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Evaluation of Gaussian 
Molecular Integrals
I. Overlap Integrals
Minhhuy Hô 
Julio Manuel Hernández-Pérez

This article discusses the evaluation of molecular overlap 
integrals for Gaussian-type functions with arbitrary angular 
dependence. As an example, we calculate the overlap matrix for 
the water molecule in the STO-3G basis set.

‡ Introduction
Computational  quantum  chemistry  makes  extensive  use  of  various  integrals  (and  their
derivatives) of the general form [1, 2, 3]

(1)‡
-¶

¶

caHrL O cbHrL dr,

where caHrL is an unnormalized Cartesian Gaussian function centered at A = 9Ax, Ay, Az=:

(2)caHr; a, A, aL = Hx - AxL
ax Iy- AyM

ay Hz- AzL
az e-a r-A 2 ,

where A is normally taken at the nucleus, a is the orbital exponent, and the polynomial rep-
resents  the  angular  part,  in  that  the  sum  of  the  Cartesian  angular  momenta
ax + ay + az = 0, 1, 2, …  corresponds to functions of type s, p, d, f, …. When the operator
O is 1, one simply has the overlap/density integral; otherwise it can be the energy operator
for  kinetic  energy  - 1

2 !2,  electron-nuclear  attraction  r-R -1,  or  electron-electron

repulsion ri - r j -1  (which would involve double integrals).  Other  molecular  properties
involving external fields (response functions) or transition moments can also be computed
from integrals of this form. 
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· Gaussian-Type Functions

Gaussian-type functions are not the most natural  choice for expanding the wavefunction.
Slater-type  functions,  where  the  exponent  is  -a r-A  instead,  can  describe  atomic
systems  more  realistically.  However,  complications  quickly  arise  in  molecular  calcula-
tions,  which  has  led  to  the  use  of  Gaussian  functions  in  the  overwhelming  majority  of
current  computational  programs.  Gaussian  functions  possess  several  desirable  computa-
tional  properties  [4,  5,  6].  (Much  credit  is  due  to  S.  F.  Boys  for  the  introduction  of  the
Cartesian Gaussian function into computational chemistry and its early development in a
series of 12 papers under the general title “Electronic Wavefunctions,” the first being [5].)
A given Slater function can be approximated by a linear combination of several Gaussians.

The first useful property is that the product of two Gaussian functions located at A and B
is another Gaussian located at a point P somewhere between A and B. (The proof of this
can be found in [4].) The product of two Gaussians caHr; a, A, aL and cbHr; b, B, bL is:

(3)

caHr; a, A, aL µ cbHr; b, B, bL =
Hx - AxL

ax Iy- AyM
ay Hz- AzL

az e-a r-A 2
µ Hx - BxL

bx

Iy- ByM
by Hz- BzL

bz e-b r-B 2
= EAB e-Ha+bL r-P 2 ,

with EAB = e-
ab

a+b
A-B

2
 and P =

aA+bB
a+b

.

A second desirable property is that a derivative of a Gaussian can be expressed as a sum
of Gaussians of lower and higher Cartesian angular values.

‡ Overlap Integrals

The  simplest  molecular  integral  is  the  overlap  integral  S = Ÿ-¶
¶ caHr; a, A, aL µ

cbHr; b, B, bL dr. We first separate the integral into its orthogonal components: 

S = EAB SxHax, bxL SyIay, byM SzHaz, bzL,

where the notation SxHax, bxL expresses its functional dependence on the Cartesian angular
components. The x component, for instance, is:

(4)SxHax, bxL = ‡
-¶

¶

Hx - AxL
ax Hx - BxL

bx e-Ha+bL Hx-PxL2 dx.
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Using a binomial expansion in the polynomial part,

Hx - AxL
ax Hx - BxL

bx = ‚
ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hx - PxL
ix+ jx HPx - AxL

ax-ix HPx - BxL
bx- jx

yields:

(5)
SxHax, bxL = ‚

ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

HPx - AxL
ax-ix

HPx - BxL
bx- jx ‡

-¶

¶

Hx - PxL
ix+ jx e-Ha+bL Hx-PxL2 dx.

