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MathCode  is a package that translates a subset of Mathematica  into a com-
piled language like Fortran or C++. The chief goal of the design of Math-
Code is to add extra performance and portability to the symbolic prototyp-
ing  capabilities  offered  by  Mathematica.  This  article  discusses  several
important  features  of  MathCode,  such  as  adding  type  declarations,  exam-
ples  of  functions  that  can  be  translated,  ways  to  extend  the  compilable
subset, and generating a stand-alone executable, and presents a few applica-
tion examples.

‡ Introduction
MathCode  is  a  Mathematica  add-on  that  translates  a  Mathematica  program  into
C++ or Fortran 90. The subset of Mathematica  that MathCode is able to translate
involves  purely  numerical  operations,  and  no  symbolic  operations.  In  the
following sections we provide a variety of examples that show precisely what we
mean. The code that is generated can be called and run from within Mathematica,
as if you were running a Mathematica function. 
There are two important purposes that are served by MathCode. Firstly, the C++/
Fortran  90  code  runs  faster,  typically  by  a  factor  of  about  a  few  hundreds  (or
about  50  to  100)  over  interpreted  (compiled)  Mathematica  code,  resulting  in
considerable  performance  gains,  while  still  requiring  hardly  any  knowledge
of C++/Fortran 90 on the part of the user. Secondly, the generated code can also
be executed as a stand-alone program outside Mathematica, offering a portability
otherwise not possible. You should note, however, that these advantages come at
some loss of generality since integer and floating point overflow are not trapped
and  switched  to  arbitrary  precision  as  in  standard  Mathematica  code.  Here  the
user is responsible for ensuring an appropriate choice of scaling and input data to

matica 6.
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There are two important purposes that are served by MathCode. Firstly, the C++/
Fortran  90  code  runs  faster,  typically  by  a  factor  of  about  a  few  hundreds  (or
about  50  to  100)  over  interpreted  (compiled)  Mathematica  code,  resulting  in
considerable  performance  gains,  while  still  requiring  hardly  any  knowledge
of C++/Fortran 90 on the part of the user. Secondly, the generated code can also
be executed as a stand-alone program outside Mathematica, offering a portability
otherwise not possible. You should note, however, that these advantages come at
some loss of generality since integer and floating point overflow are not trapped
and  switched  to  arbitrary  precision  as  in  standard  Mathematica  code.  Here  the

avoid such problems. The measurements in this article were made using Mathe-
matica 6.
There are situations in which having a system such as MathCode  can be particu-
larly  helpful  and  effective,  like  when  a  certain  calculation  involves  a  symbolic
phase  followed by  a  numerical  one.  In  such a  hybrid  situation,  Mathematica  can
be  employed  for  the  symbolic  part  to  give  a   set  of  expressions  involving  only
numerical operations that can be made part of a Mathematica function, which can
then be translated into C++/Fortran 90 using MathCode. 
In this article, we describe some of the more important features of MathCode. For
a more detailed discussion the reader is referred to [1]. For brevity, we simply say
C++ when we actually mean C++ or Fortran 90: MathCode  can generate code in
both C++ and Fortran, although we illustrate C++ code generation in this article.
In Section 2,  we show how to quickly get started with MathCode  using a simple
example of a function to add integers. 
Section 3 presents  many useful  features of MathCode.  In Section 3.1,  we discuss
the way the system works, the various auxiliary files generated and what to make
of them, and how to build C++ code and install the executable. We then compare
the  execution  times  of  the  interpreted  Mathematica  code  and  the  compiled  C++
code. This section also illustrates how MathCode works with packages. 
Section 3.2 briefly makes a few points about types and type declarations in Math-
Code.  There are two ways to declare argument types and return types of a func-
tion mentioned in this section.
In  Section  3.3,  we  show  how  to  generate  a  stand-alone  C++  executable.  This
executable can be run outside of Mathematica. We illustrate how to design a suit-
able main program that the executable runs. 
It  should  be  emphasized  that  MathCode  can  generate  C++  for  only  that  subset
of  Mathematica  functions  referred  to  as  the  compilable  subset.  Section  3.4  gives  a
sample of this subset, while Section 3.5 presents three ways to extend it with the
already-available  features  of  MathCode:  Sections  3.5.1  through  3.5.3  discuss,
respectively,  symbolic  expansion  of  function  bodies,  callbacks  to  Mathematica,
and  handling  external  functions.  Each  of  these  extensions  has  its  own strengths
and limitations.
Section 3.6 discusses common subexpression elimination, a feature that is aimed
at enhancing the efficiency of generated code.
Section  3.7  presents  some  shortcuts  available  in  MathCode  to  extract  and  make
assignments to elements of matrices and submatrices,  while Section 3.8 is  about
array declarations.
In  Section  4,  we  present  several  examples  of  effectively  using  MathCode.
Section 4.1 provides a summary of the examples.

Section 4.2 discusses an essentially simple example,  that of computing the func-
tion sinHx + yL  over a grid in the x- y  plane, but done in a somewhat roundabout
manner so as to illustrate various features of MathCode.

Section  4.3  discusses  an  implementation  of  the  Gaussian  elimination  algorithm
[2]  to  solve  matrix  systems  of  the  type  A.X = B,  where  A  is  a  square  matrix
of size n  and X  (the solution vector) and B  are vectors of size n.  In this section,
we  make  a  detailed  performance  study  by  computing  the  solution  of  a  matrix

make comparisons with LinearSolve.
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Section  4.3  discusses  an  implementation  of  the  Gaussian  elimination  algorithm
[2]  to  solve  matrix  systems  of  the  type  A.X = B,  where  A  is  a  square  matrix
of size n  and X  (the solution vector) and B  are vectors of size n.  In this section,

system by turning on a  few compilation options available in MathCode,  and also
make comparisons with LinearSolve.

In Section 4.4, we show how to call external libraries and object files from a C++
program that is automatically generated by MathCode.  We take the example of a
well-known  matrix  library  called  SuperLU  [3],  and  demonstrate  how  to  solve,
using one of its object modules, a sparse matrix system arising from a partial differ-
ential equation.
The  MathCode  User  Guide  that  is  available  online  discusses  more  advanced
aspects,  like  a  detailed  account  of  types  and  declarations,  the  numerous  options
available in MathCode with the aid of which the user can control code generation
and compilation, and other features. We refer interested readers to [1].

In Section 5, we summarize the salient aspects of MathCode and discuss the kinds
of applications for which MathCode is particularly useful. We conclude the article
with  a  brief  summary  of  various  points  made.  The  first  version  of  MathCode,
released  in  1998,  was  partly  developed  from  the  code  generator  in  the  Object-
Math environment [4, 5]. The current version is almost completely rewritten and
very much improved.

‡ 2. Getting Started with MathCode
· 2.1. An Example Function

In this section we take the reader on a quick tour of MathCode  using the simple
example of a function to add integers. 
The following command loads MathCode.

In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

MathCode  works  by  generating  a  set  of  files  in  the  current  directory  (see
Section 3.1).  We  can  set  the  directory  in  the  standard  way  as  follows;  here,
$MCRoot  is  the  MathCode  root  directory.  The  user  can,  however,  use  any  other
directory to store the files.

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
Let  us  now  define  a  Mathematica  function  sumint  to  add  the  first  n  natural
numbers.
In[3]:= sumint@n_D :=

Module@8res = 0, i<, For@i = 1, i § n, i++, res = res + iD; resD
Note that  the body of this  function has purely numerical  operations,  like incre-
menting  the  loop  index  i,  adding  two  numbers,  and  assigning  the  result  to  a
variable.
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· 2.2. Declaration of Types

We must now declare the data types of the parameter n and the local variables res
and i; we must also specify the return type of the function. We do this using the
function Declare that MathCode provides.
In[4]:= Declare@sumint@Integer n_D Ø Integer, 8Integer, Integer<D;

Note that Integer n_  does  not  mean Integer*n_;  the function Declare  creates
an  environment  in  which  this  is  interpreted  as  a  type  declaration,  that  is,  an
integer  variable  n  is  being  declared  in  the  example.  The type  Integer  is  trans-
lated to a native C int type, and the type Real to a native C double type.

· 2.3. C++ Code

To generate and compile the C++ code, we execute the following command.

In[5]:= BuildCode@"Global`"D;

Successful compilation to C++: 1 functionHsL

Since we have not specified the context of sumint, its default context is Global.
We could, therefore, have simply executed the following command instead.
In[6]:= BuildCode@D;

Successful compilation to C++: 1 functionHsL

With the following command, we seamlessly integrate an external program with
Mathematica.
In[7]:= InstallCode@D;

Global is installed.

We can now run the external program in the same way that we would execute a
Mathematica command.
In[8]:= sumint@1000D

Out[8]= 500 500

If  we  want  to  run  the  Mathematica  code  (and  not  the  generated  C++  code)  for
sumint, we must first uninstall the C++ executable.
In[9]:= UninstallCode@D;

Now the Mathematica code for sumint will run.

In[10]:= sumint@1000D
Out[10]= 500 500
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‡ 3. A Tour of MathCode
· 3.1. How the MathCode System Works

MathCode  works  by  generating  a  set  of  files  in  the  home  directory.  In  the
example of sumint, the default context is Global and the files generated by Math-
Code  are:  Global.cc  (the  C++  source  file),  Global.h  and  Global.mh  (the  header
files),  Globaltm.c,  Global.tm  and  Globalif.cc  (the  MathLink”-related  files  that
enable  transparently  calling  C++  versions  of  the  function  sumint  from  Mathe-
matica),  and  Globalmain.cc,  which  contains  the  function  main( )  needed  when
building a stand-alone executable.

