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A Mode-Matching Method 
for Multichannel Scattering 
Problems
Peter Falloon

We present a simple method for solving scattering problems with 
multiple incoming and outgoing channels and demonstrate its 
application to the problem of conduction through a ferromagnetic 
domain wall.

‡ Introduction
The motivation for the work presented in this article is a problem from condensed matter
physics concerning electron transport through ferromagnetic domain walls. Domain walls
are  spatially  extended  boundaries  which  separate  magnetically  homogeneous  domains
existing  in  ferromagnetic  materials.  They  are  regions  in  which  the  magnetization  vector
reverses by 180° over a length l typically on the order of 10–100 nm (Figure 1) [1]. Elec-
trons  travelling through such a  structure  experience a  scattering due to  the  interaction of
their intrinsic spin magnetic moment with the rotating magnetization. Recently, this scat-
tering  effect  has  been  the  subject  of  a  large  amount  of  experimental  and  theoretical
research [2]. Much of this interest has been stimulated by the exciting potential for techno-
logical  applications  in  solid  state  information  storage  devices  that  may  be  offered  by
storing domain walls in nanowire structures.

x

Ú Figure 1. The rotating magnetization vector in a domain wall in a nanowire.
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We  have  been  involved  in  theoretical  research  aimed  at  understanding  the  physics  of
electron  transport  through  domain  walls  in  nanowires  [3,  4].  Here  we  consider  the
problem of electron scattering from a domain wall  using a simple free-electron model in
which  the  domain  wall  is  represented  as  a  spin-dependent  potential.  Taking  the  electron
spin into account  requires that  we work with two-component  spinor wavefunctions.  This
problem  is  analogous  to  one-dimensional  potential  scattering  problems  from  elementary
quantum mechanics,  with  the  complication  that  the  domain  wall  causes  mixing  between
the two spinor components. There are thus multiple transmitted and reflected states.
Although a variety of computational methods exist for such problems (for example, the re-
cursive Green’s function (RGF) algorithm), it is desirable to have an intuitive and simple
method.  We develop such a  method in  this  article  by extending the  approach commonly
used for the elementary one-dimensional problem.

· Preliminary Code

For  the  symbolic  manipulations  we  perform  in  this  article  it  is  useful  to  modify  the
behaviour of the Equal  function so that functions with the Listable  attribute will  be
distributed across expressions with head Equal.

Unprotect@EqualD;
Equal ê:
lhs : HHf_SymbolL?HMemberQ@Attributes@ÒD, ListableD &LL@

___, _Equal, ___D := Thread@Unevaluated@lhsD, EqualD
Protect@EqualD;

We will also make use of the following two functions: ThreadEqual uses the function
Thread to distribute the Equal function over nested lists to yield a one-dimensional list
of equalities.

ThreadEqual@expr_EqualD :=
FlattenüThread@Flatten êü exprD ê. 8a_< ã 8b_< ß a ã b

ThreadEqual@expr_ListD := Flatten@ThreadEqual êü exprD
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PlotWaveFn  generates  a  pair  of  graphs  showing  each  component  of  a  two-component
wavefunction.

PlotWaveFn@Y_, l_, range_ListD :=

GraphicsRowB

:PlotBYP1, 1T, range, PlotStyle Ø RGBColor@1, 0, 0D,

DisplayFunction Ø Identity,
PlotLabel Ø Style@"Spin Æ", "SR", FontSize Ø 10D,
AxesLabel Ø 8Style@"x", "SO", FontSize Ø 10D, ""<,

Epilog Ø :Dashing@80.01`<D, LineB::-
l

2
, 0>, :-

l

2
, 10>>F,

LineB::
l

2
, 0>, :

l

2
, 10>>F>F,

PlotBYP2, 1T, range, PlotStyle Ø RGBColor@0, 0, 1D,

DisplayFunction Ø Identity,
PlotLabel Ø Style@"Spin ¯", "SR", FontSize Ø 10D,
AxesLabel Ø 8Style@"x", "SO", FontSize Ø 10D, ""<,

Epilog Ø :Dashing@80.01`<D, LineB::-
l

2
, 0>, :-

l

2
, 10>>F,

LineB::
l

2
, 0>, :

l

2
, 10>>F>F>F

‡ The Mode-Matching Method

· Schrödinger Equation for the Domain Wall Scattering Problem

The conduction electron wavefunctions satisfy the two-component Schrödinger equation

