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This  article  proposes  a  new  symbolic  technique  for  offshore  design
technology. Several solutions deal with the design of longitudinally elastic
offshore  constructions.  Details  are  discussed  for  a  drillstem  and  a  riser.
Both  symbolic  and  numerical  solutions  derived  with  Mathematica  are
applied  to  solve  problems  in  offshore  design  technology.  All  symbolic
approaches  are  based  on  solutions  of  the  linear  boundary  problems  that
arise.  Additionally,  a  new  symbolic  solution  for  the  generic  boundary
problem is discussed in detail.

‡ Introduction

The  main  aim  of  this  article  is  to  show  how Mathematica’s  symbolic  evaluation
capabilities can be used for solving boundary problems in critical cases. A critical
case,  as  usual,  means  a  singularity  problem  in  the  mathematical  sense;  for
instance,  a  boundary  problem  for  an  ordinary  differential  equation  with  special
boundary conditions.

Various and similar cases appear when solving some problems that deal with the
bending  and  longitudinal  stability  of  constructions  contained  in  offshore  rigs,
such as a drillstem and a riser.

The first singularity problem is to determine the bending deformation of a riser
with classical boundary conditions.
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The boundary problem for a riser is formulated as follows (simplest case!):

(1)
p y£HxL + Y J0 HL - xL-1 yH3LHxL = 0;

yH0L = 0, y�H0L = 0, y£HLL = q.

The  differential  equation  for  the  bending  of  a  riser  is  derived  from an  equilib-
rium equation of the elastic pipe. In equation (1), L is the length of a riser, Y J0
is the bending rigidity of a riser, and p is the weight of a unit of length.

Historically  the  first  problem  concerning  the  stability  question  of  weighting
longitudinal  elastic  rods  was  set  up  by  L.  Euler  in  “Additamentura  De  curvis
Elasticis,”  from  his  memoir  Method  us  inveniend  i  liness  curvas  maximi  munimive
proprietate  guadentes  (for  details,  see  J.  Todhunter  and  K.  Pearson,  History
of  Elasticity,  Vol.  4,  pp.  39|50).  The  memoir,  published  in  1744,  discusses  the
same differential equation of equilibrium as equation (1). Unfortunately, no clear
form of solutions for this equation was obtained by Euler,  who proposed only a
solution in series.

A singularity appears in the boundary problem (1) when x z L. 

It  is  very  easy  to  establish  that  the  differential  equation  of  bending  degenerates
when x z L. As such, no solution of the boundary problem using Mathematica can
be found directly.

A symbolic method for solving the singularity boundary problem (1) is proposed
in  this  article.  A  full  set  of  formulas  concerning  bending,  momentum,  and
stresses along a riser are derived.

Another kind of boundary problem arises when accounting for the bending of a
drillstem  while  drilling  an  oil  well  using  a  drillship.  Like  the  problem  of  de-
termining the bending of a riser, the problem of bending a drillstem leads to the
classical  boundary  conditions,  but  the  differential  equation  for  the  bending
drillstem  is  nonhomogeneous.  External  forces  (such  as  hydro-forces  of  sub-
marine flows, waves loads, forces of tension, etc.) affect a drillstem, so new terms
are contained in the right-hand side of equation (1).

The mechanical formulation of a nonhomogeneous boundary problem is given as

(2)
INd - p xM y£HxL + Y J0 yH3LHxL = Q;

yH0L = 0, y£H0L = 0, y£HLL = q,

where Nd  and Q  are a  load on the chisel  bit  and the horizontal  force of  a  drill-
stem tensioner located on the drillship.

In spite of the fact that there is no singularity in boundary problem (2), the non-
homogeneous  boundary  problem  cannot  be  solved  by  Mathematica  directly
either. 

A method for finding a  solution of  the nonhomogeneous boundary problem (2)
by  symbolic  techniques  is  proposed  in  this  article.  A  full  set  of  formulas
concerning bending, momentum, and stresses along a drillstem are derived.

Numerical solutions are presented for both problems.
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‡ 1. Bending of a Riser: Symbolic Calculations

· 1.1. Mechanical Problem Setting

Offshore  technology  system  design  is  a  branch  of  technology  where  advanced
mathematics is applied to real-world problems ranging from oil and gas produc-
tion to highly intellectual design projects.

Mathematica is a very powerful system for dealing with mathematics in these intel-
lectual  offshore  design  projects  and  application code  is  implemented  for  several
problems that occur. 

Let  us  consider  determining  the  bending  of  a  riser  under  the  loads  of  tension,
hydroloads,  and  the  weight  of  the  pipe  when  the  drillship  is  floating  on  the
surface near the point of an oil well. The mechanical scheme for bending a riser,
as an elastic pipe, is shown in Figure 1.

Figure 1. 

We  derive  the  equation  of  equilibrium  for  a  riser  from  the  static  equation
of moments.