We can also create a package (let us call it foo) that defines its own context foo
instead  of  the  default  context  Global.  See  Figure  1  for  a  block  diagram  of  the
way the overall system works. The MathCode code generator translates the Mathe-
matica  package  to  a  corresponding  C++  source  file  foo.cc.  Additional  files  are
automatically generated:  the header file foo.h, the MathCode  header file foo.mh,
the  MathLink-related  files  footm.c,  foo.tm,  foo.icc,  and  fooif.cc,  which  enable
calling  the  C++  versions  from Mathematica,  and  foomain.cc,  which  contains  the
function main that is needed when building a stand-alone executable for foo (see
Section 3.3). The generated file foo.cc created from the package foo, the header
file  foo.h,  and  additional  files  are  compiled  and  linked  into  two  executables.  In
the  case  of  MathCode  F90,  Fortran  90  is  generated  and  a  file  foo.f90 is  created.
No header file  is  generated in that  case since Fortran 90 provides directives for
the  use  of  module.  External  numerical  libraries  may  be  included  in  the  linking
process  by  specifying  their  inclusion  (Sections  3.5.3  and  4.5).  The  executable
produced,  foo.exe,  can  be  used  for  stand-alone  execution,  whereas  fooml.exe  is
used  when  calling  on  the  compiled  C++  functions  from  Mathematica  via
MathLink.

Mathematica
MathCode
Generator

Call symbolic evaluation

Mathematica
packages, expressions

foo.cc, foo.h, foomain.cc, footm.c, foo.tm, fooif.cc, foo.mh

Figure 1. Generating C++ code with MathCode for a package called foo.

Let us see how to work with a package again using the same sumint example.

In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
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If  we  are  compiling  the  package  foo  using  MathCode,  we  also  need  to  mention
MathCodeContexts within the path of the package.
In[3]:= BeginPackage@"foo`", 8MathCodeContexts<D;

We define the function sumint

In[4]:= sumint@n_D :=

Module@8res = 0, i<, For@i = 1, i § n, i++, res = res + iD; resD;
and close the context foo.

In[5]:= EndPackage@D;
We next declare the types, and then build and install as before.

In[6]:= Declare@sumint@Integer x_D Ø Integer, 8Integer, Integer<D;
In[7]:= BuildCode@"foo`"D;

Successful compilation to C++: 1 functionHsL

Again, since the package foo has been defined, it is the default context, and so we
could simply have executed the following command.
In[8]:= BuildCode@D;

Successful compilation to C++: 1 functionHsL

To run the executable from the notebook, we must install it.

In[9]:= InstallCode@D;

foo is installed.

Now  the  following  command  runs  the  C++  executable  fooml.exe.  The  call  to
sumint  via MathLink  is  executed 1000 times. The timing measurement includes
MathLink  overhead,  which  typically  for  small  functions  is  much  more  than  the
execution  time  for  the  compiled  function.  This  can  be  avoided  if  the  loop  is
executed within the external function itself, as in the example in Section 4.2.5.
In[10]:= Timing@Do@res = sumint@1000D, 81000<D; resD

Out[10]= 81.392, 500 500<
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Here is the C++ code that was generated.

In[11]:= FilePrint@"foo.cc"D

#include "foo.h"

#include "foo.icc"

#include <math.h>
void foo_TfooInit ()
{
; 
}

int foo_Tsumint ( const int &n)
{
    int res = 0;
    int i;
    i = 1;
    while (i <= n)
    {
        res = res+i;
        i = i+1;
    }
    return res;
}

Note  that  the  function  sumint  appears  as  foo_Tsumint  in  the  generated  code.
This  is  because  the  full  name of  the  function is  in  fact  foo`sumint,  and Math-
Code replaces the backquote "`" by "_T" in the C++ code.
To run the Mathematica  function (and not its  C++ equivalent)  sumint,  we must
use the following command to uninstall the C++ code.
In[12]:= UninstallCode@D;
Now it is the Mathematica code that runs when you execute sumint.

In[13]:= Timing@Do@res = sumint@1000D, 81000<D; resD
Out[13]= 822.161, 500 500<
You can see that the C++ executable together with the MathLink  overhead runs
about 15 times faster than the Mathematica code. The factor by which the perfor-
mance  is  enhanced  is  problem  dependent,  however.  The  performance  of  the
Mathematica  code could also  have been improved by using the built-in Compile
function.  In  Section  4  we  will  see  many  more  examples,  some  quite  involved,
where we get a range of performance enhancements, also including usage of the
Compile function.
We clean up the current directory by removing the files automatically generated
by MathCode.
In[14]:= CleanMathCodeFiles@Confirm Ø False, CleanAllBut Ø 8<D;
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· 3.2. Types and Declarations

To be able to generate efficient code, the types of function arguments and return
values  must  be  specified,  as  we  have  seen  in  the  preceding  examples.  The basic
types used by MathCode are

8Real, Integer, Null<
Arrays (vectors and matrices) of these types can also be declared.

8Real@5D, Real@3, 4D, Real@_D, Integer@m, nD, Integer@2, 3, n_D<
Type declarations can be given in two different ways:

Ë Directly in the function definition

f@Real x_D Ø Real := x2

Ë In a separate command

g@x_D := Sin @xD
Declare@g@Real x_D Ø RealD

The  latter  construction  can  be  useful  if  you  want  to  separate  already  existing
Mathematica  code with the  type information needed to be able to generate  C++
code using MathCode.

· 3.3. Generating a Stand-Alone Program

So  far  we  have  only  seen  examples  in  which  the  installed  C++  code  can  be  run
within  Mathematica.  However,  we  can  also  produce  a  stand-alone  executable.
This offers a degree of portability that can be useful in practice. 
To illustrate, we take the same example function sumint that we discussed in the
previous  sections.  The  sequence  of  commands  is  very  much  as  in  the  previous
section,  except  for  the  option  StandAloneExecutableØTrue  for  the  MathCode
function MakeBinary,  and an appropriate option MainFileAndFunction  for the
function  SetCompilationOptions  immediately  after  BeginPackage.  Figure  2
illustrates the process of building the two kinds of executable, namely fooml.exe
and foo.exe (on some systems foomain.exe) from a package called foo.

In[15]:= Needs@"MathCode`"D;
In[16]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
In[17]:= BeginPackage@"foo`", 8MathCodeContexts<D;
The  option  MainFileAndFunction  is  used  to  specify  the  main  file.  The  func-
tions  defined  in  Mathematica  must  have  the  prefix  Global_T (packagename_T in
general) to be recognized in the main file.
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Numerical
Library
PackageHsL

MathLink
Library

fooml.exe

foo.exe
foomain.cc

foo.cc
foo.h
foolm.h
foo.icc

footm.c
fooif.cc

foo.tm

Figure  2.  Building  two  executables  from  the  package  foo,  possibly  including  numerical
libraries.

In[18]:= SetCompilationOptions@
MainFileAndFunctionØ "Òinclude <stdio.h>\n int mainHL

8int n;printfH\"give an integer:\"L;scanfH\"%d\",&nL;printfH\"the
sum is %d.\n\",foo_TsumintHnLL;return 0;<

"D;
In[19]:= sumint@n_D :=

Module@8res = 0, i<, For@i = 1, i § n, i++, res = res + iD; resD;
In[20]:= EndPackage@D;
In[21]:= Declare@sumint@Integer x_D Ø Integer, 8Integer, Integer<D;
Now we  are  ready  to  generate  and  compile  the  C++  code  for  the  package  foo.
We can do this in two ways: we can either employ the MathCode function BuildÖ
Code, as in the previous examples, or first execute CompilePackage (which gener-
ates the C++ source and header files)  and then the function MakeBinary  (which
creates the executable).
In[22]:= CompilePackage@"foo`"D;

Successful compilation to C++: 1 functionHsL

In[23]:= MakeBinary@"foo`", StandAloneExecutableØ TrueD;
The  last  command  generates  the  stand-alone  executable  foo.exe  that  can  be
executed from a command line, or, alternatively, by using the Mathematica  func-
tion Run.
In[24]:= Run@"foo.exe"D

Out[24]= 0

If  you  desire,  you  can,  in  addition  to  the  stand-alone  executable  foo.exe,  also
generate fooml.exe that can be run from within Mathematica, just like before.
In[25]:= MakeBinary@"foo`"D;
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In[26]:= InstallCode@D;

foo is installed.

Now the following command runs the C++ program foo.cc.

In[27]:= sumint@1000D
Out[27]= 500 500

3.3.1. Generating a DLL
Here  we  briefly  mention  the  possibility  of  generating  a  DLL,  without  giving  a
full  example.  To  generate  a  DLL  from  a  package,  you  have  to  write  a  file
containing  one  simple  wrapper  function  in  order  to  make  a  generated  function
visible outside the DLL. You write a wrapper function for each generated func-
tion. The flags used are as follows:

CompilePackage@NeedsExternalObjectModuleØ "ext"D;
MakeBinary@StandAloneExecutableØ True, LinkerOptions Ø "êDLL"D

Here "ext.cpp" is a C++ file with wrapper functions, and "/DLL" is a flag for the
Visual C++ linker. For other C++ compilers this procedure is not automatic and
requires  several  operating system commands,  but  the  wrapper  functions  are  not
needed.