(1)-
—2

2 m

¶∂2Y

¶∂x2
+
D

2
fzHxL fxHxL
fxHxL - fzHxL

YHxL = E YHxL ,

where Y =
yÆ

y¯
 is the spinor wavefunction for the electron (in the z spin basis). E is the

total electron energy and D is the energy splitting between spin Æ and ¯ components. The
vector  9 fxHxL, fyHxL, fzHxL=  is  a  unit  vector  parallel  to  the  magnetization  direction  in  the
ferromagnet.
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For computation, we use units with —2

2m = 1. We define Equation (1) as follows.

Seqn@x_D =

yu²″@xD
yd²″@xD

+ E K
yu@xD
yd@xD

O +
D

2
K
fz@xD fx@xD
fx@xD -fz@xD

O.K
yu@xD
yd@xD

O ã K
0
0
O êê

ThreadEqual

:E yu@xD +
1

2
D Hfx@xD yd@xD + fz@xD yu@xDL + yu££@xD ã 0,

E yd@xD +
1

2
D H-fz@xD yd@xD + fx@xD yu@xDL + yd££@xD ã 0>

Outside  the  domain  wall  the  magnetization  is  uniform  with  opposite  direction  on  either
side of the wall:

(2)fxHxL = 0, fzHxL = sgnHxL, †x§ > l
2

.

We suppose  the  magnetization  rotates  in  the  xz-plane,  M µ∝ H fxHxL, 0, fzHxLL.  We consider
two possible profiles for inside the wall:

1. Trigonometric

(3)fxHxL = cosI px
l
M, fzHxL = sinI px

l
M, †x§ § l

2
,

fxtrig@l_D@x_D :=
CosA p x

l
E - l

2
< x < l

2

0 Abs@xD ¥ l

2

fztrig@l_D@x_D :=
SinA p x

l
E - l

2
< x < l

2

Sign@xD Abs@xD ¥ l

2

2. Linear

(4)fxHxL = 1- J
2 x
l
N
2

, fzHxL =
2 x
l

, †x§ § l
2 .

fxlin@l_D@x_D :=
1 - I

2 x
l
M
2

- l

2
< x < l

2

0 Abs@xD ¥ l

2

fzlin@l_D@x_D :=
2 x
l

- l

2
< x < l

2

Sign@xD Abs@xD ¥ l

2
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The trigonometric profile is useful because it can be solved in closed-form, while the lin-
ear profile is useful in a perturbative approach since, if the fxHxL component is ignored, so-
lutions can be found in terms of Airy functions.
We visualize the components of the potential.

With@8l = 10<,
Plot@8fxtrig@lD@xD, fztrig@lD@xD, fxlin@lD@xD, fzlin@lD@xD<,
8x, -l, l<,
PlotStyle Ø 8Red, Blue, 8Red, Dashing@80.01<D<,

8Blue, Dashing@80.01<D<<, AxesLabel Ø 8x, ""<DD

-10 -5 5 10
x

-1.0

-0.5

0.5

1.0

Ú Figure 2. Components of the potential. The trigonometric profiles fx and fz  are red and blue respec-
tively. The linear profiles fx and fz are red and blue dashed lines respectively.

Outside the domain wall region, solutions of Equation (1) are combinations of the follow-
ing plane-wave basis states:

(5)

expH±Âk+ xL
0

,
0

expH±Âk- xL
, x < -l

2 ,

expH±Âk- xL
0

,
0

expH±Âk+ xL
, x > l

2 .

Here k± are spin-dependent wavevectors:

(6)k± =
2 m

—2
E ±

D

2
.
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· Scattering States and Scattering Amplitudes

The  goal  of  the  scattering  problem  is  to  find  scattering  state  solutions  of  Equation  (1).
These represent a steady-state flux of electrons incident on the scattering region which is
partially transmitted and partially reflected. Specifically, we consider states incident from
the left (x = -¶):

(7)YÆHxL = :

expHÂk+ xL+ rÆÆ expH-Âk+ xL

rÆ¯ k+ ê k- expH-Âk- xL
, x < -l

2

tÆÆ k+ ê k- expHÂk- xL
tÆ¯ expHÂk+ xL

, x > l
2

(8)Y¯HxL = :

r¯Æ k- ê k+ expH-Âk+ xL
expHÂk- xL+ r¯¯ expH-Âk- xL

, x < -l
2

t¯Æ expHÂk- xL

t¯¯ k- ê k+ expHÂk+ xL
, x > l

2 ,

where  rab  and  tab  are  the  reflection  and  transmission  amplitudes.  The  factors  ka ê kb
take account of the change in flux between regions with differing wavevectors and where
a and b can each be spin up or spin down. 

