
The Mathematica® Journal

Acoustic Wave
Propagator—A Split
Region Implementation
Neil Riste
Bradley McGrath
Jingbo Wang
Jie Pan

In this article we develop and implement a split region technique
that solves the time-dependent acoustic wave equation with
greatly increased efficiency. This method uses a sophisticated
Chebyshev propagation scheme in areas where there are
interfaces and medium variations, and a simple free space
propagator where the medium is homogeneous. Mathematica
provides a cohesive and interactive environment, where the
mathematical functions and visualization tools required for this
work are already built in. The interactive interface allows users
to modify the code and study specific problems with ease.

‡ The Acoustic Wave Propagator

· Theory

In an earlier paper by Pan and Wang [1], an explicit acoustic wave propagator (AWP) was
proposed to describe the time-domain evolution of mechanical waves in various media.
This method was based on a similar scheme that was originally developed by Tal-Ezer
and Kosloff in [2, 3, 4, 5, 6], who studied seismic wave propagation and a variety of gas-
phase reactive scattering and related chemical processes. The AWP method has been suc-
cessfully applied to study both the propagation of a flexural wave in a thin plate by Peng,
Pan, and Sum [7] and an acoustic wave in a room by Sun, Wang, and Pan [8] and [9].
However, this method requires significant computer resources since the AWP propagation
scheme utilizes a large set of modified Chebyshev polynomials with Bessel functions of
the first kind as the expansion coefficients.

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In this article we develop and implement a split region technique in Mathematica that uses
the sophisticated Chebyshev propagation scheme in areas where there are interfaces and
medium variations, but a simple and much more efficient free space propagator where the
medium is homogeneous.
First, we give a brief outline of the AWP and then introduce the Chebyshev propagation
scheme. This method is then implemented in Mathematica code. In a later section, the free
space propagator is defined, along with a method of integration that uses Fourier trans-
forms. Finally, the split region technique is constructed and propagation is demonstrated
across a splitting region with a boundary.
The motion of acoustic waves in air and solids can be described by a partial differential
equation known as the acoustic wave equation:

(1)
¶∂

¶∂ t
F Hx, tL = - H

`
F Hx, tL.

Integrating this with respect to time, yields a formal solution to this equation:

(2)F Hx, tL = ‰-Ht - t0L H
`

F Hx, t0L,

where x denotes the spatial coordinates collectively and t stands for time, with t0 being the

initial starting time. F is a state vector, while H
`

 is the system Hamiltonian that describes
the physical properties of the propagation and the boundary medium. In the case of a one-
dimensional duct, F describes the sound pressure pHx, tL and the particle velocity vHx, tL:

(3)F =
p Hx, tL
v Hx, tL

,

and H
`

 is of the form:

(4)H
`
=

0 r c2 ¶∂
¶∂ x

1
r

¶∂
¶∂ x 0

,

where c is the speed of sound within the medium, and r is the density of the medium.

The AWP is defined as:

(5)U
`
= ‰-Ht - t0L H

`

.
However, this exponential operator is impractical in its current form, and thus it must be
expanded as a finite polynomial. In this work we use a Chebyshev polynomial expansion.
To ensure the convergence of this expansion, the system Hamiltonian H

`
 must be

normalized:

(6)H £
`

=
H
`

lmax
,

2 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

where lmax is the maximum eigenvalue of the system operator H
`

. In the case of sound
pressure in a one-dimensional duct, this value is:

(7)lmax = K
c p

Dx
O
2
.

If we let:

(8)R = Ht - t0L lmax ,

then the AWP may be expressed as:

(9)U
`
= ‰-Ht - t0L H

`

= ‰-RH £
`

.
The next step is to make a simple, if somewhat nonintuitive, change of variables. We let:

(10)X£ = ÂX.

Then we expand the exponential operator in terms of the Chebyshev polynomials TnHX£L:

(11)‰-R X = ‰Â R X
£
= ‚

n= 0

¶

bn HRL Tn HX£L.

