
The Mathematica® Journal

 Symbolic-Numeric
 Algebra for Polynomials

Kosaku Nagasaka

Symbolic-Numeric Algebra for Polynomials (SNAP) is a prototype package
that includes basic functions for computing approximate algebraic proper-
ties, such as the approximate GCD of polynomials. Our aim is to show
how the unified tolerance mechanism we introduce in the package works.
Using this mechanism, we can carry out approximate calculations under
certified tolerances. In this article, we demonstrate the functionality of the
currently released package (Version 0.2), which is downloadable from
wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/index.phtml.en.

‡ Introduction
Recently, there have been many results in the area of symbolic-numeric algo-
rithms, especially for polynomials (for example, approximate GCD for univariate
polynomials [1, 2, 3, 4] and approximate factorization for bivariate polynomials
[5, 6, 7, 8]). We think those results have practical value, which should be com-
bined and implemented into one integrated computer algebra system such as
Mathematica. In fact, Maple has such a special package called SNAP (Symbolic-
Numeric Algorithms for Polynomials). Currently, ours is the only such package
available for Mathematica.

We have been developing our SNAP package for Mathematica, which is an
abbreviation for Symbolic-Numeric Algebra for Polynomials. We use algebra to
mean continuous capabilities of approximate operations; for example, computing
an approximate GCD between an empirical polynomial and the nearest singular
polynomial computed by SNAP functions of another empirical polynomial. This
continuous applicability is more important for practical computations than the
number of algorithms that are already implemented, especially for average users.

Our aim is to provide practical implementations of SNAP functions with a
unified tolerance mechanism for polynomials like Mathematica’s floating-point
numbers or Kako and Sasaki’s effective floating-point numbers [9]. Our idea is
very simple. We only have to add new data structures representing such polynomi-
als with tolerances and basic calculation routines and SNAP functions for the
structures. At this time, only simple tolerance representations (l2 -norm, l1 -norm,
and l¶ -norm) for coefficient vectors of polynomials and a few SNAP functions
are implemented, but the package is an ongoing project (Version 1.0 should be
released in March 2007).

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

This article has not been updated for Mathematica 8.

Features that are new in Version 0.2 [10, 11], include:

Ë SNAP structures for multivariate polynomials that have more than one
variable.

Ë Basic functions that can operate with multivariate polynomials.

Ë New compatibilities with the built-in functions PolynomialReduce
and D.

Ë New SNAP functions, such as CoprimeQ, AbsolutelyIrreducibleQ,
SeparationBound, Factor, and FactorList.

· Difference Between Numerical and Algebraic Computations

Let us consider a typical numerical computation—finding numerical roots:

In[1]:= System‘NSolvex^2  1  0, x, 20
Out[1]= x  1.0000000000000000000, x  1.0000000000000000000
We might assume that polynomials that are close have roots that are close.

In[2]:= System‘NSolvex^2  1.0000000000001‘20  0, x, 20
Out[2]= x  1.0000000000000500000, x  1.0000000000000500000
If this argument is not correct, the problem is called “numerically unstable.”
Hence, “numerical stability” of the given problem and “significant digits” of the
calculated solutions are important in numerical computations. Mathematica’s
accuracy and precision tracking system are very useful for this purpose and are
based on the concept that the higher precision used, the closer the solutions.

Unfortunately, this concept may not be correct for algebraic computations. Let
us consider a factorization:

In[3]:= System‘Factorx  y x  y  0.0000000001‘‘16
Out[3]= 1.00000 1.00000 1010  1.00000 x2  1.00000 y2
We cannot factor this polynomial if we increase the precision of the computation
because algebraic properties are generally not continuous. Forward and back-
ward error analyses may not be the solution, though they can be of supplemental
use. The previous polynomial, for example, can be either reducible or irreduc-
ible, and we may not be able to know which property is correct.

We note that there are two approaches to operating with empirical polynomials
in an extreme instance—using inexact or exact approximations. For example, let
us consider factoring bivariate polynomials. The following numerical polynomial
is reducible if we rationalize its coefficients up to machine precision:

(1)
f Hx, yL = -7. + 7. x2 - 1. x3 + 1. x5 + 15. y + 7. x y - 1. x2 y +
2. x3 y + 1. x4 y - 2. y2 - 2. x y2 + 1. x3 y2 + 2. x y3 + 1. x2 y3

594 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[4]:= System‘Factor7  7 x2  x3  x5  15 y  7 x y 
x2 y  2 x3 y  x4 y  2 y2  2 x y2  x3 y2  2 x y3  x2 y3

Out[4]= 1  x2  2 y  x y 7  x3  y  x y2
This factorization is fine. The problem is operating with the following polyno-
mial (we added small perturbation terms to the previous polynomial):

(2)
f Hx, yL =

-7. + 7. x2 - 1. x3 + 1. x5 + 15. y + 7. x y - 1. x2 y + 2. x3 y + 1. x4 y -
2. y2 - 2. x y2 + 1. x3 y2 + 2. x y3 + 1. x2 y3 + 0.0000001 x - 0.0000001

In general, we may not know whether these perturbation terms are numerical
errors or actually exist in the polynomial. The inexact approximation approach
tries to factor numerically, regardless of significant digits or magnitude of errors.
Although we can check its backward error after calculations, we cannot know if
the backward error is globally minimized or if the number of factors is globally
maximized. Moreover, there is a possibility that an algorithm cannot find appro-
priate factors even if there are approximate factors.

Therefore, to do algebraic operations, we have to guarantee the properties for all
possible polynomials that are sufficiently close to the given polynomial. For
example, assuming the precision is 16, the polynomial set of the polynomial (2)
includes the following polynomials:

(3)
f Hx, yL = -7.00000000000000001 + 7. x2 - 1. x3 + 1. x5 +
15. y + 7. x y - 1. x2 y + 2. x3 y + 1. x4 y - 2. y2 - 2. x y2 +

1. x3 y2 + 2. x y3 + 1. x2 y3 + 0.0000001 x - 0.0000001

(4)
f Hx, yL = -6.99999999999999999 + 7. x2 - 1. x3 + 1. x5 +
15. y + 7. x y - 1. x2 y + 2. x3 y + 1. x4 y - 2. y2 - 2. x y2 +

1. x3 y2 + 2. x y3 + 1. x2 y3 + 0.0000001 x - 0.0000001

Using exact approximations tries to guarantee such properties. However, this
approach is more difficult than the first, because we have to guarantee an alge-
braic property of an infinite number of polynomials that are sufficiently close to
the given polynomial.

‡ Tolerance Mechanisms and Implementations
First, we introduce a framework for our package, which includes SNAP struc-
tures and their implementations using UpSetDelayed, Format, and so forth.

 Symbolic-Numeric Algebra for Polynomials 595

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Function Purpose

SNAP converts the given polynomial to its SNAP
representation.

Normal converts the given SNAP representation to its normal
polynomial expression.

SNAPQ tests whether the given expression is a SNAP structure
or not.