Yupleft@x_D :=
Exp@Â kp xD + ruu Exp@-Â kp xD

rud kp ê km Exp@-Â km xD

Yupright@x_D := tuu kp ê km Exp@Â km xD
tud Exp@Â kp xD

Ydnleft@x_D := rdu km ê kp Exp@-Â kp xD
Exp@Â km xD + rdd Exp@-Â km xD

Ydnright@x_D :=
tdu Exp@Â km xD

tdd km ê kp Exp@Â kp xD

The corresponding transmission and reflection probabilities are defined by

(9)Tab = †tab§2, Rab = †rab§2.

Conservation of probability requires that these sum to unity for a given state:

(10)‚
b

HTab + RabL = 1.

The functions YÆHxL and Y¯HxL span the subspace of solutions of Equation (1) which con-
tains all solutions with only right-moving components in the region x > l ê 2, that is, all so-
lutions which have no incoming component from the right.
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· An Alternative Set of Solutions

The key idea in  our  method is  to  determine two arbitrary  linearly  independent  solutions
from  the  same  space  as  YÆHxL  and  Y¯HxL  for  which  we  choose  the  form  in  the  region
x > l ê 2. For the sake of definiteness, we let

(11)F1HxL =
expHÂk- xL
expHÂk+ xL

, F2HxL =
expHÂk- xL
-expHÂk+ xL

, for x > l
2 .

The  choice  here  is  arbitrary,  and  a  more  intuitive  choice  would  perhaps  be  to  make  the
transmitted functions be either up or down:

F1HxL =
expHÂk- xL

0
, F2HxL =

0
expHÂk+ xL

. @not usedD

However, the choice we have made in Equation (11) ensures that both up and down compo-
nents will be roughly of the same magnitude, which minimizes the possibility for numeri-
cal difficulties that might arise if one of the components were set to zero.
Because the functions F1,2HxL are linear combinations of Y ,¯HxL, they contain both incom-
ing and reflected components in the region x § -l ê 2, so we write

(12)F1,2HxL =
a1,2 expHÂk+ xL+ b1,2 expH-Âk+ xL
g1,2 expHÂk- xL+ d1,2 expH-Âk- xL

.

F1left@x_D := K
a1 Exp@Â kp xD + b1 Exp@-Â kp xD
g1 Exp@Â km xD + d1 Exp@-Â km xD

O

F1right@x_D := K
Exp@Â km xD
Exp@Â kp xD

O

F2left@x_D := K
a2 Exp@Â kp xD + b2 Exp@-Â kp xD
g2 Exp@Â km xD + d2 Exp@-Â km xD

O

F2right@x_D := K
Exp@Â km xD
-Exp@Â kp xD

O

We obtain F1,2HxL in the interval -l ê 2 < x < l ê 2 by solving Equation (1) numerically us-
ing the values at x = l ê 2 as initial conditions.

A Mode-Matching Method for Multichannel Scattering Problems 7

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.



· Expressing Scattering States and Amplitudes in Terms of F1,2HxL

The scattering states Y ,¯HxL can be expressed as a linear combination of F1,2HxL according
to

(13)YÆHxL = A1 F1HxL+ A2 F2HxL, Y¯HxL = B1 F1HxL+ B2 F2HxL .

Yeqsleft =
8A1 F1left@-l ê 2D + A2 F2left@-l ê 2D ã Yupleft@-l ê 2D,
B1 F1left@-l ê 2D + B2 F2left@-l ê 2D ã Ydnleft@-l ê 2D<;

Yeqsright =
8A1 F1right@l ê 2D + A2 F2right@l ê 2D ã Yupright@l ê 2D,
B1 F1right@l ê 2D + B2 F2right@l ê 2D ã Ydnright@l ê 2D<;

We obtain the coefficients A1,2 and B1,2 by equating the coefficients of the incoming wave
components expHÂ k± xL at x = -l ê 2.