· 3.4. The Compilable Subset

MathCode  generates  C++  code  for  a  subset  of  Mathematica  functions,  called  the
compilable subset. The following items give a sample of the compilable subset. For
a complete list of Mathematica functions in the compilable subset, see [1].

Ë Statically  typed  functions,  where  the  types  of  function  arguments  and
return values are given by the types discussed in Section 3.2

Ë Scoping  constructs:  BeginPackage[ ],  EndPackage[ ],  Module[ ],
Block[ ], With[ ]

Ë Procedural constructs: For[ ], While[ ], If[ ], Which[ ], Do[ ]

Ë Lists  and  tables:  List[ ],  Table[ ],  Array[ ],  Range[ ],  IdentityÖ
Matrix[ ]

Ë Size functions: Dimensions[ ], Length[ ]

Ë Arithmetic  and logical  expressions,  for  example:  +,  -,  *,  /,  ==,  !=,  >,  !,
&&, ||, and so forth

Ë Elementary  functions  and  some  others,  for  example:  Sin[ ],  Exp[ ],
ArcSin[ ], Sqrt[ ], Round[ ], Max[ ], Cross[ ], Transpose[ ], Dot[ ]

Ë Constants: True, False, E, Pi

Ë Assignments: :=, =
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Ë Functional commands: Map[ ], Apply[ ]

Ë Some special commands: Sum[ ], Product[ ]

Functions not in the compilable subset can be used in external code by callbacks
to Mathematica (see Section 3.5.2 for an example).
Examples  of  functions  that  are  not  a  part  of  the  compilable  subset  include:
Integrate[ ], Solve[ ], FindRoot[ ], LinearSolve[ ], Expand[ ], Factor[ ].
These functions can be used if Mathematica can evaluate them at compile time to
expressions  that  belong  to  the  compilable  subset.  In  general,  Mathematica  func-
tions  that  perform  symbolic  operations  are  not  in  the  compilable  subset.  Also,
many functions in the subset are implemented with limitations, that is, more diffi-
cult  cases  are  not  always  supported.  However,  MathCode  currently  provides
several ways to extend the compilable subset, as we discuss in the next section.

· 3.5 Ways to Extend the Compilable Subset
3.5.1. Symbolic Expansion of Function Bodies
Functions not entirely written using Mathematica  code in the compilable subset,
but whose definitions can be evaluated symbolically to expressions that belong to
the compilable subset, can be handled by MathCode.
In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D;
In[3]:= f@Real a_, Real b_D Ø Real := Integrate@x Sin@xD, 8x, a, b<D
In[4]:= f@1., 2.D

Out[4]= 1.44042

In[5]:= ?f

Global`f

f@a_, b_D := Ÿ
a

b
x Sin@xD „x

Generate C++ code and compile it to an executable file.

In[6]:= BuildCode@EvaluateFunctions Ø 8f<D

Successful compilation to C++: 1 functionHsL

The  option  EvaluateFunctions  tells  MathCode  to  let  Mathematica  expand  the
function  body  as  much  as  possible.  Everything  works  fine  because  the  result
belongs to the compilable subset.
In[7]:= Integrate@x Sin@xD, 8x, a, b<D

Out[7]= a Cos@aD - b Cos@bD - Sin@aD + Sin@bD
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The generated executable is connected to Mathematica:

In[8]:= InstallCode@D;

Global is installed.

In[9]:= f@1., 2.D
Out[9]= 1.44042

3.5.2. Callbacks to Mathematica
Consider  the  following  function  whose  definition  includes  the  Zeta  function,
which does not belong to the compilable subset.
In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêSimplestExample"D
Out[2]= C:\MathCode\Demos\SimplestExample

In[3]:= f@x_D :=
Sin@xD Cos@xD
1 + Tan@xD2

 ‰-x2  Zeta@xD

Let us plot the function:

In[4]:= Plot@f@xD, 8x, 2, 4<, PlotRange Ø AllD

Out[4]=

2.5 3.0 3.5 4.0

-0.0020

-0.0015

-0.0010

-0.0005

We now make the declarations:

In[5]:= Declare@f@Real x_D Ø RealD
In[6]:= Declare@Zeta@Real x_D Ø RealD

These  declare  statements  do  not  change  the  way  Mathematica  computes  the
function.

In[7]:= :f@2.5D, fB5

2
F>

Out[7]= :-0.000796932,
CosA 5

2
E SinA 5

2
E ZetaA 5

2
E

‰25ê4 J1 + TanA 5

2
E2N

>

Let us  now generate  C++ code and compile it  to an executable file.  The option
CallBackFunctions  tells  MathCode  which  functions  have  to  be  evaluated  by
Mathematica.  As  a  result,  although  the  function  Zeta  is  not  in  the  compilable
subset, an executable is still generated and communicates with the kernel to eval-
uate Zeta. 
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Let us  now generate  C++ code and compile it  to an executable file.  The option
CallBackFunctions  tells  MathCode  which  functions  have  to  be  evaluated  by
Mathematica.  As  a  result,  although  the  function  Zeta  is  not  in  the  compilable
subset, an executable is still generated and communicates with the kernel to eval-
uate Zeta. 
In[8]:= BuildCode@CallBackFunctions Ø 8Zeta<D

Successful compilation to C++: 2 functionHsL

The generated executable is connected to Mathematica:

In[9]:= InstallCode@D;

Global is installed.

Now it is the external code that is used to compute the function:

In[10]:= :f@2.5D, fB5

2
F>

Out[10]= :-0.000796932, fB5

2
F>

In this case the external code calls Mathematica when the Zeta function has to be
evaluated. After the evaluation the computation proceeds in the external code. 
Note  that  it  is  the  installed  code  for  the  function  f  that  is  executed  above,  and
not  the  original  Mathematica  function.  In  the  installed  code,  the  argument  of  f
must be real, according to our declaration. As a result, f[5/2], in which we pass
a rational number as an argument, is left unevaluated.
We again plot the function, but this time using the external code to evaluate it:

In[11]:= Plot@f@xD, 8x, 2, 4<, PlotRange Ø AllD

Out[11]=

2.5 3.0 3.5 4.0

-0.0020

-0.0015

-0.0010

-0.0005

3.5.3. External Functions
We can have references to external objects in C++ code generated by MathCode.
Let  us  consider  three  very  simple  external  functions  that  compute  x2,  ex,  and
sinHxL  to  illustrate  the  idea.  These  must  be  defined  as  follows  in  an  external
source file that must be in the working directory.
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In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êDemosêOverview"D;
In[3]:= FilePrint@"external1.cc"D

#include <math.h>

extern double extsqr(const double &x) {
  return x*x;
}

extern double extexp(const double &x) {
  return exp(x);
}

extern double extoscillation(const double &x)
{
  return sin(x);
}

Observe  here  that  each  function  definition,  which  is  in  C  language  syntax,  is
followed  by  a  “wrapper”  that  enables  MathCode  to  recognize  the  object  as
external. We can then create an object file corresponding to these functions and
link the object as follows.

In[4]:= extsqr@Real x_D Ø Real := ExternalFunction@D;
extexp@Real x_D Ø Real := ExternalFunction@D;
extoscillation@Real x_D Ø Real := ExternalFunction@D;

We define a function to create a list of numbers using the external functions.

In[7]:= Makeplot@Integer n_D Ø Real@nD := Module@8Integer i, Real@_D arr<,
arr = Table@extsqr@extoscillation@0.1 iDD 

extexp@-extsqr@0.03 iDD, 8i, n<D; arrD
We  now  compile  the  package.  Since  this  is  a  very  small  example,  we  do  not
bother to create a special package for the code.
In[8]:= CompilePackage@D

Successful compilation to C++: 4 functionHsL

Let us now create the MathLink  binary; to do this when there are external func-
tions, we must specify the option NeedsExternalObjectModule as follows.
In[9]:= MakeBinary@NeedsExternalObjectModuleØ 8"external1"<D

Here,  as  we  noted  above,  external1  and  external2  represent  the  external
object  modules  external1.o  and external2.o.  Install  the MathCode-compiled code
so it is called using MathLink.
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In[10]:= InstallCode@D;

Global is installed.

When  we  make  the  following  plot,  it  is  the  external  code  for  extsqr,  extexp,
and extoscillation that is used.
In[11]:= ListPlot@Makeplot@100D, Joined Ø TrueD

Out[11]=

20 40 60 80 100

0.2

0.4

0.6

0.8

· 3.6. Common Subexpression Elimination

Consider the following function whose definition contains a number of common

subexpressions (e.g., 1 + x2 and 1 + x2 ).

In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= g@Real x_D Ø Real :=

x Cos@xD CosB 1 + x2 F

H1 + x2L3ê2 I1 + Cos@xD2M
-
2 x Cos@xD SinB 1 + x2 F

H1 + x2L2 I1 + Cos@xD2M
+

2 Cos@xD2 Sin@xD SinB 1 + x2 F

H1 + x2L I1 + Cos@xD2M2
-

Sin@xD SinB 1 + x2 F
H1 + x2L I1 + Cos@xD2M

There  are  very  efficient  algorithms  to  evaluate  functions  containing  common
subexpressions.  The basic  idea  is  to  evaluate  common subexpressions  only  once
and put the results in temporary variables.
Now we generate C++ code using MathCode and run it.