Tolerance returns the tolerance of the given SNAP structure.
SetTolerance overwrites the tolerance of the given SNAP structure.
TransformSNAP converts the given SNAP structure to the structure

with the given scheme.
Element tests whether the given polynomial is in the given SNAP

structure or not.
Expand has the same effect as the built-in function.

ReplaceAll has the same effect as the built-in function.
Table 1. Basic functions.

· Tolerance Mechanisms

We introduce the following data structures for empirical polynomials. They are
very simple, but there is no system in which we can automatically use these
structures in a way similar to Mathematica’s floating-point numbers or Kako and
Sasaki’s effective floating-point numbers [9]. These structures are different from
those used in the previous version of this package [10, 11]. The latest version can
operate on polynomials that have more than two variables (bivariate or multivari-
ate polynomials).

Definition 1 (SNAP Structures). We define the following SNAP structures
(like sets of neighbors) for approximate polynomials for the given polynomial
f Hu1 , … , ur L œ @u1 , … , ur D and tolerance e œ :

(5)
Pp H f , eL = 9 f

êêê » f
êêê

œ @u1 , … , ur D,
degu f

êêê
= degu f H" u œ 8u1 , … , ur <L, ° f - f

êêê¥p § e=,
where ° f ¥p denotes coefficient vector norms for polynomials:

(6)° f ¥p = HSi † fi §p L 1ÅÅÅÅÅp , f = Si fi u1
ei1  ur

eir .

In the rest of this article, P* H f , eL means any P2 H f , eL, P1 H f , eL, or P¶ H f , eL.
Remark 1. You might think that the following definition is better than the

previous definition:

(7)
P* H f , eL = 8 f

êêê » f
êêê

œ @u1 , … , ur D,
degu f

êêê
§ degu f H" u œ 8u1 , … , ur <L, ° f - f

êêê¥* § e<.

596 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

However, this definition produces strange results. For example, let e be an
arbitrary small positive real number and f be the following polynomial:

(8)f = fn xn + fn-1 xn-1 +  + f1 x + f0 , fi œ , † fn § § e.

For this polynomial, P* H f , eL includes polynomials that have n roots (counting
multiplicities) and also polynomials that have at most n - 1 roots. Moreover, one
might want to preserve more than total degree in the multivariate case
(sometimes which is called triangle degree while it is called rectangle degree in
the definition 1). Those degree models are too advanced for the current results
in this research area and they cause unusual results for the known algorithms;
hence, we use the expressions of Definition 1.

The coefficient vector norms for polynomials have properties similar to normal
vector norms (see [12] for a discussion of these basic properties); hence, we have
the following corollary.

Corollary 1. We have the following properties:

(9)P2 H f , eL Œ P1 I f , e
è!!!!!!!!!!!!!!!!!!!!!!!!!

Pi=1
r Hei + 1L M,

(10)P2 H f , eL Œ P¶ H f , eL,
(11)P1 H f , eL Œ P2 H f , eL,
(12)P1 H f , eL Œ P¶ H f , eL,
(13)P¶ H f , eL Œ P2 I f , e

è!!!!!!!!!!!!!!!!!!!!!!!!!
Pi=1

r Hei + 1L M,
(14)P¶ H f , eL Œ P1 H f , e Pi=1

r Hei + 1LL,
where ei denotes the degree of f Hu1 , … , ur L with respect to ui .

Lemma 1. We have the following properties for polynomials f Hu1 , … , ur L and
hHu1 , … , ur L:

(15)
" f

êêê
œ P2 H f , e f L, " h

êê
œ P2 Hh, eh L,

f
êêê

µ h
êê

œ
P2 I f µ h, è!!min 8Pi=1

r Hei + 1L, Pi=1
r Hdi + 1L< H° f ¥2 eh + °h¥2 e f + e f eh LM,

(16)
" f

êêê
œ P1 H f , e f L, " h

êê
œ P1 Hh, eh L,

f
êêê

µ h
êê

œ P1 H f µ h, ° f ¥1 eh + °h¥1 e f + e f eh L,
(17)

" f
êêê

œ P¶ H f , e f L, " h
êê

œ P¶ Hh, eh L,
f
êêê

µ h
êê

œ
P¶ H f µ h, min 8Pi=1

r Hei + 1L, Pi=1
r Hdi + 1L< H° f ¥1 eh + °h¥1 e f + e f eh LL,

where ei and di denote the degree of f Hu1 , … , ur L and hHu1 , … , ur L with respect to
ui , respectively.

 Symbolic-Numeric Algebra for Polynomials 597

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Proof of Lemma 1. The lemma is proved by the following properties of
vector and matrix norms [12], since any multiplication of polynomials can be
done as matrix multiplications:

(18)°A¥2 § °A¥F ,

(19)°A¥1 = max1§ j§n Si=1
m †aij §,

(20)°A¥¶ = max1§i§m S j=1
n †aij §,

where °A¥p denotes matrix p-norms for matrix A of size m µ n. ·

Lemma 2. If the following relation holds for polynomials f Hu1 , … , ur L and
hHu1 , … , ur L,

(21)
" f

êêê
œ Pp H f , e f L, " h

êê
œ Pp Hh, eh L,

degu H f
êêê

+ h
êêL = max 8degu f , degu h< H" u œ 8u1 , … , ur <L,

we have the following properties:

(22)
" f

êêê
œ Pp H f , e f L, " h

êê
œ Pp Hh, eh L,

f
êêê

+ h
êê

œ Pp H f + h, e f + eh L ª 9g » g œ @u1 , … , ur D, degu g =

max 8degu f
êêê

, degu h
êê< H" u œ 8u1 , … , ur <L, °H f + hL - g¥p § e f + eh =,

where ei and di denote the degree of f Hu1 , … , ur L and hHu1 , … , ur L with respect to
ui , respectively, and p = 1, 2, ¶.

Proof of Lemma 2. The lemma is directly proved by the triangle inequality
for norms. ·

The condition of Lemma 2 is necessary for ensuring equalities for degrees in
P* H f + h, e f + eh L. Without the condition, unusual results as in Remark 1 may
occur. However, for example, we have to operate with the following computation
and determine the set S. This is important especially for divisions (quotient and
remainder) and reductions (for non-univariate polynomials):

(23)" g œ P* H f , eL, " h œ P* H f , eL, g - h œ S.

We introduce a simple rule to handle this. If the norm of the leading coefficients
of the representative polynomial f , with respect to ui , is not larger than the
tolerance e, then we rewrite the SNAP structure as follows:

(24)
P* H f , eL fl P* H fnew , eL = 8g » g œ @u1 , … , ur D,

degu g = degu fnew H" u œ 8u1 , … , ur <L, ° fnew - g¥2 § e<,
where fnew denotes f - (all the leading monomials of f , with respect to ui).

· Tolerance Implementations

According to the previous definitions, we have implemented the structures, basic
operations (addition and multiplication) on the structures, and functions that
transform one structure into another.

We define the following expression to represent the SNAP structures P2 H f , eL,
P1 H f , eL, and P¶ H f , eL, where scheme can be AbsolutePolynomial2Norm,
AbsolutePolynomial1Norm, and AbsolutePolynomialiNorm, respectively. In a
future release, other schemes will be implemented.