Here is the general form of an equation of equilibrium for an elastic pipe under
the loads mentioned:

(3)

Y J0
„2 u

„x2
-‡

x

L

pHhHzL - uL „z -

‡
x

L

cw r v2 A0 1 -
1

2
h£HzL2 H z - xL „z + P HD - u

L = Q HL - xL.
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In equation (3), these items of the moment are introduced:

Ë Ÿx

L
pHhHzL - uL „z  is  the  total  moment  for  the  weight  of  a  riser  and  L  is

the riser length.

Ë Ÿx

L
cw r v2 A0I1 -

1
2 h£HzL2M H z - xL „z is the moment of the hydroforces.

Ë PHD - uL and QHL - xL are the moments of tension and the average of the
wind forces.

The boundary conditions for a riser are formulated as follows:

Ë The  axes  origin  is  at  the  bottom  of  the  sea  (see  Figure  1).  There  is  a
spherical  hinge and the  drillship  is  standing at  the distance D  from the
point of the oil well. Then the boundary conditions are written as

(4)yH0L = 0, y�H0L = 0, yHLL = D.

Ë If  the  drillship  is  rolling  and  pitching  on  the  surface  of  the  sea  at  the
angle q, then the boundary conditions are

(5)yH0L = 0, y�H0L = 0, y£HLL = q.

In the simplest case, the boundary problem obtained from equations (1) through
(3) will be solved symbolically.

· 1.2. Symbolic Evaluation and Numerical Study for Bending 
Moment and Stresses

Let us consider a linear approach to the bending of a riser.

The linear  boundary  problem derived from equations  (1)  through (3)  is  written
in the form [1]:

(6)
Y J0

„2 u

„x2
-‡

x

L

pHhHzL - uL „z + P HD - uL = QHL - xL;
yH0L = 0, y�H0L = 0, y£HLL = q.

Code for solving the simplest boundary problem (6) is presented in Section 1.2.1.

1.2.1. Symbolic Solution for Bending a Free-Tension Riser
The  first  problem  is  to  try  to  find  a  space  line  of  bending  for  an  autonomous
riser in an accident. In an accident, no longitudinal force P is supported by a riser
and the boundary problem (4) is reduced to

(7)
Y J0

„2 u

„x2
-‡

x

L

pHhHzL - uL „z = 0;

yH0L = 0, y£H0L = 0, y£HLL = q,

where the forces of the riser tension P and horizontal load Q are ignored. 
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According  to  the  main  idea  of  this  article,  the  static  differential  equation  for
bending a riser is derived symbolically from the first equation in (7).

The following code is  for  deriving a  differential  equation for the bending of  an
autonomous riser.

In[1]:= eq@u_D := Y J0 ‚2u

‚x2
-‡

x

L

p HhHzL - uL ‚ z � 0

This  code  introduces  the  function  u  for  bending  a  riser  and  presents  the  static
integro-differential equation of a riser as eq HuL.
In[2]:= u = yHxL;

eqHuL

Out[3]= Y J0 y
££HxL -‡

x

L

p HhHzL - yHxLL „ z � 0

Finally,  differentiation  of  the  output  on  x  leads  us  to  the  ordinary  differential
equation  for  bending  an  autonomous  riser.  (This  is  a  well-known  differential
equation by Airy [2].)

In[4]:= eq1 =
�eqHuL

�x
ê. hHxL Æ yHxL

Out[4]= p HL - xL y£HxL + Y J0 y
H3LHxL � 0

The output  is  a  basic  differential  equation of  equilibrium for the bending of  an
elastic pipe under its own weight.

It  seems at  first  glance that we cannot find the function for bending a riser as a
solution  of  boundary  problem  (7)  due  to  the  singularity,  but  by  using  the  next
operator directly a solution has been obtained [3]. 

In[5]:= solRiser =

Simplify@Flatten@DSolve@8eq1, yH0L � 0, y¢H0L � 0, y¢HLL � q<, yHxL, xDDD
Out[5]= :yHxL Ø

q G
2

3

p

Y J0
3 -3 3

3
p

3
3 Ai -

L p
3

Y
3

J0
3

+ 3 Bi -
L p

3

Y
3

J0
3

G
2

3
1F2

2

3
;
4

3
,
5

3
; -

L3 p

9 Y J0
L2 +

4 Y
3

3 Bi -
L p

3

Y
3

J0
3

- 3 Ai -
L p

3

Y
3

J0
3

G -
2

3
1F2

1

3
;
2

3
,
4

3
; -

L3 p

9 Y J0
J0

3 L + 3 3
3

p
3
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HL - xL2 3 Ai - L p
3

Y
3

J0
3

+ 3 Bi -
L p

3

Y
3

J0
3

G
2

3
1F2

2

3
;
4

3
,
5

3
;
p Hx - LL3
9 Y J0

+

HL - xL 1F2
1

3
;
2

3
,
4

3
;
p Hx - LL3
9 Y J0

Y
3

2 G -
2

3
- 3 G

1

3

p

Y J0
3 J0

3 3 Ai -
L p

3

Y
3

J0
3

- 3 Bi -
L p

3

Y
3

J0
3

+

p
3

3 Ai -
L p

3

Y
3

J0
3

+ 3 Bi -
L p

3

Y
3

J0
3

2 G -
2

3
+ 3 G

1

3
ì

12 p Y
3

3 Ai -
L p

3

Y
3

J0
3

-Bi -
L p

3

Y
3

J0
3

p

Y J0
3

J0
3 >

No singularity appears in the solution by Mathematica  and no special comments
are produced concerning singularities. 

