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In this article we develop and implement a split region technique 
that solves the time-dependent acoustic wave equation with 
greatly increased efficiency. This method uses a sophisticated 
Chebyshev propagation scheme in areas where there are 
interfaces and medium variations, and a simple free space 
propagator where the medium is homogeneous. Mathematica 
provides a cohesive and interactive environment, where the 
mathematical functions and visualization tools required for this 
work are already built in. The interactive interface allows users 
to modify the code and study specific problems with ease. 

‡ The Acoustic Wave Propagator

· Theory

In an earlier paper by Pan and Wang [1], an explicit acoustic wave propagator (AWP) was
proposed  to  describe  the  time-domain  evolution  of  mechanical  waves  in  various  media.
This  method  was  based  on  a  similar  scheme  that  was  originally  developed  by  Tal-Ezer
and Kosloff in [2, 3, 4, 5, 6], who studied seismic wave propagation and a variety of gas-
phase reactive scattering and related chemical processes. The AWP method has been suc-
cessfully applied to study both the propagation of a flexural wave in a thin plate by Peng,
Pan,  and  Sum  [7]  and  an  acoustic  wave  in  a  room  by  Sun,  Wang,  and  Pan  [8]  and  [9].
However, this method requires significant computer resources since the AWP propagation
scheme utilizes  a  large  set  of  modified  Chebyshev polynomials  with  Bessel  functions  of
the first kind as the expansion coefficients.
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In this article we develop and implement a split region technique in Mathematica that uses
the  sophisticated  Chebyshev  propagation  scheme in  areas  where  there  are  interfaces  and
medium variations, but a simple and much more efficient free space propagator where the
medium is homogeneous. 
First,  we give a brief outline of the AWP and then introduce the Chebyshev propagation
scheme. This method is then implemented in Mathematica code. In a later section, the free
space  propagator  is  defined,  along  with  a  method  of  integration  that  uses  Fourier  trans-
forms.  Finally,  the  split  region technique is  constructed and propagation is  demonstrated
across a splitting region with a boundary.
The motion of  acoustic  waves  in  air  and solids  can be described by a  partial  differential
equation known as the acoustic wave equation:

(1)
¶∂

¶∂ t
F Hx, tL = - H

`
F Hx, tL.

Integrating this with respect to time, yields a formal solution to this equation:

(2)F Hx, tL = ‰-Ht - t0L H
`

F Hx, t0L,

where x denotes the spatial coordinates collectively and t stands for time, with t0 being the

initial starting time. F is a state vector, while H
`

 is the system Hamiltonian that describes
the physical properties of the propagation and the boundary medium. In the case of a one-
dimensional duct, F describes the sound pressure pHx, tL and the particle velocity vHx, tL:

(3)F =
p Hx, tL
v Hx, tL

,

and H
`

 is of the form:

(4)H
`
=

0 r c2 ¶∂
¶∂ x

1
r

¶∂
¶∂ x 0

,

where c is the speed of sound within the medium, and r is the density of the medium.

The AWP is defined as:

(5)U
`
= ‰-Ht - t0L H

`

.
However, this exponential operator is impractical in its current form, and thus it  must be
expanded as a finite polynomial. In this work we use a Chebyshev polynomial expansion.
To  ensure  the  convergence  of  this  expansion,  the  system  Hamiltonian  H

`
 must  be

normalized:

(6)H £
`

=
H
`

lmax
,
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where  lmax  is  the  maximum eigenvalue  of  the  system operator  H
`

.  In  the  case  of  sound
pressure in a one-dimensional duct, this value is:

(7)lmax = K
c p

Dx
O
2
.

If we let:

(8)R = Ht - t0L lmax ,

then the AWP may be expressed as:

(9)U
`
= ‰-Ht - t0L H

`

= ‰-RH £
`

.
The next step is to make a simple, if somewhat nonintuitive, change of variables. We let:

(10)X£ = ÂX.

Then we expand the exponential operator in terms of the Chebyshev polynomials TnHX£L:

(11)‰-R X = ‰Â R X
£
= ‚

n= 0

¶

bn HRL Tn HX£L.