598 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

We define the following expression to represent the SNAP structures P2 H f , eL,
P1 H f , eL, and P¶ H f , eL, where scheme can be AbsolutePolynomial2Norm,
AbsolutePolynomial1Norm, and AbsolutePolynomialiNorm, respectively. In a
future release, other schemes will be implemented.

SNAPf,,u1,e1, � ,ur,er,scheme
Using this structure, we have implemented basic functions provided by the
mechanisms and now show some of their expressions. We note that the package
also provides functions that automatically transform the given polynomial to the
previous representation.

TransformSNAPSNAPf_, epsf_, x_Symbol, n_, yz___,
AbsolutePolynomial2Norm, AbsolutePolynomialiNorm :

SNAPf, epsf, x, n, yz, AbsolutePolynomialiNorm
NormalSNAPf_, epsf_, x_Symbol, n_, yz___, scheme_ : f

SNAP : SNAPf_, epsf_, x_Symbol, n_, yz___, scheme_ :
SNAPf, epsf, x, n, yz, scheme

SNAPg_, epsg_, varsg_List, scheme_ 
SNAPh_, epsh_, varsh_List, scheme_ ^:

SNAPg  h, epsg  epsh, maxvarslistvarsg, varsh, scheme
SNAPg_, epsg_, varsg_, scheme_  f_?NotSNAPQ ^:
SNAPg, epsg, varsg, scheme  SNAPf

ToleranceSNAPf_, epsf_, vars_, scheme_ : epsf

One aim of the package is providing an environment in which we use SNAP
structures transparently, like Mathematica’s floating-point numbers; hence, we
have implemented the following Format code.

FormatSNAPf_, e_, variables_, scheme_ : Nf

In this version, we suppose that the basic four operations between Mathematica’s
bigfloat numbers and its interval arithmetic guarantee the precision of their
results, since basically we use Mathematica’s own arithmetic for estimations. All
the implementations depend on Mathematica’s accuracy and precision tracking
system, though in our implementation, we round up all the error parts in case
our assumption is incorrect.

· Tolerance Examples

Next we show some examples of the SNAP tolerance mechanism. This loads the
package.

In[5]:= Needs"SNAP‘"
This package includes routines which provide
SNAP functionalities. The version of this package
is 0.2 .2 and implemented by KosakuNAGASAKA.

 Symbolic-Numeric Algebra for Polynomials 599

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

This gives a SNAP structure. The output looks like a normal expression.

In[6]:= g  SNAPx^5  5.503 x^4  9.765 x^3  7.647 x^2  2.762 x  0.37725
Out[6]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

This gives the FullForm of the previous SNAP structure.

In[7]:= FullFormg
Out[7]//FullForm=

SNAPPlusRational1509, 4000, TimesRational1381, 500, x,
TimesRational7647, 1000, Powerx, 2,
TimesRational1953, 200, Powerx, 3,
TimesRational5503, 1000, Powerx, 4, Powerx, 5,

1.537912594467730969706440230810229‘14.303315010757448*^-15,
ListListx, 5, AbsolutePolynomial2Norm

The error bound of this SNAP structure, which is a a set of polynomials, is given
by Tolerance.

In[8]:= Toleranceg
Out[8]= 1.537912594467731015

Each calculation enlarges its error bound.

In[9]:= g2  g g

Out[9]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x52
In[10]:= Toleranceg2

Out[10]= 1.046375127452241013

By using Element, we can check whether a polynomial is included in the given
SNAP structure or not. The error bound of the following SNAP structure is
about 1.53791 µ 10-15 ; hence, we have these results.

In[11]:= ElementNormalg  1.5*^-15, g
Out[11]= True

In[12]:= ElementNormalg  1.6*^-15, g
Out[12]= False

Normal gives corresponding representative polynomials in the normal form.

In[13]:= Normalg  FullForm

Out[13]//FullForm=

PlusRational1509, 4000, TimesRational1381, 500, x,
TimesRational7647, 1000, Powerx, 2,
TimesRational1953, 200, Powerx, 3,
TimesRational5503, 1000, Powerx, 4, Powerx, 5

We can expand the expression of the representative polynomial of a SNAP
structure.

600 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[14]:= Expandg2
Out[14]= 0.142318  2.08393 x  13.3983 x2  49.6097 x3  116.57 x4 

180.499 x5  185.042 x6  122.768 x7  49.813 x8  11.006 x9  x10

Any result of a substitution for a SNAP structure also has a guaranteed accuracy.

In[15]:= g3  g2 . x  1

Out[15]= 731.93244306250

In[16]:= Toleranceg3
Out[16]= 1.151012640197511012

We show the situation discussed in the last paragraph of the Tolerance Mecha-
nisms subsection.

In[17]:= g

Out[17]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

In[18]:= g  x^5

SNAP::invalid : Tolerance is larger than the
representative leading coefficient: 0.‘  1.537912594467731‘*^-15.

Out[18]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4

Because this rewriting can be important for users, this package generates the
displayed warning.

‡ Other Basic Operations
We implemented other basic operations: a polynomial division (quotient and
remainder), reductions (for non-univariate polynomials), and root-finding with
error considerations.

Function Purpose

NSolve finds numerical roots with error considerations.
PolynomialQuotient computes a polynomial quotient as a SNAP

structure.
PolynomialRemainder computes a polynomial remainder as a SNAP

structure.
PolynomialReduce computes a reduced polynomial as a SNAP

structure.
D computes derivatives as SNAP structures.
Table 2. Other basic functions.

 Symbolic-Numeric Algebra for Polynomials 601

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

· Polynomial Division (Univariate Case)

Let f HxL and gHxL be the following polynomials of degrees n and m, m § n, with
tolerances e f and eg , respectively:

(25)
f HxL = fn xn + fn-1 xn-1 +  + f1 x + f0 , fi œ ,
g HxL = gm xm + gm-1 xm-1 +  + g1 x + g0 , gi œ .

Dividing f HxL by gHxL is defined as follows, with polynomials qHxL and rHxL:
(26)f HxL = q HxL g HxL + r HxL, deg q = n - m, deg r < m.

For SNAP structures, we have to check that the polynomials qêêHxL and rêêHxL for
the given f

êêêHxL and gêêHxL are properly related to qHxL and rHxL:
(27)

f
êêê

 HxL = qêê HxL gêê HxL + rêê HxL, deg qêê = n - m,
deg rêê < m, f

êêê
œ P* H f , e f L, gêê œ P* Hg, eg L.

We have the following corollaries [11]. Note the discussion at the end of the
Tolerance Mechanisms subsection.

In these corollaries, G is the Hn + 1Lµ Hn + 1L matrix:

(28)G =

i
k
jjjjjjjjjjjjjjjjjjjjjjjjjjj

gm 0   0 0
gm-1 gm   ª ª

ª gm-1   ª ª

g0 ª   0 ª

ª ª   gm 0
0    gm-1 gm

y
{
zzzzzzzzzzzzzzzzzzzzzzzzzzz.