In[3]:= BuildCode@D

Successful compilation to C++: 1 functionHsL

In[4]:= InstallCode@D;

Global is installed.
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In[5]:= Timing@Do@g@3.0D, 8100<DD
Out[5]= 80.15, Null<
MathCode  does  common  subexpression  elimination  (CSE)  when  the  option
EvaluateFunctions  is  given  to  CompileCode[ ]  or  BuildCode[ ].  This  basic
strategy  could  be  further  improved for  special  cases  in  future  versions  of  Math-
Code.  Moreover,  since  mathematical  expressions  are  intrinsically  free  of  side
effects  and  do  not  have  a  specific  evaluation  order,  the  CSE  optimization  may
change  the  order  of  computing  subexpressions  if  this  improves  performance.
Changing  the  order  can  sometimes  have  a  small  influence  on  the  result  when
floating-point arithmetic is used.

In[6]:= UninstallCode@D;
In[7]:= CleanMathCodeFiles@Confirm Ø False, CleanAllBut Ø 8<D;
In[8]:= BuildCode@EvaluateFunctions Ø 8g<D

Successful compilation to C++: 1 functionHsL

In[9]:= InstallCode@D;

Global is installed.

In[10]:= Timing@Do@g@3.0D, 8100<DD
Out[10]= 80.21, Null<
We take a look at the generated C++ file.

In[11]:= FilePrint@"Global.cc"D

#include "Global.h"

#include "Global.icc"

#include <math.h>
void Global_TGlobalInit ()
{
; 
}

double Global_Tg ( const double &x)
{
    double mc_T1;
    double mc_T2;
    double mc_T3;
    double mc_T4;
    double mc_T5;
    double mc_T6;
    double mc_T7;
    double mc_T8;
    double mc_T9;
    double mc_T10;
    double mc_T11;
    double mc_T12;
    double mc_T13;
    double mc_T14;
    double mc_T15;
    double mc_T16;
    double mc_T17;
    double mc_T18;
    double mc_T19;
    double mc_T20;
    double mc_T21;
    double mc_T22;
    double mc_T23;
    double mc_T24;
    double mc_T25;
    mc_T1 = (x*x);
    mc_T2 = 1+mc_T1;
    mc_T3 = cos(x);
    mc_T4 = (mc_T3*mc_T3);
    mc_T5 = 1+mc_T4;
    mc_T6 = mc_T5*mc_T2;
    mc_T7 =                        0.5;
    mc_T8 = pow(mc_T2, mc_T7);
    mc_T9 = sin(mc_T8);
    mc_T10 = sin(x);
    mc_T11 = mc_T10*mc_T9;
    mc_T12 = mc_T11/mc_T6;
    mc_T13 = -mc_T12;
    mc_T14 = pow(mc_T5, -2);
    mc_T15 = 2*mc_T4*mc_T14*mc_T10*mc_T9;
    mc_T16 = mc_T15/mc_T2;
    mc_T17 = pow(mc_T2, -2);
    mc_T18 = -2*x*mc_T17*mc_T3*mc_T9;
    mc_T19 = mc_T18/mc_T5;
    mc_T20 = cos(mc_T8);
    mc_T21 =                       -1.5;
    mc_T22 = pow(mc_T2, mc_T21);
    mc_T23 = x*mc_T22*mc_T3*mc_T20;
    mc_T24 = mc_T23/mc_T5;
    mc_T25 = mc_T24+mc_T19+mc_T16+mc_T13;
    return mc_T25;
}
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#include "Global.h"

#include "Global.icc"

#include <math.h>
void Global_TGlobalInit ()
{
; 
}

double Global_Tg ( const double &x)
{
    double mc_T1;
    double mc_T2;
    double mc_T3;
    double mc_T4;
    double mc_T5;
    double mc_T6;
    double mc_T7;
    double mc_T8;
    double mc_T9;
    double mc_T10;
    double mc_T11;
    double mc_T12;
    double mc_T13;
    double mc_T14;
    double mc_T15;
    double mc_T16;
    double mc_T17;
    double mc_T18;
    double mc_T19;
    double mc_T20;
    double mc_T21;
    double mc_T22;
    double mc_T23;
    double mc_T24;
    double mc_T25;
    mc_T1 = (x*x);
    mc_T2 = 1+mc_T1;
    mc_T3 = cos(x);
    mc_T4 = (mc_T3*mc_T3);
    mc_T5 = 1+mc_T4;
    mc_T6 = mc_T5*mc_T2;
    mc_T7 =                        0.5;
    mc_T8 = pow(mc_T2, mc_T7);
    mc_T9 = sin(mc_T8);
    mc_T10 = sin(x);
    mc_T11 = mc_T10*mc_T9;
    mc_T12 = mc_T11/mc_T6;
    mc_T13 = -mc_T12;
    mc_T14 = pow(mc_T5, -2);
    mc_T15 = 2*mc_T4*mc_T14*mc_T10*mc_T9;
    mc_T16 = mc_T15/mc_T2;
    mc_T17 = pow(mc_T2, -2);
    mc_T18 = -2*x*mc_T17*mc_T3*mc_T9;
    mc_T19 = mc_T18/mc_T5;
    mc_T20 = cos(mc_T8);
    mc_T21 =                       -1.5;
    mc_T22 = pow(mc_T2, mc_T21);
    mc_T23 = x*mc_T22*mc_T3*mc_T20;
    mc_T24 = mc_T23/mc_T5;
    mc_T25 = mc_T24+mc_T19+mc_T16+mc_T13;
    return mc_T25;
}

Note how the computation of the function has been divided into small subexpres-
sions  that  are  evaluated  only  once  and  then  stored  in  temporary  variables  for
future use. This gives very efficient code for large functions. The speed enhance-
ment of roughly 150% brought about by CSE in this example is not appreciable
because the example itself is rather small.

· 3.7. Extended Matrix Operations

When  dealing  with  matrices,  it  is  very  convenient  to  have  a  short  notation  for
part extraction. MathCode extends the functionality of Part[ ] or [[ ]] to achieve
this.
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Consider the following 4 µ 5 matrix:

In[12]:= A = Table@a@i, jD, 8i, 4<, 8j, 5<D; A êê MatrixForm

Out[12]//MatrixForm=

a@1, 1D a@1, 2D a@1, 3D a@1, 4D a@1, 5D
a@2, 1D a@2, 2D a@2, 3D a@2, 4D a@2, 5D
a@3, 1D a@3, 2D a@3, 3D a@3, 4D a@3, 5D
a@4, 1D a@4, 2D a@4, 3D a@4, 4D a@4, 5D

We can extract rows 2 to 4 as follows, with the shorthand available in MathCode.

In[13]:= AP2 » 4T êê MatrixForm

Out[13]//MatrixForm=

a@2, 1D a@2, 2D a@2, 3D a@2, 4D a@2, 5D
a@3, 1D a@3, 2D a@3, 3D a@3, 4D a@3, 5D
a@4, 1D a@4, 2D a@4, 3D a@4, 4D a@4, 5D

We can extract the elements in all rows that belong to column 3 and higher:

In[14]:= AP_, 3 » _T êê MatrixForm

Out[14]//MatrixForm=

a@1, 3D a@1, 4D a@1, 5D
a@2, 3D a@2, 4D a@2, 5D
a@3, 3D a@3, 4D a@3, 5D
a@4, 3D a@4, 4D a@4, 5D

We can assign values to a submatrix of A.

In[15]:= AP2 » 3, 2 » 3T = 881, 2<, 83, 4<<;
In[16]:= A êê MatrixForm

Out[16]//MatrixForm=

a@1, 1D a@1, 2D a@1, 3D a@1, 4D a@1, 5D
a@2, 1D 1 2 a@2, 4D a@2, 5D
a@3, 1D 3 4 a@3, 4D a@3, 5D
a@4, 1D a@4, 2D a@4, 3D a@4, 4D a@4, 5D

All  these  operations  belong  to  the  compilable  subset  and  can  result  in  compact
code.  Note:  A[[2|4]]]  denotes  the  same  Mathematica  computation  as
Take[A,{2,4},All], and A[[_, 3|_]] is equivalent to Take[A,All,{3,-1}].

· 3.8. Array Declaration and Dimension

In  this  subsection,  we  give  a  few examples  of  array  declarations.  There  are  two
main cases to consider.

Ë Arrays  that  are  passed  as  function  parameters  or  returned  as  function
values, where the actual array size has been previously allocated

Ë Declaration of  array  variables,  usually  specifying both the type and the
allocation of the declared array
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There  are  five  allowed  ways  to  specify  array  dimension  sizes  in  array  types  for
function arguments and results.

Ë Integer constant dimension sizes, for example: Real[3,4]

Ë Symbolic-constant dimension sizes, for example: Real[three, four]

Ë Unknown  dimension  sizes  with  unnamed  placeholders,  for  example:
Real[_, _]

Ë Unknown  dimension  sizes  with  named  placeholders,  for  example:
Real[n_, m_]

Ë Unknown dimension  sizes  with  variables  as  dimension  sizes,  for  exam-
ple: Real[n, m]

The dimension sizes  can be  constant,  in  which case the size  information is  part
of  the type.  Alternatively,  the sizes are unknown and thus fixed later at  runtime
when the array is allocated. Such unknown dimension sizes are specified through
named (e.g., n_) or unnamed (_) placeholders. 