Using the orthogonality relationship for the Chebyshev polynomials, we find that the coef-
ficients bnHRL are:

(12)bn HRL =
cn
p

‡
-1

1 ‰Â R X
£ Tn HX£L

1 - X£2
„X£ =

cn
2 p

‡
-p

p

‰Â R cos HqL+ Â n q „q = Ân cn Jn HRL,

where c0 = 1 and cn = 2 for n > 0, and Jn  is a Bessel function of the first kind. However,
there are complex numbers involved in this expansion, while the state vector and operator
are real. Hence, we define a new set of modified Chebyshev polynomials, as given by:

(13)Tn HXL = Ân Tn HÂ XL.

It can be shown that these satisfy the following recursion relation:

(14)Tn+1 HXL = -2 X Tn HXL+ Tn-1 HXL,

with  T0HXL = 1  and  T1HXL = -X.  It  is  now possible  for  us  to  write  the  AWP,  U
`

,  in  the
form:

(15)U
`
= ‰-Ht - t0L H

`

= ‰-RH £
`

= ‚
n= 0

¶

cn Jn HRL Tn HH £
`
L,

which only involves real-valued operations.  We now obtain our state  vector  with an ex-
panded AWP:

(16)F Hx, tL = U
`
F Hx, t0L = ‚

n= 0

¶

cn Jn HRL Tn HH £
`
LF Hx, t0L,
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which appears in full as:

(17)

p Hx, tL
v Hx, tL

=

‚
n= 0

¶

cn Jn KHt - t0L lmax O Tn
1

lmax

0 r c2 ¶∂
¶∂ x

1
r

¶∂
¶∂ x 0

p Hx, t0L
v Hx, t0L

.

The benefit of this method is that the Bessel functions decay exponentially with the coeffi-
cient index n when n > R. These properties are very useful for numerical computation, as
they allow expansions of the exponential function to be accurately calculated for arbitrar-
ily large values of R (that is, arbitrarily large time steps). 

· Numerical Implementation

ü Discretising the Problem

In this section we closely follow the work of Falloon and Wang [10], with the necessary
changes for  the AWP. In particular,  we need to handle two components  representing the
sound wave, instead of just one as in the electronic wavefunction.
The first step is to create a one-dimensional grid of length L that contains n points, which
stands for our spatial dimension x.

PositionGrid@L_, n_D := TableB
-L

2
+
q L

n
, 8q, 0, n - 1<F êê N

We also a need a similar grid in k-space, as the evaluation of derivatives involves taking
the Fourier transform of the functions:

KSpaceGrid@L_, n_D := TableB
-p n

L
+
2 p q

L
, 8q, 0, n - 1<F êê N

This grid has a grid spacing of Dk = 2 p ê L, and consequently can represent a maximum
wave-number of kmax = p n ê L:

kmax@L_, n_D :=
p n

L
êê N

A norm function is defined for both the position and the k-space grids:

PositionNorm@ygrid_, L_, n_D := Plus üü HAbs@ygridDL2
L

n

KSpaceNorm@Ygrid_, L_, n_D := Plus üü HAbs@YgridDL2
2 p

L
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The following functions are defined to plot the pressure and velocity distributions in both
the position and k-spaces.

PositionPlot@ygrid_, L_, n_, opts___D :=
ListLinePlot@Thread@8PositionGrid@L, nD, Re@ygridD<D,
opts, PlotRange Ø AllD

KSpacePlot@Ygrid_, L_, n_, opts___D :=
ListLinePlot@Thread@8KSpaceGrid@L, nD, Re@YgridD<D,
opts, PlotRange Ø AllD

The position and k  distribution functions form a Fourier transform pair and are related by
the transformations:

(18)
Y Hk, tL= 1

2 p
Ÿ-¶
¶

y Hx, tL ‰-Â k x „ x,

y Hx, tL= 1

2 p
Ÿ-¶
¶

Y Hk, tL ‰Â k x „k.

For discretised functions, such as those being used here, the Fast Fourier Transform (FFT)
algorithm  may  be  used.  The  built-in  Fourier  functions  of  Mathematica  utilise  this  algo-
rithm. The functions defined next allow us to transform distributions between the position
and  k-spaces.  The  RotateLeft  command  allows  us  to  easily  shift  our  distributions
from the interval @0, LD to @- L ê 2, L ê 2D, in order to provide a centred transform. These dis-
tributions are normalised by the factor L ë 2 p n .