Corollary 2. If the following expression holds,

(29)s2
è!!!!!!!!!!!n + 1 eg < 1, s2 = °G-1 ¥2 ,

we have

(30)

" f
êêê

œ P2 H f , e f L, " gêê œ P2 Hg, eg L, qêê œ P2 Hq, eq L, rêê œ P2 Hr, er L
eq = s2 Ie f +

è!!!!!!!!!!!n + 1 eg H°q¥2 + s2 e f L ë I1 - s2
è!!!!!!!!!!!n + 1 eg MM,

er = e f + $%%%%%%%%%%%%%%%%%b n
ÅÅÅÅÅÅ
2
r + 1 H°g¥2 eq + °q¥2 eg + eg eq L.

Corollary 3. If the following expression holds,

(31)s1 eg < 1, s1 = °G-1¥1 ,

602 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

we have

(32)

" f
êêê

œ P1 H f , e f L, " gêê œ P1 Hg, eg L, qêê œ P1 Hq, eq L, rêê œ P1 Hr, er L,
qêêêêêê œ P1 Hq, eq L, rêê œ P1 Hr, er L,
eq = s1 He f + eg H°q¥1 + s1 e f L ê H1 - s1 eg LL,
er = e f + °g¥1 eq + °q¥1 eg + eg eq .

Corollary 4. If the following expression holds,

(33)s¶ Hn + 1L eg < 1, s¶ = °G-1¥¶ ,

we have

(34)

" f
êêê

œ P¶ H f , e f L, " gêê œ P¶ Hg, eg L, qêê œ P¶ Hq, eq L, rêê œ P¶ Hr, er L,
eq = s¶ He f + Hn + 1L eg H°q¥¶ + s¶ e f L ê H1 - s¶ Hn + 1L eg LL,
er = e f + Jb n

ÅÅÅÅÅÅ
2
r + 1N H°g¥

¶
 eq + °q¥¶ eg + eg eq L.

· Polynomial Reduction (More than One Variable Case)

Since the SNAP structure is extended to multivariate polynomials in this version,
we introduce polynomial reductions. Because a reduction can be done by two
multiplications and one subtraction, we just reduce polynomials by ordinary
algorithms using the SNAP structures introduced in the previous section. Note
that we assume that the given polynomial basis is a Gröbner basis for any possi-
ble combinations of polynomials in the basis, and the result, including tolerance,
is dependent on a specified term order.

· Root Finding with Error Considerations

There are many root-finding methods. Basically, Mathematica uses the Jenkins–
Traub method. Since those roots found by numerical methods may not be the
exact ones, we have to consider numerical errors after calculations. For example,
Smith [13] studied error bounds for numerical roots.

However, working with polynomials with errors in their coefficients extends the
problem. Terui and Sasaki [14] studied an extended version of Smith’s work, by
which we can bound errors included in numerical roots of polynomials with
errors on their coefficients and for polynomials represented as SNAP structures.

Lemma 3 (Statement in [14]). For any polynomial f
êêêHxL œ P* H f , eL, we have

(35)†zi - z
êê

p HiL § § n
† f Hzi L§ + e ⁄ j=0

n †zi § j

ÅÅÅH† fn § + eL °¤ j=1,≠i
n Hzi - z j L• ,

where n denotes the degree of f HxL, z1 , … , zn and z
êê

pH1L , … , z
êê

pHnL are the roots of
f HxL and f

êêêHxL, respectively, pHiL is a permutation of 81, … , n< that minimizes the
maximum distance between the roots: maxi †zi - z

êê
pHiL §, and fn denotes the leading

coefficient of f HxL.

 Symbolic-Numeric Algebra for Polynomials 603

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

· Partial Derivation with Error Considerations

Computing the partial derivatives of the given polynomial is also important. We
have the following trivial lemma to calculate the derivatives of SNAP structures.

Lemma 4. For any polynomial f
êêêHu1 , … , ur L œ P* H f , eL, we have

(36)
∂ f

êêê
 Hu1 , … , ur L

ÅÅ
∂ui

œ P*
ikjjj ∂ f Hu1 , … , ur L

ÅÅÅ
∂ui

, e µ degui
 f y{zzz Hi = 1, … , rL.

· Examples

Here we show some examples of basic operations of the package using the
previous polynomial.

In[19]:= g

Out[19]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

The following examples give all the roots of the given representative polynomial
with or without considerations of the error bound. We recommend comparing
the following two results of NSolve and System‘NSolve. NSolve with a SNAP
structure considers all the possible polynomials within the structure; hence, their
tolerances are larger than that of NSolve without a SNAP structure.

This gives a result with error considerations according to Lemma 3.

In[20]:= NSolveg  0, x
Out[20]= x  3.00007208113, x  0.9989903849, x  0.54121518,x  0.48136118  0.02946454, x  0.48136118  0.02946454

In[21]:= Tolerance  x . %
Out[21]= 1.173590672098831012 , 3.58892600505511011 ,

6.8881497758683109, 6.9645254663057109 , 6.9645254663057109
This gives a result without error considerations.

In[22]:= System‘NSolveNormalg  0, x
Out[22]= x  3.00007, x  0.99899, x  0.541215,x  0.481361  0.0294645 , x  0.481361  0.0294645 

In[23]:= Tolerance  x . %
Out[23]= 3.33074910000821016 , 1.109102126694171016 ,

6.00869556830521017 , 5.35418495811501017 , 5.35418495811501017
To show division examples, define the following two polynomials.

In[24]:= g2  Expandgg
Out[24]= 0.142318  2.08393 x  13.3983 x2  49.6097 x3  116.57 x4 

180.499 x5  185.042 x6  122.768 x7  49.813 x8  11.006 x9  x10

In[25]:= h  x^3  Random
Out[25]= 0.465024  x3

This gives the quotient and remainder of g2 by h with error considerations. Note
that though h is not in the SNAP structure, it is automatically transformed into it
and SNAP functions are overloaded because the built-in functions are not
compatible with such arguments including a SNAP structure.

604 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

This gives the quotient and remainder of g2 by h with error considerations. Note
that though h is not in the SNAP structure, it is automatically transformed into it
and SNAP functions are overloaded because the built-in functions are not
compatible with such arguments including a SNAP structure.

In[26]:= PolynomialQuotientg2, h, x, PolynomialRemainderg2, h, x
Out[26]= 34.0593  59.6968 x  157.335 x2  179.924 x3  122.303 x4 

49.813 x5  11.006 x6  x7, 15.9807  25.6765 x  59.7661 x2
These commands are the same for univariate polynomials.

In[27]:= PolynomialReduceg2, h, x
Out[27]= 34.0593  59.6968 x  157.335 x2  179.924 x3  122.303 x4 

49.813 x5  11.006 x6  x7, 15.9807  25.6765 x  59.7661 x2
In the next example, PolynomialRemainder gives a pseudo-zero number since g
can divide g2. However, these polynomials have their error bounds, and we
cannot argue that its remainder is completely zero; hence, the following warning
messages are generated.