Using the orthogonality relationship for the Chebyshev polynomials, we find that the coef-
ficients bnHRL are:

(12)bn HRL =
cn
p

‡
-1

1 ‰Â R X
£ Tn HX£L

1 - X£2
„X£ =

cn
2 p

‡
-p

p

‰Â R cos HqL+ Â n q „q = Ân cn Jn HRL,

where c0 = 1 and cn = 2 for n > 0, and Jn is a Bessel function of the first kind. However,
there are complex numbers involved in this expansion, while the state vector and operator
are real. Hence, we define a new set of modified Chebyshev polynomials, as given by:

(13)Tn HXL = Ân Tn HÂ XL.

It can be shown that these satisfy the following recursion relation:

(14)Tn+1 HXL = -2 X Tn HXL+ Tn-1 HXL,

with T0HXL = 1 and T1HXL = -X. It is now possible for us to write the AWP, U
`

, in the
form:

(15)U
`
= ‰-Ht - t0L H

`

= ‰-RH £
`

= ‚
n= 0

¶

cn Jn HRL Tn HH £
`
L,

which only involves real-valued operations. We now obtain our state vector with an ex-
panded AWP:

(16)F Hx, tL = U
`
F Hx, t0L = ‚

n= 0

¶

cn Jn HRL Tn HH £
`
LF Hx, t0L,

Acoustic Wave Propagator—A Split Region Implementation 3

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

which appears in full as:

(17)

p Hx, tL
v Hx, tL

=

‚
n= 0

¶

cn Jn KHt - t0L lmax O Tn
1

lmax

0 r c2 ¶∂
¶∂ x

1
r

¶∂
¶∂ x 0

p Hx, t0L
v Hx, t0L

.

The benefit of this method is that the Bessel functions decay exponentially with the coeffi-
cient index n when n > R. These properties are very useful for numerical computation, as
they allow expansions of the exponential function to be accurately calculated for arbitrar-
ily large values of R (that is, arbitrarily large time steps).

· Numerical Implementation

ü Discretising the Problem

In this section we closely follow the work of Falloon and Wang [10], with the necessary
changes for the AWP. In particular, we need to handle two components representing the
sound wave, instead of just one as in the electronic wavefunction.
The first step is to create a one-dimensional grid of length L that contains n points, which
stands for our spatial dimension x.

PositionGrid@L_, n_D := TableB
-L

2
+
q L

n
, 8q, 0, n - 1<F êê N

We also a need a similar grid in k-space, as the evaluation of derivatives involves taking
the Fourier transform of the functions:

KSpaceGrid@L_, n_D := TableB
-p n

L
+
2 p q

L
, 8q, 0, n - 1<F êê N

This grid has a grid spacing of Dk = 2 p ê L, and consequently can represent a maximum
wave-number of kmax = p n ê L:

kmax@L_, n_D :=
p n

L
êê N

A norm function is defined for both the position and the k-space grids:

PositionNorm@ygrid_, L_, n_D := Plus üü HAbs@ygridDL2
L

n

KSpaceNorm@Ygrid_, L_, n_D := Plus üü HAbs@YgridDL2
2 p

L

4 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The following functions are defined to plot the pressure and velocity distributions in both
the position and k-spaces.

PositionPlot@ygrid_, L_, n_, opts___D :=
ListLinePlot@Thread@8PositionGrid@L, nD, Re@ygridD<D,
opts, PlotRange Ø AllD

KSpacePlot@Ygrid_, L_, n_, opts___D :=
ListLinePlot@Thread@8KSpaceGrid@L, nD, Re@YgridD<D,
opts, PlotRange Ø AllD

The position and k distribution functions form a Fourier transform pair and are related by
the transformations:

(18)
Y Hk, tL= 1

2 p
Ÿ-¶
¶

y Hx, tL ‰-Â k x „ x,

y Hx, tL= 1

2 p
Ÿ-¶
¶

Y Hk, tL ‰Â k x „k.

For discretised functions, such as those being used here, the Fast Fourier Transform (FFT)
algorithm may be used. The built-in Fourier functions of Mathematica utilise this algo-
rithm. The functions defined next allow us to transform distributions between the position
and k-spaces. The RotateLeft command allows us to easily shift our distributions
from the interval @0, LD to @- L ê 2, L ê 2D, in order to provide a centred transform. These dis-
tributions are normalised by the factor L ë 2 p n .