Odd  values  of  ix + jx  result  in  odd  functions  whose  integrals  vanish.  For  even  values  of

ix + jx, a solution [7] for the integrals is given by J p
a+b

N
1ê2 Hix+ jx-1L !!

@2 Ha+bLDHix+ jxLê2
, and, in those cases:

(6)

SxHax, bxL =

p

a + b
‚
ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hix + jx - 1L !!

@2 Ha+ bLDHix+ jxLê2
HPx - AxL

ax-ix HPx - BxL
bx- jx .

We keep in mind that for the summations only terms of even values of ix + jx  survive. We
have thus obtained an expression to evaluate the overlap of two Gaussians with arbitrary
Cartesian angular factors.  Equation (6) should be sufficient for programming or even for
manual evaluation with small Cartesian angular values. One can, however, further reduce
the number of operations by using a recurrence relation, one of the most useful techniques
of computational chemistry. Recurrence relations let us efficiently calculate molecular inte-
grations  of  higher  angular  values  using  previously  obtained  results  with  lower  angular
values. Recurrence relations are used in most computational chemistry programs and their
application to other molecular integrations will be shown here.

· Recurrence Relations

The  derivation  of  the  following  relations  involves  straightforward  algebraic  manipu-
lations,  but  is  rather  lengthy.  Its  omission  does  not  impede  our  understanding  of  the
recurrence  relation,  but  helps  maintain  a  reasonable  continuity  in  our  discussion.
Interested readers can find a detailed derivation in the Appendix.
We start by defining the function

sxHax, bxL =
a+ b

p
SxHax, bxL,
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where  we  have  removed  the  factor  p ê Ha+ bL  from  SxHax, bxL  in  (6).  If  we  take  the
derivative  of  sxHax, bxL with  respect  to  the  nuclear  coordinate  Ax  using  the  definition  of
SxHax, bxL in equation (4),

(7)
¶∂

¶∂Ax
sxHax, bxL =

a+ b

p
‡
-¶

¶

Hx - BxL
bx ¶∂

¶∂Ax
Hx - AxL

ax e-Ha+bL Hx-PxL2 dx =

-ax sxHax - 1, bxL+ 2 a sxHax + 1, bxL+ 2 aHAx - PxL sxHax, bxL,

and combining the result with the same derivative of sxHax, bxL, but using the definition of
SxHax, bxL in equation (6) instead,

(8)

¶∂

¶∂Ax
sxHax, bxL =

‚
ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hix + jx - 1L !!

@2 Ha+ bLDHix+ jxLê2

¶∂

¶∂Ax
AHPx - AxL

ax-ix HPx - BxL
bx- jxE =

ax
a

a+ b
+ 1 sxHax - 1, bxL+ bx

a

a+ b
sxHax, bx - 1L,

we obtain

(9)
sx Hax + 1, bxL =

-HAx - PxL sxHax, bxL +
ax

2 Ha+ bL
sxHax - 1, bxL +

bx
2 Ha+ bL

sx Hax, bx - 1L.

The same approach in which we combine the derivatives of (4) and (6) with respect to the
nuclear coordinate Bx gives

(10)
sxHax, bx + 1L =

-HBx - PxL sxHax, bxL +
bx

2 Ha+ bL
sxHax, bx - 1L +

ax
2 Ha+ bL

sx Hax - 1, bxL.

For bx = 0, we have the index recursion relation

(11)sx Hax +1, 0L = -HAx - PxL sxHax, 0L+
ax

2 Ha+ bL
sxHax - 1, 0L,

and combining equations (7) and (8) yields the transfer equation

(12)sx Hax, bx + 1L = sxHax + 1, bxL + HAx - BxL sx Hax, bxL .

Starting  with  the  initial  values  sxH0, 0L = 1  and  sxH1, 0L = -HAx - PxL,  the  recurrence
relation  and  the  transfer  equation,  we  can  build  up  the  overlap  of  functions  of  higher
Cartesian  angular  values  from  lower  ones.  This  is  particularly  useful  for  contracted
Gaussian basis primitives with different functions sharing the same exponent.
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· Implementation

The  function  Ov  evaluates  the  overlap  integral  of  two  Gaussian  functions;  here  alpha,
beta, RA, RB, LA, and LB are a, b, A, B, a, and b as defined earlier.

