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 Symbolic-Numeric
 Algebra for Polynomials

Kosaku Nagasaka

Symbolic-Numeric  Algebra  for  Polynomials  (SNAP)  is  a  prototype  package
that  includes  basic functions  for computing approximate algebraic  proper-
ties,  such  as  the  approximate  GCD  of  polynomials.  Our  aim  is  to  show
how the unified  tolerance  mechanism  we introduce  in the package  works.
Using  this  mechanism,  we  can  carry  out  approximate  calculations  under
certified tolerances. In this article, we demonstrate the functionality of the
currently  released  package  (Version  0.2),  which  is  downloadable  from
wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/index.phtml.en. 

‡ Introduction
Recently,  there  have  been  many  results  in  the  area  of  symbolic-numeric  algo-
rithms, especially for polynomials  (for example, approximate GCD for univariate
polynomials  [1,  2,  3,  4]  and  approximate  factorization  for  bivariate  polynomials
[5,  6,  7,  8]).  We think  those  results  have  practical  value,  which  should  be  com-
bined  and  implemented  into  one  integrated  computer  algebra  system  such  as
Mathematica.  In  fact,  Maple  has  such  a  special  package  called  SNAP  (Symbolic-
Numeric  Algorithms  for  Polynomials).  Currently,  ours  is  the  only  such  package
available for Mathematica.

We  have  been  developing  our  SNAP  package  for  Mathematica,  which  is  an
abbreviation for Symbolic-Numeric  Algebra  for Polynomials.  We use algebra to
mean continuous capabilities of approximate operations; for example,  computing
an approximate  GCD between an empirical  polynomial  and the nearest  singular
polynomial  computed by SNAP functions of another empirical polynomial.  This
continuous  applicability  is  more  important  for  practical  computations  than  the
number of algorithms that are already implemented, especially for average users.

Our  aim  is  to  provide  practical  implementations  of  SNAP  functions  with  a
unified  tolerance  mechanism  for  polynomials  like  Mathematica’s  floating-point
numbers  or  Kako  and  Sasaki’s  effective  floating-point  numbers  [9].  Our  idea  is
very simple. We only have to add new data structures representing such polynomi-
als  with  tolerances  and  basic  calculation  routines  and  SNAP  functions  for  the
structures. At this time, only simple tolerance representations (l2 -norm, l1 -norm,
and  l¶ -norm)  for  coefficient  vectors  of  polynomials  and  a  few  SNAP  functions
are  implemented,  but  the  package  is  an ongoing  project  (Version  1.0  should  be
released in March 2007).
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Features that are new in Version 0.2 [10, 11], include:

Ë SNAP  structures  for  multivariate  polynomials  that  have  more  than  one
variable.

Ë Basic functions that can operate with multivariate polynomials.

Ë New  compatibilities  with  the  built-in  functions  PolynomialReduce
and D.

Ë New  SNAP  functions,  such  as  CoprimeQ,  AbsolutelyIrreducibleQ,
SeparationBound, Factor, and FactorList.

· Difference Between Numerical and Algebraic Computations

Let us consider a typical numerical computation—finding numerical roots:

In[1]:= System‘NSolvex^2  1  0, x, 20
Out[1]= x  1.0000000000000000000, x  1.0000000000000000000
We might assume that polynomials that are close have roots that are close.

In[2]:= System‘NSolvex^2  1.0000000000001‘20  0, x, 20
Out[2]= x  1.0000000000000500000, x  1.0000000000000500000
If  this  argument  is  not  correct,  the  problem  is  called  “numerically  unstable.”
Hence, “numerical  stability”  of the given problem and “significant digits”  of the
calculated  solutions  are  important  in  numerical  computations.  Mathematica’s
accuracy  and  precision  tracking  system  are  very  useful  for  this  purpose  and  are
based on the concept that the higher precision used, the closer the solutions.

Unfortunately,  this  concept  may  not  be  correct  for  algebraic  computations.  Let
us consider a factorization: 

In[3]:= System‘Factorx  y x  y  0.0000000001‘‘16
Out[3]= 1.00000 1.00000 1010  1.00000 x2  1.00000 y2
We cannot factor this polynomial if we increase the precision of the computation
because  algebraic  properties  are  generally  not  continuous.  Forward  and  back-
ward error analyses may not be the solution, though they can be of supplemental
use.  The  previous  polynomial,  for  example,  can  be  either  reducible  or  irreduc-
ible, and we may not be able to know which property is correct.

We note that  there are two  approaches to operating  with empirical  polynomials
in  an extreme instance—using  inexact  or  exact  approximations.  For  example,  let
us consider factoring bivariate polynomials. The following numerical polynomial
is reducible if we rationalize its coefficients up to machine precision:

(1)
f Hx, yL = -7. + 7. x2 - 1. x3 + 1. x5 + 15. y + 7. x y - 1. x2 y +
2. x3 y + 1. x4 y - 2. y2 - 2. x y2 + 1. x3 y2 + 2. x y3 + 1. x2 y3
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In[4]:= System‘Factor7  7 x2  x3  x5  15 y  7 x y 
x2 y  2 x3 y  x4 y  2 y2  2 x y2  x3 y2  2 x y3  x2 y3

Out[4]= 1  x2  2 y  x y 7  x3  y  x y2
This  factorization  is  fine.  The  problem  is  operating  with  the  following  polyno-
mial (we added small perturbation terms to the previous polynomial):

(2)
f  Hx, yL =

-7. + 7. x2 - 1. x3 + 1. x5 + 15. y + 7. x y - 1. x2 y + 2. x3 y + 1. x4 y -
2. y2 - 2. x y2 + 1. x3 y2 + 2. x y3 + 1. x2 y3 + 0.0000001 x - 0.0000001

In  general,  we  may  not  know  whether  these  perturbation  terms  are  numerical
errors  or  actually  exist  in  the  polynomial.  The  inexact  approximation  approach
tries to factor numerically, regardless of significant digits or magnitude of errors.
Although  we can  check  its  backward  error  after  calculations,  we cannot  know if
the  backward  error  is  globally  minimized  or  if  the number  of factors  is  globally
maximized. Moreover,  there is a possibility that an algorithm cannot find appro-
priate factors even if there are approximate factors. 