ToKSpaceGrid@ygrid_, L_, n_D :=
L

2 p n
RotateLeft@InverseFourier@RotateLeft@ygrid, n ê 2DD,

n ê 2D êê N

ToPositionGrid@Ygrid_, L_, n_D :=

2 p n

L
RotateLeft@Fourier@RotateLeft@Ygrid, n ê 2DD, n ê 2D êê

N

To test the AWP, we use Gaussian distributions for both the pressure and the velocity com-
ponents of the wave description. A Gaussian distribution is of the form:

(19)y HxL = I p s M
-
1
2 ‰J-

x 2

2 s2
N,

where its width is determined by s. This defines a Gaussian function of this form:

Gaussian@x_D := J p $sN
-
1

2 ‰
K-

x2

2 $s2
O
êê N êê Chop

The speed of sound in the medium (c) and the density of the material (r) should not
change throughout the calculation of the propagation. Other parameters that should not
change are the initial pressure pulse spread (s) and position (x0), the duct length (L), the
propagation time (time), and the numbers of grid points for the entire region (num) and the
Chebyshev region (nint). These have been defined using global variables, denoted with
the Mathematica $name notation.

Acoustic Wave Propagator—A Split Region Implementation 5

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The speed of sound in the medium (c) and the density of the material (r) should not
change throughout the calculation of the propagation. Other parameters that should not
change are the initial pressure pulse spread (s) and position (x0), the duct length (L), the
propagation time (time), and the numbers of grid points for the entire region (num) and the
Chebyshev region (nint). These have been defined using global variables, denoted with
the Mathematica $name notation.

$c = 344.0;
$r = 1.21;
$s = 1.5;
$x0 = 70;
$L = 500;
$time = 0.4;
$num = 1024;
$nint = 256;

Here we turn off some unimportant Mathematica warning messages.

Off@CompiledFunction::cfte, CompiledFunction::cfex,
CompiledFunction::cfta, CompiledFunction::cfseD

ü Defining the Propagator

Both components of the system Hamiltonian H £
`

 in the AWP apply a first-order derivative
to each component of the state vector FHx, tL. Thus, a good starting place for the implemen-
tation of the propagator is to define a discrete differentiation operator. DelGrid takes a
given function, labelled as ygrid, and computes its derivative via Fourier transforma-
tions.

DelGrid@ygrid_, L_, n_D :=
ToPositionGrid@Â KSpaceGrid@L, nD ToKSpaceGrid@ygrid, L, nD,

L, nD êê Chop

The function Propagator implements the Chebyshev propagation scheme. First a
number of definitions are made, then a Do loop is constructed to perform and repeat the
Chebyshev expansion the number of times determined by the term M. The pressure and
velocity distributions are handled simultaneously, due to their related definitions. The
whole set of commands is contained within a Module function so that all definitions
remain local. Finally, we use Compile on the overall function, which keeps the calcu-
lation time down by keeping all values numerical.

6 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Propagator =

CompileB88pgrid, _Real, 1<, 8vgrid, _Real, 1<,

8L, _Real<, 8n, _Real<, 8t, _Real<<,

ModuleB8sqrlmax = $c kmax@L, nD, R, M, fp0, fv0, fp1,

fv1, fp2, fv2, psum, vsum<, R = sqrlmax t;
M = Ceiling@1.2 R + 30D;
fp0 = pgrid;
fv0 = vgrid;

fp1 = -
1

sqrlmax
$r $c2 DelGrid@vgrid, L, nD;

fv1 = -
1

sqrlmax

1

$r
DelGrid@pgrid, L, nD;

psum = BesselJ@0, RD fp0 + 2 BesselJ@1, RD fp1;
vsum = BesselJ@0, RD fv0 + 2 BesselJ@1, RD fv1;

DoBfp2 = -2
1

sqrlmax
$r $c2 DelGrid@fv1, L, nD + fp0;

fv2 = -2
1

sqrlmax

1

$r
DelGrid@fp1, L, nD + fv0;

psum += 2 BesselJ@q, RD fp2;
vsum += 2 BesselJ@q, RD fv2;
fp0 = fp1;
fp1 = fp2;
fv0 = fv1;
fv1 = fv2;,

8q, 2, M<F;