All  arrays  that  are passed as  arguments  to functions have already been allocated
at runtime. Thus, their sizes are already determined. These sizes might, however,
be different  for  different  calls.  Therefore it  is  not  allowed to specify  conflicting
dimension  sizes  through  integer  variables  (e.g.,  Real[n,  m])  in  array  types
of function parameters or results, as can be done for ordinary declared variables.
Only constants and named, or unnamed, placeholders are allowed.

We now give  examples  of  the  five  different  ways  of  specifying  array  dimension
information in variable declarations. The examples show a global variable declara-
tion using Declare, but the same kinds of declarations can also be used for local
declarations in functions. 
The  fifth  case  is  where  sizes  are  specified  through  integer  variables.  This  is
needed to handle declaration and allocation of arrays for which the sizes are not
determined until runtime.

Ë Integer constant dimension sizes using the array arr:

Declare@Real@3, 4D arrD;
Ë Symbolic constant dimension sizes:

Declare@Real@three, fourD arrD;
Ë Unknown dimension sizes with unnamed placeholders:

Declare@Real@_, _D arrD;
Ë Unknown dimension sizes with named placeholders:

Declare@Real@k_, m_D arrD;
Ë Unknown  dimension  sizes  that  are  specified  and  fixed  to  the  values

of integer variables, for example, n, m (e.g., function parameters, local or
global variables that are visible from the declaration):

Declare@Real@n, mD arrD;
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Integer variables, such as n and m, are assumed to be assigned once; that is, their
values  are  not  changed  after  the  initial  assignment,  so  that  the  declared  sizes
of  allocated  arrays  are  kept  consistent  with  the  values  of  those  variables.  This
single-assignment  property  is  not  checked by the current  version of  the system,
however. Thus, the user is responsible for maintaining such consistency. 

‡ 4. Application Examples
· 4.1. Summary of Examples

In the following we present a few complete application examples using MathCode.
The first example application is a small Mathematica program called SinSurface
(Section 4.2), which has been designed to illustrate two basic modes of the code
generator:  compiling  without  symbolic  evaluation  (the  default  mode,  in  which
the  function  body  is  translated  into  C++  as  it  is),  and  compilation  preceded  by
symbolic  expansion,  which  is  indicated  by  setting  the  option  EvaluateFuncÖ
tionsØTrue  (the  function  body  is  expanded  using  symbolic  operations,  simpli-
fied, and then translated).
The  second  example,  presented  in  Section  4.3,  is  an  implementation  of  the
Gaussian  elimination  procedure  to  solve  a  linear  algebraic  system  of  equations
(see any standard text on numerical techniques for a discussion of the procedure,
e.g.,  [2]).  Here  we  compile  generated  C++  code  with  various  options  and  do  a
detailed performance analysis.

In  Section  4.4,  we  discuss  the  example  of  SuperLU,  an  external  library  [3]  that
performs  efficient  sparse  matrix  operations.  We  give  an  example  of  a  program
useful in solving partial differential equations that calls the SuperLU library and
some of its object modules to solve a matrix equation of the type A.X = B, where
A is a very sparse square matrix.

· 4.2. The SinSurface Application Example

Here we describe the SinSurface  program example. The actual computation is
performed by the functions calcPlot, sinFun2, and their helper functions. The
two functions calcPlot  and sinFun2  in the SinSurface  package will  be trans-
lated into C++ and are declared together with a global array xyMatrix.
The  array  xyMatrix  represents  a  21 µ 21  grid  on  which  the  numerical  function
sinFun2  will be computed. The function calcPlot  accepts five arguments: four
of these are coordinates describing a square in the x- y plane and one is a counter
(iter)  to make the function repeat  the computation as many times as necessary
in  order  to  measure  execution  time.  For  each  point  on  a  21 µ 21  grid,  the
numeric  function  sinFun2  is  called  to  compute  a  value  that  is  stored  as  an
element in the matrix representing the grid.

4.2.1. Introduction
The SinSurface  example application computes a function (here sinFun2) over a
two-dimensional  grid.  The  function  values  are  stored  in  the  matrix  xyMatrix.
The execution of compiled C++ code for the function sinFun2  is over 500 times
faster than evaluating the same function interpretively within Mathematica.

MathCode: A System for C++ or Fortran Code Generation from Mathematica 759

The Mathematica Journal 10:4  © 2008 Wolfram Media, Inc.



The function sinFun2 computes essentially the same values as sinHx + yL, but in a
more  complicated  way,  using  a  rather  large  expression  obtained  through
converting  the  arguments  into  polar  coordinates  (through  ArcTan)  and  then
using a series expansion of both Sin and Cos, up to 10 terms. The resulting large
symbolic  expression  (more  than  a  page)  becomes  the  body  of  sinFun2,  and  is
then  used  as  input  to  CompileEvaluateFunction  to  generate  efficient  C++
code. The symbolic expression and the call to CompileEvaluateFunction  is in-
itiated by using the EvaluateFunctions option.

4.2.2. Initialization
We  first  set  the  directory  in  which  MathCode  will  store  the  auxiliary  files,  the
C++ code, and executable, and then load MathCode.
In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> "êtest"D;
The SinSurface  package starts  in the usual  way with a BeginPackage  declara-
tion that references other packages. MathCodeContexts  is needed in order to call
the code generation related functions. 
In[3]:= BeginPackage@"SinSurface`", 8MathCodeContexts<D;

Clear@"SinSurface`*"D;
Next we define possibly exported symbols. Even though it is not necessary here,
we  enclose  these  names  within  Begin["SinSurface‘"]  …  End[ ]  as  a  kind
of context bracket, since this can be put into a cell, which can be conveniently re-
evaluated by itself if new names are added to the list.

In[5]:= Begin@"SinSurface`"D
xyMatrix;

calcPlot;
sinFun1;
sinFun2;
arcTan;
sin;
cos;
plot;
cplus;
plotfile;
End@D

Out[5]= SinSurface`

Now we set compilation options as follows.  This defines how the functions and
variables  in  the  package  should  be  compiled  to  C++.  By  default,  all  typed  vari-
ables  and  functions  are  compiled.  However,  the  compilation  process  can  be
controlled  in  a  more  detailed  way  by  giving  compilation  options  to  CompileÖ
Package or via SetCompilationOptions . For example, in this package the func-
tion  sinFun2  should  be  symbolically  evaluated  before  being  translated  to  code,
because  it  contains  symbolic  operations;  the  functions  sin,  cos,  and  arcTan
should  not  be  compiled  at  all,  because  they  are  expanded  within  the  body
of  sinFun2.  The  remaining  typed  function,  calcPlot,  will  be  compiled  in  the
normal way. 
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Now we set compilation options as follows.  This defines how the functions and
variables  in  the  package  should  be  compiled  to  C++.  By  default,  all  typed  vari-
ables  and  functions  are  compiled.  However,  the  compilation  process  can  be
controlled  in  a  more  detailed  way  by  giving  compilation  options  to  CompileÖ
Package or via SetCompilationOptions . For example, in this package the func-
tion  sinFun2  should  be  symbolically  evaluated  before  being  translated  to  code,

sin cos arcTan
should  not  be  compiled  at  all,  because  they  are  expanded  within  the  body
of  sinFun2.  The  remaining  typed  function,  calcPlot,  will  be  compiled  in  the
normal way. 

In[6]:= SetCompilationOptions@EvaluateFunctions Ø 8sinFun2<,
UnCompiledFunctionsØ 8sin, cos, arcTan<,
MainFileAndFunctionØ "int mainHL8return 0;<"D;

4.2.3. The Body of the SinSurface Package
We begin  the  implementation section  of  the  SinSurface  package,  where  func-
tions are defined. This is usually private, to avoid accidental name shadowing due
to identical local variables in several packages.
In[7]:= Begin@"SinSurface`Private "̀D;

Declare public global variables and private package-global variables:

In[8]:= Declare@Real@21, 21D xyMatrixD;
Taylor-expanded sin and cos functions called by sinFun2  are now defined, just
for the sake of the example, even though such a series gives lower relative accu-
racy  close  to  zero.  A  substitution  of  the  symbol  z  for  the  actual  parameter  x  is
necessary to force the series expansion before replacing with the actual parameter.
In[9]:= sin@Real@x_DD Ø Real := Normal@Series@Sin@zD, 8z, 0, 10<DD ê. z Ø x;

cos@Real@x_DD Ø Real := Normal@Series@Cos@zD, 8z, 0, 10<DD ê. z Ø x;

Define arcTan, which converts a grid point to an angle, called by sinFun2:

In[11]:= arcTan@Real@x_D, Real@y_DD Ø Real :=

If@x < 0, p, 0D + IfBx ã 0,
1

2
Sign@yD p, ArcTanBy

x
FF;

sinFun2  is the function to be computed and plotted, called by calcPlot. It pro-
vides  a  computationally  heavy  (series  expansion)  and  complicated  way  of  calcu-
lating  an  approximation  to  sinHx + yL.  This  gives  an  example  of  a  combination
of  symbolic  and  numeric  operations  as  well  as  a  rather  standard  mix  of  arith-
metic operations. The expanded symbolic expression, which comprises the body
of sinFun2, is about two pages long when printed.