On  the  other  hand,  in  order  to  solve  the  singularity  problem,  let  us  consider  a
perturbed boundary problem resulting from conditions (7) when there is a pertur-
bation in the last equation only. The perturbation consists of adding a vanishing
quantity  in  the  last  equation  of  the  boundary  conditions  (7).  The  perturbation
quantity is marked by � as follows. 

In[6]:= solRiser =
Simplify@Flatten@DSolve@8eq1, yH0L � 0, y¢H0L � 0, y¢HL+ �L � q<, yHxL, xDDD
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Out[6]= :yHxL Ø q 6 I 1
3

2 H-LL3ê2 p

3 Y J0

G
4

3
1F2

1

3
;
2

3
,
4

3
; -

L3 p

9 Y J0
L2 +

6 Hx - LL I 1
3

2 H-LL3ê2 p

3 Y J0

G
4

3
1F2

1

3
;
2

3
,
4

3
;
p Hx - LL3
9 Y J0

L +

3
3

I
-
1

3

2 H-LL3ê2 p

3 Y J0

G
2

3
HL - xL2 1F2

2

3
;
4

3
,
5

3
;
p Hx - LL3
9 Y J0

-

L2 1F2
2

3
;
4

3
,
5

3
; -

L3 p

9 Y J0

H-LL3ê2 p

Y J0

2ê3
p �3ê2

Y J0
3 ì

2 32ê3 G
2

3
G
4

3
L I

-
1

3

2 p �3ê2

3 Y J0

p �3ê2

Y J0

2ê3

I 1
3

2 H-LL3ê2 p

3 Y J0

+

� I
-
1

3

2 H-LL3ê2 p

3 Y J0

I 1
3

2 p �3ê2

3 Y J0

H-LL3ê2 p

Y J0

2ê3

>

Obviously,  this  new  solution  of  the  perturbed  boundary  problem  is  not  
quite right.

We  can  obtain  a  solution  corresponding  to  the  singularity  problem  by  using  a
limiting procedure.

In[7]:= lHx_L = SimplifyBlim
�Æ0

HyHxL ê. solRiserLF

Out[7]= p
3

q 6 I 1
3

2 H-LL3ê2 p

3 Y J0

G
4

3
1F2

1

3
;
2

3
,
4

3
; -

L3 p

9 Y J0
L2 +

6 Hx - LL I 1
3

2 H-LL3ê2 p

3 Y J0

G
4

3
1F2

1

3
;
2

3
,
4

3
;
p Hx - LL3
9 Y J0

L +

3
3

I
-
1

3

2 H-LL3ê2 p

3 Y J0

G
2

3
HL - xL2 1F2

2

3
;
4

3
,
5

3
;
p Hx - LL3
9 Y J0

-
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L2 1F2
2

3
;
4

3
,
5

3
; -

L3 p

9 Y J0

H-LL3ê2 p

Y J0

2ê3

ì

3 3 Y
3

3 Ai -
L p

3

Y
3

J0
3

-Bi -
L p

3

Y
3

J0
3

G
4

3

H-LL3ê2 p

Y J0
3 J0

3

So  a  new  symbolic  solution  for  the  singularity  problem  (7)  is  created  in  clear
form as a function of x, which is the depth of the sea.

Now  it  is  easy  to  find  symbolic  solutions  for  the  bending  moment  and  stresses
along a riser.

When  using  a  linear  approximation,  the  bending  moment  and  stresses  along  a
riser are presented by [4]:

(8)

MHxL = Y J0
„2 yHxL
„x2

sHxL = MHxL
J0

R,

where  R  is  the  radius  of  the  riser  pipe  and  hereafter  the  terms  “moment”  and
“stresses” are understood as maximum quantities.

Here is the code of the symbolic formulas for the bending moment and stresses
along a riser.

In[8]:= M1,r = SimplifyBY J0 �
2 lHxL

�x�x
F; s1,r = SimplifyB

M1,r R

J0
F;

As a result of the symbolic computations, a full set of general formulas for a func-
tion of the bending moment and stresses of an autonomous riser are derived. 

