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Mathematica provides a unique capability for interactive 
learning. The possibility to combine program code and 
explanations in an interactive environment is well suited for 
teaching. The Chair of Microsystem Simulation at the University 
of Freiburg has developed a wide range of interactive simulation 
tutorials that have been distributed under the GNU Free 
Documentation License (FDL). The tutorials cover finite 
difference, finite volume and finite element methods, and 
multigrid and iterative solvers. Topics such as sparse matrices 
and derivatives recovery are also explained. Students are led 
through the topics assuming little or no prior knowledge. We 
found that the students gained a good understanding by 
experimenting with available parameters. In a subsequent step 
the tutorials are used for verifying other program code.

‡ Introduction 
The IMTEK Mathematica Supplement (IMS) is a downloadable, open source add-on pack-
age for Mathematica [1]. The supplement provides several hundred functions in about 40
packages. Additionally, about 10 tutorials from the computer simulation area and one con-
cise  introductory  Mathematica  programming  language  tutorial  are  available,  and  parts
from a computer science book [2] have been ported from Scheme.
We have chosen the GNU FDL so that the documentation is easily adapted for the needs
of students or teachers. Also, the motivation for students to send suggestions and improve-
ments  for  the  tutorials  is  greater  than  when  they  are  confronted  with  a  (noninteractive)
closed source form. Furthermore, we put great effort in motivating students to make sug-
gestions  on  how  to  improve  the  tutorials.  We  try  to  exploit  the  fact  that  students  them-
selves can explain teaching material to each other fairly well.
In  this  article  we describe  our  experiences  using  Mathematica  as  a  teaching tool  for  our
subject. We also discuss the goals and philosophy of our teaching, as well as the different
media we have tried for teaching: notebooks in lectures and as tutorials, video recordings,
and HTML documents.
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‡ About Teaching
“Tell me and I’ll forget;
show me and I may remember; 
involve me and I’ll understand.”
(Chinese Proverb)

First, we have to determine our primary and secondary teaching goals. Primary goals are
concerned with complying with the syllabus. Secondary goals are concerned with convey-
ing to students the skills they can use outside of the classroom.
The  primary  goals  would  be  that  students  understand  the  subject  in  such  a  manner  and
depth that they can work in the area and have learned how to learn more.
The secondary goal would be that students know how to use a programming language to
solve  their  engineering  problems—and not  only  in  the  simulation  domain.  Being  able  to
program forces students to think clearly about their ideas, understand how to convert their
problems in the programming language, and in the process,  or better yet  due to this pro-
cess,  they inevitably have to think about the “details.” Since programming languages are
not forgiving from a syntax point of view, the formulation must be clear.

Sometimes  it  is  necessary  to  move  in  the  wrong  direction—only  to  then  change  course
and thus have a learning experience. Students learn by making errors and errors give the
reason for making changes.

There are several different teaching media.

1. Notebooks

2. HTML

3. Video

Notebooks can be used in a lecture, a lab, or at home. HTML and video are mainly used at
home.
Usually  the  difference  between  lectures  and  tutorials  is  that  a  lecture  is  much  more
abstract  than a tutorial.  Additionally,  when using an interactive computer algebra system
(CAS)  for  presentation,  the  degree  of  interactivity  is  much  less  in  a  lecture  than  in  a
tutorial. The student has to work through a tutorial. In a lecture a student has a much more
passive role. Also the difference in tone, which is much more relaxed for tutorials,  helps
students lose their fear of the abstract formulation of scientific facts.

‡ Tutorials
Our tutorials come from several different areas.

1. Simulation (notebook, HTML, some video)

2. Technical Mechanics (notebook)

3. Mathematica (notebook, HTML, some video)
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‡ Video Lectures and Formats
We have also tried different video lecture types, which have several advantages.

1. Students can stop the lecture, think about the new material, and move on.

2. Students can learn when it is convenient for them to learn; they are not tied to any
schedule.

3. Students  can  practice  prior  to  exams.  They  can  listen  and  watch  the  lecture  over
and over until they feel comfortable with the material.