8psum, vsum<F, 88KSpaceGrid@__D, _Real, 1<,

8ToKSpaceGrid@__D, _Real, 1<,
8ToPositionGrid@__D, _Real, 1<,

8DelGrid@__D, _Real, 1<<F;

ü Testing the Propagator

Now we carry out a few tests of this propagation scheme. Here the initial pressure and ve-
locity distributions are defined, followed by their respective derivatives. First the pressure:

Acoustic Wave Propagator—A Split Region Implementation 7

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

initpgrid = Gaussian@PositionGrid@$L, $numD + $x0D;
initpplot = PositionPlot@initpgrid, $L, $num,

PlotStyle Ø RGBColor@1, 0, 0D, AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

Then the velocity:

initvgrid =
1

$r $c
Gaussian@PositionGrid@$L, $numD + $x0D;

initvplot = PositionPlot@initvgrid, $L, $num,
PlotStyle Ø RGBColor@0, 0, 1D, AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v

8 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Now we run the Chebyshev expansion propagation scheme for these distributions. This re-
turns the pressure and velocity distributions of the acoustic wave after it has propagated
for t = 3.5µ 10-2 seconds.

result = Propagator@initpgrid, initvgrid, $L, $num, $timeD;

finalpplot = PositionPlot@resultP1T, $L, $num,
PlotStyle Ø RGBColor@0.6, 0, 0D, AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

finalvplot = PositionPlot@resultP2T, $L, $num,
PlotStyle Ø RGBColor@0, 0, 0.6D, AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v

Now we compare the initial and final pressure and velocity distributions and can see that
the acoustic wave has indeed propagated to the right.

Acoustic Wave Propagator—A Split Region Implementation 9

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Now we compare the initial and final pressure and velocity distributions and can see that
the acoustic wave has indeed propagated to the right.

Show@initpplot, finalpplot, AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

Show@initvplot, finalvplot, AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v

The plots show a Gaussian sound pulse propagating to the right, travelling a distance of
approximately 12 metres in t = 3.5µ 10-2 seconds. This corresponds to a wave speed of
approximately 340 m ë s-1, the expected speed of sound in the material. This observation
agrees perfectly with expectations—for a sound pulse like that defined earlier, the exact
solution is a Gaussian pulse travelling to the right at the speed of sound in the medium. A
more exact measurement of the speed and distance travelled gives:

10 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The plots show a Gaussian sound pulse propagating to the right, travelling a distance of
approximately 12 metres in t = 3.5µ 10-2 seconds. This corresponds to a wave speed of
approximately 340 m ë s-1, the expected speed of sound in the material. This observation

solution is a Gaussian pulse travelling to the right at the speed of sound in the medium. A
more exact measurement of the speed and distance travelled gives:

Displacement@result_, n_D :=
$L

n
Flatten@Position@resultP1T, Max@Re@resultP1TDDDD -

$L

2
-

$L

n
Flatten@Position@initpgrid, Max@Re@initpgridDDDD -

$L

2
êê N

Displacement@result, $numD

8137.207<

% ê $time

8343.018<

This measurement confirms that the propagation speed of the sound wave agrees with the
specified speed of sound in air.

‡ The Region Splitting Propagator
The aim of our work has been to develop an algorithm that propagates an acoustic wave
through a region that is mainly free space, but also has regions where there are changes in
the media and obstructions to the wave’s propagation. In principle, the Chebyshev expan-
sion scheme is sufficient to perform any calculation that is necessary in this situation, but
for a large grid, the computational effort that it requires becomes prohibitive. The exact so-
lution that is available for regions of free, homogeneous space involves less computational
effort, but is not appropriate for regions where there are changes in the media or obstruc-
tions to the wave. Because of this, we construct an algorithm where the space is divided
into multiple regions—regions of free space are handled by the exact solution, and for
those where there are variations, the Chebyshev scheme is used.

· The Free Space Propagator

An exact solution to the problem of the propagation of a sound wave through free space is
available and applicable to any situation that is free of medium changes and interfaces.

Acoustic Wave Propagator—A Split Region Implementation 11

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

It can be shown that the pressure (p) and particle velocity (v) waves that satisfy the
equation:

(20)
¶∂

¶∂ t
F Hx, tL = - H

`
F Hx, tL,

with the parameters described earlier, also satisfy the second-order wave equation:

(21)
¶∂2 p

¶∂ t2
- c2

¶∂2 p

¶∂x2
= 0,

which has the initial conditions:

(22)
p Hx, 0L=f HxL,

¶∂
¶∂t p Hx, 0L=y HxL.