In  spite  of  the  limiting  procedure  used  for  finding  a  symbolic  solution  of  the
bending of an autonomous riser, Mathematica 5.2 can solve boundary problem (1)
by  using  the  single  operator  DSolve[...].  But  since  nobody  knows  what  kind
of singularity problems will be met in the future, using a general method for sol-
ving the singularity problem through limit passing seems more productive to us.

1.2.2. Graphical Solution for an Autonomous Riser 
Let  us  consider  a  numerical  study  of  solutions  for  determining  the  bending
function  of  an  autonomous  riser,  such  as  moments  and  stresses  during  deep-
water operation. 
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The family  of  solutions  for  bending  a  riser  with  changing roll  and  pitch  angles
of  the  drillship  over  the  point  of  an  oil  well  is  determined  by  the  following
operators:

Ë Bending  a  typical  riser  with  standard  physical  parameters  for  a  pipe  is
given by

In[9]:= parameters = 9p Æ 727, LÆ 300, Y Æ 2.1 1011, J0 Æ 0.0031=;
BHx_L = Table@lHxL ê. parameters ê. q Æ i 0.05, 8i, -3, 3, 2<D;

Ë Natural forms are developed for bending the riser by

In[10]:= grRiser = TableBParametricPlotB8Re@BHxLPiTD, x - 300<, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic,
PlotStyleÆ 8Thickness@0.01D, RGBColor@0, 0, 1D<,
AspectRatioÆ

2

1.5
, FrameLabelÆ

8"Bending of a Riser HmL", "Sea Depth HmL"<F, 8i, 1, 4<F;
Ë Distributed static forms of a riser are shown on the graphic as

In[11]:= grRiserBending = Show@grRiser,
FrameLabelÆ 8"Bending of a Riser HmL", "Sea Depth HmL"<D;

Ë Bending stress is accounted for by

In[12]:= s1,rHx_L = TableAs1,r ê. parameters ê. q Æ i 0.05 ê. R Æ .3, 8i, -3, 3, 2<E;
Ë Numerical results regarding the stresses (in Pa) at a depth of 100 meters

are found by

In[13]:= ReIs1,rH100LM
Out[13]= 9-4.66807μ106, -1.55602μ106, 1.55602μ106, 4.66807μ106=

Now we introduce code for plotting graphics of the stresses.

In[14]:= grRiserBendingStress = TableBParametricPlotB:ReAs1,rHxLPiTE
107

, x - 300>,
8x, 0, 300<, PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic,
PlotStyleÆ 8Thickness@0.01D, RGBColor@0, 0, 1D<,
AspectRatioÆ

2

1.6
, FrameLabelÆ

8"Bending Stresses of a Riser\nHMPaL", "Sea Depth HmL"<F, 8i, 1, 4<F;
grBendingStressRiser = Show@grRiserBendingStress,

FrameLabelÆ 8"Stresses H¥ 10 MPaL", "Sea Depth HmL"<D;
Here  are  the  joined  graphics  for  the  shape  of  a  bending  riser  and  the  stresses
along it.
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In[16]:= Show@GraphicsRow@
8grRiserBending, grBendingStressRiser<, SpacingsÆ Scaled@0.1DDD

Out[16]=
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L

The  results  obtained  show  that  conditions  can  be  formulated  for  the  strength
of a riser in an accident. Tensile strength, for example, is one such condition.

‡ 2. Working Phase Part 1: Drillship Pulling a Riser

· 2.1. Problem Setting for a Working Riser

A new boundary problem arises when trying to find the deformation and stresses
of a riser in operation. Normally a riser is pulled to the work site during subma-
rine operation. In addition to the work of drilling a well, a riser is attached to the
drilling ship on a spherical hinge and loads are put on it by tensioning equipment.

Let  us  consider  a  solution  for  defining  the  space  line  of  a  riser  during  drilling.
We can apply the same conclusion to the floating offshore rig.

Here we repeat the same code as before, but somewhat modified.

In[17]:= eq@u_D := P HD - uL -‡
x

L

p HhHzL - uL‚z + Y
‚2u

‚x2
J0 � 0; u = yHxL; eqHuL

Out[17]= -‡
x

L

p HhHzL- yHxLL „z + P HD- yHxLL+ Y J0 y££HxL � 0

Differentiating the output with respect to x  leads us to the differential  equation
for the bending of a riser being pulled.

In[18]:= eq1 = SimplifyB�eqHuL
�x

ê. hHxL Æ yHxLF

Out[18]= HL p - x p - PL y£HxL+ Y J0 yH3LHxL � 0

eq1  is  a  basic  differential  equation  of  equilibrium  for  the  bending  of  an
elastic pipe being pulled and is a well-known homogeneous Airy differential equa-
tion [2].

We  can  directly  find  a  function  for  bending  a  riser  as  a  solution  of  boundary
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problem (4) by using

In[19]:= solRiser =
Simplify@Flatten@DSolve@8eq1, yH0L � 0, y¢¢H0L � 0, yHLL � D<, yHxL, xDDD;

Since the output of solRiser is very large, only a short form is presented.