Therefore, to do algebraic operations, we have to guarantee the properties for all
possible  polynomials  that  are  sufficiently  close  to  the  given  polynomial.  For
example,  assuming  the  precision  is  16,  the  polynomial  set  of  the  polynomial  (2)
includes the following polynomials:

(3)
f  Hx, yL = -7.00000000000000001 + 7. x2 - 1. x3 + 1. x5 +
15. y + 7. x y - 1. x2 y + 2. x3 y + 1. x4 y - 2. y2 - 2. x y2 +

1. x3 y2 + 2. x y3 + 1. x2 y3 + 0.0000001 x - 0.0000001

(4)
f  Hx, yL = -6.99999999999999999 + 7. x2 - 1. x3 + 1. x5 +
15. y + 7. x y - 1. x2 y + 2. x3 y + 1. x4 y - 2. y2 - 2. x y2 +

1. x3 y2 + 2. x y3 + 1. x2 y3 + 0.0000001 x - 0.0000001

Using  exact  approximations  tries  to  guarantee  such  properties.  However,  this
approach  is  more  difficult  than  the  first,  because  we  have to  guarantee  an alge-
braic  property of an infinite number of polynomials  that  are sufficiently  close to
the given polynomial.

‡ Tolerance Mechanisms and Implementations
First,  we  introduce  a  framework  for  our  package,  which  includes  SNAP  struc-
tures and their implementations using UpSetDelayed, Format, and so forth.
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Function Purpose

SNAP converts the given polynomial to its SNAP
representation.

Normal converts the given SNAP representation to its normal
polynomial expression.

SNAPQ tests whether the given expression is a SNAP structure
or not.

Tolerance returns the tolerance of the given SNAP structure.
SetTolerance overwrites the tolerance of the given SNAP structure.
TransformSNAP converts the given SNAP structure to the structure

with the given scheme.
Element tests whether the given polynomial is in the given SNAP

structure or not.
Expand has the same effect as the built-in function.

ReplaceAll has the same effect as the built-in function.
Table 1. Basic functions.

· Tolerance Mechanisms

We introduce  the  following data  structures  for empirical  polynomials.  They  are
very  simple,  but  there  is  no  system  in  which  we  can  automatically  use  these
structures  in a way similar to Mathematica’s floating-point  numbers  or Kako and
Sasaki’s  effective  floating-point  numbers  [9].  These structures  are different from
those used in the previous version of this package [10, 11]. The latest version can
operate on polynomials that have more than two variables (bivariate or multivari-
ate polynomials).

Definition 1  (SNAP  Structures).  We  define  the  following  SNAP  structures
(like  sets  of  neighbors)  for  approximate  polynomials  for  the  given  polynomial
f Hu1 , … , ur L œ @u1 , … , ur D and tolerance e œ :

(5)
Pp  H f , eL = 9 f

êêê » f
êêê

œ @u1 , … , ur D,
degu  f

êêê
= degu  f H" u œ 8u1 , … , ur <L, ° f - f

êêê¥p § e=,
where ° f ¥p  denotes coefficient vector norms for polynomials: 

(6)° f ¥p = HSi  † fi §p L 1ÅÅÅÅÅp , f = Si  fi  u1
ei1   ur

eir .

In the rest of this article, P* H f , eL means any P2 H f , eL, P1 H f , eL, or P¶ H f , eL.
Remark 1.  You might think that the following definition is better than the

previous definition:

(7)
P*  H f , eL = 8 f

êêê » f
êêê

œ @u1 , … , ur D,
degu  f

êêê
§ degu  f H" u œ 8u1 , … , ur <L, ° f - f

êêê¥* § e<.
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However,  this  definition  produces  strange  results.  For  example,  let  e  be  an
arbitrary small positive real number and f  be the following polynomial:

(8)f = fn  xn + fn-1  xn-1 +  + f1  x + f0 , fi œ , † fn § § e.

For  this  polynomial,  P* H f , eL  includes  polynomials  that  have  n  roots  (counting
multiplicities)  and also polynomials  that have at most n - 1 roots. Moreover, one
might  want  to  preserve  more  than  total  degree  in  the  multivariate  case
(sometimes  which  is  called  triangle  degree  while  it  is  called  rectangle  degree  in
the  definition  1).  Those  degree  models  are  too  advanced  for  the current  results
in  this  research  area  and  they  cause  unusual  results  for  the  known  algorithms;
hence, we use the expressions of Definition 1.

The  coefficient  vector  norms  for  polynomials  have  properties  similar  to normal
vector norms (see [12] for a discussion of these basic properties);  hence, we have
the following corollary.

Corollary 1. We have the following properties:

(9)P2  H f , eL Œ P1  I f , e 
è!!!!!!!!!!!!!!!!!!!!!!!!!

Pi=1
r  Hei + 1L M,

(10)P2  H f , eL Œ P¶  H f , eL,
(11)P1  H f , eL Œ P2  H f , eL,
(12)P1  H f , eL Œ P¶  H f , eL,
(13)P¶  H f , eL Œ P2  I f , e 

è!!!!!!!!!!!!!!!!!!!!!!!!!
Pi=1

r  Hei + 1L M,
(14)P¶  H f , eL Œ P1  H f , e Pi=1

r  Hei + 1LL,
where ei  denotes the degree of f Hu1 , … , ur L with respect to ui .