The solution to this partial differential equation is of the form:

(23)p Hx, tL =
1

2
@f Hx + ctL+ f Hx - ctLD+

1

2 c
‡
x-ct

x+ct
y HxL „x.

Due to the excellent accuracy and efficiency of the numerical differentiation technique
based upon the FFT [11], we seek a similar technique for the integration required in the
previous equation. We substitute the function with its transform:

(24)

Ÿx-at
x+at

y Hx, tL „x = Ÿx-at
x+at 1

2 p
Ÿ-¶
¶

Y Hk, tL ‰Âkx „k „x

= 1

2 p
Ÿ-¶
¶

Y Hk, tL J 1
Âk N ‰

Âkx
x+at

x-at
„k

= 1

2 p
Ÿ-¶
¶

Y Hk, tL I- Â
k M I‰

Âkat - ‰-ÂkatM ‰Âkx „k

= 1

2 p
Ÿ-¶
¶

Y Hk, tL J 2 sin HkatLk N ‰Âkx „k.

Thus the integral can be computed numerically by taking the transform of the original func-
tion, multiplying it by 2 sinHk a tL ê k, and then taking the inverse transform. We implement
the Fourier integration method as the function FourierIntegrate:

FinvSMG@L_, n_, t_, a_D :=

ModuleB8result, kgrid<, kgrid = KSpaceGrid@L, nD;

result = JoinBTableB
Sin@a t kgridPiTD

kgridPiT
êê Chop, :i, 1,

n

2
>F,

8a t<, TableB
Sin@a t kgridPiTD

kgridPiT
êê Chop, :i,

n

2
+ 2, n>FF;

resultF

12 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

FourierIntegrate@ygrid_, L_, n_, t_, a_D :=
ToPositionGrid@2 FinvSMG@L, n, t, aD

ToKSpaceGrid@ygrid, L, nD, L, nD êê Chop

The function FreePropagator implements the free space propagation of an acoustic
wave in a homogeneous medium. First, the constants and parameters of the system are de-
fined, then the correct shift of grid spacings in the first two terms of equation (23),
nshift, is calculated, and the initial pressure and velocity distributions are converted to
the left and right travelling forms. Finally, the resulting pressure and velocity distributions
are calculated, as well as the proper time of propagation, actualt. All of these com-
mands are gathered into a single Module function, and Compile is used to ensure that
they run as efficiently as possible.

Acoustic Wave Propagator—A Split Region Implementation 13

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

FreePropagator =

CompileB88pgrid, _Real, 1<, 8vgrid, _Real, 1<,

8L, _Real<, 8n, _Real<, 8t, _Real<<,

ModuleB8initpdvt, initvdvt, pgridrt, pgridlt,

vgridrt, vgridlt, nshift, presult, vresult, actualt<,

nshift = FloorB
t n $c

L
F;

initpdvt = -$r $c2 DelGrid@vgrid, L, nD êê Chop;

initvdvt = -
1

$r
DelGrid@pgrid, L, nD êê Chop;

pgridrt = Table@0.0, 8i, 1, n<D;
Do@pgridrtPiT = pgridPi - nshiftT, 8i, 1 + nshift, n<D;
pgridlt = Table@0.0, 8i, 1, n<D;
Do@pgridltPiT = pgridPi + nshiftT, 8i, 1, n - nshift<D;
vgridrt = Table@0.0, 8i, 1, n<D;
Do@vgridrtPiT = vgridPi - nshiftT, 8i, 1 + nshift, n<D;
vgridlt = Table@0.0, 8i, 1, n<D;
Do@vgridltPiT = vgridPi + nshiftT, 8i, 1, n - nshift<D;

actualt = nshift
L

n $c
;

presult =
1

2
Hpgridrt + pgridltL +

1

2 $c
FourierIntegrate@initpdvt, L, n, actualt, $cD êê

Chop;
vresult =
1

2
Hvgridrt + vgridltL +

1

2 $c
FourierIntegrate@initvdvt, L, n, actualt, $cD êê

Chop;

8actualt, presult, vresult<F,

88DelGrid, _Real, 1<, 8KSpaceGrid@__D, _Real, 1<,
8ToPositionGrid@__D, _Real, 1<,
8ToKSpaceGrid@__D, _Real, 1<, 8FinvSMG@__D, _Real, 1<,

8FourierIntegrate@__D, _Complex, 1<<F;

14 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The FreePropagator function is used to calculate the propagation of the initial pres-
sure and velocity distributions.

