xiaoye/SuperLU.

[4] L. Viklund, J. Herber, and P. Fritzson. “The implementation of ObjectMath~A High-
Level Programming Environment for Scientific Computing,” in Compiler Construction,
Proceedings of the Fourth International Workshop on Compiler Construction (CC 1992),
Paderborn, Germany (U. Kastens and P. Pfahler, eds.), Lecture Notes in Computer
Science, 641, London: Springer-Verlag, 1992 pp. 312|318. Also see the ObjectMath home
page, www.ida.liu.se/~pelab/omath.

[5] P. Fritzson, V. Engelson, and L. Viklund, “Variant Handling, Inheritance and Composition
in the ObjectMath Computer Algebra Environment,” in Proceedings of the International
Symposium on Design and Implementation of Symbolic Computaton Systems (DISCO
1993), Gmunden, Austria (A. Miola, ed.), Lecture Notes in Computer Science, 722,
London: Springer-Verlag, 1993 pp. 145|160. Also see the ObjectMath home page,
www.ida.liu.se/~pelab/omath.

[6] K. Sheshadri and P. Fritzson, “MathPDE: A Package to Solve PDEs,” submitted to The
Mathematica Journal, 2005.

776 Peter Fritzson, Vadim Engelson, and Krishnamurthy Sheshadrin

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

P. Fritzson, V. Engelson, and K. Sheshadri, “MathCode: A System for C++ or Fortran Code Gen-
eration from Mathematica,” The Mathematica Journal, 2011.
dx.doi.org/doi:10.3888/tmj.10.4–7.

About the Authors
Peter Fritzson, Ph.D., is Director of research at MathCore Engineering AB. He is also a full
professor at Linköping University and Director of the Programming Environment Labora-
tory (PELAB) at the Department of Computer and Information Science, Linköping
University, Sweden. He initiated the development of MathCode and the ObjectMath
environment, and developed parts of the first version of MathCode. Professor Fritzson is
regarded as one of the leading authorities on the subject of object-oriented mathemati-
cal modeling languages, and has recently published a book, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, Wiley-IEEE Press. He currently holds positions
as Chairman of the Scandinavian Simulation Society, Secretary of EuroSim, and Vice
Chairman of the Modelica Association, an organization he helped to establish. Professor
Fritzson has published 10 books/proceedings and approximately 170 scientific papers.

Vadim Engelson, Ph.D., is a development engineer at MathCore Engineering AB. He was
previously an assistant professor at Linköping University. Dr. Engelson received his Ph.D.
in computer science at Linköping University in 2000 for his research in tools for design,
interactive simulation, and visualization of object-oriented models in scientific comput-
ing. He has participated in several Swedish and European projects. Dr. Engelson is
Technical Coordinator of the Scandinavian Simulation Society. He developed most of the
MathCode Mathematica to C++ translator and several parts of MathModelica. He is the
author of 21 publications.

Krishnamurthy Sheshadri, Ph.D., is a development engineer at Connexios Life Sciences
Private Limited. He was previously a post-doctoral student at PELAB, Linköping University,
where he used the MathCode system for advanced applications. Work on the project was
done when Sheshadri was associated with Modeling and Simulation Research, Bangalore,
India and Linköping University.

Peter Fritzson
Vadim Engelson
Mathcore Engineering AB
Teknikringen 1B
SE 583 30 Linköping, Sweden
peter.fritzson@mathcore.com
vadim.engelson@mathcore.com

Krishnamurthy Sheshadri
Connexios Life Sciences Private Limited
49, Shilpa Vidya
First Main Road, J P Nagar 3rd Phase
Bangalor|560 078, India
kshesh@gmail.com

MathCode: A System for C++ or Fortran Code Generation from Mathematica 777

The Mathematica Journal 10:4 © 2008 Wolfram Media, Inc.