Lemma 1.  We have the following properties  for polynomials  f Hu1 , … , ur L and
hHu1 , … , ur L:

(15)
" f

êêê
œ P2  H f , e f L, " h

êê
œ P2  Hh, eh L,

f
êêê

µ h
êê

œ
P2  I f µ h, è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!min 8Pi=1

r  Hei + 1L, Pi=1
r  Hdi + 1L<  H° f ¥2  eh + °h¥2  e f + e f eh LM,

(16)
" f

êêê
œ P1  H f , e f L, " h

êê
œ P1  Hh, eh L,

f
êêê

µ h
êê

œ P1  H f µ h, ° f ¥1  eh + °h¥1  e f + e f eh L,
(17)

" f
êêê

œ P¶  H f , e f L, " h
êê

œ P¶  Hh, eh L,
f
êêê

µ h
êê

œ
P¶  H f µ h, min 8Pi=1

r  Hei + 1L, Pi=1
r  Hdi + 1L< H° f ¥1  eh + °h¥1  e f + e f eh LL,

where  ei  and di  denote  the  degree  of f Hu1 , … , ur L  and hHu1 , … , ur L  with  respect  to
ui , respectively.
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Proof  of  Lemma  1.  The  lemma  is  proved  by  the  following  properties  of
vector  and  matrix  norms  [12],  since  any  multiplication  of  polynomials  can  be
done as matrix multiplications:

(18)°A¥2 § °A¥F ,

(19)°A¥1 = max1§ j§n Si=1
m  †aij §,

(20)°A¥¶ = max1§i§m S j=1
n  †aij §,

where °A¥p  denotes matrix p-norms for matrix A of size m µ n. ·

Lemma 2.  If  the  following  relation  holds  for  polynomials  f Hu1 , … , ur L  and
hHu1 , … , ur L, 

(21)
" f

êêê
œ Pp  H f , e f L, " h

êê
œ Pp  Hh, eh L,

degu  H f
êêê

+ h
êêL = max 8degu  f , degu  h< H" u œ 8u1 , … , ur <L,

we have the following properties:

(22)
" f

êêê
œ Pp  H f , e f L, " h

êê
œ Pp  Hh, eh L,

f
êêê

+ h
êê

œ Pp  H f + h, e f + eh L ª 9g » g œ @u1 , … , ur D, degu  g =

max 8degu  f
êêê

, degu  h
êê< H" u œ 8u1 , … , ur <L, °H f + hL - g¥p § e f + eh =,

where  ei  and di  denote  the  degree  of f Hu1 , … , ur L  and hHu1 , … , ur L  with  respect  to
ui , respectively, and p = 1, 2, ¶.

Proof of Lemma 2. The lemma is directly proved by the triangle inequality
for norms. ·

The  condition  of  Lemma  2  is  necessary  for  ensuring  equalities  for  degrees  in
P* H f + h, e f + eh L.  Without  the  condition,  unusual  results  as  in  Remark  1  may
occur. However, for example, we have to operate with the following computation
and determine the set S.  This  is  important  especially  for divisions  (quotient and
remainder) and reductions (for non-univariate polynomials):

(23)" g œ P*  H f , eL, " h œ P*  H f , eL, g - h œ S.

We introduce a simple rule to handle this. If the norm of the leading coefficients
of  the  representative  polynomial  f ,  with  respect  to  ui ,  is  not  larger  than  the
tolerance e, then we rewrite the SNAP structure as follows:

(24)
P*  H f , eL fl P*  H fnew , eL = 8g » g œ @u1 , … , ur D,

degu  g = degu  fnew H" u œ 8u1 , … , ur <L, ° fnew - g¥2 § e<,
where fnew  denotes f - (all the leading monomials of f , with respect to ui ).

· Tolerance Implementations

According to the previous definitions, we have implemented the structures, basic
operations  (addition  and  multiplication)  on  the  structures,  and  functions  that
transform one structure into another.

We  define  the  following  expression  to  represent  the  SNAP  structures  P2 H f , eL,
P1 H f , eL,  and  P¶ H f , eL,  where  scheme  can  be  AbsolutePolynomial2Norm,
AbsolutePolynomial1Norm,  and AbsolutePolynomialiNorm,  respectively.  In  a
future release, other schemes will be implemented.
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We  define  the  following  expression  to  represent  the  SNAP  structures  P2 H f , eL,
P1 H f , eL,  and  P¶ H f , eL,  where  scheme  can  be  AbsolutePolynomial2Norm,
AbsolutePolynomial1Norm,  and AbsolutePolynomialiNorm,  respectively.  In  a
future release, other schemes will be implemented.

SNAPf,,u1,e1, � ,ur,er,scheme
Using  this  structure,  we  have  implemented  basic  functions  provided  by  the
mechanisms  and now show some of their expressions.  We note that  the package
also provides functions  that  automatically  transform the given polynomial  to the
previous representation.

TransformSNAPSNAPf_, epsf_, x_Symbol, n_, yz___,
AbsolutePolynomial2Norm, AbsolutePolynomialiNorm :

SNAPf, epsf, x, n, yz, AbsolutePolynomialiNorm
NormalSNAPf_, epsf_, x_Symbol, n_, yz___, scheme_ : f

SNAP : SNAPf_, epsf_, x_Symbol, n_, yz___, scheme_ :
SNAPf, epsf, x, n, yz, scheme

SNAPg_, epsg_, varsg_List, scheme_ 
SNAPh_, epsh_, varsh_List, scheme_ ^:

SNAPg  h, epsg  epsh, maxvarslistvarsg, varsh, scheme
SNAPg_, epsg_, varsg_, scheme_  f_?NotSNAPQ ^:
SNAPg, epsg, varsg, scheme  SNAPf

ToleranceSNAPf_, epsf_, vars_, scheme_ : epsf

One  aim  of  the  package  is  providing  an  environment  in  which  we  use  SNAP
structures  transparently,  like  Mathematica’s  floating-point  numbers;  hence,  we
have implemented the following Format code.

FormatSNAPf_, e_, variables_, scheme_ : Nf

In this version, we suppose that the basic four operations between Mathematica’s
bigfloat  numbers  and  its  interval  arithmetic  guarantee  the  precision  of  their
results,  since  basically  we  use  Mathematica’s  own  arithmetic  for  estimations.  All
the  implementations  depend  on  Mathematica’s  accuracy  and  precision  tracking
system,  though  in  our  implementation,  we  round  up  all  the  error  parts  in  case
our assumption is incorrect.

· Tolerance Examples

Next we show some examples of the SNAP tolerance mechanism. This loads the
package.