Ov@alpha_, beta_, RA_, RB_, LA_, LB_D :=
Module@8EAB, Overlap<,
Do@
H* Initial Conditions *L

s@i_, 0, 0D := 1;
s@i_, 1, 0D :=
-HRA@@iDD - HHalpha * RA@@iDD + beta * RB@@iDDL ê

Halpha + betaLLL;

H* Recurrence Index *L

s@i_, a_, 0D :=
-HRA@@iDD - Halpha * RA@@iDD + beta * RB@@iDDL ê

Halpha + betaLL * s@i, a - 1, 0D +
HHa - 1L ê H2 * Halpha + betaLLL * s@i, a - 2, 0D;

H* Transfer Equation *L

s@i_, a_, b_D :=
s@i, a + 1, b - 1D + HRA@@iDD - RB@@iDDL * s@i, a, b - 1D

, 8i, 1, 3<D;

EAB = Exp@-Halpha * beta ê Halpha + betaLL *
HRA - RBL.HRA - RBLD;

Overlap = EAB * HPi ê Halpha + betaLL^H3 ê 2L *
s@1, LA@@1DD, LB@@1DDD *
s@2, LA@@2DD, LB@@2DDD *
s@3, LA@@3DD, LB@@3DDD

D;
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‡ Examples
The  published  contracted  Gaussian  basis  sets  (see,  for  example,  [8])  are  usually  not
normalized; in our first example, we will calculate the normalization factor of the s and p
Cartesian  Gaussian  functions  that  we  will  need  later  on.  The  normalization  factor  is
simply  the  inverse  square  root  of  the  overlap  integral.  Here  we  calculate  the  overlap
between two s functions with the Cartesian angular vector a = 80, 0, 0<,

Ss = EAAK
p

a + a
O
3ê2

sxH0, 0L syH0, 0L szH0, 0L = K
p

2 a
O
3ê2

,

and observe that  EAA = sxH0, 0L = syH0, 0L = szH0, 0L = 1.  The normalization factor  for  1s

functions  is  1 ë Ss = H2 a ê pL3ê4.  Similarly,  the  overlap  between  two  px  functions
(a = 81, 0, 0<) is

Spx = EAAK
p

a + a
O
3ê2

sxH1, 1L syH0, 0L szH0, 0L = K
p

a + a
O
3ê2

sxH2, 0L = K
p

a + a
O
3ê2 1

4 a
,

where we have analogously used the recurrence relations to obtain sxH2, 0L and afterward,
sxH1, 1L. Similar results are obtained for Spy  and Spz . The normalization factor for the p func-

tion is then I128 a5 ë p3M
1ê4. These results are special cases of the more general formula of

the normalization factor

NHa, aL =
2 a

p

3ê4 H4 aLHax+ay+azLê2

IH2 ax - 1L!! I2 ay - 1M!! H2 ax - 1L!!M1ê2
,

and we note that this value depends only on the orbital exponent and the Cartesian angular
values. 

NormCoeff@a_, 8ax_, ay_, az_<D :=

2 a

p

3ê4 H4 aLHax+ay+azLê2

HH2 ax - 1L!! H2 ay - 1L!! H2 az - 1L!!L1ê2
;

In  the  second  example,  we  will  calculate  the  overlap  matrix  of  the  water  molecule
(rOH = 1.86942 bohr,  ­∡HOH = 100.0269 °,  geometry  optimized  at  the  HF/STO-3G  level).
The molecule lies in the y-z plane with Cartesian coordinates in atomic units.

R = 880., 1.43233673, -0.96104039<,
80., -1.43233673, -0.96104039<,
80., 0., 0.24026010<<;
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In  the  STO-3G  basis  set,  each  atomic  orbital  is  described  by  a  sum  of  three  Gaussians;
here are their primitive contraction coefficients and orbital exponents (taken from [8]).

