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Curve via Extended 
Kalman Filtering
Robert Rudd

Automated braking system design relies on knowledge of how tire friction
varies  with  the  depth  of  the  skid.  This  knowledge is  captured  empirically
in the tire mu slip curve. An extended Kalman filter is designed to fit test
data to the mu slip curve. An animation of the Kalman filter’s convergence
is presented.

‡ Introduction

Both  automobiles  and  aircraft  have  automated  braking  systems.  These  systems
try  to  avoid  skidding  the  tire  under  heavy  braking  or  low  friction  conditions.
Many automotive systems are content to avoid locking of  the wheel  (an antilock
system). Aircraft systems try to minimize stopping distance by maximizing avail-
able  tire  friction  (an  antiskid  system).  Shorter  stopping  distances  have  an  eco-
nomic value by expanding the number of airports where an aircraft may land.

Most of us are familiar with the static and dynamic coefficients [1] of friction asso-
ciated  with  sliding  surfaces.  Understanding  rolling  friction  requires  knowledge
of  the  tire  “mu slip” curve [2,  3]  or  how tire  friction varies  as  a  function of  the
relative  slip  between  the  tire  and  the  road  surface.  Firsthand  knowledge  of  the
mu slip curve comes from experience in driving automobiles.  As drivers depress
the pedal, the vehicle deceleration increases until the car enters a skid. Physically,
both  the  tire  slip  and developed friction are  increasing until  the  skid  occurs.  At
this  point,  the  developed  friction  decreases  with  increasing  slip.  It  is  this  non-
linearity that causes a swift locking of the wheel.

A Kalman filter-based approach to antiskid control has been formulated [4]. The
Kalman  filter  provides  real-time  estimates  of  vehicle  velocity,  wheel  speed,  and
tire  and  brake  friction,  as  well  as  tire  radius  and  vehicle  weight.  The  Kalman
filter  is  particularly  well-suited  to  the  application  because  it  allows  inclusion
of the underlying physics, which reduces the number of tuning iterations during
system  validation,  while  accounting  for  measurement  and  process  noise.
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A  second  benefit  comes  from  its  recursive  nature.  Each  time  a  measurement  is
received, an estimate is produced. Other methods of curve fitting batch process a
dataset.

A simplified version of the Kalman filter-based control algorithm is presented in
this  article.  Specifically,  the  scope  of  a  Kalman  filter  is  reduced  to  estimate  the
peak  amplitude  and  location  of  the  tire  mu  slip  curve  in  a  laboratory  environ-
ment.  The  high-quality  instrumentation,  relatively  consistent  surface,  and  reas-
onably constant normal force available in the lab allow the shape of the tire mu
slip  curve  to  be  determined  during  the  design  phase  of  an  antiskid  controller.
The  laboratory  also  enables  illustration  of  the  simplified  Kalman  filter’s  more
complicated cousin.

Typically, the tire mu slip curve is obtained by instrumenting a fifth wheel on an
automobile  or  a  single  wheel  on  a  dynamometer.  The  instrumentation  consists
of vehicle speed, wheel speed, drag force, and normal force. Hydraulic pressure is
gradually  applied  to  the  brake  to  skid  the  tire.  Tire  slip  is  calculated  from  the
speed data, and developed friction is calculated from the ratio of drag to normal
force.  The force  data  is  usually  quite  noisy.  The Kalman filter  [5]  has  been de-
signed to estimate the parameters describing this curve in the presence of noise.

For  the  simplified  application  of  fitting  a  curve  to  mu slip  data,  other  methods
could  be  considered.  In  particular,  the  built-in  function  NonlinearRegress ,
using the  Levenberg|Marquardt  algorithm,  is  shown to provide reasonable  esti-
mates, although a higher number of iterations are needed.