In[5]:= Needs"SNAP‘"
This package includes routines which provide
SNAP functionalities. The version of this package
is 0.2 .2 and implemented by KosakuNAGASAKA.
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This gives a SNAP structure. The output looks like a normal expression.

In[6]:= g  SNAPx^5  5.503 x^4  9.765 x^3  7.647 x^2  2.762 x  0.37725
Out[6]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

This gives the FullForm of the previous SNAP structure.

In[7]:= FullFormg
Out[7]//FullForm=

SNAPPlusRational1509, 4000, TimesRational1381, 500, x,
TimesRational7647, 1000, Powerx, 2,
TimesRational1953, 200, Powerx, 3,
TimesRational5503, 1000, Powerx, 4, Powerx, 5,

1.537912594467730969706440230810229‘14.303315010757448*^-15,
ListListx, 5, AbsolutePolynomial2Norm

The error bound of this SNAP structure, which is a a set of polynomials, is given
by Tolerance.

In[8]:= Toleranceg
Out[8]= 1.537912594467731015

Each calculation enlarges its error bound.

In[9]:= g2  g g

Out[9]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x52
In[10]:= Toleranceg2

Out[10]= 1.046375127452241013

By using  Element,  we  can  check  whether  a  polynomial  is  included  in the  given
SNAP  structure  or  not.  The  error  bound  of  the  following  SNAP  structure  is
about 1.53791 µ 10-15 ; hence, we have these results.

In[11]:= ElementNormalg  1.5*^-15, g
Out[11]= True

In[12]:= ElementNormalg  1.6*^-15, g
Out[12]= False

Normal gives corresponding representative polynomials in the normal form.

In[13]:= Normalg  FullForm

Out[13]//FullForm=

PlusRational1509, 4000, TimesRational1381, 500, x,
TimesRational7647, 1000, Powerx, 2,
TimesRational1953, 200, Powerx, 3,
TimesRational5503, 1000, Powerx, 4, Powerx, 5

We  can  expand  the  expression  of  the  representative  polynomial  of  a  SNAP
structure.
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In[14]:= Expandg2
Out[14]= 0.142318  2.08393 x  13.3983 x2  49.6097 x3  116.57 x4 

180.499 x5  185.042 x6  122.768 x7  49.813 x8  11.006 x9  x10

Any result of a substitution for a SNAP structure also has a guaranteed accuracy.

In[15]:= g3  g2 . x  1

Out[15]= 731.93244306250

In[16]:= Toleranceg3
Out[16]= 1.151012640197511012

We show  the situation  discussed  in the  last  paragraph of the Tolerance  Mecha-
nisms subsection.

In[17]:= g

Out[17]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

In[18]:= g  x^5

SNAP::invalid :  Tolerance is larger than the
representative leading coefficient: 0.‘  1.537912594467731‘*^-15.

Out[18]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4

Because  this  rewriting  can  be  important  for  users,  this  package  generates  the
displayed warning.

‡ Other Basic Operations
We  implemented  other  basic  operations:  a  polynomial  division  (quotient  and
remainder),  reductions  (for  non-univariate  polynomials),  and  root-finding  with
error considerations.

Function Purpose

NSolve finds numerical roots with error considerations.
PolynomialQuotient computes a polynomial quotient as a SNAP

structure.
PolynomialRemainder computes a polynomial remainder as a SNAP

structure.
PolynomialReduce computes a reduced polynomial as a SNAP

structure.
D computes derivatives as SNAP structures.
Table 2. Other basic functions.
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· Polynomial Division (Univariate Case)

Let f HxL and gHxL  be  the following  polynomials  of  degrees n  and m,  m § n,  with
tolerances e f  and eg , respectively:

(25)
f  HxL = fn  xn + fn-1  xn-1 +  + f1  x + f0 , fi œ ,
g HxL = gm  xm + gm-1  xm-1 +  + g1  x + g0 , gi œ .

Dividing f HxL by gHxL is defined as follows, with polynomials qHxL and rHxL:
(26)f  HxL = q HxL g HxL + r HxL, deg q = n - m, deg r < m.

For  SNAP  structures,  we  have  to  check  that  the  polynomials  qêêHxL  and  rêêHxL  for
the given f

êêêHxL and gêêHxL are properly related to qHxL and rHxL:
(27)

f
êêê

 HxL = qêê HxL gêê HxL + rêê HxL, deg qêê = n - m,
deg rêê < m, f

êêê
œ P*  H f , e f L, gêê œ P*  Hg, eg L.

We  have  the  following  corollaries  [11].  Note  the  discussion  at  the  end  of  the
Tolerance Mechanisms subsection.

In these corollaries, G is the Hn + 1Lµ Hn + 1L matrix:

(28)G =

i
k
jjjjjjjjjjjjjjjjjjjjjjjjjjj

gm 0   0 0
gm-1 gm   ª ª

ª gm-1   ª ª

g0 ª   0 ª

ª ª   gm 0
0    gm-1 gm

y
{
zzzzzzzzzzzzzzzzzzzzzzzzzzz.

Corollary 2. If the following expression holds,

(29)s2  
è!!!!!!!!!!!n + 1  eg < 1, s2 = °G-1 ¥2 ,

we have

(30)

" f
êêê

œ P2  H f , e f L, " gêê œ P2  Hg, eg L, qêê œ P2  Hq, eq L, rêê œ P2  Hr, er L
eq = s2  Ie f +

è!!!!!!!!!!!n + 1  eg  H°q¥2 + s2  e f L ë I1 - s2  
è!!!!!!!!!!!n + 1  eg MM,

er = e f + $%%%%%%%%%%%%%%%%%b n
ÅÅÅÅÅÅ
2
r + 1  H°g¥2  eq + °q¥2  eg + eg  eq L.