In[28]:= g3, g4  PolynomialQuotientg2, g, x, PolynomialRemainderg2, g, x
SNAP::invalid : Tolerance is larger than the

representative leading coefficient: 0.‘  1.0292162141035616‘*^-6.

General::stop : Further output of
SNAP::invalid will be suppressed during this calculation. More. . .

Out[28]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5 , 0.106
SNAP functions give normal Mathematica numbers if their degrees are not larger
than zero.

In[29]:= SNAPQg3, SNAPQg4
Out[29]= True, False

Each operation or calculation enlarges error bounds; hence, tolerances of the
roots also get larger.

In[30]:= NSolveg3 0, x
Out[30]= x  3.00007, x  0.99899, x  0.5412,x  0.4814  0.0295 , x  0.4814  0.0295 

In[31]:= Tolerance  x . %
Out[31]= 1.76394520485190106, 3.67660059293547106,

0.0000641619768854552, 0.0000561916017665273, 0.0000561916017665273
The tolerance correction mechanism used in NSolve with SNAP structures
assumes that the given representative polynomial does not have multiple roots.
Therefore, the following warning message is generated if the given polynomial
has multiple (or close) roots and any tolerance correction is not applied. This
means that any output of Tolerance below is not reliable.

 Symbolic-Numeric Algebra for Polynomials 605

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[32]:= NSolveg2 0, x
SNAP::multipleroots : The given representative polynomial

has multiple roots. Tolerances of the roots can not be computed.

Out[32]= x  3.000072, x  3.000072, x  0.99899,x  0.99899, x  0.54, x  0.54, x  0.48  0.03 ,x  0.48  0.03 , x  0.48  0.03 , x  0.48  0.03 
In[33]:= Tolerance  x . %

Out[33]= 4.77743842704102107, 4.77743842704538107,

1.63209073103228106, 1.63209073944919106,
0.00376341857130941, 0.00376343263094951, 0.00233327894319648,
0.00233327894319648, 0.00233326644754287, 0.00233326644754287

Partial derivatives also can be computed in SNAP structures.

In[34]:= g2d  Dg2, x
Out[34]= 2.08393  26.7966 x  148.829 x2  466.282 x3  902.495 x4 

1110.25 x5  859.373 x6  398.504 x7  99.054 x8  10. x9

In[35]:= NSolveg2d  0, x
Out[35]= x  3.00007208, x  2.5308273, x  0.9990,x  0.8692, x  0.101, x  0.101, x  0.101,x  0. 101  0.101 , x  0.101  0.101 

In[36]:= Tolerance  x . %
Out[36]= 8.1322107325183109, 2.16884179842690108, 0.0000106535444881950,

0.0000474506566469721, 0.4545922961971249, 12.83683482913959,
10.16786064649990, 0.3798417168646968, 0.3798417168646968

The tolerance correcting method used in SNAP computes subtractions among
close numbers so it requires a certain precision. In this case, working precision is
not enough; hence, we increase it.

In[37]:= NSolveg2d  0, x, 32
Out[37]= x  3.000072081, x  2.530827278, x  0.998990385,x  0.86922548, x  0.541215, x  0.50942, x  0.49292,x  0.481361  0.029465 , x  0.481361  0.029465 

In[38]:= Tolerance  x . %
Out[38]= 1.426709389682831010 ,

1.612401567471351010 , 7.73051779089291010 ,

1.75820169776709109, 4.08068757681530107,

2.48951715376255106, 2.38910508764410106,

3.44787932738920107, 3.44787932738920107

606 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

‡ Symbolic-Numeric Algorithm Implementation
Using the basic features, we have started to modify and implement known
symbolic-numeric algorithms. In the current implementation, only one algo-
rithm for each computation is used. Other algorithms will be implemented in the
near future.

Function Purpose

PolynomialGCD computes an e-GCD of the two
given polynomials.

CoprimeQ gives True if the two polynomials are
coprime within the tolerance.

ApproximateDivisorQ gives True if the first argument is
approximately divisible by the second.

ApproximateQuotient gives a quotient if
ApproximateDivisorQ is True.

NearestSingularPolynomial computes the nearest singular
polynomial Htolerance is not consideredL.

AbsolutelyIrreducibleQ gives True if the polynomial is
absolutely irreducible within the
tolerance.

SeparationBound computes a separation boundHor irreducibility radiusL
of the given polynomial.

Factor factors the given monic polynomial
numerically.

FactorList gives a list of pseudo-factors of the
given monic polynomial.

Table 3. Symbolic numeric functions.

· Approximate GCD and Divisors (Univariate Case)

From the early historical period of symbolic-numeric computations, various
approximate GCDs have been studied. The problem treated here is very simple:
for the given polynomials gHxL and hHxL and the tolerance e, find a polynomial
f HxL of maximal degree that satisfies

(37)$ gêê HxL œ P* Hg, e °g¥* L, $ h
êê

 HxL œ P* Hh, e °h¥* L, f HxL » gêê HxL, f HxL » h
êê

 HxL,
where * denotes 2, 1, or ¶. The polynomial f HxL is called an e-GCD of polynomi-
als gHxL and hHxL with tolerance e. Currently, we have implemented the algorithm
by Pan [2], for the 2-norm case only.

 Symbolic-Numeric Algebra for Polynomials 607

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

We note that there are also other approximate GCDs that have slightly different
definitions and approximate GCDs of multivariate polynomials. Those approxi-
mate GCDs will be implemented in a future release.

Considering approximate GCDs, the following concept of an e-divisor is useful.
For the given polynomial gHxL and the tolerance e, we call a polynomial f HxL an
e-divisor of gHxL if f HxL satisfies

(38)$ gêê HxL œ P* Hg, e °g¥
*
L, f HxL » gêê HxL,

where * denotes 2, 1, or ¶. Moreover, in this package, we call the quotient of
gêêHxL by f HxL an e-quotient of gHxL by f HxL. These concepts are used in Pan’s
algorithm, and currently we have only implemented the 2-norm case.

Note that, theoretically, e-GCD, e-divisor, and e-quotient are exact polynomials,
since only the given polynomials have perturbation parts, and e-GCD, e-divisor,
and e-quotient are treated as exact polynomials in those computations. However,
due to numerical errors, in this package, e-GCD, e-divisor, and e-quotient are
treated as SNAP structures.

We also provide a coprimeness check function that uses the well-known fact that
if the Sylvester matrix of the given two polynomials has full rank, then they are
coprime [15].

· Nearest Singular Polynomial (Univariate Case)

The nearest singular polynomial [16, 17, 18] of f HxL is the nearest polynomial
f
êêêHxL that has a double root, minimizes ° f HxL - f

êêêHxL¥, and has the same degree as
f HxL. A similar problem that finds the nearest polynomial with constrained roots
has been studied in [19, 20].

In this package, finding the nearest singular polynomial can be written as follows.