‡ The Mu Slip Curve

The tire mu slip curve is used to describe the developed friction of a braked tire.
It  is  empirical  in  nature.  A  formula  that  has  been  developed  with  many  un-
determined  coefficients  [2,  3]  is  so  general  that  it  has  been  called  the  “Magic
Formula.” Unfortunately, the equipment needed to determine all the parameters
is  beyond  the  means  of  modest  tire  test  facilities.  For  antiskid  design,  knowing
only the amplitude and its location are sufficient. Therefore, we will use a much
simpler  formula  that  has  only  two  parameters.  They  are  the  amplitude  of  the
curve, mup, and the x axis location of the peak, sp. Here is the formula and a plot
of the curve. 

In[1]:= mu�s�, mup�, sp�� :�
2 mup s

sp �1 � � s

sp
�2�

In[2]:= muslipplot�mup�, sp�, thickness�, color�� :� Plot�mu�s, mup, sp�,
	s, 0, 1
, PlotStyle � 	Thickness�thickness� , color
�

In[3]:= muslipplot�0.6, 0.2, 0.0025, GrayLevel�0��
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The x axis of the curve is the slip ratio. It is defined as:

slip ratio = Hvehicle speed - tire circumferential speedL ê vehicle speed.

The  slip  ratio  is  0  for  a  free  rolling  tire  and  1  for  a  locked  wheel.  As  braking
progresses,  the  slip  ratio  increases  and  so  does  the  developed  friction.  At  some
point~20  percent  in  this  case~maximum  friction  is  reached.  The  goal  of  an
antiskid  system  is  to  operate  at  this  peak.  Excursions  past  this  peak  are  skids.
If  friction decreases without a brake pressure release, a locked wheel will swiftly
and surely result.

In  an  automobile,  drivers  can sense  the  skid  from sound,  feel,  and release  pres-
sure  without  too  much  damage.  In  the  cockpit  of  a  multiwheel  aircraft,  pilots
cannot  hear or  feel  any one wheel  locking up. If  a  tire does lock,  the tire wears
through  and  blows  in  about  one-third  of  a  second  due  to  the  high  loads  and
speed, making antiskid systems a necessity.

Knowing  the  shape  of  the  tire  mu  slip  curve  during  the  design  phase  of  an
antiskid  system  is  desirable.  For  automotive  applications,  the  tire  friction  amp-
litude is  between 0.1 and 1.0, representing snowy and dry surfaces, respectively.
Aircraft  tires  have  different  design  constraints,  specifically  low  wear  during
touchdown and high loading. Designing for these constraints results in a friction
amplitude between 0.1 and 0.6.

The factors affecting the location of the peak are not well known or understood.
It is generally accepted that the location resides between 10 and 20 percent slip.

We now generate  a  mu slip  curve  corrupted  by  noise  and  use  this  data  for  our
curve  fit.  The  curve  will  have  an  amplitude,  muptrue,  of  0.35  with  normally
distributed  noise,  sigmatrue,  of  0.04  standard  deviation.  The  peak  location,
sptrue, resides at 15 percent. We will use 40 data, nz, points.

In[4]:= muptrue � 0.35;

sptrue � 0.15;

sigmatrue � 0.04;

nz � 40;

The  list,  z,  contains  noise-corrupted  mu  slip  data-ordered  pairs.  The  slip  ratio
data  is  not  corrupted  by  noise  since  in  the  lab  this  data  is  generally  of  high
quality. 
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In[8]:= SeedRandom�2�;
z � Table��s2, mu�s2, muptrue, sptrue� �

Random�NormalDistribution�0, sigmatrue���, 	s, 0, 1,
1

nz

�;

For this dataset, we have set the random number generator seed so that we are all
looking at the same data. We have also biased the sampling of the data, using the
square  function,  so  that  there  is  a  lower density  of  points  on the far  side of  the
curve.  This  is  because  the  wheel  will  lock  very  quickly  and  result  in  fewer  data
points on the far side of the curve when sampled at a constant frequency. Here is
a plot of the noise corrupted data. 

In[10]:= measplot�nz�� :� ListLinePlot�Take�z, nz�,
PlotStyle � ColorData�"Legacy", "ForestGreen"��

In[11]:= measplot�Length�z��

Out[11]=
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‡ The Extended Kalman Filter

The  Kalman  filter  bears  the  name  of  its  inventor,  Dr.  Rudolf  Kalman  [5].  An
excellent  layman’s  explanation  [6],  as  well  as  practical  texts  [7,  8],  are  available.
Here  we  are  satisfied  to  understand  the  Kalman  filter  as  “a  practical  set
of  procedures  that  can  be  used  to  process  numerical  data  to  obtain  estimates
of parameters and variables whose values are uncertain” [9]. 