Corollary 3. If the following expression holds,

(31)s1 eg < 1, s1 = °G-1¥1 ,
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we have

(32)

" f
êêê

œ P1  H f , e f L, " gêê œ P1  Hg, eg L, qêê œ P1  Hq, eq L, rêê œ P1  Hr, er L,
qêêêêêê œ P1  Hq, eq L, rêê œ P1  Hr, er L,
eq = s1  He f + eg  H°q¥1 + s1  e f L ê H1 - s1 eg LL,
er = e f + °g¥1  eq + °q¥1  eg + eg  eq .

Corollary 4. If the following expression holds,

(33)s¶  Hn + 1L eg < 1, s¶ = °G-1¥¶ ,

we have

(34)

" f
êêê

œ P¶  H f , e f L, " gêê œ P¶  Hg, eg L, qêê œ P¶  Hq, eq L, rêê œ P¶  Hr, er L,
eq = s¶  He f + Hn + 1L eg  H°q¥¶ + s¶  e f L ê H1 - s¶  Hn + 1L eg LL,
er = e f + Jb n

ÅÅÅÅÅÅ
2
r + 1N H°g¥

¶
 eq + °q¥¶  eg + eg  eq L.

· Polynomial Reduction (More than One Variable Case)

Since the SNAP structure is extended to multivariate polynomials in this version,
we  introduce  polynomial  reductions.  Because  a  reduction  can  be  done  by  two
multiplications  and  one  subtraction,  we  just  reduce  polynomials  by  ordinary
algorithms  using  the  SNAP  structures  introduced  in the  previous  section.  Note
that we assume that  the given polynomial  basis is a Gröbner  basis for any possi-
ble combinations  of polynomials  in the basis, and the result, including tolerance,
is dependent on a specified term order.

· Root Finding with Error Considerations

There  are  many  root-finding  methods.  Basically,  Mathematica  uses  the  Jenkins–
Traub  method.  Since  those  roots  found  by  numerical  methods  may  not  be  the
exact ones, we have to consider numerical errors after calculations.  For example,
Smith [13] studied error bounds for numerical roots.

However,  working with polynomials  with errors in their coefficients extends  the
problem.  Terui  and Sasaki  [14]  studied an extended  version of  Smith’s work,  by
which  we  can  bound  errors  included  in  numerical  roots  of  polynomials  with
errors on their coefficients and for polynomials represented as SNAP structures.

Lemma 3 (Statement in [14]). For any polynomial f
êêêHxL œ P* H f , eL, we have

(35)†zi - z
êê

p HiL § § n
† f  Hzi L§ + e ⁄ j=0

n †zi § j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH† fn § + eL °¤ j=1,≠i
n Hzi - z j L• ,

where  n  denotes  the  degree  of  f HxL,  z1 , … , zn  and  z
êê

pH1L , … , z
êê

pHnL  are  the  roots  of
f HxL  and  f

êêêHxL,  respectively,  pHiL  is  a  permutation  of  81, … , n<  that  minimizes  the
maximum  distance  between  the  roots:  maxi †zi - z

êê
pHiL §,  and  fn  denotes  the  leading

coefficient of f HxL.
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· Partial Derivation with Error Considerations

Computing the partial derivatives of the given polynomial  is also important.  We
have the following trivial lemma to calculate the derivatives of SNAP structures.

Lemma 4. For any polynomial f
êêêHu1 , … , ur L œ P* H f , eL, we have

(36)
∂ f

êêê
 Hu1 , … , ur L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ui

œ P*  
ikjjj ∂ f  Hu1 , … , ur L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∂ui

, e µ degui
 f y{zzz   Hi = 1, … , rL.

· Examples

Here  we  show  some  examples  of  basic  operations  of  the  package  using  the
previous polynomial.

In[19]:= g

Out[19]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

The following examples give all the roots of the given representative polynomial
with  or  without  considerations  of  the  error  bound.  We  recommend  comparing
the  following  two  results  of  NSolve  and  System‘NSolve.  NSolve  with  a  SNAP
structure considers all the possible polynomials  within the structure; hence, their
tolerances are larger than that of NSolve without a SNAP structure.

This gives a result with error considerations according to Lemma 3.

In[20]:= NSolveg  0, x
Out[20]= x  3.00007208113, x  0.9989903849, x  0.54121518,x  0.48136118  0.02946454, x  0.48136118  0.02946454

In[21]:= Tolerance  x . %
Out[21]= 1.173590672098831012 , 3.58892600505511011 ,

6.8881497758683109, 6.9645254663057109 , 6.9645254663057109
This gives a result without error considerations.

In[22]:= System‘NSolveNormalg  0, x
Out[22]= x  3.00007, x  0.99899, x  0.541215,x  0.481361  0.0294645 , x  0.481361  0.0294645 

In[23]:= Tolerance  x . %
Out[23]= 3.33074910000821016 , 1.109102126694171016 ,

6.00869556830521017 , 5.35418495811501017 , 5.35418495811501017
To show division examples, define the following two polynomials.

In[24]:= g2  Expandgg
Out[24]= 0.142318  2.08393 x  13.3983 x2  49.6097 x3  116.57 x4 

180.499 x5  185.042 x6  122.768 x7  49.813 x8  11.006 x9  x10

In[25]:= h  x^3  Random
Out[25]= 0.465024  x3

This gives the quotient and remainder of g2 by h with error considerations. Note
that though h is not in the SNAP structure, it is automatically transformed into it
and  SNAP  functions  are  overloaded  because  the  built-in  functions  are  not
compatible with such arguments including a SNAP structure.
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This gives the quotient and remainder of g2 by h with error considerations. Note
that though h is not in the SNAP structure, it is automatically transformed into it
and  SNAP  functions  are  overloaded  because  the  built-in  functions  are  not
compatible with such arguments including a SNAP structure.

In[26]:= PolynomialQuotientg2, h, x, PolynomialRemainderg2, h, x
Out[26]= 34.0593  59.6968 x  157.335 x2  179.924 x3  122.303 x4 

49.813 x5  11.006 x6  x7, 15.9807  25.6765 x  59.7661 x2
These commands are the same for univariate polynomials.