ABeqns =
Coefficient@Ò, 8Exp@-Â kp l ê 2D, Exp@-Â km l ê 2D<D & êü

Yeqsleft êê ThreadEqual êê DeleteCases@Ò, TrueD &

8A1 a1 + A2 a2 ã 1, A1 g1 + A2 g2 ã 0,
B1 a1 + B2 a2 ã 0, B1 g1 + B2 g2 ã 1<

8A1, A2, B1, B2< =
8A1, A2, B1, B2< ê. FirstüSolve@ABeqns, 8A1, A2, B1, B2<D

:
g2

-a2 g1 + a1 g2
,

g1

a2 g1 - a1 g2
,

a2

a2 g1 - a1 g2
,

a1

-a2 g1 + a1 g2
>

The scattering amplitudes rab  and tab  can then be found by equating the coefficients of the
appropriate scattered components at x = -l ê 2 and x = l ê 2.

rabeqs =
Coefficient@Ò, 8Exp@Â kp l ê 2D, Exp@Â km l ê 2D<D & êü

Yeqsleft êê ThreadEqual êê DeleteCases@Ò, TrueD &;
tabeqs =

Coefficient@Ò, 8Exp@Â kp l ê 2D, Exp@Â km l ê 2D<D & êü
Yeqsright êê ThreadEqual êê DeleteCases@Ò, TrueD &;
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In solving these equations we substitute the definitions for A1,2 and B1,2.

8ruu, rud, rdu, rdd, tuu, tud, tdu, tdd< =
8ruu, rud, rdu, rdd, tuu, tud, tdu, tdd< ê.

FirstüSolve@Join@rabeqs, tabeqsD,
8ruu, rud, rdu, rdd, tuu, tud, tdu, tdd<D êê

Simplify@Ò, 8kp > 0, km > 0<D &

:
b2 g1 - b1 g2

a2 g1 - a1 g2
,

km
kp

H-g2 d1 + g1 d2L

a2 g1 - a1 g2
,

kp

km
Ha2 b1 - a1 b2L

a2 g1 - a1 g2
,

a2 d1 - a1 d2

a2 g1 - a1 g2
,

km
kp

Hg1 - g2L

a2 g1 - a1 g2
,

g1 + g2

-a2 g1 + a1 g2
,

a1 - a2

-a2 g1 + a1 g2
,

kp

km
Ha1 + a2L

a2 g1 - a1 g2
>

· Solving for F1,2HxL and Y ,ØHxL

Now that we have an expression for the amplitudesrab  and tab  in terms of a1,2,  b1,2,  g1,2,
and d1,2 all that remains is to determine these coefficients. We do this by numerically solv-
ing the Schrödinger equation, Equation (1), for F1,2HxL. The equation is solved as an initial
value problem with the value of F1,2Hl ê 2L and F1,2£ Hl ê 2L as initial conditions.

init1 =

:K
yu@l ê 2D
yd@l ê 2D

O ã F1right@l ê 2D,

yu£@l ê 2D
yd£@l ê 2D

ã F1right£@l ê 2D> êê ThreadEqual;

init2 =

:K
yu@l ê 2D
yd@l ê 2D

O ã F2right@l ê 2D,

yu£@l ê 2D
yd£@l ê 2D

ã F2right£@l ê 2D> êê ThreadEqual;
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Here we assume a trigonometric domain wall and a particular set of parameter values.

E = 1.0; D = 0.1; l = 10.0;
fx@x_D = fxtrig@lD@xD; fz@x_D = fztrig@lD@xD;

kp = E + D ê 2 ;

km = E - D ê 2 ;

F1wall@x_D =

K
yu@xD
yd@xD

O ê.

FirstüNDSolve@Join@Seqn@xD, init1D, 8yu, yd<,
8x, -l ê 2, l ê 2<D

88InterpolatingFunction@88-5., 5.<<, <>D@xD<,
8InterpolatingFunction@88-5., 5.<<, <>D@xD<<

F2wall@x_D =

K
yu@xD
yd@xD

O ê.