Here is what we need to implement a linear, nontime-varying Kalman filter:

Ë A state vector, x, of the parameters being estimated

Ë A vector of measurements, z, corrupted by noise, v

Ë An observation matrix, h, relating the measurements to the parameters

Ë An  observation  noise  matrix,  r,  containing  the  variance  of  the  meas-
urements

Ë A  covariance  matrix,  p,  containing  the  variance  of  the  difference  be-
tween the estimates and true parameters 
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Collectively,  the  state  vector,  covariance,  observation  matrix,  and  observation
noise are referred to as the model.

The  standard  linear  Kalman  algorithm  recursively  calculates  the  Kalman  gain
and updates the state and covariance variables with the following equation set

k = pi-1 hT Ah pi-1 hT + rE
-1

xi = xi-1 + k Hz - h xi-1L
pi = @I - k hD pi-1,

where k is the Kalman gain. These equations arise by pursuing a maximum like-
lihood strategy. Application of the Kalman gain minimizes the trace of the covar-
iance  matrix  [7,  8].  Applying  the  same  gain  to  the  states  minimizes  the  length
of  the  error  vector  in  the  state  estimates  as  well.  Modifications  to  extend  the
filter to our nonlinear case follow. 

The  extended  Kalman  filter  (EKF)  algorithm  first  calculates  the  Kalman  gain,
kgain, using this equation [7, 8]:

In[12]:= kgain�p�, h�, r�� :� p.Transpose�h�.Inverse�h.p.Transpose�h� � r�
The  measurement  is  incorporated  into  the  state  estimate  using  the  following
equation [7, 8],

In[13]:= updatex�x�, error�, k�� :� x � k.error

where the variable, error, is the difference between the model and the measure-
ment. The measurement model for a linear system is

z = h x + v,

where v is the normally distributed measurement noise.

Therefore, the error is

error = z - h x.

Finally, the covariance is updated [7, 8] to reflect that we have refined our model
with outside information.

In[14]:= updatep�p�, h�, k�� :� �IdentityMatrix�Length�p�� � k.h�.p
The  three  equations  are  applied  sequentially  and  recursively  for  each
measurement.

Since  we  do  not  know  a  priori  the  amplitude  or  peak  location  of  the  mu  slip
curve, we make those the elements of our state vector:

x =
mup
sp

.

For  a  linear  system,  the  observation matrix  is  not  a  function of  the states  being
estimated.  For  our  mu  slip  curve  there  is  a  nonlinear  relationship  between  the
two. While convergence of a Kalman filter is assured only for a linear system, it
is often applied to nonlinear systems with great success.
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For a linear system, the observation matrix for the state and covariance solutions
are the same. They are different for a nonlinear observation. In fact, for the state
equation portion of the algorithm, there is no observation matrix per se. Instead,
we  calculate  the  difference  between  the  measurement  and  our  nonlinear  model
directly.

In[15]:= muerror�z�, s�, mup�, sp�� :� z � mu�s, mup, sp�
The observation matrix for the nonlinear measurement is determined by Taylor
series linearization.

In[16]:= Series�f�mup, sp�, �mup, mup0, 1�, �sp, sp0, 1��
Out[16]= �f�mup0, sp0� � f�0,1��mup0, sp0� �sp � sp0� � O�sp � sp0�2	 �

�f�1,0��mup0, sp0� � f�1,1��mup0, sp0� �sp � sp0� � O�sp � sp0�2	
�mup � mup0� � O�mup � mup0�2

The  zero  order  term  represents  our  current  estimate  of  the  function  while  the
difference  between  the  true  and  current  estimated  measurement  is  represented
by the Hx - x0L-like terms. Therefore, the partial derivatives represent the obser-
vation matrix for the covariance update.