In[27]:= PolynomialReduceg2, h, x
Out[27]= 34.0593  59.6968 x  157.335 x2  179.924 x3  122.303 x4 

49.813 x5  11.006 x6  x7, 15.9807  25.6765 x  59.7661 x2
In the next example, PolynomialRemainder gives a pseudo-zero number since g
can  divide  g2.  However,  these  polynomials  have  their  error  bounds,  and  we
cannot argue that its remainder is completely zero; hence, the following warning
messages are generated.

In[28]:= g3, g4  PolynomialQuotientg2, g, x, PolynomialRemainderg2, g, x
SNAP::invalid :  Tolerance is larger than the

representative leading coefficient: 0.‘  1.0292162141035616‘*^-6.

General::stop :  Further output of
SNAP::invalid will be suppressed during this calculation. More. . .

Out[28]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5 , 0.106
SNAP functions give normal Mathematica numbers if their degrees are not larger
than zero.

In[29]:= SNAPQg3, SNAPQg4
Out[29]= True, False

Each  operation  or  calculation  enlarges  error  bounds;  hence,  tolerances  of  the
roots also get larger.

In[30]:= NSolveg3 0, x
Out[30]= x  3.00007, x  0.99899, x  0.5412,x  0.4814  0.0295 , x  0.4814  0.0295 

In[31]:= Tolerance  x . %
Out[31]= 1.76394520485190106, 3.67660059293547106,

0.0000641619768854552, 0.0000561916017665273, 0.0000561916017665273
The  tolerance  correction  mechanism  used  in  NSolve  with  SNAP  structures
assumes  that  the  given  representative  polynomial  does  not  have  multiple  roots.
Therefore,  the  following  warning  message  is  generated  if  the  given  polynomial
has  multiple  (or  close)  roots  and  any  tolerance  correction  is  not  applied.  This
means that any output of Tolerance below is not reliable.
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In[32]:= NSolveg2 0, x
SNAP::multipleroots :  The given representative polynomial

has multiple roots. Tolerances of the roots can not be computed.

Out[32]= x  3.000072, x  3.000072, x  0.99899,x  0.99899, x  0.54, x  0.54, x  0.48  0.03 ,x  0.48  0.03 , x  0.48  0.03 , x  0.48  0.03 
In[33]:= Tolerance  x . %

Out[33]= 4.77743842704102107, 4.77743842704538107,

1.63209073103228106, 1.63209073944919106,
0.00376341857130941, 0.00376343263094951, 0.00233327894319648,
0.00233327894319648, 0.00233326644754287, 0.00233326644754287

Partial derivatives also can be computed in SNAP structures. 

In[34]:= g2d  Dg2, x
Out[34]= 2.08393  26.7966 x  148.829 x2  466.282 x3  902.495 x4 

1110.25 x5  859.373 x6  398.504 x7  99.054 x8  10. x9

In[35]:= NSolveg2d  0, x
Out[35]= x  3.00007208, x  2.5308273, x  0.9990,x  0.8692, x  0.101, x  0.101, x  0.101,x  0. 101  0.101 , x  0.101  0.101 

In[36]:= Tolerance  x . %
Out[36]= 8.1322107325183109, 2.16884179842690108, 0.0000106535444881950,

0.0000474506566469721, 0.4545922961971249, 12.83683482913959,
10.16786064649990, 0.3798417168646968, 0.3798417168646968

The  tolerance  correcting  method  used  in  SNAP  computes  subtractions  among
close numbers so it requires a certain precision. In this case, working precision is
not enough; hence, we increase it.

In[37]:= NSolveg2d  0, x, 32
Out[37]= x  3.000072081, x  2.530827278, x  0.998990385,x  0.86922548, x  0.541215, x  0.50942, x  0.49292,x  0.481361  0.029465 , x  0.481361  0.029465 

In[38]:= Tolerance  x . %
Out[38]= 1.426709389682831010 ,

1.612401567471351010 , 7.73051779089291010 ,

1.75820169776709109, 4.08068757681530107,

2.48951715376255106, 2.38910508764410106,

3.44787932738920107, 3.44787932738920107
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‡ Symbolic-Numeric Algorithm Implementation 
Using  the  basic  features,  we  have  started  to  modify  and  implement  known
symbolic-numeric  algorithms.  In  the  current  implementation,  only  one  algo-
rithm for each computation is used. Other algorithms will be implemented in the
near future.

Function Purpose

PolynomialGCD computes an e-GCD of the two
given polynomials.

CoprimeQ gives True if the two polynomials are
coprime within the tolerance.

ApproximateDivisorQ gives True if the first argument is
approximately divisible by the second.

ApproximateQuotient gives a quotient if
ApproximateDivisorQ is True.

NearestSingularPolynomial computes the nearest singular
polynomial Htolerance is not consideredL.

AbsolutelyIrreducibleQ gives True if the polynomial is
absolutely irreducible within the
tolerance.

SeparationBound computes a separation boundHor irreducibility radiusL
of the given polynomial.

Factor factors the given monic polynomial
numerically.

FactorList gives a list of pseudo-factors of the
given monic polynomial.

Table 3. Symbolic numeric functions.

· Approximate GCD and Divisors (Univariate Case)

From  the  early  historical  period  of  symbolic-numeric  computations,  various
approximate GCDs have been studied.  The problem treated here is  very simple:
for  the  given  polynomials  gHxL  and  hHxL  and  the  tolerance  e,  find  a  polynomial
f HxL of maximal degree that satisfies

(37)$ gêê HxL œ P*  Hg, e °g¥* L, $ h
êê

 HxL œ P*  Hh, e °h¥* L, f  HxL » gêê HxL, f  HxL » h
êê

 HxL,
where * denotes 2, 1, or ¶. The polynomial f HxL is called an e-GCD of polynomi-
als gHxL and hHxL with tolerance e. Currently, we have implemented the algorithm
by Pan [2], for the 2-norm case only.
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We note that there are also other approximate GCDs that have slightly different
definitions  and approximate  GCDs  of  multivariate  polynomials.  Those  approxi-
mate GCDs will be implemented in a future release.