CompGresult = FreePropagator@initpgrid, initvgrid, $L,
$num, $timeD;

Here is the final pressure distribution.

CFP =
ListPlot@
Transpose@8PositionGrid@$L, $numD, Re@CompGresultP2TD<D,
PlotRange Ø All, PlotStyle Ø RGBColor@0.6, 0, 0D,
AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

Acoustic Wave Propagator—A Split Region Implementation 15

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Here is the final velocity distribution.

CFV =
ListPlot@
Transpose@8PositionGrid@$L, $numD, Re@CompGresultP3TD<D,
PlotRange Ø All, PlotStyle Ø RGBColor@0, 0, 0.6D,
AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v

Here we compare the initial and final pressure distributions and the initial and final veloc-
ity distributions.

Show@initpplot, CFP, AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

16 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Show@initvplot, CFV, AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v

· The Split Region Propagator

The splitting technique that we use involves multiplying the total acoustic wave distribu-
tion by what is essentially a step function, where the step occurs at the intended boundary
between regions. This method divides the wave distribution into two sections that can be
propagated separately, by the most appropriate technique for that region. Due to the linear
nature of the splitting, these two sections can be easily recombined by adding the two re-
sulting distributions together. The whole process can then be repeated if more than one
time step is desired.
Ideally, the splitting function would be a step function:

(25)f HxL =
1 -x0 § x § x0
0 †x§ > x0

,

where one region lies between -x0 and x0, and the other is everything outside that range.
This is often called a “top hat function”. However, the discontinuities that such a splitting
function would introduce into the wave distribution would create large inaccuracies in the
numerical techniques that are to be used. To avoid this consequence, a more gentle split-
ting function is used, where the step function is convolved with a Gaussian curve, so that
the splitting actually occurs over some width s, centred on ±x0. This eliminates the discon-
tinuities of the pure step function and the associated difficulties and errors. We first define
the step function:

Acoustic Wave Propagator—A Split Region Implementation 17

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

SplittingFunction@x_, x0_D := ¶ 1 -x0 § x § x0
0 †x§ > x0

;

Attributes@SplittingFunctionD = 8Listable<;
$splittingwidth = 10;
Plot@SplittingFunction@x, $splittingwidthD,
8x, -150, 150<, AxesLabel Ø 8x, ""<D

-150 -100 -50 50 100 150
x

0.2

0.4

0.6

0.8

1.0

Now the function SplittingGrid is defined to create a grid of values from the convolu-
tion of the step function and the Gaussian. All values of this lie in the range from 0 to 1.
The wave distribution is multiplied by this grid to achieve the required splitting. This calcu-
lation makes use of the fact that the transform of the convolution of two functions is the
product of the transforms of the individual functions. Later, the new smooth top hat func-
tion is plotted.

SplittingGrid@L_, n_, x0_, s_: 50D :=

ModuleB8xgrid = PositionGrid@L, nD, fgrid, kernel<,

fgrid = SplittingFunction@xgrid, x0D;

kernel = ChopBRotateLeftB
L ‰-

xgrid2

s

n p s
,
n

2
FF;

ChopBInverseFourierB n Fourier@fgridD Fourier@kernelDFFF

18 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

For the subsequent calculations, we use the following split region barrier. It is important
to note that there are as yet no variations in the medium—the speed of sound and the den-
sity remain the same across all three regions.

$smoothness = 20;
fgrid = SplittingGrid@$L, $num, $splittingwidth,

$smoothnessD;
ListPlot@Transpose@8PositionGrid@$L, $numD, fgrid<D,
PlotRange Ø All, AxesLabel Ø 8x, ""<D

-200 -100 100 200
x

0.2

0.4

0.6

0.8

1.0

Now we define the function SplittingPropagator, which implements the split re-
gion propagation technique. The SplittingGrid function (here it is labelled as
fgrid) is used to split the distributions, but it is the quantities nlower, npad, and
nupper that divide the propagator into separate regions via a Take selection. In the
outer regions, where there is only free space, the FreePropagator function is used,
while in the central region, the Chebyshev method is used in the form of the
Propagator function. A Do command is used to repeat this propagation a number of
times determined by steps.