PrimCoeff = 880.1543289673, 0.5353281423, 0.4446345422<,
80.1543289673, 0.5353281423, 0.4446345422<,
80.1543289673, 0.5353281423, 0.4446345422<,
8-0.09996722919, 0.3995128261, 0.7001154689<,
80.155916275, 0.6076837186, 0.3919573931<,
80.155916275, 0.6076837186, 0.3919573931<,
80.155916275, 0.6076837186, 0.3919573931<<;

OrbCoeff = 883.425250914, 0.6239137298, 0.168855404<,
83.425250914, 0.6239137298, 0.168855404< ,
8130.7093214, 23.80886605, 6.443608313<,
85.033151319, 1.169596125, 0.38038896< ,
85.033151319, 1.169596125, 0.38038896<,
85.033151319, 1.169596125, 0.38038896<,
85.033151319, 1.169596125, 0.38038896<<;

Here are  the  centers  and Cartesian angular  values  of  the  orbitals,  in  the  following order:
H1s, H2s, O1s, O2s, O2px , O2py , and O2pz . 

FCenter = 8R@@1DD, R@@2DD, R@@3DD, R@@3DD, R@@3DD,
R@@3DD, R@@3DD<;

CartAng = 880, 0, 0<, 80, 0, 0<, 80, 0, 0<, 80, 0, 0<,
81, 0, 0<, 80, 1, 0<, 80, 0, 1<<;

For instance, the s atomic orbital of the hydrogen atom 1 is described as

(13)

f1HrL = ‚
i=1

3

NHa1 i, aLµ c1 i µ c1 iHr; a1 i, RH, aL =

1.7944418µ 0.1543289673µ e-3.425250914 r-RH 2
+

0.50032649µ 0.5353281423µ e-0.6239137298 r-RH 2
+

0.18773546µ 0.4446345422µ e-0.168855404 r-RH 2 .

Similarly, the pz orbital of the oxygen atom is

(14)
f7HrL = 10.745833µ 0.155916275µ Hz- 0.24026010Lµ e-5.033151319 r-RO 2

+

1.7337441µ 0.6076837186µ Hz- 0.24026010Lµ e-1.169596125 r-RO 2
+

0.42581893µ 0.391957393µ Hz- 0.24026010Lµ e-0.38038896 r-RO 2 .
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The overlap integral between the two orbitals expands to nine integrals involving the prim-
itives. Using the function Ov, for example, the overlap integral between the first two prim-
itives of equations (13) and (14) is

‡
-¶

¶

c11HrLµ c71HrL dr =

‡
-¶

¶

‡
-¶

¶

‡
-¶

¶

e-3.425250914 r-RH 2
µ Hz- 0.24026010Lµ e-5.033151319 r-RO 2 dx dy dz.

Ov@OrbCoeff@@1, 1DD, OrbCoeff@@7, 1DD,
FCenter@@1DD, FCenter@@7DD, CartAng@@1DD, CartAng@@7DDD

-0.0000888019

And the overlap between f1HrL and f7HrL is

S17 = ‡
-¶

¶

f1HrLµ f7HrL dr.

Sum@
NormCoeff@OrbCoeff@@1, iDD, CartAng@@1DDD *
NormCoeff@OrbCoeff@@7, jDD, CartAng@@7DDD *
PrimCoeff@@1, iDD *
PrimCoeff@@7, jDD *
Ov@
OrbCoeff@@1, iDD, OrbCoeff@@7, jDD,
FCenter@@1DD, FCenter@@7DD,
CartAng@@1DD, CartAng@@7DD

D

, 8i, 3<, 8j, 3<D

-0.245538

The overlap matrix S for the entire water molecule in the STO-3G basis set can be calcu-
lated in a similar manner.

8 Minhhuy Hô and Julio Manuel Hernández-Pérez

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.



Table@Sum@
NormCoeff@OrbCoeff@@p, iDD, CartAng@@pDDD *
NormCoeff@OrbCoeff@@q, jDD, CartAng@@qDDD *
PrimCoeff@@p, iDD *
PrimCoeff@@q, jDD *
Ov@
OrbCoeff@@p, iDD, OrbCoeff@@q, jDD,
FCenter@@pDD, FCenter@@qDD,
CartAng@@pDD, CartAng@@qDD

D

, 8i, 3<, 8j, 3<D, 8p, 7<, 8q, 7<D êê MatrixForm êê

Chop

1. 0.250987 0.0500166 0.454011 0 0.292761 -0.245538
0.250987 1. 0.0500166 0.454011 0 -0.292761 -0.245538
0.0500166 0.0500166 1. 0.236704 0 0 0
0.454011 0.454011 0.236704 1. 0 0 0

0 0 0 0 1. 0 0
0.292761 -0.292761 0 0 0 1. 0
-0.245538 -0.245538 0 0 0 0 1.