In[17]:= eh�s�, mup�, sp�� � ���mup mu�s, mup, sp�, �sp mu�s, mup, sp���

Out[17]= �� 2 s


1 � s2

sp2
� sp

,
4 mup s3


1 � s2

sp2
�
2

sp4

�
2 mup s


1 � s2

sp2
� sp2

��

Inspection  of  the  observation  matrix  elements  shows  that  we  need  to  know the
true  parameters  to  evaluate  the  observation  matrix.  Since  we  do  not  know  the
parameters, we are forced to use our current, usually incorrect, estimates. There
are  a  few  heuristic  techniques  available  to  minimize  the  effect  of  this  approx-
imation.  We  will  use  the  technique  of  “pseudonoise”  or  assume  that  the
measurement is less accurate than it actually is. This slows down the convergence
of the filter allowing time to recover from the approximation. There is some the-
oretical  basis  for  pseudonoise  [10],  but  a  combination  of  theory  and  educated
trial and error is usually used. Both are used for our EKF.

The first component of our pseudonoise is determined by inspecting the second
derivatives of the measurement linearization.

In[18]:= Series�f�mup, sp�, �mup, mup0, 2�, �sp, sp0, 2��

Out[18]= f�mup0, sp0� � f�0,1��mup0, sp0� �sp � sp0� �
1

2
f�0,2��mup0, sp0� �sp � sp0�2 � O�sp � sp0�3 �

f�1,0��mup0, sp0� � f�1,1��mup0, sp0� �sp � sp0� �
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1

2
f�1,2��mup0, sp0� �sp � sp0�2 � O�sp � sp0�3 �mup � mup0� �

1

2
f�2,0��mup0, sp0� � 1

2
f�2,1��mup0, sp0� �sp � sp0� � 1

4
f�2,2��mup0, sp0�

�sp � sp0�2 � O�sp � sp0�3 �mup � mup0�2 � O�mup � mup0�3

While  we  do  not  know  the  Hx - x0L2-like  terms,  mathematically  they  look  like
measurement noise:

z = zero order terms + first order terms + second order terms + noise.

The second order terms are combined with the measurement noise giving:

z = zero order terms + first order terms + pseudonoise.

We  can  approximate  the  second  order  terms  statistically  with  the  appropriate
terms  from  the  covariance  matrix.  We  form  the  pseudonoise  variance  by
summing the square of the individual terms. The cross-covariances are not used
directly.  Since  our  intent  is  to  increase  the  measurement  noise,  a  negative  cor-
relation  coefficient  could  hinder  that  goal.  Instead  the  cross-covariance  is  com-
puted from diagonal terms assuming the correlation coefficient is 1.

In[19]:= pseudonoise�s�, mup�, sp�, p11�, p22�� �

Simplify��1�2 ��mup, 2�mu�s, mup, sp� p11	2 �


�mup,sp mu�s, mup, sp� p11 p22 �
2

�

�1�2 ��sp, 2�mu�s, mup, sp� p22	2�

Out[19]=

4 p22 s2 �mup2 p22 sp2 ��3 s2 � sp2�2 � p11 �s4 � sp4�2	
�s2 � sp2�6

The  second  element  of  our  pseudonoise  is  a  constant  increase  in  our  measure-
ment standard deviation. A value of three times the true value was determined by
trial and error across the anticipated range of parameters. During the animation
of  our  results  in  the  next  section,  we  would  like  the  true  values  within  the  one
sigma contours of the covariance function.

In[20]:= sigmaekf :� 3 sigmatrue;

Experience  with  this  estimator  shows  that  the  best  overall  performance  is  ob-
tained  when  the  filter  is  initialized  to  the  high  end  of  its  range.  Here  is  a  plot
of the range of mu slip curves we expect to encounter in an aircraft application.

In[21]:= Plot
�mu�s, 0.1, 0.1�, mu�s, 0.1, 0.2�,
mu�s, 0.6, 0.1�, mu�s, 0.6, 0.2��, �s, 0, 1�,

Epilog � �PointSize�0.025�, Point��0.1, 0.1��,
Point��0.1, 0.6��, Point��0.2, 0.1��, Point��0.2, 0.6����
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Out[21]=
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We will  therefore initialize  the state  estimates  at  the high end of the range and
the covariance to cover the range.