Two different recording mechanisms, available at the University of Freiburg, were used to
create  the video lectures—first  the  Camtasia  [3]  suite  and second LECTURNITY [4].  In
both cases the presenter’s screen and voice are recorded via a Tablet PC, and the presenter
is not visible on the recording. In this article we have focused on screen recording mecha-
nisms. Other formats, not considered here, capture the entire lecture as done at MIT [5] or
Berkeley [6].

With the Camtasia suite a TSCC codec is used, which can be converted into AVI and Real-
Media. As an example of such a screen recording,  you can download the RealMedia tuto-
rial,  which  is  in  German,  from  Simulation1_02.rm  (47.6MB).  The  primary  advantage  is
that the RealMedia file format is widely distributed. Secondly, it has a slightly better qual-
ity than the AVI format considered here.
A second possibility is provided by the authoring tool LECTURNITY. Again, a recording
Tablet PC is used. A Java player is presently available; however, it does not work well un-
der Linux.

‡ Notebook Tutorials for the Simulation Curriculum
For students it is necessary to compute simple examples by hand. At some stage, however,
much more insight may be gained by computing something that could not be done before;
it  would be optimal  for  students  to  visualize  complex real-world  examples.   Such a  suc-
cess  is  very  motivating.  Secondly,  we  find  the  visualization  of  time-dependant  problems
by an animation is equally well suited for didactical purposes.

1. Derivatives Recovery

2. Finite Difference

3. Finite Volume

4. Finite Elements

5. Iterative Solvers

6. Multigrid Methods

7. Norms in Analysis

8. Partial Differential Equations
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9. Shape Functions

10. Sparse Matrices

The  simulation  tutorials  comprise  about  180  printed  pages.  We  try  not  to  introduce  too
many  new  ideas  in  too  short  a  time.  We  start  from  the  simplest  possible  example  and
show students the limitations of the code developed so far in order to motivate a next step
that fixes the previous problem. 

‡ Notebook Tutorial Examples
Next, we present two extracts from the IMS tutorial section—first the finite difference tuto-
rial and second the finite volume tutorial.

· Parabolic Finite Differences

ü Derivation

We look at the equation

(1)ut = uxx.

The right-hand side at time step n can be approximated by the central difference

(2)uxx =
uni-1 - 2 uni + uni+1

h2
.

The left-hand side can be approximated by the forward difference. With n being the cur-
rent time step and n+ 1 the next time slice

(3)ut =
un+1,i - uni

t
.

Putting things together we get

(4)
un+1 i - uni

t
=

uni-1 - 2 uni + uni+1
h2

.

We rearrange the equation to express explicitly the next time step n+ 1 

(5)un+1,i =
t

h2
H uni-1 - 2 uni + uni+1L+ uni.

Initial  conditions  set  the  function  values  for  the  whole  simulation  domain  for  time  step
n = 0. Via the previous scheme we advance the initial conditions to time step n = 1. Pro-
ceeding in this manner, we compute all unknown values.
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Rearranging and setting s = t ë h2 we get

(6)un+1,i = sH uni-1 + uni+1L+ uniH1- 2 sL.

This is called an explicit scheme since the value for the next time step is computed explic-
itly from the previous time steps.

ü Implementation

Let us implement this explicit  scheme and play around with it.  As before,  for the spatial
discretization, we use the variable h. For the time discretization, we use the time step t.

gridPoints = 11;
tau = 1.0 ê 200;

h = 1 ê HgridPoints - 1L;
s = tau ê h^2

0.5

The initial conditions at the time step n = 0 are set to 20°C. In other words, for any spatial
point x we initially have a temperature of 20°C.

u@0, x_D := u@0, xD = 20.0;

A noteworthy point  is  that  we use dynamic programming  to  enhance the speed at  which
Mathematica  will  find  the  solution.  Dynamic  programming  means  that  each  computed
value will be stored and thus remembered for later execution. 
Next, we specify Dirichlet boundary conditions: both ends of the rod at spatial coordinate
x = 0 and x = 1 are set to 100°C. In other words, for any time step the boundary has fixed
values.