Acoustic Wave Propagator—A Split Region Implementation 19

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

SplittingPropagator@pgrid_, vgrid_, fgrid_, L_, n_,
nint_, tprop_, steps_D :=

ModuleB:Lint =
L nint

n
, nlower =

Hn - nint + 2L

2
,

npad =
Hn - nintL

2
, nupper =

Hn + nintL

2
,

ftotal = 8pgrid, vgrid<, freeresult, ffree, fint,

pint, vint, actualt>,

Do@freeresult = FreePropagator@ftotalP1T Chop@1 - fgridD,
ftotalP2T Chop@1 - fgridD, L, n, tprop ê stepsD;

ffree = Take@freeresult, 82, 3<D;
pint = Take@ftotalP1T fgrid, 8nlower, nupper<D;
vint = Take@ftotalP2T fgrid, 8nlower, nupper<D;
actualt = freeresultP1T;
fint = Propagator@pint, vint, Lint, nint, actualtD;

ftotal =
ffree + Transpose@Join@Table@80, 0<, 8npad<D,

Transpose@fintD, Table@80, 0<, 8npad<DDD;, 8steps<D;

ftotalF

And now we propagate the acoustic wave through both free space and the splitting region,
using SplittingPropagator. Note that the grid should be large enough that a shift
of c t in either direction does not move any significant (that is, nonzero) data outside the
boundaries of the grid. We arbitrarily choose the propagation time to be 0.5 second and
split the propagation into five time steps with 0.1 second each.

splitresult5 = SplittingPropagator@initpgrid, initvgrid,
fgrid, $L, $num, $nint, $time, 5D; êê Timing

86.6841, Null<

20 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

ListLinePlot@
Transpose@8PositionGrid@$L, $numD, Abs@splitresult5P1TD<D,
PlotRange Ø All, PlotStyle Ø RGBColor@0.6, 0, 0D,
AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

ListLinePlot@
Transpose@8PositionGrid@$L, $numD, Abs@splitresult5P2TD<D,
PlotRange Ø 80, 0.003<, PlotStyle Ø RGBColor@0, 0, 0.6D,
AxesLabel Ø 8x, v<D

-200 -100 0 100 200
x

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
v

Acoustic Wave Propagator—A Split Region Implementation 21

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

The splitting propagator scheme works as expected. The sound wave propagates through
the splitting and Chebyshev interaction regions without introducing any discontinuity and
the norm is conserved throughout. Again, the following measure confirms that the propaga-
tion speed of the sound wave agrees well with the specified speed of sound in air.

Displacement@splitresult5, $numD

8136.719<

% ê $time

8341.797<

Note that it is vital to ensure that the sizes of the various regions are appropriate—the inter-
action region must be larger than the splitting region, as the interaction wave packet must
have enough space to get clear of the splitting zone (inside the barrier region defined by
fgrid) before leaving the interaction zone (defined by nint). Otherwise the wave
packet is wrapped around inside the interaction zone due to the Fourier methods used in
the calculation, thus never leaving that area.

It is clear that the sizes of the splitting region, the interaction zone, and the time step need
careful determination. The buffer zone in the interaction region surrounding the split re-
gion needs to be large enough that portions of the wave packet that are at the edge of the
split region at the start of the time step do not travel further than the edge of the buffer re-
gion, otherwise they are artificially wrapped, thus destroying the accuracy of the scheme.
The size of the buffer region needs to be greater than the distance travelled by the wave in
the length of the time step:

Lbuf = cdt.

This length is taken from the point where the splitting grid effectively falls to zero.

‡ Conclusion
In this article we developed a highly efficient technique that solves the time-dependent
acoustic wave equation using split regions, where a free space solution is used in free
space, and the more sophisticated Chebyshev expansion solution is used in the interaction
regions. The next stage is to incorporate variations and boundaries in the medium in order
to simulate a “real-life” wave passing through air, liquids, and solids. This should only re-
quire minor adjustments to the split region technique as it is presented in this article. Pre-
liminary work indicates the reflection and transmission of a wave passing through a bar-
rier, as well as a change in speed as the wave passes through a denser medium.