In[22]:= x0 :� ��0.6�, �0.2��;
p0 :� ��0.62, 0�, �0, 0.22��;

Here is the extended Kalman algorithm for the mu slip curve estimator.

In[24]:= muekf�z�, x0�, p0�, r�� :� Module�
�zslip, zmu, xmup, xsp, h, er, error, p11, p22�, x�0� � x0;

p�0� � p0; Do��xmup � x�i � 1�	1, 1
, xsp � x�i � 1�	2, 1
,
zslip � z	i, 1
, zmu � z	i, 2
, h � eh�zslip, xmup, xsp�,
error � muerror�zmu, zslip, xmup, xsp�,
p11 � p�i � 1�	1, 1
, p22 � p�i � 1�	2, 2
,
er � r � pseudonoise�zslip, xmup, xsp, p11, p22�,
k � kgain�p�i � 1�, h, ��er���, p�i� � updatep�p�i � 1�, h, k�,
x�i� � updatex�x�i � 1�, ��error��, k��,

�i, 1, Length�z���; �x, p��
The  following  line  executes  the  Kalman  filter  and  assigns  the  state  vector  and
covariance matrix to the variables, x and p, respectively.

In[25]:= �x, p� � muekf�z, x0, p0, sigmaekf2�;

‡ The Results

We  present  the  results  of  our  Kalman  filtering  example  as  an  animation.  The
animation  has  the  true  and  noise-corrupted  mu  slip  curves  in  black  and  green,
respectively.  The  estimated  mu  slip  curve  is  shown  in  red  after  each  measure-
ment is incorporated. Similarly, we show the one sigma covariance contour on a
frame-by-frame basis. We also place points at the peak locations and the current
measurement for emphasis.

We defined the measured data plot previously.  Here are plot definitions for the
true and estimated curves. 

In[26]:= ptrue�muptrue�, sptrue�� :�

muslipplot�muptrue, sptrue, 0.00375, GrayLevel�0��
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In[27]:= xplot�i�� :� muslipplot�x�i��1, 1�, x�i��2, 1�, 0.00125, Hue�1��
The one sigma contour is  defined with the aid of the bivariate normal distribu-
tion function,

f @dx, pD =
1

2 p … p-1 …
eB-

1

2
IdxT p-1 dxMF,

where dx is the variation from the mean and p is the covariance matrix.

We create the one sigma contour of the bivariate normal distribution by setting
the  argument  of  the  exponential  function  to  0.5  in  the  ContourPlot  function.
Here is the definition of the argument and the one sigma contour plot.

In[28]:= bivgdfexp�dx�, p�� :�
1

2
Transpose�dx�.Inverse�p�.dx

In[29]:= pplot�i�� :�

ContourPlot�bivgdfexp���mu�, �s�� � x�i�, p�i���1, 1�,
	s, x�i��2, 1� � p�i��2, 2� , x�i��2, 1� � p�i��2, 2� 
,
	mu, x�i��1, 1� � p�i��1, 1� , x�i��1, 1� � p�i��1, 1� 
,
ContourShading � False, Contours � �0.5�,
ContourStyle � Hue�0.65�, PlotPoints � �32, 32��

A smooth contour is obtained by scaling the plot range based upon the state and
covariance data.

The function points plots one frame of color-coded points data.

In[30]:= points�i�� :� Graphics�

PointSize�0.025`�, Point��z�i, 1�, mu�z�i, 1�, muptrue, sptrue���,
Point��sptrue, muptrue��, Hue�1�, Point��x�i��2, 1�, x�i��1, 1���,
ColorData�"Legacy", "ForestGreen"�,
PointSize�0.0125`�, Point�z�i����

One frame of results is assembled in the function showresult.