FirstüNDSolve@Join@Seqn@xD, init2D, 8yu, yd<,
8x, -l ê 2, l ê 2<D

88InterpolatingFunction@88-5., 5.<<, <>D@xD<,
8InterpolatingFunction@88-5., 5.<<, <>D@xD<<

The function NDSolve returns solutions in the form of InterpolatingFunction ob-
jects, which can be differentiated like ordinary functions. 
We next use the value of these numerical solutions and their first derivative at x = -l ê 2
to  find  the  coefficients  in  the  representation  of  F1,2HxL  for  x § -l ê 2,  using  the  fact  that
the wavefunctions are continuous at x = ±l ê 2.

Clear@a1, b1, g1, d1, a2, b2, g2, d2D;
8a1, b1, g1, d1, a2, b2, g2, d2< =
8a1, b1, g1, d1, a2, b2, g2, d2< ê.
FirstüSolve@8F1left@-l ê 2D ã F1wall@-l ê 2D,

F1left£@-l ê 2D ã F1wall£@-l ê 2D,
F2left@-l ê 2D ã F2wall@-l ê 2D,
F2left£@-l ê 2D ã F2wall£@-l ê 2D<,

8a1, b1, g1, d1, a2, b2, g2, d2<D

81.02266 - 0.146829 Â, -0.0398946 + 0.0204621 Â,
0.95478 - 0.14655 Â, 0.0419418 + 0.00757023 Â,
0.905043 + 0.148117 Â, -0.0398946 - 0.000755258 Â,
-1.07184 - 0.147905 Â, -0.0419418 - 0.0131478 Â<
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We now have the two solutions F1,2HxL for all x.

F1@x_D :=

F1left@xD x § - l

2

F1wall@xD - l

2
< x < l

2

F1right@xD l

2
§ x

F2@x_D :=

F2left@xD x § - l

2

F2wall@xD - l

2
< x < l

2

F2right@xD l

2
§ x

We  visualize  the  squared  magnitude  of  up  and  down  components  using  the  function
PlotWaveFn defined at the start of this article.

PlotWaveFnAAbs@F1@xDD2, l, 8x, -2 l, 2 l<E

-20 -10 10 20
x

0.95
1.00
1.05
1.10
1.15

Spin Æ

-20 -10 10 20
x

0.90
0.95
1.00
1.05

Spin ¯

Ú Figure 3. Squared magnitude of up and down components of F1HxL are red and blue respectively.

PlotWaveFnAAbs@F2@xDD2, l, 8x, -2 l, 2 l<E

-20 -10 10 20
x

0.80
0.85
0.90
0.95
1.00

Spin Æ

-20 -10 10 20
x

1.05
1.10
1.15
1.20
1.25

Spin ¯

Ú Figure 4. Squared magnitude of up and down components of F2HxL are red and blue respectively.

Both components display oscillatory behaviour for x < -l ê 2, since the functions contain
incoming and reflected components in each spin channel. 
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A1,2 and B1,2 now evaluate to numerical quantities,

8A1, A2, B1, B2<

80.535037 + 0.0731058 Â, 0.476418 - 0.0737744 Â,
0.45179 + 0.0733223 Â, -0.510295 + 0.0739583 Â<

so we can immediately define Y ,¯HxL in terms of F1,2HxL.

Yup@x_D = A1 F1@xD + A2 F2@xD;
Ydn@x_D = B1 F1@xD + B2 F2@xD;

Now we plot the two spin components of each state.

PlotWaveFnAAbs@Yup@xDD2, l, 8x, -2 l, 2 l<E

-20 -10 10 20
x

0.95

1.00

1.05

1.10

Spin Æ

-20 -10 10 20
x

0.005
0.010
0.015
0.020
0.025

Spin ¯

Ú Figure 5. Spin components of FÆHxL are red and blue respectively.

PlotWaveFnAAbs@Ydn@xDD2, l, 8x, -2 l, 2 l<E

-20 -10 10 20
x

0.005
0.010
0.015
0.020
0.025

Spin Æ

-20 -10 0 10 20
x

0.95

1.00

1.05

Spin ¯

Ú Figure 6. Spin components of F¯HxL are red and blue respectively.

We also have the scattering coefficients. Here are the corresponding probabilities.