u@ n_, 0D := u@n, 0D = 100.0;
u@n_, 1 ê hD := u@n, 1 ê hD = 100.0;

The updating rule for the interior values

u@n_, i_D :=
u@n, iD =
Evaluate@s * Hu@n - 1, i + 1D + u@n - 1, i - 1DL +

H1 - 2 * s L * u@n - 1, iDD;

The solution is now found using an outer product, where we only want to see a fraction of
the time steps.

solution = Outer@u, Range@0, 1 ê tau ê 5D, Range@0, 1 ê hDD;
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We map the function that plots a time slice over some selected time steps (i.e., time step 1,
11, 21, 31), which are stored in the solution vector.

Show@
GraphicsGrid@
Partition@
Function@aTimeStep, ListLinePlot@aTimeStep,

PlotRange Ø 80, 100<DD êü solutionP81, 11, 21, 31<T, 2DDD
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Gluing all the time slices together we obtain the following plot.

ListPlot3D@solution,
AxesLabel Ø 8"Space", "Time", "Temp @CD"<,
ViewPoint Ø 82.884, -1.555, 0.845<D
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When employing dynamic programming,  we need to remove the information stored dur-
ing a computation. This saves memory.

Remove@"u*"D

ü The Question of Stability

Let  us  say  we  want  a  higher  resolution  in  the  spatial  direction  and  less  computational
points in the time direction. We proceed exactly as before, however, setting an increase in
the number of grid points and decreasing the time step.

gridPoints = 21;
tau = 1.0 ê 100;

h = 1 ê HgridPoints - 1L;
s = tau ê h^2

4.

The s has now increased.

We set the initial and boundary conditions.

u@ 0, x_D := u@0, xD = 20;
u@n_, 0D := u@n, 0D = 100;
u@n_, 1 ê hD := u@n, 1 ê hD = 100;

The update rule

u@n_, i_D :=
u@n, iD =
Evaluate@s * Hu@n - 1, i + 1D + u@n - 1, i - 1DL +

H1 - 2 * sL * u@n - 1, iDD;

res = Outer@u, Range@1 ê tau ê 5D, Range@0, 1 ê hDD;
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ListPlot3D@res, AxesLabel Ø 8"Space", "Time", "Temp @CD"<,
ViewPoint Ø 82.884, -1.555, 0.845< D

This produces a disastrous result. The algorithm became unstable by increasing the num-
ber of grid points h and decreasing the number of time steps t. In this case, for all values
of s § 1 ê 2 the algorithm is stable. Try it. This poses a serious problem: in order for the al-
gorithm  to  stay  stable,  the  time  steps  have  to  be  increased  to  satisfy  t ¥ 2 * h2.  For  21
grid points that implies 2µ 202 = 800 time steps.

The first question is where does this behavior come from? The second question is can we
circumvent  the  instability  problem related  with  explicit  schemes?  The  first  question  will
be  answered  now.  The  second one  is  dealt  with  in  the  next  section,  where  so-called  im-
plicit schemes will emerge—a whole new class of parabolic equation solvers.

Remove@"u*"D

· Heat Equation with 1D Finite Volume

ü The Problem (Derivation)

We  investigate  the  numerical  approximation  to  the  heat  conduction  equation  that  de-
scribes the heat distribution in the wall of a pipe. This example is inspired by [7].
Imagine a pipe with a thick wall (Figure 1). Inside this pipe we have a hot liquid. Outside
at radius r = b2 it  is cold with T = T0.  In the inside at radius r = b1 we have a prescribed
heat flux q into the pipe’s wall.
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Module@8
r = 1,
R = 2,
dt = 2 Pi ê 40,
l = 6<,

Show@
Graphics3D@
8Table@Polygon@88r Cos@tD, r Sin@tD, 0<,

8R Cos@tD, R Sin@tD, 0<, 8R Cos@t + dtD, R Sin@t + dtD, 0<,
8r Cos@t + dtD, r Sin@t + dtD, 0<,
8r Cos@tD, r Sin@tD, 0<<D, 8t, 0, 2 Pi, dt<D,