In[20]:= Short@solRiser, 11D
Out[20]//Short=

:yHxL Ø

- HP- L pL D
12 3

3
á5à HL p - PL3

p

Y J0
3

+ 2 3
3

á1à á1à á1à á1à

3 3
3 HL p - PL G

2

3
G
4

3
1F2

2

3
;
4

3
,
5

3
;

P3

9 p2 Y J0

I
-
2

3

2 HP- L pL3ê2
3 p Y J0

+ I 4
3

2 HP- L pL3ê2
3 p Y J0

HP- L pL2 +

p Y I 1
3

2 HP- L pL3ê2
3 p Y J0

J0 P- L p P2 +

p Há1à - á1àL á1à

p

á1à
3

+
á1à

p

Y J0
3

p

Y J0
3 ì

P- L p HP- L pL2 G
2

3
1F2

2

3
;
4

3
,
5

3
;
HP- L pL3
9 p2 Y J0

I
-
4

3

2 HP- L pL3ê2
3 p Y J0

+ I 2
3

2 HP- L pL3ê2
3 p Y J0

HP- L pL2 +

p Y I
-
1

3

2 HP- L pL3ê2
3 p Y J0

J0 P- L p -
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á1à

Já1àá1à

á1à
N2ê3

- HL p - PL á3à

- I
-
4

3

2 Há1àL3ê2
3 p Y J0

+ I 2
3

2á1à

3á3à
á1à -

pá2à á1à á1à á1à á1à >

The  same  symbolic  formulas  in  Section  1.2.1  for  bending  moment  and  stresses
along a riser are used for deriving appropriate symbolic solutions.

In[21]:= M1,r = SimplifyBY J0 �
2 HyHxL ê. solRiserL

�x�x
F; s1,r = SimplifyB

M1,r R

J0
F;

As a result  of  this  section, a  full  set  of  symbolic formulas for the space line of a
riser being pulled, its moment, and stresses has been derived. 

· 2.2. Graphical Solutions for a Working Riser

Let us consider a numerical simulation for the static configuration of a space line
of  a  working  riser,  when  L = 300 meters  is  the  sea  depth.  Displacements  of  a
drillship from the point of an oil  well  are changed from -15 to 15 meters  sym-
metrically. Two configurations of the riser are discussed in detail. These config-
urations depend on the quantity of a P-force of tension.

First,  we  consider  the  problem  of  studying  static  lines  of  a  riser  being  pulled
when P < L p,  or in other words, when the force of tension is less than the total
weight of the riser. 

The following code presents graphics of the bending riser while working.

In[22]:= parameters = 9p Æ 727, LÆ 300, Y Æ 2.1 1011, J0 Æ 0.0031=;
BHx_L =

TableAyHxL ê. solRiser ê. parameters ê. P Æ 1.5 105 ê. D Æ i 5, 8i, -3, 3, 2<E;
grRiser = TableBParametricPlotB8BHxLPiT, x - 300<, 8x, 0, 300<,

PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic, PlotStyleÆ

8Thickness@0.01D, RGBColor@0, 0, 1D<, AspectRatioÆ 2

1.5
F, 8i, 1, 4<F;

grRiserBending15 = Show@grRiser, FrameLabelÆ
8"Bending of a Riser HmL", "Sea Depth HmL"<D;
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Bending stress is accounted for by the following:

In[26]:= s1,rHx_L =
TableAs1,r ê. parameters ê. P Æ 1.5 105 ê. D Æ i 5 ê. R Æ .3, 8i, -3, 3, 2<E;

grRiserBendingStress = TableBParametricPlotB: s1,rHxLPiT
107

, x - 300>,
8x, 0.1, 300<, PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic,
PlotStyleÆ 8Thickness@0.01D, RGBColor@0, 0, 1D<,
AspectRatioÆ

2

1.5
F, 8i, 1, 4<F;

This code allows us to plot graphics of the stresses along a riser:

In[28]:= grBendingStressRiser15 = Show@grRiserBendingStress,
FrameLabelÆ 8"Stresses H10 MPaL,\n PÆ150 kN", "Sea Depth HmL"<D;

Other simulations of the deformation and stresses of the riser are in accordance
with  an  increase  in  the  tension  load  imposed  on  the  riser.  Some  simulation
results are presented later. This case corresponds to the relation P > L p.

Space lines of a working riser are defined by these operators:

In[29]:= BHx_L =
TableAyHxL ê. solRiser ê. parameters ê. P Æ 2.8 105 ê. D Æ i 5, 8i, -3, 3, 2<E;

grRiser = TableBParametricPlotB8BHxLPiT, x - 300<, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic, PlotStyleÆ

8Thickness@0.01D, RGBColor@0, 0, 1D<, AspectRatioÆ 2

1.5
F, 8i, 1, 4<F;

In[31]:= grRiserBending28 =
Show@grRiser, FrameLabelÆ 8"Bending of a Riser HmL", "Sea Depth HmL"<D;

Then we consider distributions of the bending moment and stresses along a riser.
For  example,  the  corresponding  code  allows  us  to  get  visualizations  of  all  the
necessary parameters.