Since the overlap matrix is symmetrical, we need to calculate only the elements above the
main diagonal. The basis functions are normalized, as indicated by the unit diagonal ele-
ments. We note that S15  equals zero. This is the overlap between the 1s orbital of the first
hydrogen atom and the 2px  of the oxygen atom. The molecule lies in the y-z plane, so this
overlap vanishes due to symmetry. Similar cases occur in the overlaps between the s and p
orbitals  of  O  (S35, S36, S37, …)  and  among  the  2p  orbitals  (S56, S57, S67),  etc.  The
strongest overlaps are those between the 1s hydrogen orbitals and the 2s oxygen orbital.
We next plot the atomic-orbital overlap between 1s of H1 and 2pz of O, 

‚
m=1

3

‚
n=1

3

c1mc7 n cmHr; am, RH, amLµ cnHr; bn, RO, bnL,

in the y-z plane, superimposing the molecule structure.

spz = Sum@PrimCoeff@@1, iDD PrimCoeff@@3, jDD
Exp@-OrbCoeff@@1, iDD

H8y, z< - 8R@@1, 2DD, R@@1, 3DD<L.
H8y, z< - 8R@@1, 2DD, R@@1, 3DD<LD

Hz - R@@3, 3DDL Exp@-OrbCoeff@@1, jDD
H8y, z< - 8R@@3, 2DD, R@@3, 3DD<L.
H8y, z< - 8R@@3, 2DD, R@@3, 3DD<LD

, 8i, 3<, 8j, 3<D;

spzFig = ContourPlot@spz, 8y, -3, 3<, 8z, -3, 3<,
Contours Ø 25, PlotPoints Ø 100, PlotRange Ø AllD;
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Molecule =
Graphics@8Thickness@0.02D, Opacity@0.3D, Pink,

Line@88R@@1, 2DD, R@@1, 3DD<, 8R@@3, 2DD, R@@3, 3DD<<D,
Line@88R@@2, 2DD, R@@2, 3DD<, 8R@@3, 2DD, R@@3, 3DD<<D<D;

Show@spzFig, MoleculeD

We observe a strong distortion of the positive (lower) lobe of the 2pz  function toward the
hydrogen  atom.  The  negative  lobe  shows  less  deformation,  whereas  the  node  remains
precisely at the atomic position. Note that this is simply the orbital overlap between nonin-
teracting atoms, such as in the case of the “promolecule.”
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‡ Conclusion
We  have  provided  an  introduction  to  the  evaluation  of  molecular  integrals  involving
Gaussian-type  basis  functions  both  analytically  and  by  use  of  recurrence  relations.  The
results  are  general  and  relatively  straightforward;  the  simple  algorithm makes  it  suitable
for  implementation  in  a  number  of  programming  languages.  Together  with  the  kinetic,
nuclear-electron  attraction,  and  electron-electron  repulsion  energies,  this  is  the  first  step
toward the calculation of molecular energies and electronic properties.

‡ Appendix
Here we provide the derivation of equations (7) and (8). Differentiate sxHax, bxL using equa-
tion (5) with respect to Ax:

¶∂

¶∂Ax
sxHax, bxL =

a+ b

p
‡
-¶

¶

Hx - BxL
bx

¶∂

¶∂Ax
Hx - AxL

ax e-Ha+bL Hx-PxL2 dx.