In[31]:= showresult�i�� :�

Show��xplot�i�, ptrue�muptrue, sptrue�, measplot�i�, xplot�i�,
pplot�i�, points�i��, PlotRange � ��0, 1�, �0, 0.65��,

Frame � True, FrameLabel � �"Slip Ratio", "Friction"�,
Background � GrayLevel�1�,
Epilog � 
Text�

Column�

Style�"Measured", ColorData�"Legacy", "ForestGreen"��,
Style�"True", GrayLevel�0��, Style�"Estimated", Hue�1��,
Style�"One Sigma", Hue�0.65����, �0.6, 0.2�, ��1, �1����

showresults generates the animation using every di th frame.
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In[32]:= showresults�di�� :� Animate�showresult�i�,
�i, 1, Length�z�, di�, SaveDefinitions� True�

Here is the animation.

In[33]:= animateekf � showresults�1�

Out[33]=
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Here is an array of selected frames.

In[34]:= GraphicsArray�
Map�showresult���� &, ��1, 7	, �13, 19	, �30, 40		, �2	�,
ImageSize � �400, Automatic	�

Out[34]=
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‡ Discussion

Inspection of the animation shows that estimated state variables converge to the
true value within the one sigma accuracy.  It  may be helpful  to think of  the one
sigma  contour  as  the  area  where  the  filter  is  looking  or  searching  for  the  most
likely  solution.  As  we  incorporate  more  and  more  measurements,  our  model  is
refined and the search area is reduced.

As  we  move  up  the  mu  slip  curve,  the  estimation  process  proceeds  and  the
unknown  parameters  become  “correlated,”  indicated  by  the  rotation  of  the  one
sigma  contour.  Correlation  perhaps  can  be  best  thought  of  by  considering  the
statistical correlation of two sinusoids. If they are in phase, the correlation coeffi-
cient is 1, and when plotted versus each other they produce an ellipse (a Lissajous
figure) with a slope of 1 with 0 thickness in one dimension. This is displayed in
red with a slight phase shift to show that it is an ellipse. If they are out of phase
(blue), the slope and correlation coefficient are -1. A sine and cosine would have
a correlation coefficient of 0 and produce an equal dimension ellipse with 0 slope
(black). If the correlation coefficient of the two sinusoids is known to be 1 and we
measure  and  correct  one,  then  we  know  we  can  correct  the  other  the  same
amount. In the animation, we see a positive correlation is followed by a negative
correlation relating to the slope of the mu slip curve.

In[35]:= ParametricPlot�
��Sin�t�, Sin�t � 0.007 Pi��, �Sin�t�, Sin�t � Pi�2��,
�Sin�t�, Sin�t � 0.993 Pi���, �t, 0, 2 Pi�,

AspectRatio� 1, PlotStyle � �Hue�1�, GrayLevel�0�, Hue�.65�	


Out[35]=
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Figure 1 shows a more conventional way of viewing the covariance information.
The diagonal elements are normalized by their initial values and the off-diagonal
term is viewed as the correlation coefficient.
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In[36]:= figure1
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Figure 1. Covariance convergence.

The curve  representing amplitude steadily  reduces  while  the curve representing
the  location  of  the  peak  becomes  constant  for  slip  ratios  of  0.05  to  0.15.  The
correlation  coefficient  changes  sign  at  about  0.25.  We  will  investigate  this
further. 

In  general,  a  Kalman  filter  begins  by  assigning  a  portion  of  the  error  to  the
measuring device. A simple way of getting a feel for this is to look at the Kalman
gain for a single state when that state is being directly measured (the observation
matrix is 1). Since we are trying to observe the state, its covariance matrix can be
considered  the  signal  and  the  measurement  contains  the  noise.  Assuming  the
state  covariance  is  a  multiple  of  the  observation  noise,  we  can  calculate  the
Kalman gain as a function of the signal-to-noise ratio.

In[37]:= kex�snr�� � Simplify�kgain���snr r��, ��1��, ��r����1, 1�	

Out[37]=

snr

1 � snr

Here is a plot of the Kalman gain for this simple case.