ToKSpaceGrid@ygrid_, L_, n_D :=
L

2 p n
RotateLeft@InverseFourier@RotateLeft@ygrid, n ê 2DD,

n ê 2D êê N

ToPositionGrid@Ygrid_, L_, n_D :=

2 p n

L
RotateLeft@Fourier@RotateLeft@Ygrid, n ê 2DD, n ê 2D êê

N

To test the AWP, we use Gaussian distributions for both the pressure and the velocity com-
ponents of the wave description. A Gaussian distribution is of the form:

(19)y HxL = I p s M
-
1
2 ‰J-

x 2

2 s2
N,

where its width is determined by s.  This defines a Gaussian function of this form:

Gaussian@x_D := J p $sN
-
1

2 ‰
K-

x2

2 $s2
O
êê N êê Chop

The  speed  of  sound  in  the  medium  (c)  and  the  density  of  the  material  (r)  should  not
change  throughout  the  calculation  of  the  propagation.  Other  parameters  that  should  not
change are the initial pressure pulse spread (s) and position (x0), the duct length (L), the
propagation time (time), and the numbers of grid points for the entire region (num) and the
Chebyshev  region  (nint).  These  have  been  defined  using  global  variables,  denoted  with
the Mathematica $name notation.
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The  speed  of  sound  in  the  medium  (c)  and  the  density  of  the  material  (r)  should  not
change  throughout  the  calculation  of  the  propagation.  Other  parameters  that  should  not
change are the initial pressure pulse spread (s) and position (x0), the duct length (L), the
propagation time (time), and the numbers of grid points for the entire region (num) and the
Chebyshev  region  (nint).  These  have  been  defined  using  global  variables,  denoted  with
the Mathematica $name notation.

$c = 344.0;
$r = 1.21;
$s = 1.5;
$x0 = 70;
$L = 500;
$time = 0.4;
$num = 1024;
$nint = 256;

Here we turn off some unimportant Mathematica warning messages.

Off@CompiledFunction::cfte, CompiledFunction::cfex,
CompiledFunction::cfta, CompiledFunction::cfseD

ü Defining the Propagator

Both components of the system Hamiltonian H £
`

 in the AWP apply a first-order derivative
to each component of the state vector FHx, tL. Thus, a good starting place for the implemen-
tation of the propagator is to define a discrete differentiation operator. DelGrid  takes a
given  function,  labelled  as  ygrid,  and  computes  its  derivative  via  Fourier  transforma-
tions.

DelGrid@ygrid_, L_, n_D :=
ToPositionGrid@Â KSpaceGrid@L, nD ToKSpaceGrid@ygrid, L, nD,

L, nD êê Chop

The  function  Propagator  implements  the  Chebyshev  propagation  scheme.  First  a
number of  definitions are made,  then a Do  loop is  constructed to perform and repeat  the
Chebyshev expansion the  number  of  times  determined by the  term M.   The  pressure  and
velocity  distributions  are  handled  simultaneously,  due  to  their  related  definitions.  The
whole  set  of  commands  is  contained  within  a  Module  function  so  that  all  definitions
remain  local.  Finally,  we  use  Compile  on  the  overall  function,  which  keeps  the  calcu-
lation time down by keeping all values numerical.
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Propagator =

CompileB88pgrid, _Real, 1<, 8vgrid, _Real, 1<,

8L, _Real<, 8n, _Real<, 8t, _Real<<,

ModuleB8sqrlmax = $c kmax@L, nD, R, M, fp0, fv0, fp1,

fv1, fp2, fv2, psum, vsum<, R = sqrlmax t;
M = Ceiling@1.2 R + 30D;
fp0 = pgrid;
fv0 = vgrid;

fp1 = -
1

sqrlmax
$r $c2 DelGrid@vgrid, L, nD;

fv1 = -
1

sqrlmax

1

$r
DelGrid@pgrid, L, nD;

psum = BesselJ@0, RD fp0 + 2 BesselJ@1, RD fp1;
vsum = BesselJ@0, RD fv0 + 2 BesselJ@1, RD fv1;

DoBfp2 = -2
1

sqrlmax
$r $c2 DelGrid@fv1, L, nD + fp0;

fv2 = -2
1

sqrlmax

1

$r
DelGrid@fp1, L, nD + fv0;

psum += 2 BesselJ@q, RD fp2;
vsum += 2 BesselJ@q, RD fv2;
fp0 = fp1;
fp1 = fp2;
fv0 = fv1;
fv1 = fv2;,

8q, 2, M<F;

8psum, vsum<F, 88KSpaceGrid@__D, _Real, 1<,

8ToKSpaceGrid@__D, _Real, 1<,
8ToPositionGrid@__D, _Real, 1<,

8DelGrid@__D, _Real, 1<<F;