MatrixForm êü AbsB:K
tuu tdu
tud tdd

O, K
ruu rdu
rud rdd

O>F
2

:K
0.973106 0.0251144
0.02501 0.973106

O, K
0.00186855 0.0000156497

0.0000156496 0.00176417
O>
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A simple estimate of the error in our result is given by checking the deviation from conser-
vation of probability (the sum of transmission and reflection should be unity).

Total êü Abs@88ruu, rud, tuu, tud<, 8rdd, rdu, tdd, tdu<<D2 -
1

9-2.77978 µ 10-7, -3.04985 µ 10-7=

· Package Implementation

The  algorithm  to  compute  the  transmission  and  reflection  coefficients  of  a  domain  wall
that is described in this section has been implemented in the DomainWall package, which
contains the following function.
DWCoefficients@E_, D_, l_D:  returns  the  matrices  of  transmission  and reflection
probabilities for a domain wall with given parameters.
This function takes the following option.

WallType:  specifies  form  of  domain  wall  profile.  Possible  values  are  Trig,  and
Linear; the default is Trig.
Options  for  the  NDSolve  function  (used  to  compute  F1,2HxL)  can  also  be  passed  to
DWCoefficients.  This  allows  the  accuracy  and  precision  of  the  solutions  to  be  con-
trolled by appropriately setting the options AccuracyGoal (or PrecisionGoal) and
WorkingPrecision.

‡ Results
We now show some results using DomainWall.m. We first load the package. Please make
sure it is on the path. 

<< DomainWall`

· Transmission and Reflection Functions

The electron transport through the domain wall can be understood by studying the transmis-
sion and reflection probabilities as a function of the physical parameters. Here we briefly
consider  the  behaviour  as  a  function  of  l,  the  domain  wall  width,  and  E,  the  electron
energy.
We work with fixed D throughout.

D = 0.1;

A Mode-Matching Method for Multichannel Scattering Problems 13
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ü Behaviour as a Function of l

We  first  fix  E  and  create  a  list  of  transmission  and  reflection  matrices  using
DWCoefficients for a range of l values.

E = 1;
llist = Range@1, 300, 5D;
trlist = DWCoefficients@Ò, E, DD & êü llist;

We then create suitable sublists of trlist  by extracting the coefficients of interest (we
focus  on  the  transmission  coefficients  tÆÆ  and  tÆ¯  relating  to  Y+HxL,  the  incoming  spin  Æ
state; results for Y-HxL are similar). A useful way to extract the same part from a list of ex-
pressions is using Part HPTL with the first argument set to All.

tuulist = Transpose@8llist, trlistPAll, 1, 1, 1T<D;
tudlist = Transpose@8llist, trlistPAll, 1, 2, 1T<D;

We then plot the functions.

ListLinePlot@8tuulist, tudlist<, AxesLabel Ø 8"l", ""<,
PlotStyle Ø 8Red, Blue<D

50 100 150 200 250 300
l

0.2

0.4

0.6

0.8

1.0

Ú Figure 7. Transmission coefficients tÆÆ and tÆ¯ as a function of l are red and blue respectively.

From the physics point of view, this graph demonstrates the following features:

1. Overall, the transmission with spin-reversal increases with the wall width l.

2. There are complementary oscillations in tÆÆ and tÆ¯ as a function of l.

Both features are explained by understanding that the electron traversing the domain wall
undergoes a “quasi-precessional” motion comprising precession about the local magnetiza-
tion direction combined with rotation following the magnetization.
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ü Behaviour as a Function of E

We now fix l and consider the behaviour as a function of E, following the same approach
as in the previous case.

l = 100.;
Elist = Range@1, 20, 0.5D;
trlist2 = DWCoefficients@l, Ò, DD & êü Elist;
tuulist2 = Transpose@8Elist, trlist2PAll, 1, 1, 1T<D;
tudlist2 = Transpose@8Elist, trlist2PAll, 1, 2, 1T<D;

We again plot tÆÆ and tÆ¯, this time as a function of E.

ListLinePlot@8tuulist2, tudlist2<, AxesLabel Ø 8"E", ""<,
PlotStyle Ø 8Red, Blue<D
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Ú Figure 8. Transmission coefficients tÆÆ and tÆ¯ as a function of E are red and blue respectively.

This shows that tÆÆ Ø 1 for increasing E.  The reason for this is that for large E  the elec-
tron travels very rapidly through the domain wall and thus is less influenced by the rotat-
ing magnetization in the wall.