Ë For bending moments

In[32]:= �rHx_L = TableAM1,r ê. solRiser ê. parameters ê. P Æ 2.8 105 ê. D Æ i 5,

8i, -3, 3, 2<E;
grRiserMomentBending=

TableBParametricPlotB:�rHxLPiT
106

, x - 300>, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic,
PlotStyleÆ 8Thickness@0.01D, RGBColor@0, 0, 1D<,
AspectRatioÆ

2

1.5
F, 8i, 1, 4<F;
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Ë For plotting graphics of moments

In[34]:= grMomentBendingRiser28=
Show@grRiserMomentBending, FrameLabelÆ

8"Bending Moment of a Riser\n HMNmL", "Sea Depth HmL"<D;
Ë For bending stresses

In[35]:= s1,rHx_L = TableA
s1,r ê. solRiser ê. parameters ê. P Æ 2.8 105 ê. D Æ i 5 ê. R Æ .3,

8i, -3, 3, 2<E;
grRiserBendingStress = TableB

ParametricPlotB: s1,rHxLPiT
108

, x - 300>, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic,
PlotStyleÆ 8Thickness@0.01D, RGBColor@0, 0, 1D<,
AspectRatioÆ

2

1.5
F, 8i, 1, 4<F;

Ë For plotting graphics of bending stresses

In[37]:= grBendingStressRiser28 = Show@grRiserBendingStress, FrameLabelÆ
8"Stresses H100 MPaL,\n PÆ280 kN", "Sea Depth HmL"<D;

A  new  space  configuration  for  the  riser  is  presented  graphically.  This  graphics
array shows a typical configuration for distributions of the bending stresses along
a working riser:

In[38]:= Show@GraphicsGrid@88grRiserBending15, grBendingStressRiser15<,
8grRiserBending28, grBendingStressRiser28<<, SpacingsÆ Scaled@0.1DDD
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Obviously,  increasing  the  P-tension  load  acting  on  a  bending  riser  radically
changes its shape, as well as the shape of distributions of bending stresses along a
riser being pulled. 

As  a  practical  result,  we  obtain  the  actual  dimensions  when  the  calculated
bending  stresses  of  a  riser  are  increased  by  more  than 10  times.  But  the  tensile
strength conditions for the riser are satisfied. 

‡ 3. Working Phase Part 2: Horizontal Load

· 3.1. Bending under the Tension and Horizontal Forces: Symbolic 
Solution

Another  boundary  problem  arises  when  you  want  to  find  the  space  line  of  a
working riser if additional horizontal force acts on the upper end.

In  the  simplest  case,  a  horizontal  force  is  a  force  of  interaction  between  a  riser
and an offshore rig, from a mechanical point of view.

Then, a static equation of the riser space configuration and boundary conditions,
corresponding to the spherical  hinge at  the sea bottom and the kinematic angle
at the surface, is given as:

(9)
Y J0

„2 u

„ x2
-‡

x

L

pHhHzL - uL „ z + P HD - uL = QHL - xL;
yH0L = 0, y�H0L = 0, y£HLL = q,

where QHL - xL is a moment of horizontal load.

Obviously, the boundary conditions for equation (9) are the same as earlier.

The  integro-differential  equation  of  boundary  problem (9)  is  written  in  Mathe-
matica as

In[39]:= eq@u_D := P HD - uL -‡
x

L

p HhHzL - uL ‚ z + Y
‚2u

‚x2
J0 � Q HL- xL; u = yHxL; eqHuL

Out[39]= -‡
x

L

p HhHzL - yHxLL „ z + P HD - yHxLL + Y J0 y
££HxL � Q HL - xL

As in the previous derivation, differentiating the output with respect to x leads to
the differential equation for the bending of a riser:

In[40]:= eq1 = SimplifyB�eqHuL
�x

ê. hHxL Æ yHxLF

Out[40]= Q+ HL p - x p - PL y£HxL + Y J0 y
H3LHxL � 0

which is a well-known nonhomogeneous Airy differential equation [2]. Unfortu-
nately,  Mathematica  does  not  provide  a  direct  symbolic  solution  for  boundary
problem (9),  but,  as  shown later,  can  find  a  general  solution  for  the  differential
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equation  in  question.  So  new  possibilities  appear  necessary  for  symbolically
solving equation (9) by other means. 

Boundary problem (9) will be solved by using the general solution of the derived
differential  equation.  So  let  us  find  a  general  solution  for  the  Airy  differential
equation.

According  to  the  main  aim  of  this  article,  a  general  symbolic  solution  of  the
nonhomogeneous differential equation is derived by the following code.