ü Testing the Propagator

Now we carry out a few tests of this propagation scheme. Here the initial pressure and ve-
locity distributions are defined, followed by their respective derivatives. First the pressure:
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initpgrid = Gaussian@PositionGrid@$L, $numD + $x0D;
initpplot = PositionPlot@initpgrid, $L, $num,

PlotStyle Ø RGBColor@1, 0, 0D, AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

Then the velocity:

initvgrid =
1

$r $c
Gaussian@PositionGrid@$L, $numD + $x0D;

initvplot = PositionPlot@initvgrid, $L, $num,
PlotStyle Ø RGBColor@0, 0, 1D, AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v
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Now we run the Chebyshev expansion propagation scheme for these distributions. This re-
turns  the  pressure  and  velocity  distributions  of  the  acoustic  wave  after  it  has  propagated
for t = 3.5µ 10-2 seconds.

result = Propagator@initpgrid, initvgrid, $L, $num, $timeD;

finalpplot = PositionPlot@resultP1T, $L, $num,
PlotStyle Ø RGBColor@0.6, 0, 0D, AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p

finalvplot = PositionPlot@resultP2T, $L, $num,
PlotStyle Ø RGBColor@0, 0, 0.6D, AxesLabel Ø 8x, v<D

-200 -100 100 200
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

v

Now we compare the initial and final pressure and velocity distributions and can see that
the acoustic wave has indeed propagated to the right. 
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Now we compare the initial and final pressure and velocity distributions and can see that
the acoustic wave has indeed propagated to the right. 

Show@initpplot, finalpplot, AxesLabel Ø 8x, p<D
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0.4

0.5

0.6

p

Show@initvplot, finalvplot, AxesLabel Ø 8x, v<D
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0.0010

0.0012

0.0014

v

The plots  show a  Gaussian  sound pulse  propagating to  the  right,  travelling a  distance  of
approximately 12 metres  in  t = 3.5µ 10-2  seconds.  This  corresponds to  a  wave speed of
approximately 340 m ë s-1,  the expected speed of sound in the material.  This observation
agrees  perfectly  with  expectations—for  a  sound  pulse  like  that  defined  earlier,  the  exact
solution is a Gaussian pulse travelling to the right at the speed of sound in the medium. A
more exact measurement of the speed and distance travelled gives:
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The plots  show a  Gaussian  sound pulse  propagating to  the  right,  travelling a  distance  of
approximately 12 metres  in  t = 3.5µ 10-2  seconds.  This  corresponds to  a  wave speed of
approximately 340 m ë s-1,  the expected speed of sound in the material.  This observation

solution is a Gaussian pulse travelling to the right at the speed of sound in the medium. A
more exact measurement of the speed and distance travelled gives:

Displacement@result_, n_D :=
$L

n
Flatten@Position@resultP1T, Max@Re@resultP1TDDDD -

$L

2
-

$L

n
Flatten@Position@initpgrid, Max@Re@initpgridDDDD -

$L

2
êê N

Displacement@result, $numD

8137.207<

% ê $time

8343.018<

This measurement confirms that the propagation speed of the sound wave agrees with the
specified speed of sound in air.

‡ The Region Splitting Propagator
The aim of our work has been to develop an algorithm that propagates an acoustic wave
through a region that is mainly free space, but also has regions where there are changes in
the media and obstructions to the wave’s propagation. In principle, the Chebyshev expan-
sion scheme is sufficient to perform any calculation that is necessary in this situation, but
for a large grid, the computational effort that it requires becomes prohibitive. The exact so-
lution that is available for regions of free, homogeneous space involves less computational
effort, but is not appropriate for regions where there are changes in the media or obstruc-
tions to the wave. Because of this,  we construct  an algorithm where the space is  divided
into  multiple  regions—regions  of  free  space  are  handled  by  the  exact  solution,  and  for
those where there are variations, the Chebyshev scheme is used.

· The Free Space Propagator

An exact solution to the problem of the propagation of a sound wave through free space is
available and applicable to any situation that is free of medium changes and interfaces. 
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It  can  be  shown  that  the  pressure  (p)  and  particle  velocity  (v)  waves  that  satisfy  the
equation:

(20)
¶∂

¶∂ t
F Hx, tL = - H

`
F Hx, tL,

with the parameters described earlier, also satisfy the second-order wave equation:

(21)
¶∂2 p

¶∂ t2
- c2

¶∂2 p

¶∂x2
= 0,

which has the initial conditions:

(22)
p Hx, 0L=f HxL,

¶∂
¶∂t p Hx, 0L=y HxL.