22 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

‡ Acknowledgment
The authors would like to acknowledge support from the Australian Research Council and
the National Science Foundation of China (Project No. 60340420325).
For this work we used Mathematica 5.0 and a Pentium 4 computer running Windows XP
with a 2.8 GHz CPU and 512 MB of RAM.

‡ References
[1] J. Pan and J. B. Wang, “Acoustic Wave Propagator,” Journal of the Acoustical Society of

America, 108(2), 2000 pp. 481–487.

[2] H. Tal-Ezer and R. Kosloff, “An Accurate and Efficient Scheme for Propagating the Time De-
pendent Schrödinger Equation,” Journal of Chemical Physics, 81(9), 1984 pp. 3967–3971.

[3] H. Tal-Ezer, “A Pseudospectral Legendre Method for Hyperbolic Equations with an Improved
Stability Condition,” Journal of Computational Physics, 67(1), 1986 pp. 145–172.

[4] H. Tal-Ezer, “Spectral Methods in Time for Hyperbolic Equations,” SIAM Journal on Numeri-
cal Analysis, 23(1), 1986 pp. 11–26.

[5] H. Tal-Ezer, “An Accurate Scheme for Seismic Forward Modeling,” Geophysical Prospecting,
35, 1987 pp. 479–490.

[6] H. Tal-Ezer, “Polynomial Approximation of Functions of Matrices and Applications,” Journal
of Scientific Computing, 4(1), 1989 pp. 25–60.

[7] S. Z. Peng, J. Pan, and K. S. Sum, “Acoustical Wave Propagator Method for Time Domain
Analysis of Flexural Wave Scattering and Dynamic Stress Concentration in a Heterogeneous
Plate with Multiple Cylindrical Patches,” Tenth International Congress on Sound and Vibra-
tion (ICSV10), Stockholm, Sweden, 2003.

[8] H. M. Sun, J. B. Wang, and J. Pan, “An Effective Algorithm for Simulating Acoustical Wave
Propagation,” Computer Physics Communications, 151, 2003 pp. 241–249.

[9] H. M. Sun, J. B. Wang, and J. Pan, “Acoustical Wave Propagator Method for Two-dimen-
sional Sound Propagation,” Third International Conference on Acoustics, University of Cadiz,
Spain, 2003.

[10] P. Falloon and J. B. Wang, “Electronic Wave Propagation with Mathematica,” Computer
Physics Communications, 134(2), 2001 pp. 167–182.

[11] J. B. Wang, “Numerical Differentiation Using Fourier,” The Mathematica Journal, 8(3), 2002
pp. 383–388.

N. Riste, B. McGrath, J. Wang, and J. Pan, “Acoustic Wave Propagator—A Split Region Implementation,”
The Mathematica Journal, 2012. dx.doi.org/10.3888/tmj.10.3-7.

Acoustic Wave Propagator—A Split Region Implementation 23

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

About the Authors

Neil Riste and Bradley McGrath are Ph.D. students at The University of Western Aus-
tralia, studying and theoretically modelling the dynamical response of both quantum and
classical systems to external disturbance.
Associate Professor Jingbo Wang leads the Quantum Dynamics Theory Group at The Uni-
versity of Western Australia and has a wide range of interests, from atomic physics, molec-
ular and chemical physics, spectroscopy, acoustics, chaos, nanostructured electronic de-
vices, and mesoscopic physics to quantum information and computation.
Professor Jie Pan is the director of the Center for Acoustics, Dynamics and Vibration at
The University of Western Australia. His research areas are room acoustics, structural
acoustics, and active noise and vibration control.

Neil Riste 1, 2

Bradley McGrath 1

Jingbo Wang 1, 2

Jie Pan 2

1School of Physics
2School of Mechanical Engineering

The University of Western Australia
35 Stirling Highway
Crawley WA 6009, Australia
wang@physics.uwa.edu.au

24 Neil Riste, Bradley McGrath, Jingbo Wang, and Jie Pan

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