Considering  approximate  GCDs,  the following  concept  of an e-divisor  is  useful.
For the given  polynomial  gHxL  and the tolerance e,  we call  a  polynomial  f HxL  an
e-divisor of gHxL if f HxL satisfies 

(38)$ gêê HxL œ P*  Hg, e °g¥
*
L, f  HxL » gêê HxL,

where  *  denotes  2,  1,  or  ¶.  Moreover,  in  this  package,  we  call  the  quotient  of
gêêHxL  by  f HxL  an  e-quotient  of  gHxL  by  f HxL.  These  concepts  are  used  in  Pan’s
algorithm, and currently we have only implemented the 2-norm case.

Note that, theoretically,  e-GCD, e-divisor, and e-quotient are exact polynomials,
since  only the given polynomials  have perturbation  parts,  and e-GCD, e-divisor,
and e-quotient are treated as exact polynomials in those computations.  However,
due  to  numerical  errors,  in  this  package,  e-GCD,  e-divisor,  and  e-quotient  are
treated as SNAP structures.

We also provide a coprimeness check function that uses the well-known fact that
if  the Sylvester  matrix  of  the given  two polynomials  has  full  rank,  then they are
coprime [15].

· Nearest Singular Polynomial (Univariate Case)

The  nearest  singular  polynomial  [16,  17,  18]  of  f HxL  is  the  nearest  polynomial
f
êêêHxL that has a double root, minimizes ° f HxL - f

êêêHxL¥, and has the same degree as
f HxL. A similar problem that finds the nearest polynomial  with constrained roots
has been studied in [19, 20].

In this package, finding the nearest singular polynomial can be written as follows.

For the given polynomial f HxL and tolerance e, find a polynomial f
êêêHxL satisfying 

(39)f
êêê

 HxL œ P*  H f , eL, $ c œ , Hx - cL2 » f
êêê

 HxL,
where  *  denotes  1,  2, or  ¶;  if  the output  is  False,  the nearest  singular  polyno-
mial  does  not  exist  in  the  given  SNAP  structure.  The  current  version  of  the
package  solves  this  problem  using  the  known  algorithm  [18],  so  the  command
can only solve the problem for the 2-norm case. The constrained roots version of
the problem will be solvable in a future release.

Note  that  the  current  implementation  outputs  a  normal  polynomial  (not  in  a
SNAP structure) and the given tolerance for the command corresponding  to the
nearest  singular  polynomial  does  not  have  the  same meaning  as  the other  com-
mands of the SNAP package. For more information, see [18].

· Irreducibility Testing for Bivariate Polynomials

Conventional  ordinary  factorization  algorithms  may  always  output  “absolutely
irreducible”  for  numerical  or  empirical  polynomials,  since  the  given  polynomial
may have error  parts on its coefficients  even if the original  polynomial  is  reduc-
ible.  Moreover,  if  a  numerical  factorization  algorithm,  for  example  [7],  outputs
“no  nontrivial  factors  found,”  it  does  not  mean  “absolutely  irreducible,”  since
those  algorithms  can  basically  find  factors  when  the  given  polynomial  is  close
enough to a reducible  polynomial.  Hence, the “irreducibility  testing” problem is
still important for numerical or empirical polynomials [21, 22, 23, 24, 25].
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Conventional  ordinary  factorization  algorithms  may  always  output  “absolutely
irreducible”  for  numerical  or  empirical  polynomials,  since  the  given  polynomial
may have error  parts on its coefficients  even if the original  polynomial  is  reduc-
ible.  Moreover,  if  a  numerical  factorization  algorithm,  for  example  [7],  outputs
“no  nontrivial  factors  found,”  it  does  not  mean  “absolutely  irreducible,”  since
those  algorithms  can  basically  find  factors  when  the  given  polynomial  is  close
enough to a reducible  polynomial.  Hence, the “irreducibility  testing” problem is
still important for numerical or empirical polynomials [21, 22, 23, 24, 25].

In this package, the problem becomes:

For  the  given  SNAP  structure  P* H f , eL,  prove  that  any  polynomial
f
êêêHu1 , … , ur L œ P* H f , eL is absolutely irreducible.

The  algorithm  implemented  in  this  package  (Nagasaka  [23])  is  an  improved
version  of  the  algorithm  of  Kaltofen  and  May  [22]  for  bivariate  polynomials.
Note  that  the current implementation  is  based  on the algorithm for the 2-norm
case;  hence,  there  are  possibilities  of  improvement  for  another  norm.  The
version for more than two variables  will be implemented in a future release. The
largest  problem  in  implementing  more  than  two  variables  is  effectiveness,  and
further studies are needed.

The  previously  mentioned  methods  [22,  23]  use  the  coefficients  of  the  given
polynomial directly, so we can adapt it to Mathematica’s coefficient-wise accuracy
concept.  This  is  better  than the original  methods,  because  treating tolerances  as
polynomial  norms  tends  to  overestimate.  The  current  implementation  can  do
this for polynomials not in SNAP structures.

· Numerical Factorization of Multivariate Polynomials

For  the same  reason as  the previous  test  for  irreducibility,  we have to  use com-
pletely different factorization algorithms for numerical or empirical polynomials.
In this package, we have implemented Sasaki’s algorithm [7] with a degree bound
studied  by  Bostan  et  al.  [26].  Currently,  for  nonmonic  polynomials,  the  com-
mand is not stable since none of the approximate GCD algorithms for multivari-
ate  polynomials  that  are  needed  for  factoring  nonmonic  polynomials  are
implemented.

Note  that  the  given  polynomial  may  have  approximate  factors  (or  so-called
numerical  or  pseudo-factors)  even  if  the  algorithm  outputs  “absolutely  irreduc-
ible” or “no factors.” Therefore, you are encouraged to use the preceding irreduc-
ibility testing when you do not get approximate factors.

· Examples

Here we show some examples  of SNAP operations  using this previously  defined
polynomial.