Note  that  the  types  of  local  variables  to  sinFun2  need  not  be  declared,  since
setting  the  EvaluateFunctions  option  will  make  the  whole  function  body  be
symbolically expanded before translation. 
Note also that a function should be without side effects in order to be symboli-
cally  expanded  before  final  code  generation.  For  example,  there  should  be  no
assignments to global variables or input/output, since the relative order of these
actions when executing the code often changes when the symbolic expression is
created and later rearranged and optimized by the code generator.
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In[12]:= sinFun2@Real x_, Real y_D Ø Real :=

BlockB8r, xx, yy<,

r = x2 + y2 ;

xx = r cos@arcTan@x, yDD;
yy = r sin@arcTan@x, yDD;
sin@xx + yyDF

The function calcPlot  calculates data for a plot of sinFun2  over a 21 µ 21 grid,
which is returned as a 21 µ 21 array.
In[13]:= calcPlot@Real xmin_, Real xmax_, Real ymin_,

Real ymax_, Integer iter_D Ø Real@21, 21D :=

ModuleB8Integer n = 20, Real 8x, y<, Integer 8i, j, count<<,
ForBcount = 1, count § iter, count = count + 1,

ForBi = 1, i § n + 1, i = i + 1,

ForBj = 1, j § n + 1, j = j + 1,

x = xmin +
Hxmax - xminL Hi - 1L

n
; y = ymin +

Hymax - yminL Hj - 1L
n

;

xyMatrixPi, jT = sinFun2@x, yDFFF;
xyMatrixF

In[14]:= End@D
EndPackage@D;

Out[14]= SinSurface`Private`

4.2.4. Execution
We first  execute the application interpretively within Mathematica,  and then use
Compile on the key function and execute the application again. Then we compile
the  application  to  C++,  build  an  executable,  and  call  the  same  functions  from
Mathematica via MathLink.
Let us first do the Mathematica evaluation and plot.

In[16]:= meval = Timing@plot = calcPlot@-2., 2., -2., 2., 20DDP1T ê20

Out[16]= 0.1305
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In[17]:= ListPlot3D@plotD

Out[17]=

Next,  we  redefine  sinFun2  to  become  a  compiled  version,  using  Mathematica’s
standard Compile.
In[18]:= sinFun2 = Compile@8x, y<, Evaluate@sinFun2@x, yDDD;
In[19]:= compeval = Timing@plot = calcPlot@-2., 2., -2., 2., 100D;D

Out[19]= 87.109, Null<
In[20]:= compeval = compevalP1Tê100

Out[20]= 0.07109

In[21]:= sinFun2=.

4.2.5. Using the MathCode Code Generator
Compile the SinSurface package.

In[22]:= CompilePackage@"SinSurface"D

MathCodeConv`defConv::untypedlocalvars : Warning: Untyped local variableHsL:
8SinSurface`Private`r, SinSurface`Private`xx, SinSurface`Private`yy< in function with
head sinFun2@SinSurface`Private`x_, SinSurface`Private`y_D. Real typeHsL assumed

Successful compilation to C++: 2 functionHsL

The warnings concern local variables in sinFun2  that have no type information.
This is not important because those variables disappear upon symbolic expansion.
The  command MakeBinary  compiles  the  generated  code  using  a  compiler  (g++
in  the  present  case).  The  object  code  is  by  default  linked  into  the  executable
SinSurfaceml.exe for calling the compiled code via MathLink.
In[23]:= MakeBinary@D;
If  any  problems  are  encountered  during  code  compilation,  then  warning  and
error  messages  are  shown.  Otherwise  no  messages  are  shown.  When  MakeÖ
Binary is called without arguments, the call applies to the current package.
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The  command  InstallCode  installs  and  connects  the  external  process
containing the compiled and linked SinSurface code.
In[24]:= InstallCode@"SinSurface"D

SinSurface is installed.

Out[24]= LinkObject@".\SinSurfaceml.exe", 14, 7D
Execute the generated C++ code for calcPlot.

In[25]:= AbsoluteTiming@plot = calcPlot@-2.0, 2.0, -2.0, 2.0, 3000D;D
Out[25]= 83.6408347, Null<
Since  the  external  computation was  performed 3000 times,  the  time needed for
one external computation is

In[26]:= externaleval =
%P1T
3000

Out[26]= 0.0012136116

Check that the result appears graphically the same.

In[27]:= ListPlot3D@plotD

Out[27]=

4.2.6. Performance Comparison
Let us now compare the running times for the three cases,  the standard Mathe-
matica, compiled Mathematica, and the generated C++ code.
In[28]:= 8mevalêexternaleval, compevalêexternaleval<

Out[28]= 8107.53, 58.5772<
The performance between the three forms of execution are compared in Table 1.
The  generated  C++  code  for  this  example  is  roughly  100  times  faster  than
standard  interpreted  Mathematica  code,  and  50  times  faster  than  code  compiled
by  the  internal  Mathematica  Compile  command.  This  is  on  a  Toshiba  Satel-
lite-2100,  400  Mhz  AMD-K6,  running  Windows  XP  Pro  SP2  and
Mathematica 6, without inline and norange optimization. If the inline is specified,
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The performance between the three forms of execution are compared in Table 1.

-

the  inline  directive  is  passed  to  the  C++  compiler  for  all  functions  to  be
compiled.  If  norange  is  specified,  array  element  index  range  checking  is  turned
off  in  the  code  generated  by  the  C++  compiler,  resulting  in  faster  but  less  safe
code.

We  should  emphasize  that  the  comparisons  in  Table  1  are  rather  crude  for
several  reasons.  From  a  separate  measurement,  the  loop  part  of  calcPlot
excluding  the  call  to  sinFun2  comprises  25%  of  the  total  calcPlot  time
executed  in  interpreted  Mathematica.  The  calcPlot  function  itself  cannot  be
compiled using Compile, since it contains an assignment to a global matrix vari-
able  that  cannot  currently  be  handled  by  Compile.  This  might  be  regarded  as
unfair to Compile.  On the other hand, a MathLink  overhead (divided by 500) in
returning the 21 µ 21 matrix is embedded in the figure for MathCode,  which can
be regarded as unfair to MathCode. A better comparison for another small applica-
tion example is available in Section 4.3.6.
In[29]:= TableForm@8

8"Execution Form", "Time consumed", "Relative"<,
8"Standard Mathematica", meval, mevalêexternaleval<,
8"Compile@D", compeval, compevalêexternaleval<,
8"External C++ via MathLink", externaleval, 1<<D

Out[29]//TableForm=

Execution Form Time consumed Relative

Standard Mathematica 0.1305 107.53

Compile@D 0.07109 58.5772

External C++ via MathLink 0.0012136116 1

Table 1. Approximate performance comparison for the calcPlot example.

· 4.3. Gauss Application Example
4.3.1. Introduction
In this section, we present a textbook algorithm, Gaussian elimination (e.g., [2]),
to  solve  a  linear  equation  system.  The  given  linear  system,  represented  by  a
matrix  equation  of  the  type  A.X = B,  is  subjected  to  a  sequence  of  transforma-
tions involving a  pivot,  resulting in the solution to the system, contained in the
matrix X .
The following subsections illustrate the various aspects of the application.

4.3.2. Initialization
In[1]:= Needs@"MathCode`"D

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode

In[2]:= SetDirectory@$MCRoot<> $PathnameSeparator<>

"Demos" <> $PathnameSeparator<> "Gauss"D;
In[3]:= BeginPackage@"Gauss`", 8MathCodeContexts<D;
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Define exported symbols:

In[4]:= Begin@"Gauss`"D;
GaussSolveArraySlice;

End@D;

4.3.3. Body of the Package
We  now  define  the  function  GaussSolveArraySlice ,  based  on  the  Gaussian
elimination algorithm. 
In[7]:= Begin@"`Private`"D;

GaussSolveArraySlice@Real@n_, n_D ain_, Real@n_, m_D bin_,

Integer iterations_D Ø Real@n, mD :=

Module@8Real@nD dumc, Real@n, nD a, Real@n, mD b,
Integer@nD 8ipiv, indxr, indxc<, Integer 8i, k, l, irow, icol<,
Real 8pivinv, amax, tmp<, Integer 8beficol, afticol, count<<,

For@count = 1, count § iterations, count = count + 1, Ha = ain;
b = bin;
For@k = 1, k § n, k = k + 1, ipiv@@kDD = 0D;
For@i = 1, i § n, i = i + 1,
H*find the matrix element with largest absolute value*L
amax = 0.0;
For@k = 1, k § n, k = k + 1,
If@ipiv@@kDD ã 0,
For@l = 1, l § n, l = l + 1, If@ipiv@@lDD ã 0,

If@Abs@a@@k, lDDD > amax, amax = Abs@a@@k, lDDD;
irow = k;
icol = lDD

D
D

D;
ipiv@@icolDD = ipiv@@icolDD + 1;
If@ipiv@@icolDD > 1, "*** Gauss2 input data error ***" >> "";
BreakD;

H*if irow ≠ icol,
then interchange rows irow and icol in both a and b*L
If@irow ≠ icol, For@k = 1, k § n, k = k + 1, tmp = a@@irow, kDD;

a@@irow, kDD = a@@icol, kDD;
a@@icol, kDD = tmpD;