The solution to this partial differential equation is of the form:

(23)p Hx, tL =
1

2
@f Hx + ctL+ f Hx - ctLD+

1

2 c
‡
x-ct

x+ct
y HxL „x.

Due  to  the  excellent  accuracy  and  efficiency  of  the  numerical  differentiation  technique
based upon the FFT [11],  we seek a  similar  technique for  the integration required in  the
previous equation. We substitute the function with its transform:

(24)

Ÿx-at
x+at

y Hx, tL „x = Ÿx-at
x+at 1

2 p
Ÿ-¶
¶

Y Hk, tL ‰Âkx „k „x

= 1

2 p
Ÿ-¶
¶

Y Hk, tL J 1
Âk N ‰

Âkx
x+at

x-at
„k

= 1

2 p
Ÿ-¶
¶

Y Hk, tL I- Â
k M I‰

Âkat - ‰-ÂkatM ‰Âkx „k

= 1

2 p
Ÿ-¶
¶

Y Hk, tL J 2 sin HkatLk N ‰Âkx „k.

Thus the integral can be computed numerically by taking the transform of the original func-
tion, multiplying it by 2 sinHk a tL ê k, and then taking the inverse transform. We implement
the Fourier integration method as the function FourierIntegrate:

FinvSMG@L_, n_, t_, a_D :=

ModuleB8result, kgrid<, kgrid = KSpaceGrid@L, nD;

result = JoinBTableB
Sin@a t kgridPiTD

kgridPiT
êê Chop, :i, 1,

n

2
>F,

8a t<, TableB
Sin@a t kgridPiTD

kgridPiT
êê Chop, :i,

n

2
+ 2, n>FF;

resultF
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FourierIntegrate@ygrid_, L_, n_, t_, a_D :=
ToPositionGrid@2 FinvSMG@L, n, t, aD

ToKSpaceGrid@ygrid, L, nD, L, nD êê Chop

The  function  FreePropagator  implements  the  free  space  propagation  of  an  acoustic
wave in a homogeneous medium. First, the constants and parameters of the system are de-
fined,  then  the  correct  shift  of  grid  spacings  in  the  first  two  terms  of  equation  (23),
nshift, is calculated, and the initial pressure and velocity distributions are converted to
the left and right travelling forms. Finally, the resulting pressure and velocity distributions
are  calculated,  as  well  as  the  proper  time  of  propagation,  actualt.  All  of  these  com-
mands are gathered into a single Module  function, and Compile  is used to ensure that
they run as efficiently as possible.
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FreePropagator =

CompileB88pgrid, _Real, 1<, 8vgrid, _Real, 1<,

8L, _Real<, 8n, _Real<, 8t, _Real<<,

ModuleB8initpdvt, initvdvt, pgridrt, pgridlt,

vgridrt, vgridlt, nshift, presult, vresult, actualt<,

nshift = FloorB
t n $c

L
F;

initpdvt = -$r $c2 DelGrid@vgrid, L, nD êê Chop;

initvdvt = -
1

$r
DelGrid@pgrid, L, nD êê Chop;

pgridrt = Table@0.0, 8i, 1, n<D;
Do@pgridrtPiT = pgridPi - nshiftT, 8i, 1 + nshift, n<D;
pgridlt = Table@0.0, 8i, 1, n<D;
Do@pgridltPiT = pgridPi + nshiftT, 8i, 1, n - nshift<D;
vgridrt = Table@0.0, 8i, 1, n<D;
Do@vgridrtPiT = vgridPi - nshiftT, 8i, 1 + nshift, n<D;
vgridlt = Table@0.0, 8i, 1, n<D;
Do@vgridltPiT = vgridPi + nshiftT, 8i, 1, n - nshift<D;

actualt = nshift
L

n $c
;

presult =
1

2
Hpgridrt + pgridltL +

1

2 $c
FourierIntegrate@initpdvt, L, n, actualt, $cD êê

Chop;
vresult =
1

2
Hvgridrt + vgridltL +

1

2 $c
FourierIntegrate@initvdvt, L, n, actualt, $cD êê

Chop;

8actualt, presult, vresult<F,

88DelGrid, _Real, 1<, 8KSpaceGrid@__D, _Real, 1<,
8ToPositionGrid@__D, _Real, 1<,
8ToKSpaceGrid@__D, _Real, 1<, 8FinvSMG@__D, _Real, 1<,

8FourierIntegrate@__D, _Complex, 1<<F;
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The FreePropagator  function is used to calculate the propagation of the initial pres-
sure and velocity distributions.