For the given polynomial f HxL and tolerance e, find a polynomial f
êêêHxL satisfying

(39)f
êêê

 HxL œ P* H f , eL, $ c œ , Hx - cL2 » f
êêê

 HxL,
where * denotes 1, 2, or ¶; if the output is False, the nearest singular polyno-
mial does not exist in the given SNAP structure. The current version of the
package solves this problem using the known algorithm [18], so the command
can only solve the problem for the 2-norm case. The constrained roots version of
the problem will be solvable in a future release.

Note that the current implementation outputs a normal polynomial (not in a
SNAP structure) and the given tolerance for the command corresponding to the
nearest singular polynomial does not have the same meaning as the other com-
mands of the SNAP package. For more information, see [18].

· Irreducibility Testing for Bivariate Polynomials

Conventional ordinary factorization algorithms may always output “absolutely
irreducible” for numerical or empirical polynomials, since the given polynomial
may have error parts on its coefficients even if the original polynomial is reduc-
ible. Moreover, if a numerical factorization algorithm, for example [7], outputs
“no nontrivial factors found,” it does not mean “absolutely irreducible,” since
those algorithms can basically find factors when the given polynomial is close
enough to a reducible polynomial. Hence, the “irreducibility testing” problem is
still important for numerical or empirical polynomials [21, 22, 23, 24, 25].

608 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Conventional ordinary factorization algorithms may always output “absolutely
irreducible” for numerical or empirical polynomials, since the given polynomial
may have error parts on its coefficients even if the original polynomial is reduc-
ible. Moreover, if a numerical factorization algorithm, for example [7], outputs
“no nontrivial factors found,” it does not mean “absolutely irreducible,” since
those algorithms can basically find factors when the given polynomial is close
enough to a reducible polynomial. Hence, the “irreducibility testing” problem is
still important for numerical or empirical polynomials [21, 22, 23, 24, 25].

In this package, the problem becomes:

For the given SNAP structure P* H f , eL, prove that any polynomial
f
êêêHu1 , … , ur L œ P* H f , eL is absolutely irreducible.

The algorithm implemented in this package (Nagasaka [23]) is an improved
version of the algorithm of Kaltofen and May [22] for bivariate polynomials.
Note that the current implementation is based on the algorithm for the 2-norm
case; hence, there are possibilities of improvement for another norm. The
version for more than two variables will be implemented in a future release. The
largest problem in implementing more than two variables is effectiveness, and
further studies are needed.

The previously mentioned methods [22, 23] use the coefficients of the given
polynomial directly, so we can adapt it to Mathematica’s coefficient-wise accuracy
concept. This is better than the original methods, because treating tolerances as
polynomial norms tends to overestimate. The current implementation can do
this for polynomials not in SNAP structures.

· Numerical Factorization of Multivariate Polynomials

For the same reason as the previous test for irreducibility, we have to use com-
pletely different factorization algorithms for numerical or empirical polynomials.
In this package, we have implemented Sasaki’s algorithm [7] with a degree bound
studied by Bostan et al. [26]. Currently, for nonmonic polynomials, the com-
mand is not stable since none of the approximate GCD algorithms for multivari-
ate polynomials that are needed for factoring nonmonic polynomials are
implemented.

Note that the given polynomial may have approximate factors (or so-called
numerical or pseudo-factors) even if the algorithm outputs “absolutely irreduc-
ible” or “no factors.” Therefore, you are encouraged to use the preceding irreduc-
ibility testing when you do not get approximate factors.

· Examples

Here we show some examples of SNAP operations using this previously defined
polynomial.

In[39]:= g

Out[39]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

Here we introduce another polynomial. Though it is not in a SNAP structure,
treating it as such is acceptable.

 Symbolic-Numeric Algebra for Polynomials 609

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[40]:= h  1.3883  4.417 x  3.8861 x2  0.85593 x3

Out[40]= 1.3883  4.417 x  3.8861 x2  0.85593 x3

The built-in function outputs that these polynomials are coprime.

In[41]:= System‘PolynomialGCDNormalg, h
Out[41]=

1

4000

The SNAP package can compute the e-GCD as follows, where e = 0.0001. Note
that the current implementation of PolynomialGCD for SNAP structures is still
experimental and that the definition of the greatest common divisor of SNAP
structures may change in the future.

In[42]:= gcdofgh  PolynomialGCDg, h, 0.0001
SNAP::preliminary : Preliminary implemented function is called.

Out[42]= 0.00005  0.000159079x  0.000139959x2  0.0000308266 x3

We can check its approximate divisibility.

In[43]:= ApproximateDivisorQg, gcdofgh, 0.0001
Out[43]= True

ApproximateQuotient minimizes °g - gcdofgh µ aqofgh¥2 so aqofgh is not a
constant in this case.

In[44]:= aqofgh  ApproximateQuotientg, gcdofgh, 0.0001
Out[44]= 7543.97  31237.7 x  32439. x2

Without any tolerance, the worst tolerance between the given polynomials is
used.

In[45]:= PolynomialGCDg, h  Timing

SNAP::toleranceadjusted :
The given different tolerances adjusted into their maximum.

SNAP::preliminary : Preliminary implemented function is called.

Out[45]= 0.14 Second, 1
This also checks whether they are coprime or not within their tolerance.

610 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[46]:= CoprimeQg, h  Timing

SNAP::toleranceadjusted :
The given different tolerances adjusted into their maximum.

SNAP::machineprecision :
SNAP function encounters a machine precision number. Machine

precision numbers may not have enough accuracy
due to Mathematica’s inner operation policy.

Out[46]= 0.01 Second, True
This gives the nearest singular polynomial to g, so the output polynomial nsg
has a double root. Note that the current implementation of NearestSingular
Polynomial is still experimental and that the definition of the nearest singular
polynomial of a SNAP structure may change in the future.

In[47]:= nsg  NearestSingularPolynomialg
SNAP::preliminary : Preliminary implemented function is called.

Out[47]= 0.37720351974838137016775789088983968187636004221406567211977697
2.76202294152404443342835048940639585762186936652647278562313779x 
7.646988676620561357622504161731099465008522214447595797886506014
x2 

9.765005588945253294112702930232286019423905685965456360726987501
x3 

5.502997241432276152366822036470183607747161460093308123512301501
x4  x5

In[48]:= x . NSolvensg  0, x
SNAP::multipleroots : The given representative polynomial

has multiple roots. Tolerances of the roots can not be computed.

Out[48]= 3.000053130650945683752304343186078410573974339841422837810588,
0.99935128171346605830324104486442601356425526128685652500166,
0.516441372459217509897207664836573546919334279320842452221,
0.49357572830432345020703449179, 0.49357572830432345020703449179

To show an example of absolute irreducibility testing, we define the following
bivariate polynomial.

In[49]:= f  Expandx^2  y x  2 y  1 x^3  y^2 x  y  7  0.2 x
Out[49]= 7  0.2 x  7 x2  x3  x5  15 y  7 x y 

x2 y  2 x3 y  x4 y  2 y2  2 x y2  x3 y2  2 x y3  x2 y3

This tests its absolute irreducibility within the given tolerance 0.00001.