Table@Polygon@88r Cos@tD, r Sin@tD, 0<,
8r Cos@tD, r Sin@tD, l<, 8r Cos@t + dtD, r Sin@t + dtD, l<,
8r Cos@t + dtD, r Sin@t + dtD, 0<,
8r Cos@tD, r Sin@tD, 0<<D, 8t, 0, 2 Pi, dt<D,

Table@Polygon@88R Cos@tD, R Sin@tD, 0<,
8R Cos@tD, R Sin@tD, l<, 8R Cos@t + dtD, R Sin@t + dtD, l<,
8R Cos@t + dtD, R Sin@t + dtD, 0<,
8R Cos@tD, R Sin@tD, 0<<D, 8t, 0, 2 Pi, dt<D,

Table@Polygon@88r Cos@tD, r Sin@tD, l<,
8R Cos@tD, R Sin@tD, l<, 8R Cos@t + dtD, R Sin@t + dtD, l<,
8r Cos@t + dtD, r Sin@t + dtD, l<,
8r Cos@tD, r Sin@tD, l<<D, 8t, 0, 2 Pi, dt<D<D,

ViewPoint Ø 8-1., -1., -5.<, Boxed Ø FalseD
D

Ú Figure 1. A pipe for transporting hot liquid in cold surroundings.
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Figure 2 shows a cross-section of the pipe with the inner radius b1and the outer radius b2,
the  boundary conditions,  and a  thick line  along which we compute  the  solution.  It  is  as-
sumed that  this  line  could  be  any  line  from the  inside  to  the  outside;  the  solution  of  the
PDE will not change.

GraphicsB:

Circle@80, 0<, 1D,
Circle@80, 0<, 2D,
Arrow@880, 0<, 81, 0<<D,
Arrow@880, 0<, 8Sqrt@2D, Sqrt@2D<<D,
Text@Style@b1, FontSize -> 12D, 80.5, -0.125<, 80, 1<D,
Text@Style@b2, FontSize -> 12D, 81, 1<, 80.25, -1.75<D,
Text@Style@T0, FontSize -> 12D, 8-2, 0<, 81, 0<D,

TextBStyleBRowB:HoldFormB
dT

dr
F, " = ", HoldFormB

q

r
F>F,

FontSize -> 12F, 8-1, 0<, 80, -1<F,

8Thickness@0.02D, Line@880, -1<, 80, -2<<D<

>, AspectRatio Ø Automatic, PlotRange Ø All,

ImageSize Ø 200F

b1

b2

T0

d T

d r
=

q

r

Ú Figure 2. A cross-section of the pipe with the inner radius b1 and the outer radius b2, the boundary 
conditions, and a thick line along which the distribution of heat in the wall of the pipe is computed.

The governing PDE is

(7)

1

r

¶∂

¶∂r
r s

¶∂y

¶∂r
- r = 0,

s

r

¶∂y

¶∂r
+s

¶∂2y

¶∂r2
- r = 0
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(7)

+s - r = 0

ñ
¶∂y

¶∂r
+ r

¶∂2y

¶∂r2
=

r

s
r,

where f HrL = r r

s
 is the inhomogeneity or load of the PDE.

The analytical solution for this is

anaSol = DSolveB:¶∂ry@rD + r ¶∂rry@rD ã
r

s
r, y'@1D ã J, y@2D ã 0>,

y@rD, rF

::y@rD Ø
1

4 s
I-4 r + r2 r + 2 r Log@2D -

4 J s Log@2D - 2 r Log@rD + 4 J s Log@rDM>>

For the numerical solution of the PDE we replace y with u

(8)

¶∂y

¶∂r
+ r

¶∂2y

¶∂r2
=

r

s
r

ñ
¶∂u

¶∂r
+ r

¶∂2u

¶∂r2
=

r

s
r.