In[38]:= Plot�kex�snr�, �snr, 0, 10�, PlotRange � ��0, 10�, �0, 1��	

Out[38]=
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If  the  measurement  noise  is  much  larger  than  the  covariance  (a  low  signal-to-
noise ratio), the Kalman gain is close to 0 and the state receives little correction.
It is sometimes said that the filter is rejecting the measurement, but it is merely
recognizing  that  its  internal  model  is  more  accurate  than  the  measurement  and
relying  on  the  model  instead.  On  the  other  hand,  if  the  measurement  is  more
accurate than the covariance (a high signal-to-noise ratio), then the Kalman gain
is near 1 and the model receives a strong correction.

The incorporation of external data into the model is also recognized in the covari-
ance matrix. For a single state estimator, the covariance is reduced by

pi

pi-1
= 1 - k.

A large Kalman gain,  due to an accurate  measurement,  results  in a  large reduc-
tion in the estimate’s uncertainty. As the estimation progresses, the reduced un-
certainty  in  the  model  will  result  in  a  smaller  gain  in  the  next  Kalman  cycle
(assuming the same measurement noise).

For  a  multistate  filter,  the  signal  is  given  by  projecting  the  state  covariance  to
measurement  space.  Review  of  the  denominator  of  the  Kalman  gain  equation
gives this term as

In[39]:= pz�p�, h�� :� �h.p.Transpose�h���1, 1�
Figure  2  shows  a  plot  of  the  signal  and  noise  for  the  mu  slip  curve.  The  pre-
update  signal  is  blue  and  the  post-update  signal  is  red.  The  observation  noise,
which includes the pseudonoise, is black.

In[40]:= figure2
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Figure 2. Signal and noise variance.

In comparison to our true measurement noise of 0.042,  the pseudonoise is large
at  nearly 0.192.  This  indicates  the  second  order  terms  are  quite  strong  for  the
size  of  the  covariance  at  the  time.  The  net  effect  is  to  make  the  Kalman  filter
think it has a much less accurate measurement and slow down convergence.
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Early on, we see that our pseudonoise term is larger than our signal term, but not
so  much  that  a  significant  improvement  in  model  accuracy  does  not  occur.  At
around a slip ratio of 7.5 percent, the pseudonoise term drops quickly. The filter
thinks it has a more accurate measurement and applies a strong correction to the
model. Once the peak is passed, the filter thinks the model is more accurate than
the measurements and only minor corrections are made.

The  behavior  of  the  filter  at  low  slip  ratios  can  be  understood  by  plotting  the
observation matrix versus slip ratio. 

In[41]:= Plot�Evaluate�eh�s, muptrue, sptrue��1��,
�s, 0, 1�, PlotStyle � �Hue�0.65�, Hue�1��	

Out[41]=
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The observation matrix sets the relative weight that each state contributes to the
measurement.  For  example,  at  the  peak  of  the  curve,  the  observation  matrix
element for the amplitude of the curve is 1 and it is 0 for the location of the peak.
This  is  telling  the  filter  to  attribute  all  of  the  modeling  error  to  the  amplitude
state. Conversely, there are points on either side of the peak where the observa-
tion matrix elements are equal in magnitude. At these points, the modeling error
is split equally between the states.

The two state variables correlate initially, which is another way of saying that we
do  not  have  enough  information  to  tell  one  from  the  other.  As  we  reach  slip
ratios between 5 and 10 percent, the derivative of the mu slip curve with respect
to  the  peak  location  (red)  has  an  extrema  or  a  point  where  it  has  its  maximum
effect on the measurement. It has its minimum effect on the measurement as the
peak is crossed and the derivative of the mu slip curve with respect to the ampli-
tude (blue) is at a maximum. This is pleasing heuristically. We may know we are
near the top of a mountain, but if  it  is  relatively flat,  we may not be able to tell
exactly where the top is.

As we cross the peak, the derivative of the mu slip curve with respect to the peak
location changes sign. The variables decorrelate, which is another way of saying
we have enough information to tell the variables apart. Rapid convergence occurs
when this happens.