For@k = 1, k § m, k = k + 1, tmp = b@@irow, kDD;
b@@irow, kDD = b@@icol, kDD;
b@@icol, kDD = tmpDD;

indxr@@iDD = irow;
indxc@@iDD = icol;
If@a@@icol, icolDD ã 0,
Print@"*** Gauss2 input data error 2 ***"D;
BreakD;

H*prepare to divide by the

pivot and subsequent row transformations*L
pivinv = 1.0êa@@icol, icolDD;
a@@icol, icolDD = 1.0;

;
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In[7]:=

a@@icol, icolDD = 1.0;
a@@icol, _DD = a@@icol, _DD*pivinv;

b@@icol, _DD = b@@icol, _DD*pivinv;

dumc = a@@_, icolDD;
For@k = 1, k § n, k = k + 1, a@@k, icolDD = 0D;
a@@icol, icolDD = pivinv;
For@k = 1, k § n, k = k + 1,
If@k ≠ icol, a@@k, _DD = a@@k, _DD - dumc@@kDD*a@@icol, _DD;
b@@k, _DD = b@@k, _DD - dumc@@kDD*b@@icol, _DDDD

D;
For@l = n, l ¥ 1, l = l - 1,
For@k = 1, k § n, k = k + 1, tmp = a@@k, indxr@@lDDDD;
a@@k, indxr@@lDDDD = a@@k, indxc@@lDDDD;
a@@k, indxc@@lDDDD = tmpDDL

D;
bD;

End@D;
EndPackage@D;

This  function accepts  three  arguments  in  an attempt  to  solve  a  matrix  equation
of the form A.X = B. The first two arguments are essentially the matrices A and
B.  The  third  argument  specifies  the  number  of  times  the  body  of  the  function
must  run;  this  is  useful  for  an  accurate  measurement  of  the  running  time.  The
function output (X ) has the same shape as the second argument (B).

4.3.4. Mathematica Execution
Let us create two random matrices.

In[10]:= a = RandomReal@80, 1<, 810, 10<D;
b = RandomReal@80, 1<, 810, 2<D;

In  the  following,  loops=1  factor  specifies  the  number  of  times  the  body
of  GaussSolveArraySlice  runs.  The  appropriate  value  of  loops  for  reliable
estimates of running time is system dependent. A reasonable value of factor  for
a  1.5  GHz computer  is  about  10.  The output  checks that  the solution obtained
is correct.
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In[12]:= factor = 30; loops = 2 factor;
s = Timing@c = GaussSolveArraySlice@a, b, loopsD;D;
meval = sP1Têloops;
Print@"TIMING FOR NON-COMPILED VERSION= ", mevalD;
MatrixForm@a.c - bD
TIMING FOR NON-COMPILED VERSION= 0.1401

Out[16]//MatrixForm=

0. 0.

-1.33227µ 10-15 0.

2.22045µ 10-16 -1.11022µ 10-16

6.66134µ 10-16 -2.22045µ 10-16

2.22045µ 10-15 -3.33067µ 10-16

2.22045µ 10-16 -1.249 µ 10-16

-2.22045µ 10-15 5.55112µ 10-17

1.77636µ 10-15 -1.11022µ 10-16

-2.66454µ 10-15 0.

-1.77636µ 10-15 -1.66533µ 10-16

4.3.5. Generating and Running the C++ Code
The command BuildCode translates the package and produces an executable.

In[17]:= BuildCode@"Gauss"D

Successful compilation to C++: 1 functionHsL

Interpreted versions are removed, and compiled ones are used instead.

In[18]:= InstallCode@"Gauss"D

Gauss is installed.

Out[18]= LinkObject@".\Gaussml.exe", 14, 7D
In[19]:= c = GaussSolveArraySlice@a, b, 1D;
We now make  two  runs  of  the  C++  code  for  the  package  Gauss.  The  first  run
evaluates the body of GaussSolveArraySlice  loops times, and returns the solu-
tion  only  once.  The  second  run  evaluates  the  body  of  GaussSolveArraySlice
only once, but does this inside a Do-loop for loops  times, returning the solution
loops  times  as  a  result.  Clearly,  there  is  overhead  in  the  second  run,  and  the
time taken is expected to be higher, as can be seen from the following.
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In[20]:= loops = 800*factor;
externaleval =
HHc = GaussSolveArraySlice@a, b, loopsD;L êê AbsoluteTimingL@@1DDê
loops

Out[21]= 0.00029885107

In[22]:= loops = 500*factor;
externalevalPass =
HHDo@c = GaussSolveArraySlice@a, b, 1D, 8loops<D;L êê

AbsoluteTimingL@@1DDêloops

Out[23]= 0.00110737671

We now also solve the same system using LinearSolve.

In[24]:= loops = 10 000*factor;
internalEval =
HHDo@c = LinearSolve@a, bD, 8loops<D;L êê AbsoluteTimingL@@1DDê
loops

Out[25]= 0.000031044051

In[26]:= UninstallCode@"Gauss"D;
In[27]:= Map@DeleteFile, FileNames@"*.o"DD;

Map@DeleteFile, FileNames@"*.obj"DD;
Map@DeleteFile, FileNames@"*.exe"DD;

4.3.6. Performance Comparison
We present the performance analysis in Table 2. As we observe from the table, a
performance enhancement by a factor of approximately 500 can be obtained for
the compiled C++ code over interpreted Mathematica.  More importantly, we are
able to get a performance close to LinearSolve, although we have implemented
a simple version of a Gaussian elimination algorithm directly from a textbook as
straight-line code without any attempts at tuning or optimization. Also note that
LinearSolve  is  more  general  in  that  it  can  also  handle  sparse  arrays  efficiently
using  the  SuperLU  package  linked  into  the  Mathematica  kernel.  To  achieve
similar  generality  with  the  MathCode  package,  the  example  would  need  to  be
extended and a SuperLU routine, for example, called as an external function from
the generated code. In general, it is better to use already implemented robust and
reliable  routines  from  packages  like  LAPACK  and  SuperLU,  which  also  can  be
called as  external  functions from MathCode-generated code.  The Gauss example
in this article is not intended to replace such routines but to be a simple example
of using MathCode.
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In[29]:= TableForm@88"", "TimeHsecondsL", "Relative"<,
8"Standard interpreted Mathematica", meval, mevalêexternaleval<,
8"C++ with call overhead",
externalevalPass, externalevalPassêexternaleval<,

8"C++ without call overhead", externaleval, 1<,
8"LinearSolve", internalEval, internalEvalêexternaleval<<D

Out[29]//TableForm=

TimeHsecondsL Relative

Standard interpreted Mathematica 0.1401 468.795

C++ with call overhead 0.00110737671 3.7054466

C++ without call overhead 0.00029885107 1

LinearSolve 0.000031044051 0.103877996

Table 2.  Performance comparison for the Gauss example.

· 4.4. External Libraries and Functions

We  now  demonstrate  how  to  call  external  functions  and  libraries  using  Math-
Code.  We  have  already  presented  an  example  of  how  to  do  this  for  three  very
simple functions, x, expHxL, and sinHxL, in Section 3.5.3. In this section we present
a  more  realistic  application  example  that  illustrates  how  to  employ  an  external
library  for  handling  sparse  matrix  systems  that  arise  in  the  solution  of  partial
differential equations [6]. 

We  take  as  our  example  the  problem  of  solving  the  one-dimensional  diffusion
equation using the method of finite differences. 

∂u Hx, tL
∂ t

ã
∂2 u Hx, tL

∂x2

In  this  method,  the  continuous  x  domain  is  approximated  by  a  set  of  discrete
points  called  a  grid,  and  each  derivative  is  replaced  by  a  certain  linear  function
of  values  of  the  dependent  variables,  called  a  finite  difference.  For  the  previous
equation, a variant of this method gives

u Hx, t + 1L - u Hx, tL
k

ã
u Hx - 1, tL - 2 u Hx, tL + u Hx + 1, tL

h2
,

where now x and t are assumed to take integer values, and k and h are step sizes
along x  and t  directions,  respectively.  The algebraic  equation  must  be  solved  at
each  grid  point,  thus  resulting  in  a  simultaneous  system  of  equations,  which  is
essentially a matrix system of the form A.X = B.  Since the matrix system in this
case is very sparse, we solve it using the sparse matrix library called SuperLU [3]. 

The  rest  of  this  section  assumes  that  the  SuperLU  library  has  been  compiled.
We  now  explain  how  to  call  the  external  objects  based  on  this  library  using
MathCode.
In[1]:= Needs@"MathCode`"D;

MathCode C++ 1.4.0 for mingw32 loaded from C:\MathCode
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In[2]:= SetDirectory@$MCRoot<> "\Demos\ExternalFunction"D;
In[3]:= BeginPackage@"foo`", 8MathCodeContexts<D;

Here is the Mathematica code to solve the one-dimensional diffusion equation.