ü Meshing

We first mesh the 1D domain r œ @1, 2D with n equally spaced intervals of length h; the so-
called control volume j extends from r j -

h
2  to r j +

h
2  (Figure 3).
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Module@8
h,

start = 80, 0<,
stop = 81, 0<<,
Graphics@

8Line@8start, stop<D,
Line@880.125, 0.02<, 80.125, -0.05<<D,
Line@880.375, 0.02<, 80.375, -0.05<<D,
Line@880.625, 0.02<, 80.625, -0.05<<D,
Line@880.875, 0.02<, 80.875, -0.05<<D,
Line@880.16, 0.05<, 80.21, 0.05<<D,
Line@880.295, 0.05<, 80.345, 0.05<<D,
8PointSize@0.02D, Hue@0.95D, Point@startD<,
Text@Row@8j, " = 1"<D, 80.00, 0.1<D,
Text@"Hinside radiusL", 80.00, 0.15<D,
Text@Row@8j, " = 2"<D, 80.25, 0.1<D,
Text@Row@8j, " = 3"<D, 80.50, 0.1<D,
Text@Row@8j, " = 4"<D, 80.75, 0.1<D,
Text@Row@8j, " = 5"<D, 81.00, 0.1<D,
Text@"Houtside radiusL", 81.00, 0.15<D,
Text@"Vol 1", 80.25, -0.1<D,
Text@"Vol 2", 80.50, -0.1<D,
Text@"Vol 3", 80.75, -0.1<D,
8PointSize@0.02D, Hue@0.95D, Point@stopD<,
8PointSize@0.02D, Hue@0.7D, Point@8Ò, 0<D< & êü
Range@0.25, 0.75, 0.25D,

Arrow@880.15, 0.05<, 80.125, 0.05<<D,
Text@StyleForm@"h", "TI"D, 80.25, 0.05<D,
Arrow@880.355, 0.05<, 80.375, 0.05<<D,
Arrow@880.59, 0.05<, 80.5, 0.05<<D,
Text@StyleForm@"h", "TI"D, 80.63, 0.05<D,
Arrow@880.665, 0.05<, 80.75, 0.05<<D<,

PlotRange Ø All, AspectRatio Ø AutomaticD
D

j = 1
Hinside radiusL

j = 2 j = 3 j = 4 j = 5
Houtside radiusL

Vol 1 Vol 2 Vol 3

h h

Ú Figure 3. The one-dimensional simulation domain with two red boundary points. The blue points 
represent additional internal points at which the heat distribution is computed. The points are 
equally spaced with a length of h. Each internal point is surrounded by a control volume. The con-
trol volume of the internal points is also of size h. The control volume of the boundary points is of 
size h ê2.
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ü Interior Points

Here we just suppose uHrL changes linearly between any two adjacent discretized points

(9)
‡
r j-

h
2

r j+
h
2 ¶∂u

¶∂r
+ r

¶∂2u

¶∂r2
„r = ‡

r j-
h
2

r j+
h
2

f HrL „r

ñ r
¶∂u

¶∂r r j+
h
2

- r
¶∂u

¶∂r r j-
h
2

=
r j hr

s
.

Now we can apply finite difference type discretized derivatives

(10)

¶∂u

¶∂r r j+
h
2

=
u j+1 - u j

h
,

¶∂u

¶∂r r j-
h
2

=
u j - u j-1

h
.

(11)
ñ r j +

h

2
Iu j+1 - u jM- r j -

h

2
Iu j - u j-1M =

r j h2 r

s

ñ -
h

2
+ r j u j-1 - 2 r j u j +

h

2
+ r j u j+1 =

r j h2 r

s
.

ü Boundary Conditions

The Dirichlet boundary condition:

(12)ur=2 = 0.