 Symbolic-Numeric Algebra for Polynomials 611

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[50]:= AbsolutelyIrreducibleQf, 0.00001
SNAP::machineprecision :
SNAP function encounters a machine precision number. Machine

precision numbers may not have enough accuracy
due to Mathematica’s inner operation policy.

Out[50]= True

If the given polynomial has a SNAP structure, its tolerance is used, so the follow-
ing evaluations give the same result.

In[51]:= fs  SNAPf, 0.00001
Out[51]= 7.  0.2 x  7. x2  1. x3  x5  15. y  7. x y 

1. x2 y  2. x3 y  x4 y  2. y2  2. x y2  x3 y2  2. x y3  x2 y3

In[52]:= AbsolutelyIrreducibleQfs
Out[52]= True

We can also compute a separation bound of f. In this case, all the polynomials of
P2 H f , 0.000791622L are absolutely irreducible.

In[53]:= SeparationBoundf
SNAP::machineprecision :
SNAP function encounters a machine precision number. Machine

precision numbers may not have enough accuracy
due to Mathematica’s inner operation policy.

Out[53]= 0.000791622

A warning message is generated if the package routines encounter a machine
precision number. We recommend not using machine precision numbers.

In[54]:= f  Expandx^2  y x  2 y  1 x^3  y^2 x  y  7  0.2‘‘16 x
Out[54]= 7  0.200000000000000x  7 x2  x3  x5  15 y 

7 x y  x2 y  2 x3 y  x4 y  2 y2  2 x y2  x3 y2  2 x y3  x2 y3

In[55]:= SeparationBoundf
Out[55]= 0.0007916215679

This gives an example using the algorithm adapted for Mathematica’s coefficient-
wise accuracy concept. Hence, changing all the coefficients within their accuracy
does not change its absolute irreducibility.

In[56]:= AbsolutelyIrreducibleQf
Out[56]= True

For numerical polynomials, the built-in function gives the input.

612 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

In[57]:= f2  SetPrecisionExpandx^2  yx  2 y  1 x^3  y^2 x  y  7, 16
Out[57]= 7.000000000000000 7.000000000000000x2  1.000000000000000x3  x5 

15.00000000000000y  7.000000000000000x y  1.000000000000000x2 y 
2.000000000000000x3 y  x4 y  2.000000000000000y2 
2.000000000000000x y2  x3 y2  2.000000000000000x y3  x2 y3

In[58]:= System‘Factorf2
Out[58]= 1.0000000000000007.00000000000000  7.00000000000000x2  1.000000000000000x3 

1.000000000000000x5  15.00000000000000y  7.00000000000000 x y 
1.000000000000000x2 y  2.000000000000000x3 y 
1.000000000000000x4 y  2.000000000000000y2 
2.000000000000000x y2  1.000000000000000x3 y2 
2.000000000000000x y3  1.000000000000000x2 y3

With the SNAP package, for example, we can factor it numerically with a back-
ward error bound.

In[59]:= ChopFactorf2, 0.0000001
Out[59]= 1.000000000000000  x2  2.0000000000000 1.0000000000000x y7.00000000000000 x3  1.0000000000000y  1.000000000000 x y2

If we use a SNAP structure, its tolerance is automatically used as a backward
error bound.

In[60]:= f2s  SNAPExpandx^2  y x  2 y  1 x^3  y^2 x  y  7, 0.0000001
Out[60]= 7.  7. x2  1. x3  x5  15. y  7. x y  1. x2 y 

2. x3 y  x4 y  2. y2  2. x y2  x3 y2  2. x y3  x2 y3

In[61]:= ChopFactorf2s
Out[61]= 1.000000000000000  x2  2.0000000000000 1.0000000000000x y7.00000000000000 x3  1.0000000000000y  1.000000000000 x y2
‡ Conclusion

The SNAP package is useful for almost all users who have to work with polynomi-
als with errors in their coefficients. Users may think that Mathematica has its own
accuracy and precision system, and therefore another structure like those in
SNAP is unnecessary. This will be true in the future; however, at least now, most
of the latest algorithms for numerical or empirical polynomials cannot operate
with coefficient-wise accuracy and precision. Using only significant digits like
Mathematica’s cannot answer the algebraic problems, though it can guarantee
significant digits of coefficients generated by polynomial arithmetic. Moreover,
most of the algorithms in symbolic-numeric computations have to use matrix
computations and are not compatible with coefficient-wise concepts, since they
usually use matrix norms. Depending on the algorithm, by using absolute irreduc-
ibility testing, for example, we can combine them with Mathematica’s coefficient-
wise error scheme and we plan to incorporate that in a future release.

Moreover, we are considering whether computing Canonical Comprehensive
Gröbner Bases (CCGB) should be integrated into the SNAP package since we
have implemented CCGB in Mathematica and some kind of CCGB is the only
way to treat numerical errors exactly. They can be represented as parameters on
coefficients; however, this method is so time-consuming that this release does
not have CCGB routines. We note that Mathematica can compute Gröbner bases
numerically, but we think any result is not guaranteed mathematically. However,
Mathematica’s built-in computation of numerical Gröbner bases is more
advanced than finding pseudo-solutions numerically, which is very difficult, and
there are few known academic results.

 Symbolic-Numeric Algebra for Polynomials 613

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

Moreover, we are considering whether computing Canonical Comprehensive
Gröbner Bases (CCGB) should be integrated into the SNAP package since we
have implemented CCGB in Mathematica and some kind of CCGB is the only
way to treat numerical errors exactly. They can be represented as parameters on
coefficients; however, this method is so time-consuming that this release does
not have CCGB routines. We note that Mathematica can compute Gröbner bases
numerically, but we think any result is not guaranteed mathematically. However,
Mathematica’s built-in computation of numerical Gröbner bases is more
advanced than finding pseudo-solutions numerically, which is very difficult, and
there are few known academic results.

‡ Acknowledgment
This research was partially supported by Grants-in-Aid for Scientific Research
from the Japanese Ministry of Education, Culture, Sports, Science and Technol-
ogy (#16700016). We also wish to thank the anonymous referees for their useful
suggestions.

‡ References
[1] V. Y. Pan, “Approximate Polynomial GCDs, Padé Approximation, Polynomial

Zeros, and Bipartite Graphs,” in Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, CA, New York: ACM Press, and
Philadelphia: SIAM Publications, 1998 pp. 68–77.

[2] V. Y. Pan, “Computation of Approximate Polynomial GCDs and an Extension,”
Information and Computation, 167(2), 2001 pp. 71–85.

[3] B. Beckermann and G. Labahn, “When Are Two Numerical Polynomials Relatively
Prime?” Journal of Symbolic Computation, 26(6), 1998 pp. 677–689.

[4] I. Z. Emiris, A. Galligo, and H. Lombardi, “Certified Approximate Univariate GCDs,”
Journal of Pure and Applied Algebra (Special Issue on Algorithms in Algebra) , 117
& 118, 1997 pp. 229–251.