In[4]:= SolveDiffusion1D@Nx_, dt_, nnz_, xasize_, U_D :=

ModuleA8k, x, dx, kt, rhsmat,

colmat, rowmat, valmat, amat, asubmat, xamat<,
H*initialize variables and arrays*L
kt = 0; dx = 1êHNx - 1L; rhsmat = Table@0., 8Nx<D;
colmat = Table@0, 8nnz<D;
rowmat = Table@0, 8nnz<D; valmat = Table@1., 8nnz<D;
amat = Table@1., 8nnz<D; asubmat = Table@0, 8nnz<D;
xamat = Table@0, 8xasize<D;
H*define the matrices*L
For@x = 1, x < 2, x = 1 + x, rhsmatPxT = 0.; H++kt; colmatPktT = x;

rowmatPktT = x; valmatPktT = 1LD; ForAx = 2, x < Nx, x = 1 + x,

rhsmatPxT = UPxTêdt + HUP-1 + xT - 2 UPxT + UP1 + xTLë dx2;

H++kt; colmatPktT = x; rowmatPktT = x; valmatPktT = 1êdtLE;
For@x = Nx, x < 1 + Nx, x = 1 + x, rhsmatPxT = 0.;
H++kt; colmatPktT = x; rowmatPktT = x; valmatPktT = 1LD;

H*transform the matrices into SuperLU format*L
kt = 0; Do@Do@If@colmatPk1T ã k, ++kt; amatPktT = valmatPk1T;

asubmatPktT = -1 + rowmatPk1TD, 8k1, 1, nnz<D, 8k, 1, Nx<D;
kt = 0; Do@Do@If@colmatPk1T ã k, ++ktD, 8k1, 1, nnz<D;
xamatP1 + kT = kt, 8k, 1, Nx<D;

H*call SuperLU-based function to solve the matrix system A.x=B*L
linsolvepp@Nx, Nx, nnz, 1, amat, asubmat, xamat, rhsmatD

E
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In[5]:= FilePrint@$MCRoot<> "êDemosêExternalFunctionêlinsolvepp.cc"D

#include <math.h>
#define LM_NNNN
#include "lightmat.h"

extern "C"  void linsolve(int m, int n, int nnz, int nrhs, double *a, 
int *asub, int *xa, double *rhs );

void  linsolvepp(const int  &nx, const int  &nx1, const int &nx2, 
const int &one, const doubleN &expamat, const intN &expasubmat, 
const intN &expxamat, doubleN &exprhsmat)
{
  
      double * expamat_c = new double [expamat.dimension(1)];
      int * expasubmat_c = new int [expasubmat.dimension(1)];
      int * expxamat_c = new int [expxamat.dimension(1)];
      double * exprhsmat_c = new double [exprhsmat.dimension(1)];
     
      expamat.Get(expamat_c);
      expasubmat.Get(expasubmat_c);
      expxamat.Get(expxamat_c);
      exprhsmat.Get(exprhsmat_c);
 
      linsolve(nx, nx1, nx2, one, expamat_c, expasubmat_c, expxamat_c, 
exprhsmat_c);
      
       exprhsmat.Set(exprhsmat_c);

};

Note  that  this  source  file  is  somewhat  different  from  the  one  in  Section  3.5.3,
mainly  because  arrays  are  involved  here.  This  wrapper  function  makes  a  refer-
ence to a C function linsolve( ) that is defined in the following source file.
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In[6]:= FilePrint@$MCRoot<> "êDemosêExternalFunctionêlinsolve.c"D

/*
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 */
#include "dsp_defs.h"

/****************************************************/
/* a function to solve AX = B using SuperLU library */
/*       (based on SuperLU_3.0\EXAMPLE\superlu.c)   */
/****************************************************/

void linsolve(int m, int n, int nnz, int nrhs, double *a, int *asub, 
int *xa, double *rhs )
{
    SuperMatrix A, L, U, B;
    int      info, permc_spec;
    int      *perm_r; /* row permutations from partial pivoting */
    int      *perm_c; /* column permutation vector */
    superlu_options_t options;
    SuperLUStat_t stat;

    /* Create matrices A and B in the format expected by SuperLU. */

    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, 
SLU_GE);
    
    dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);

    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for 
perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for 
perm_c[].");

    /* Set the default input options. */
    set_default_options(&options);
    options.ColPerm = NATURAL;

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);

    /* De-allocate storage */
    SUPERLU_FREE (rhs);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
    StatFree(&stat);
}

It  is  the  function  linsolve(  )  that  solves  the  matrix  equation  A.X = B  by  calling
other  object  modules  of  the  SuperLU  library;  from  these  two  C/C++  source
codes, object files must be generated using suitable makefiles. 
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It  is  the  function  linsolve(  )  that  solves  the  matrix  equation  A.X = B  by  calling
other  object  modules  of  the  SuperLU  library;  from  these  two  C/C++  source
codes, object files must be generated using suitable makefiles. 
The matrices  are  expected to  be  in a  special  format called “column-compressed
storage  format,”  so  as  to  minimize  storage  space.  Thus,  the  Nx * Nx  matrix
elements of A need not all be specified, since only a small number, nnz, of them
are  nonzero;  here  Nx  is  the  number  of  spatial  grid  points.  The  matrix  A  is
specified through three row matrices amat  and asubmat  (that have a length nn),
and xamat  (that has a length xasize = Nx + 1). Our function takes these integers
Nx,  nnz,  and  xasize  as  parameters;  in  addition,  we  must  pass  as  parameters  the
time  step  dt  and  the  solution  vector  of  the  PDE  at  time  t;  the  function  then
returns the solution vector at time t + d t.
The  function  linsolvepp  must  now be  defined  as  an  external  procedure  using
the following command.
In[7]:= linsolvepp@ nx_, nx1_, nx2_, one_,

expamat_, expasubmat_, expxamat_, exprhsmat_D :=

ExternalProcedure@nx, nx1, nx2, one, expamat,
expasubmat, expxamat, InOut exprhsmatD;

Note the keyword InOut preceding the last argument of ExternalProcedure : in
the  calling  function  SolveDiffusion1D ,  the  array  rhsmat  is  passed  to  linÖ
solvepp  as input, but linsolvepp  also returns the solution vector by destroying
rhsmat  and using it to store the solution vector. As a result, the array rhsmat  is
both  an  input  and  an  output.  The  way  to  declare  this  is  by  using  the  keyword
InOut.
In[8]:= EndPackage@D;

We next declare the types, and then build and install.

In[9]:= Declare@SolveDiffusion1D@Integer Nx_, Real dt_, Integer nnz_,

Integer xasize_, Real@_D U_D Ø Real @NxD, 8Integer, Integer,

Real, Integer, Real@NxD, Integer@nnzD, Integer@nnzD,
Real@nnzD, Real@nnzD, Integer@nnzD, Integer@xasizeD<D;

In[10]:= Declare@
linsolvepp@Integer nx_, Integer nx1_, Integer nx2_,

Integer one_, Real@_D expamat_, Integer@_D expasubmat_,

Integer@_D expxamat_, Real@_D exprhsmat_D Ø Real@nxD;
D;

In[11]:= CompilePackage@"foo`"D;

Successful compilation to C++: 2 functionHsL
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We  now  create  the  executable.  Note  that  an  additional  option  NeedsExÖ
ternalLibrary  must also be specified in this example, since the external objects
depend on other objects of the SuperLU library.

In[12]:= MakeBinary@"foo`", NeedsExternalObjectModuleØ

8$MCRoot<> "\Demos\ExternalFunction\linsolve", $MCRoot<>
"\Demos\ExternalFunction\linsolvepp"<, NeedsExternalLibraryØ

8$MCRoot<> "êPDESOLVERêMathPDE2êSuperLU_3.0êsuperlu_cygwin.a",

$MCRoot<> "êPDESOLVERêMathPDE2êSuperLU_3.0êblas_cygwin.a"<D;
In[13]:= InstallCode@D;

foo is installed.

We take the following initial conditions.

In[14]:= soln = Table@Hx - 1L*H-x + 100LêH99.0*99.0L, 8x, 1, 100<D;
Now  the  following  command  runs  the  C++  executable  fooml.exe.  We  evolve
from t = 0 to t = 1000 dt with dt = 0.00001.
In[15]:= Timing@

Do@soln = SolveDiffusion1D@100, 0.00001, 100, 101, solnD, 81000<D;D
Out[15]= 86.8 Second, Null<
In[16]:= soln êê ListPlot

Out[16]=
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‡ 5. Summary and Conclusions
MathCode  is  an  application  package  that  generates  optimized  Fortran/C++  code
for  numerical  computations.  The  code  can  be  either  compiled  and  run  from
within  a  notebook  environment,  or  ported,  and  typically  runs  several  hundred
times faster than original Mathematica code. 
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MathCode  is easy to use, since only the following three simple steps are involved
for most applications:

Ë Add type declarations.

Ë Execute BuildCode[ ] to generate C++ code and an executable program.

Ë Execute  InstallCode[ ]  to  connect  the  executable  program  to
Mathematica.

It  must  be  remembered  that  only  a  subset  of  Mathematica  functions  and  opera-
tions  are  translated  into  C++  by  MathCode.  However,  MathCode  also  provides
these ways to extend the subset: 

Ë Symbolic evaluation

Ë Callbacks to Mathematica

Ë Use of external code

To  conclude,  we  remark  that  MathCode  can  turn  Mathematica  into  a  powerful
environment  for  prototyping  advanced  numerical  algorithms  and  production
code development.  Since it  can generate  stand-alone code,  applications  that  use
Mathematica  as  an  environment  for  development  and  need  to  automatically
generate  efficient  C++  code  as  embedded  code  in  large  software  systems  can
greatly benefit. 
MathCode  is  a product available both for purchase and free trial (see the website
of MathCore Engineering, [1]). Currently, both the C++ and Fortran 90 versions
of the code generator are available.
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