For the Neumann boundary condition J ¶∂u
¶∂r Nr=1

= J

(13)

‡
1

1+ h
2 ¶∂u

¶∂r
+ r

¶∂2u

¶∂r2
„r = r

¶∂u

¶∂r 1+ h
2

- r
¶∂u

¶∂r 1
= ‡

1

1+ h
2

f HrL „r

ñ ‡
1

1+ h
2

f HrL „r + r
¶∂u

¶∂r 1
= r

¶∂u

¶∂r 1+ h
2

ñ
2 h JJ + h H4+hL r

8s N

2+ h
= ur=1+h - ur=1.
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ü Building the Matrix (Implementation)

Physical properties

J = -1; r = 0; s = 1;

gridPoints = 5;
h = 1. ê HgridPoints - 1L;

Empty global matrix and empty global load vector

matrix = Table@ 0.0, 8gridPoints<, 8gridPoints<D;
loadVector = Table@0.0, 8gridPoints<D;

Neumann boundary conditions as in equation (13)

matrix@@1, 1DD = -1.0;
matrix@@1, 2DD = 1.0;

loadVector@@1DD =
2 h IJ + h H4+hL r

8 s
M

2 + h
;

Dirichlet boundary conditions as in equation (12)

matrix@@gridPoints, gridPointsDD = 1.0;
loadVector@@gridPointsDD = 0;

Assembly of the global system as in the right-hand side of equation (11)

Do@
matrix@@pos, pos - 1DD = -h ê 2 + H1 + Hpos - 1L hL;
matrix@@pos, posDD = -2 H1 + Hpos - 1L hL;
matrix@@pos, pos + 1DD = h ê 2 + H1 + Hpos - 1L hL
, 8pos, 2, gridPoints - 1<D;

Assembly of the global load as in the left-hand side of equation (11)

DoBloadVector@@posDD =
H1 + Hpos - 1L hL h2 r

s
,

8pos, 2, gridPoints - 1<F;
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ü Solution

Solution of the linear system of equations

res = LinearSolve@matrix, loadVectorD

80.69122, 0.468998, 0.287179, 0.133333, 0.<

ü Analytical versus Numerical Solution

We  prepare  the  data  for  postprocessing.  The  coordinates  of  the  mesh  points  are  joined
with the result at these points. Next, an analytical solution to the problem at hand is found.

numSol = Transpose@Join@8Range@1, 2, hD<, 8res<DD;
8anaSolFunc< =

y ê. DSolveB:¶∂ry@rD + r ¶∂rry@rD ã
r

s
r, y'@1D ã J, y@2D ã 0>,

y, rF

8Function@8r<, Log@2D - Log@rDD<

Show@
8ListLinePlot@numSol, PlotRange Ø All, PlotStyle Ø Hue@0.6DD,
Plot@anaSolFunc@rD, 8r, 1, 2<, PlotStyle Ø Hue@0.1DD<D

1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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This result is informative if we need the quantitative distribution of the heat in the pipe. If
we are interested in the quality of the solution, the plot is not very informative. In this case
we  wish  to  know  how  close  the  numerical  solution  is  to  the  analytical  solution.  To  this
end we evaluate the analytical function at the mesh points.

anaRes = anaSolFunc@ÒD & êü Range@1, 2, hD;

We can then compute the norm.

Norm@anaRes - res, 2D

0.00224014

A  better  graphical  representation  is  the  difference  of  the  analytical  solution  at  the  mesh
points to the computed result. The error of the numerical solution compared to the analyti-
cal solution

ListLinePlot@
Transpose@Join@8Range@1, 2, hD<, 8anaRes - res<DDD

1.2 1.4 1.6 1.8 2.0

0.0005

0.0010

0.0015

Experiment with a different number of grid points.
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‡ Conclusion
In  a  teaching environment  that  frequently  needs  to  show parts  of  program code,  we find
that using Mathematica is of great use—as long as students have control over the speed of
the presented material.  When a notebook or  video is  presented,  which is  full  of  program
code, students may not gain much from the presentation—more than one line of code is of-
ten tedious for students. Depending on the level of fluency in the language itself, students
face  two problems:  understanding  the  contents  of  the  lecture  and  understanding  the  pro-
gram  code.  We  have  had  good  experience  with  supplementing  lectures  with  tutorials,
which  may  paraphrase  the  content  of  the  lecture.  Tutorials  provide  a  convenient  way  in
which the student can set his own pace of learning, possibly at home. It always fascinates
students to see live graphics, and this motivation factor should not be underestimated.
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