Consider the derivative term

¶∂

¶∂Ax
Hx - AxL

ax e-Ha+bL Hx-PxL2 =

e-Ha+bL Hx-PxL2
¶∂

¶∂Ax
Hx - AxL

ax + Hx - AxL
ax e-Ha+bL Hx-PxL2

¶∂

¶∂Ax
A-Ha+ bL Hx - PxL

2E;

the first term is simply

-HaxL Hx - AxL
ax-1 e-Ha+bL Hx-PxL2 ,

and, using the chain rule, the derivative of the second term is

-Ha+ bL
¶∂

¶∂Ax
AHx - PxL

2E =

Ha+ bL 2 Hx - PxL
¶∂

¶∂Ax

a Ax + b Bx

a+ b
= Ha+ bL 2 Hx - PxL

a

a+ b
= 2 aHx - PxL,

recalling  that  Px = Ha Ax + b BxL ê Ha+ bL.  Substitute  the  results  into  the  expression  for
¶∂sxHax, bxL ê ¶∂Ax,

¶∂

¶∂Ax
sxHax, bxL =

a+ b

p
‡
-¶

¶

Hx - BxL
bxA

-HaxL Hx - AxL
ax-1 e-a+bL Hx-PxL2 + 2 aHx - PxL Hx - AxL

ax e-Ha+bL Hx-PxL2E dx.
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Writing x - Px = Hx - AxL+ HAx - PxL  in the second term inside the bracket,  after  expand-
ing we have

¶∂

¶∂Ax
sxHax, bxL = -ax

a+ b

p
‡
-¶

¶

Hx - AxL
ax-1 Hx - BxL

bx e-Ha+bL Hx-PxL2 dx +

2 aHAx - PxL
a+ b

p
‡
-¶

¶

Hx - AxL
ax Hx - BxL

bx e-Ha+bL Hx-PxL2 dx +

2 a
a+ b

p
‡
-¶

¶

Hx - AxL
ax+1 Hx - BxL

bx e-Ha+bL Hx-PxL2 dx.

Comparing the three integrals with the definitions of sxHax, bxL and SxHax, bxL we have the
desired equation (7). 
To  derive  equation  (8),  we  differentiate  sxHax, bxL  with  respect  to  Ax  using  equation  (6)
instead,

¶∂

¶∂Ax
sxHax, bxL

= ‚
ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hix + jx - 1L!!

@2 Ha+ bLDHix+ jxLê2

¶∂

¶∂Ax
AHPx - AxL

ax-ix HPx - BxL
bx- jxE

= ‚
ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hix + jx - 1L!!

@2 Ha+ bLDHix+ jxLê2
Hax - ixL HPx - AxL

ax-ix-1
a

a+ b
- 1 HPx - BxL

bx- jx +

Hbx - jxL HPx - BxL
bx- jx-1

a

a+ b
HPx - AxL

ax-ix

=
a

a+ b
- 1 ‚

ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hix + jx - 1L!!

@2 Ha+ bLDHix+ jxLê2
A

Hax - ixL HPx - AxL
ax-ix-1 HPx - BxL

bx- jxE+
a

a+ b

‚
ix=0

ax

‚
jx=0

bx
K

ax
ix
O

bx
jx

Hix + jx - 1L!!

@2 Ha+ bLDHix+ jxLê2
AHbx - jxL HPx - BxL

bx- jx-1 HPx - AxL
ax-ixE.
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We make use of the relationship

K
ax
ix
O Hax - ixL =

Hax - 1L! axHax - ixL

ix ! 1µ 2µ 3µ…µ Hax - ix - 1L Hax - ixL
= ax

ax - 1
ix

to reduce the derivative above to

¶∂

¶∂Ax
sxHax, bxL

= ax
a

a+ b
- 1

‚
ix=0

ax-1

‚
jx=0

bx ax - 1
ix

bx
jx

Hix + jx - 1L!!

@2 Ha+ bLDHix+ jxLê2
AHPx - AxL

ax-ix-1 HPx - BxL
bx- jxE+

bx
a

a+ b

‚
ix=0

ax

‚
jx=0

bx-1

K
ax
ix
O

bx - 1
jx

Hix + jx - 1L!!

@2 Ha+ bLDHix+ jxLê2
AHPx - BxL

bx- jx-1 HPx - AxL
ax-ixE

= ax
a

a+ b
- 1 sxHax - 1, bxL+ bx

a

a+ b
sxHax, bx - 1L.

This is equation (8), which is what was needed to prove.
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