· Comparison of Domain Wall Profiles

A useful application of our code is to compare the results of the trigonometric and linear
models.  Each  model  has  practical  advantages  in  analytical  work,  but  it  is  important  to
know to what extent the results of the two differ. To check this, let us recalculate the trans-
mission curves as a function of l, this time using the linear profile.

trlist3 = DWCoefficients@Ò, E, D, WallType Ø LinearD & êü llist;
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tuulist3 = Transpose@8llist, trlist3PAll, 1, 1, 1T<D;
tudlist3 = Transpose@8llist, trlist3PAll, 1, 2, 1T<D;

Here  we  plot  tÆÆ  and  tÆ¯  for  the  linear  wall,  showing  the  trigonometric  wall  results  with
dashed lines.

ListLinePlot@8tuulist3, tudlist3, tuulist, tudlist<,
PlotStyle Ø 8Red, Blue, 8Red, Dashing@80.01<D<,

8Blue, Dashing@80.01<D<<D
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Ú Figure 9. Transmission coefficients tÆÆ and tÆ¯ as a function of l are red and blue respectively, 
with the trigonometric wall results indicated using dashed lines.

The linear wall thus shows the same qualitative features as the trigonometric wall but with
quantitative  differences.  In  particular,  the  oscillations  are  more  pronounced  in  the  linear
wall,  which  is  related  to  the  fact  that  the  edges  of  the  linear  wall  are  more  abrupt  than
those of the trigonometric wall ( fz£HxL is discontinuous at x = ±l ê 2 for the linear wall, but
is continuous for the trigonometric wall) (Figure 2).

‡ Conclusion
We have presented a mode-matching method which can be used for scattering problems in
which there are multiple scattering channels. The method makes use of NDSolve to find
solutions  of  an  arbitrary  scattering  potential  using  particular  arbitrary  combinations  of
asymptotic  (transmitted)  components  as  initial  values  at  the  right-hand  boundary  of  the
scattering  region.  The  coefficients  for  the  corresponding  incoming  and  reflected  compo-
nents of these solutions are extracted using Solve at the opposite boundary of the scatter-
ing region. The true scattering states are then found by taking appropriate linear combina-
tions so as to leave only a single incoming component.
The method has the advantage of being intuitive and straightforward to implement. It per-
mits the rapid solution of nontrivial scattering problems for which more sophisticated ap-
proaches  (such  as  the  RGF algorithm)  are  often  called  on.  Furthermore,  because  we  use
NDSolve, results can readily be obtained to arbitrary precision with minimal effort.
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The method has the advantage of being intuitive and straightforward to implement. It per-
mits the rapid solution of nontrivial scattering problems for which more sophisticated ap-
proaches  (such  as  the  RGF algorithm)  are  often  called  on.  Furthermore,  because  we  use
NDSolve, results can readily be obtained to arbitrary precision with minimal effort.
The method can be directly applied to any scattering problem in which there are multiple
incoming and outgoing channels. In this article we have presented the example of a spin-
dependent potential in one dimension, where the channels are spin components of the elec-
tron wavefunction. However, the same approach could also be applied to, for example, a
two-  or  three-dimensional  wire  where  the  channels  would  correspond  to  distinct  trans-
verse wavefunction components. Thus, we expect this method to be of quite general utility.
Finally, we mention several limitations of our method. The first concerns the case where
solutions in the scattering region have evanescent components, that is, components which
grow or decay exponentially. Here the actual scattering states usually only contain a nonva-
nishing  contribution  from  the  decaying  component.  However,  the  initial  states  we  cal-
culate in general  contain both decaying and growing components,  which leads to a rapid
loss of precision. Because of this,  the existence of evanescent modes in the system tends
to necessitate large working precision.  This problem does not occur with more advanced
approaches,  such  as  the  RGF  method.  Secondly,  we  note  that  since  each  additional
channel contributes an additional dimension to be solved numerically, the difficulty of the
calculation  increases  rapidly  with  the  number  of  channels.  Thus  this  method  is  not  well
suited to problems with a large number of channels.
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‡ Additional Material
DomainWall.m

Available at www.mathematica-journal.com/data/uploads/2012/05/DomainWall.m.
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