In[41]:= SetOptions@Integrate, GenerateConditionsÆ FalseD;
solRiser = Simplify@Flatten@DSolve@eq1, yHxL, xDDD;
Simplify::time :

Time spent on a transformation exceeded 300 seconds, and the transformation

was aborted. Increasing the value of TimeConstraint

option may improve the result of simplification. �

In[43]:= solRiser

Out[43]= :yHxL Ø c3 +‡
1

x

3
6

pQ 3 Ai

H-L p +K@1D p + PL p

Y J0
3

p
+

3 Bi

H-L p +K@1D p + PL p

Y J0
3

p
G
2

3

2

1F2
2

3
;
4

3
,
5

3
;
H-L p +K@1D p + PL3

9 p2 Y J0
H-L p +K@1D p + PL2 +

3 Y G
5

3
9 p2 Ai

H-L p +K@1D p + PL p

Y J0
3

p
c1 +

Bi

H-L p +K@1D p + PL p

Y J0
3

p
c2 G

2

3
G
4

3
-
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3
3

pQ 3 Ai

H-L p +K@1D p + PL p

Y J0
3

p
-

Bi

H-L p +K@1D p + PL p

Y J0
3

p
G
1

3
1F2

1

3
;
2

3
,
4

3
;

H-L p +K@1D p + PL3
9 p2 Y J0

HL p -K@1D p - PL p

Y J0

2ê3
J0 ì

27 p2 Y G
2

3
G
4

3
G
5

3
J0  „K@1D>

A convenient  way  to  solve  boundary  problem (9)  is  to  convert  the  output  from
solRiser  into  input  and  change  the  symbolic  integration  Ÿz

xH…L  into  numerical

integration as follows.

In[44]:= Off@NIntegrate::"nlim"D
In[45]:= y Hx_L = c3 +NIntegrateB

1

27 p2 Y GJ 2
3
N GJ 4

3
N GJ 5

3
N J0

3
6

pQ 3 Ai

Hz p - L p + PL p

Y J0
3

p
+

3 Bi

Hz p - L p + PL p

Y J0
3

p
G
2

3

2

1F2
2

3
;
4

3
,
5

3
;
Hz p - L p + PL3
9 p2 Y J0

Hz p - L p + PL2 +

3 Y G 
5

3
9 Ai

Hz p - L p + PL p

Y J0
3

p
c1 +
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Bi

Hz p - L p + PL p

Y J0
3

p
c2 G 

2

3
G 
4

3
p2 +

3
3 Hz p - L p + PL pQ 3 Ai

Hz p - L p + PL p

Y J0
3

p
-

Bi

Hz p - L p + PL p

Y J0
3

p
G 
1

3

1F2
1

3
;
2

3
,
4

3
;
Hz p - L p + PL3
9 p2 Y J0

p

Y J0

2ê3
J0 , 8z, 0, x<F;

The  solution  of  the  function  for  bending  a  riser  with  boundary  condition  (9)
leads us to the following system of equations for finding the unknown constants
8c1, c2, c3<:
In[46]:= eq3 = yH0L � 0;

In[47]:= eq4 = SimplifyB�2 yHxL
�x�x

ê. x Æ 0F � 0;

In[48]:= eq5 = SimplifyB� yHxL
�x

ê. x Æ LF � q;

Arbitrary constants according to equation (9) are found by

In[49]:= sol2 = Solve@8eq3, eq4, eq5<, 8c1, c2, c3<D;
so  that  a  new  symbolic  function  is  presented  as  a  new  form of  the  solution  for
boundary problem (9).

In[50]:= lHx_L = Flatten@yHxL ê. sol2D;
The formulas for the bending moment and stresses are the same as in Section 1. 

In[51]:= M1,r = SimplifyBY J0 �2 lHxL
�x�x

F; s1,r = SimplifyBM1,r R

J0
F;

We now have a  set  of  symbolic  formulas  presenting a symbolic solution for the
nonhomogeneous Airy boundary problem.
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· 3.2. Numerical Study of Symbolic Solutions

Finally,  let  us  consider  a  numerical  study  of  the  symbolic  solutions  for  equa-
tion (9).

The following code presents solutions for:

Ë Plotting the family of solutions for the riser space line

In[52]:= Off@ParametricPlot::"pptr"D
In[53]:= parameters =

9p Æ 727, LÆ 300, Y Æ 2.1 1011, J0 Æ 0.0031, QÆ 103, q Æ i .05=;
In[54]:= BHx_L = FlattenATableAlHxL ê. parameters ê. P Æ 1.8 105, 8i, -3, 3, 2<EE;

grRiser = TableBParametricPlotBChop@8BHxLPiT, x - 300<D, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic,
PlotStyleÆ 8Thickness@0.01D, RGBColor@0, 0, 1D<,
AspectRatioÆ

2

1.5
F, 8i, 1, 4<F;

Ë Graphics of the elastic underwater pipeline of a riser

In[56]:= grRiserBending18 = Show@grRiser,
FrameLabelÆ 8"Bending of a Riser HmL\n PÆ180 kN, QÆ1 kN",