This  note  is  not  meant  to  imply  that  a  Kalman filter  is  the  only  viable  method
of fitting the mu slip curve. The built-in function, NonLinearRegress , also does
quite well at fitting the data.
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In[42]:= Needs�"Statistics`NonlinearFit "̀� �� Quiet

In[43]:= bfp�maxiter�� :�

BestFitParameters �. NonlinearRegress�z, mu�s, mup, sp�,
�s�, ��mup, 0.6, 0, 0.6�, �sp, 0.2, 0.1, 0.2��,
RegressionReport � BestFitParameters, MaxIterations � maxiter�

The  option  maxiter  is  the  maximum  number  of  iterations.  After  five  passes
through the dataset, the built-in routine produces the following estimates.

In[44]:= bfp�5�
During evaluation of In[44]:=

FindFit::cvmit :

Failed to converge to the requested accuracy or precision within 5 iterations. �

Out[44]= �mup � 0.34876, sp � 0.156885�

The results are slightly better than the Kalman filter’s estimates.

In[45]:= x�Length�z��
Out[45]= ��0.338894�, �0.164908��

This is not really an apples-to-apples comparison though, as the built-in routine
regresses  on  the  entire  dataset  up  to maxiter  times,  while  the  Kalman  filter
performs the work in one pass. For a single pass, the built-in routine returns the
following.

In[46]:= bfp�1�
During evaluation of In[46]:=

FindFit::cvmit :

Failed to converge to the requested accuracy or precision within 1 iterations. �

Out[46]= �mup � 0.467086, sp � 0.1�

If we up the number of iterations to two, we get a reasonable result.

In[47]:= bfp�2�
During evaluation of In[47]:=

FindFit::cvmit :

Failed to converge to the requested accuracy or precision within 2 iterations. �

Out[47]= �mup � 0.414491, sp � 0.135667�

Similarly, we could take the final Kalman filter estimates from the first pass and
use them for initialization on a second pass to refine our estimate.
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Supplement

‡ Implementation
Needs@"ErrorBarPlots`"D

figure1 :=

ListLinePlotB:TableB:zPi, 1T,
p@iDP1, 1T

p@0DP1, 1T
>, 8i, 1, Length@zD<F,

TableB:zPi, 1T,
p@iDP2, 2T

p@0DP2, 2T
>, 8i, 1, Length@zD<F, TableB

:zPi, 1T,
p@iDP1, 2T

p@iDP1, 1T p@iDP2, 2T
>, 8i, 1, Length@zD<F>,

Frame Ø True, FrameLabel Ø 8"Slip Ratio", None<,
GridLines Ø Automatic,

PlotStyle Ø 8Hue@0.65D, Hue@1D, GrayLevel@0D<,
PlotRange Ø 880, 1<, 8-1, 1<<,

Epilog Ø :

TextB

ColumnB:StyleB"
P HiL11

P H0L11

", Hue@0.65DF,

StyleB"
P HiL22

P H0L22

", Hue@1DF,

StyleB"
P HiL12

P HiL11 P HiL22

", GrayLevel@0DF

>F, 80.7, .12<F>F
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figure2 := ListLinePlotA

9Table@8zPi, 1T, pz@p@i - 1D, eh@zPi, 1T, x@i - 1DP1, 1T,
x@i - 1DP2, 1TDD<, 8i, 1, Length@zD<D,

TableA9zPi, 1T, sigmaekf2 + pseudonoise@zPi, 1T, x@i - 1DP1, 1T,

x@i - 1DP2, 1T, p@i - 1DP1, 1T, p@i - 1DP2, 2TD=,

8i, 1, Length@zD<E, Table@8zPi, 1T, pz@p@iD,

eh@zPi, 1T, x@iDP1, 1T, x@iDP2, 1TDD<, 8i, 1, Length@zD<D=,
Frame Ø True, FrameLabel Ø 8"Slip Ratio", None<,
GridLines Ø Automatic,

PlotStyle Ø 8Hue@0.65`D, GrayLevel@0D, Hue@1D<,
PlotRange Ø 880, 1<, 80, 0.04`<<, Epilog Ø 9

TextAColumnA9

StyleAHoldFormAH P HT "HPre-UpdateL"E, Hue@0.65`DE,

Style@R, GrayLevel@0DD, StyleAHoldFormA

H P HT "HPost-UpdateL"E, Hue@1DE=E, 8.65, .025<E=E

$Line = 0;
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