CompGresult = FreePropagator@initpgrid, initvgrid, $L,
$num, $timeD;

Here is the final pressure distribution.

CFP =
ListPlot@
Transpose@8PositionGrid@$L, $numD, Re@CompGresultP2TD<D,
PlotRange Ø All, PlotStyle Ø RGBColor@0.6, 0, 0D,
AxesLabel Ø 8x, p<D

-200 -100 100 200
x

0.1

0.2

0.3

0.4

0.5

0.6

p
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Here is the final velocity distribution.

CFV =
ListPlot@
Transpose@8PositionGrid@$L, $numD, Re@CompGresultP3TD<D,
PlotRange Ø All, PlotStyle Ø RGBColor@0, 0, 0.6D,
AxesLabel Ø 8x, v<D
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v

Here we compare the initial and final pressure distributions and the initial and final veloc-
ity distributions.

Show@initpplot, CFP, AxesLabel Ø 8x, p<D
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Show@initvplot, CFV, AxesLabel Ø 8x, v<D
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· The Split Region Propagator

The splitting technique that we use involves multiplying the total acoustic wave distribu-
tion by what is essentially a step function, where the step occurs at the intended boundary
between regions. This method divides the wave distribution into two sections that can be
propagated separately, by the most appropriate technique for that region. Due to the linear
nature of the splitting, these two sections can be easily recombined by adding the two re-
sulting  distributions  together.  The  whole  process  can  then  be  repeated  if  more  than  one
time step is desired. 
Ideally, the splitting function would be a step function:

(25)f HxL =
1 -x0 § x § x0
0 †x§ > x0

,

where one region lies between -x0  and x0, and the other is everything outside that range.
This is often called a “top hat function”. However, the discontinuities that such a splitting
function would introduce into the wave distribution would create large inaccuracies in the
numerical techniques that are to be used. To avoid this consequence, a more gentle split-
ting function is used, where the step function is convolved with a Gaussian curve, so that
the splitting actually occurs over some width s, centred on ±x0. This eliminates the discon-
tinuities of the pure step function and the associated difficulties and errors. We first define
the step function:
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SplittingFunction@x_, x0_D := ¶ 1 -x0 § x § x0
0 †x§ > x0

;

Attributes@SplittingFunctionD = 8Listable<;
$splittingwidth = 10;
Plot@SplittingFunction@x, $splittingwidthD,
8x, -150, 150<, AxesLabel Ø 8x, ""<D
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Now the function SplittingGrid is defined to create a grid of values from the convolu-
tion of the step function and the Gaussian. All values of this lie in the range from 0 to 1.
The wave distribution is multiplied by this grid to achieve the required splitting. This calcu-
lation makes use of the fact that the transform of the convolution of two functions is the
product of the transforms of the individual functions. Later, the new smooth top hat func-
tion is plotted.

SplittingGrid@L_, n_, x0_, s_: 50D :=

ModuleB8xgrid = PositionGrid@L, nD, fgrid, kernel<,

fgrid = SplittingFunction@xgrid, x0D;

kernel = ChopBRotateLeftB
L ‰-

xgrid2

s

n p s
,
n

2
FF;

ChopBInverseFourierB n Fourier@fgridD Fourier@kernelDFFF
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For the subsequent calculations,  we use the following split  region barrier.  It  is  important
to note that there are as yet no variations in the medium—the speed of sound and the den-
sity remain the same across all three regions. 

$smoothness = 20;
fgrid = SplittingGrid@$L, $num, $splittingwidth,

$smoothnessD;
ListPlot@Transpose@8PositionGrid@$L, $numD, fgrid<D,
PlotRange Ø All, AxesLabel Ø 8x, ""<D
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Now we define the  function SplittingPropagator,  which implements  the  split  re-
gion  propagation  technique.  The  SplittingGrid  function  (here  it  is  labelled  as
fgrid)  is  used  to  split  the  distributions,  but  it  is  the  quantities  nlower,  npad,  and
nupper  that  divide  the  propagator  into  separate  regions  via  a  Take  selection.  In  the
outer  regions,  where  there  is  only  free  space,  the  FreePropagator  function  is  used,
while  in  the  central  region,  the  Chebyshev  method  is  used  in  the  form  of  the
Propagator  function.  A  Do  command  is  used  to  repeat  this  propagation  a  number  of
times determined by steps.
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SplittingPropagator@pgrid_, vgrid_, fgrid_, L_, n_,
nint_, tprop_, steps_D :=