[5] R. M. Corless, M. W. Giesbrecht, M. van Hoeij, I. S. Kotsireas, and S. M. Watt,
“Towards Factoring Bivariate Approximate Polynomials,” in Proceedings of the
2001 International Symposium on Symbolic and Algebraic Computation (ISSAC
2001), London, Ontario, Canada, New York: ACM Press, 2001 pp. 85–92.

[6] Z. Mou-tan and R. Unbehauen, “Approximate Factorization of Multivariate
Polynomials,” Signal Processing, 14, 1988 pp. 141–152.

[7] T. Sasaki, “Approximate Multivariate Polynomial Factorization Based on Zero-Sum
Relations,” in Proceedings of the 2001 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2001), London, Ontario, Canada, New York: ACM
Press, 2001 pp. 284–291.

[8] Y. Huang, W. Wu, H. J. Stetter, and L. Zhi, “Pseudofactors of Multivariate Polynomi-
als,” in Proceedings of the 2000 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2000), St. Andrews, UK, New York: ACM Press, 2000
pp. 161–168.

614 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

[9] F. Kako and T. Sasaki, “Proposal of ‘Effective Floating-Point Number’ for Approxi-
mate Algebraic Computation,” ACM SIGSAM Bulletin, 31(3), 1997 p. 31.

[10] K. Nagasaka, “SNAP Package,” (Talk in Japanese), JSSAC 2004, 2004.

[11] K. Nagasaka, “SNAP Package for Mathematica and Its Applications,” in The Ninth
Asian Technology Conference in Mathematics (ATCM 2004), Singapore, 2004.

[12] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins
Studies in Mathematical Sciences, Baltimore: The Johns Hopkins University Press,
1996.

[13] B. T. Smith, “Error Bounds for Zeros of a Polynomial Based upon Gerschgorin’s
Theorems,” Journal of the ACM (JACM), 17(4), 1970 pp. 661–674.

[14] A. Terui and T. Sasaki, “‘Approximate Zero-Points’ of Real Univariate Polynomial
with Large Error Terms,” Journal (Information Processing Society of Japan), 41(4),
2000 pp. 974–989.

[15] Z. Zeng, “The Approximate GCD of Inexact Polynomials. Part I: A Univariate
Algorithm,” Preprint, 2004.

[16] N. Karmarkar and Y. N. Lakshman, “Approximate Polynomial Greatest Common
Divisors and Nearest Singular Polynomials,” in Proceedings of the 1996 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC 1996), Zurich,
Switzerland, New York: ACM Press, 1996 pp. 35–39.

[17] L. Zhi and W. Wu, “Nearest Singular Polynomials,” Journal of Symbolic Computa-
tion, 26(6), 1998 pp. 667–675.

[18] L. Zhi, W. Wu, M.-T. Noda, and H. Kai, “Hybrid Method for Computing the
Nearest Singular Polynomials,” MM Research Preprints, 20, 2001 pp. 229–239.

[19] M. A. Hitz and E. Kaltofen, “Efficient Algorithms for Computing the Nearest
Polynomial with Constrained Roots,” in Proceedings of the 1998 International
Symposium on Symbolic and Algebraic Computation (ISSAC 1998), Rostock,
Germany, New York: ACM Press, 1998 pp. 236–243.

[20] M. A. Hitz, E. Kaltofen, and Y. N. Lakshman, “Efficient Algorithms for Computing
the Nearest Polynomial with a Real Root and Related Problems,” in Proceedings
of the 1999 International Symposium on Symbolic and Algebraic Computation
(ISSAC 1999), Vancouver, B.C., Canada, New York: ACM Press, 1999 pp. 205–212.

[21] E. Kaltofen, “Effective Noether Irreducibility Forms and Applications,” Journal of
Computer and System Sciences, 50(2), 1995 pp. 274–295.

[22] E. Kaltofen and J. May, “On Approximate Irreducibility of Polynomials in Several
Variables,” in Proceedings of the 2003 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2003), Philadelphia, PA, New York: ACM Press,
2003 pp. 161–168.

[23] K. Nagasaka, “Towards More Accurate Separation Bounds of Empirical Polynomi-
als,” ACM SIGSAM Bulletin (Formally Reviewed Articles), 38(4), 2004 pp. 119–129.

[24] K. Nagasaka, “Neighborhood Irreducibility Testing of Multivariate Polynomials,”
in Proceedings of the Sixth International Workshop on Computer Algebra in
Scientific Computing (CASC 2003), Passau, Germany, New York: ACM Press, 2003
pp. 283–292.

[25] K. Nagasaka, “Towards Certified Irreducibility Testing of Bivariate Approximate
Polynomials,” in Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation (ISSAC 2002), Lille, France, New York: ACM Press,
2002 pp. 192–199.

[26] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt, “Complexity Issues in
Bivariate Polynomial Factorization,” in Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation (ISSAC 2004), Santander,
Spain, New York: ACM Press, 2004 pp. 42–49.

 Symbolic-Numeric Algebra for Polynomials 615

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

[26] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt, “Complexity Issues in
Bivariate Polynomial Factorization,” in Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation (ISSAC 2004), Santander,
Spain, New York: ACM Press, 2004 pp. 42–49.

[27] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt, “The Singular Value
Decomposition for Polynomial Systems,” in Proceedings of the 1995 International
Symposium on Symbolic and Algebraic Computation (ISSAC 1995), Montreal,
Canada, New York: ACM Press, 1995 pp. 195–207.

[28] S. Gao and V. M. Rodrigues, “Irreducibility of Polynomials Modulo p via Newton
Polytopes,” Journal of Number Theory, 101, 2003 pp. 32–47.

[29] W. M. Ruppert, “Reducibility of Polynomials fHx, yL Modulo p,” Journal of
Number Theory, 77, 1999 pp. 62–70.

[30] H. J. Stetter, Numerical Polynomial Algebra, Philadelphia: SIAM, 2004.

[31] K. Nagasaka, “Towards More Accurate Separation Bounds of Empirical Polynomi-
als II,” in Proceedings of the Eighth International Workshop on Computer Algebra
in Scientific Computing (CASC 2005), Kalamata, Greece, Lecture Notes in Com-
puter Science, 3718, New York: Springer-Verlag, 2005 pp. 318–329.

[32] K. Nagasaka, “Using Coefficient-Wise Tolerance in Symbolic-Numeric Algorithms
for Polynomials,” Sushikisyori, 12(3), 2006 pp. 21–30.

About the Author
Kosaku Nagasaka is an assistant professor at Kobe University in Japan. In the summer of
1999, Nagasaka participated in the Wolfram Research student internship program. Since
2001, he has been one of the directors of the Japanese Mathematica User Group. His
main research topic is symbolic numeric algorithms for polynomials.

Kosaku Nagasaka
Division of Mathematics and Informatics
Department of Science of Human Environment
Faculty of Human Development
Kobe University
Japan
nagasaka@main.h.kobe-u.ac.jp
wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/index.phtml.en

616 Kosaku Nagasaka

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.

K. Nagasaka, “Symbolic-Numeric Algebra for Polynomials,” The Mathematica Journal,
2012. dx.doi.org/10.3888/tmj.10.3-10.