"Sea Depth HmL"<D;
Bending stress is accounted for by

In[57]:= s1,rHx_L = FlattenA
TableAs1,r ê. parameters ê. P Æ 1.8 105 ê. q Æ i .05 ê. R Æ .3, 8i, -3, 3, 2<EE;

grRiserBendingStress = TableBParametricPlotB: s1,rHxLPiT
108

, x - 300>, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic, PlotStyleÆ

8Thickness@0.01D, RGBColor@0, 0, 1D<, AspectRatioÆ 2

1.5
F, 8i, 1, 4<F;

and graphics of the stresses are presented with

In[59]:= grBendingStressRiser18 = Show@grRiserBendingStress,
FrameLabelÆ 8"Stresses\n H100 MPaL", "Sea Depth HmL"<D;

Now we consider changes in the space configuration of the elastic line of a riser
if increases in the tension are taken into consideration.

Simulation of the static lines of a riser are presented by

In[60]:= parameters = 9p Æ 727, LÆ 300, Y Æ 2.1 1011, J0 Æ 0.0031, QÆ 104, q Æ i .05=;
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In[61]:= BHx_L = FlattenATableAlHxL ê. parameters ê. P Æ 2.8 105, 8i, -3, 3, 2<EE;
grRiser = TableBParametricPlotB8BHxLPiT, x - 300<, 8x, 0, 300<,

PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic, PlotStyleÆ

8Thickness@0.01D, RGBColor@0, 0, 1D<, AspectRatioÆ 2

1.5
F, 8i, 1, 4<F;

Here new static lines of a riser are obtained.

In[63]:= grRiserBending28 = Show@grRiser, FrameLabelÆ
8"Bending of a Riser HmL\n PÆ280 kN, QÆ10 kN", "Sea Depth HmL"<D;

Bending stresses are taken into account by

In[64]:= s1,rHx_L =
FlattenATableAs1,r ê. parameters ê. P Æ 2.8 105 ê. R Æ .3, 8i, -3, 3, 2<EE;

grRiserBendingStress = TableBParametricPlotB: s1,rHxLPiT
108

, x - 300>, 8x, 0, 300<,
PlotRangeÆ All, FrameÆ True, GridLinesÆ Automatic, PlotStyleÆ

8Thickness@0.01D, RGBColor@0, 0, 1D<, AspectRatioÆ 2

1.5
F, 8i, 1, 4<F;

grBendingStressRiser28 = Show@grRiserBendingStress,
FrameLabelÆ 8"Stresses\n H100 MPaL", "Sea Depth HmL"<D;

The following graphics show the stresses along a riser.

In[67]:= Show@GraphicsGrid@88grRiserBending18, grBendingStressRiser18<,
8grRiserBending28, grBendingStressRiser28<<, SpacingsÆ Scaled@0.1DDD
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From the  graphics,  we  can conclude that  horizontal  forces  move the  upper  end
of  a  riser  along  a  distance  on  the  sea  surface  until  equilibrium  of  the  riser  and
offshore rig occurs. Displacement of the drillship from the point of an oil well is
(max) about 25 meters in these cases. 

Here we note that the response of a riser to a horizontal load differs significantly
from that of the tension on one. The difference between the horizontal load and
tension force will be much greater if the initial values of the kinematic angle q are
chosen to be very close to the ultimate angle of the rolling of the drillship. 

With  these  results,  the  tensile  strength  conditions  for  a  riser  are  satisfied  [1,  4]
but  the  pulling  force  does  not  significantly  change  the  shape  of  a  bending  riser
under horizontal force, as shown in Section 2. 

‡ Conclusion

In  this  article,  several  themes  are  discussed  in  detail  dealing  with  traditional
course  material  for  the  education  of  engineers  under  the  general  headline
of “Continuum Mechanics for Offshore Exploration.”

Engineer  and  bachelor  educational  programs  cover  these  courses  at  Murmansk
State  Technical  University  (MSTU).  Computer  techniques  based  on  Mathe-
matica  have  been  used  at  the  University  as  well  as  in  other  computer  algebra
approaches. 

Traditional  courses  on  elasticity  theory  are  used  to  introduce  new  themes  that
deal with symbolic computation for engineers.

Initial  efforts  made  by  teachers  of  the  Continuum  Mechanics  and  Offshore
Exploration Department  resulted in  introducing Mathematica  as  a  teacher’s  tool
at  the  start  of  the  bachelor's  program.  Besides  the  new  computer  algebra
techniques  being  a  valuable  tool  in  themselves,  some  new  nontrivial  results  in
several  branches  of  mechanics  for  offshore  technology  have  been  obtained  with
Mathematica. 

From our point of view, symbolic techniques like those presented occupy a wor-
thy place in the training course on continuum mechanics in the near future.
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