ModuleB:Lint =
L nint

n
, nlower =

Hn - nint + 2L

2
,

npad =
Hn - nintL

2
, nupper =

Hn + nintL

2
,

ftotal = 8pgrid, vgrid<, freeresult, ffree, fint,

pint, vint, actualt>,

Do@freeresult = FreePropagator@ftotalP1T Chop@1 - fgridD,
ftotalP2T Chop@1 - fgridD, L, n, tprop ê stepsD;

ffree = Take@freeresult, 82, 3<D;
pint = Take@ftotalP1T fgrid, 8nlower, nupper<D;
vint = Take@ftotalP2T fgrid, 8nlower, nupper<D;
actualt = freeresultP1T;
fint = Propagator@pint, vint, Lint, nint, actualtD;

ftotal =
ffree + Transpose@Join@Table@80, 0<, 8npad<D,

Transpose@fintD, Table@80, 0<, 8npad<DDD;, 8steps<D;

ftotalF

And now we propagate the acoustic wave through both free space and the splitting region,
using SplittingPropagator.  Note that  the grid should be large enough that  a  shift
of c t  in either direction does not move any significant (that is,  nonzero) data outside the
boundaries  of  the  grid.  We arbitrarily  choose  the  propagation  time  to  be  0.5  second  and
split the propagation into five time steps with 0.1 second each. 

splitresult5 = SplittingPropagator@initpgrid, initvgrid,
fgrid, $L, $num, $nint, $time, 5D; êê Timing

86.6841, Null<
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ListLinePlot@
Transpose@8PositionGrid@$L, $numD, Abs@splitresult5P1TD<D,
PlotRange Ø All, PlotStyle Ø RGBColor@0.6, 0, 0D,
AxesLabel Ø 8x, p<D
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ListLinePlot@
Transpose@8PositionGrid@$L, $numD, Abs@splitresult5P2TD<D,
PlotRange Ø 80, 0.003<, PlotStyle Ø RGBColor@0, 0, 0.6D,
AxesLabel Ø 8x, v<D
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The splitting propagator scheme works as expected.  The sound wave propagates through
the splitting and Chebyshev interaction regions without introducing any discontinuity and
the norm is conserved throughout. Again, the following measure confirms that the propaga-
tion speed of the sound wave agrees well with the specified speed of sound in air.

Displacement@splitresult5, $numD

8136.719<

% ê $time

8341.797<

Note that it is vital to ensure that the sizes of the various regions are appropriate—the inter-
action region must be larger than the splitting region, as the interaction wave packet must
have enough space to get  clear of the splitting zone (inside the barrier  region defined by
fgrid)  before  leaving  the  interaction  zone  (defined  by  nint).  Otherwise  the  wave
packet  is  wrapped around inside the interaction zone due to the Fourier  methods used in
the calculation, thus never leaving that area. 

It is clear that the sizes of the splitting region, the interaction zone, and the time step need
careful  determination.  The  buffer  zone  in  the  interaction  region  surrounding  the  split  re-
gion needs to be large enough that portions of the wave packet that are at the edge of the
split region at the start of the time step do not travel further than the edge of the buffer re-
gion, otherwise they are artificially wrapped, thus destroying the accuracy of the scheme.
The size of the buffer region needs to be greater than the distance travelled by the wave in
the length of the time step:

Lbuf = cdt.

This length is taken from the point where the splitting grid effectively falls to zero.

‡ Conclusion
In  this  article  we  developed  a  highly  efficient  technique  that  solves  the  time-dependent
acoustic  wave  equation  using  split  regions,  where  a  free  space  solution  is  used  in  free
space, and the more sophisticated Chebyshev expansion solution is used in the interaction
regions. The next stage is to incorporate variations and boundaries in the medium in order
to simulate a “real-life” wave passing through air, liquids, and solids. This should only re-
quire minor adjustments to the split region technique as it is presented in this article. Pre-
liminary work indicates the reflection and transmission of a wave passing through a bar-
rier, as well as a change in speed as the wave passes through a denser medium. 
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