In[39]:= g

Out[39]= 0.37725  2.762 x  7.647 x2  9.765 x3  5.503 x4  x5

Here  we  introduce  another  polynomial.  Though  it  is  not  in  a  SNAP  structure,
treating it as such is acceptable.
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In[40]:= h  1.3883  4.417 x  3.8861 x2  0.85593 x3

Out[40]= 1.3883  4.417 x  3.8861 x2  0.85593 x3

The built-in function outputs that these polynomials are coprime.

In[41]:= System‘PolynomialGCDNormalg, h
Out[41]=

1

4000

The SNAP  package can compute the e-GCD as follows, where e = 0.0001. Note
that  the  current  implementation  of  PolynomialGCD  for  SNAP  structures  is  still
experimental  and  that  the  definition  of  the  greatest  common  divisor  of  SNAP
structures may change in the future.

In[42]:= gcdofgh  PolynomialGCDg, h, 0.0001
SNAP::preliminary :  Preliminary implemented function is called.

Out[42]= 0.00005  0.000159079x  0.000139959x2  0.0000308266 x3

We can check its approximate divisibility.

In[43]:= ApproximateDivisorQg, gcdofgh, 0.0001
Out[43]= True

ApproximateQuotient  minimizes  °g - gcdofgh µ aqofgh¥2  so  aqofgh  is  not  a
constant in this case.

In[44]:= aqofgh  ApproximateQuotientg, gcdofgh, 0.0001
Out[44]= 7543.97  31237.7 x  32439. x2

Without  any  tolerance,  the  worst  tolerance  between  the  given  polynomials  is
used. 

In[45]:= PolynomialGCDg, h  Timing

SNAP::toleranceadjusted :  
The given different tolerances adjusted into their maximum.

SNAP::preliminary :  Preliminary implemented function is called.

Out[45]= 0.14 Second, 1
This also checks whether they are coprime or not within their tolerance.
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In[46]:= CoprimeQg, h  Timing

SNAP::toleranceadjusted :  
The given different tolerances adjusted into their maximum.

SNAP::machineprecision :  
SNAP function encounters a machine precision number. Machine

precision numbers may not have enough accuracy
due to Mathematica’s inner operation policy.

Out[46]= 0.01 Second, True
This  gives  the  nearest  singular  polynomial  to  g,  so  the  output  polynomial  nsg
has  a  double  root.  Note  that  the  current  implementation  of  NearestSingular
Polynomial  is  still  experimental  and  that  the  definition  of  the  nearest  singular
polynomial of a SNAP structure may change in the future.

In[47]:= nsg  NearestSingularPolynomialg
SNAP::preliminary :  Preliminary implemented function is called.

Out[47]= 0.37720351974838137016775789088983968187636004221406567211977697
2.76202294152404443342835048940639585762186936652647278562313779x 
7.646988676620561357622504161731099465008522214447595797886506014
x2 

9.765005588945253294112702930232286019423905685965456360726987501
x3 

5.502997241432276152366822036470183607747161460093308123512301501
x4  x5

In[48]:= x . NSolvensg  0, x
SNAP::multipleroots :  The given representative polynomial

has multiple roots. Tolerances of the roots can not be computed.

Out[48]= 3.000053130650945683752304343186078410573974339841422837810588,
0.99935128171346605830324104486442601356425526128685652500166,
0.516441372459217509897207664836573546919334279320842452221,
0.49357572830432345020703449179, 0.49357572830432345020703449179

To  show  an  example  of  absolute  irreducibility  testing,  we  define  the  following
bivariate polynomial.

In[49]:= f  Expandx^2  y x  2 y  1 x^3  y^2 x  y  7  0.2 x
Out[49]= 7  0.2 x  7 x2  x3  x5  15 y  7 x y 

x2 y  2 x3 y  x4 y  2 y2  2 x y2  x3 y2  2 x y3  x2 y3

This tests its absolute irreducibility within the given tolerance 0.00001.
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In[50]:= AbsolutelyIrreducibleQf, 0.00001
SNAP::machineprecision :  
SNAP function encounters a machine precision number. Machine

precision numbers may not have enough accuracy
due to Mathematica’s inner operation policy.

Out[50]= True

If the given polynomial has a SNAP structure, its tolerance is used, so the follow-
ing evaluations give the same result.

In[51]:= fs  SNAPf, 0.00001
Out[51]= 7.  0.2 x  7. x2  1. x3  x5  15. y  7. x y 

1. x2 y  2. x3 y  x4 y  2. y2  2. x y2  x3 y2  2. x y3  x2 y3

In[52]:= AbsolutelyIrreducibleQfs
Out[52]= True

We can also compute a separation bound of f. In this case, all the polynomials of
P2 H f , 0.000791622L are absolutely irreducible.

In[53]:= SeparationBoundf
SNAP::machineprecision :  
SNAP function encounters a machine precision number. Machine

precision numbers may not have enough accuracy
due to Mathematica’s inner operation policy.

Out[53]= 0.000791622

A  warning  message  is  generated  if  the  package  routines  encounter  a  machine
precision number. We recommend not using machine precision numbers.

In[54]:= f  Expandx^2  y x  2 y  1 x^3  y^2 x  y  7  0.2‘‘16 x
Out[54]= 7  0.200000000000000x  7 x2  x3  x5  15 y 

7 x y  x2 y  2 x3 y  x4 y  2 y2  2 x y2  x3 y2  2 x y3  x2 y3

In[55]:= SeparationBoundf
Out[55]= 0.0007916215679

This gives an example using the algorithm adapted for Mathematica’s coefficient-
wise accuracy concept.  Hence, changing all the coefficients within their accuracy
does not change its absolute irreducibility.

In[56]:= AbsolutelyIrreducibleQf
Out[56]= True

For numerical polynomials, the built-in function gives the input.
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In[57]:= f2  SetPrecisionExpandx^2  yx  2 y  1 x^3  y^2 x  y  7, 16
Out[57]= 7.000000000000000 7.000000000000000x2  1.000000000000000x3  x5 

15.00000000000000y  7.000000000000000x y  1.000000000000000x2 y 
2.000000000000000x3 y  x4 y  2.000000000000000y2 
2.000000000000000x y2  x3 y2  2.000000000000000x y3  x2 y3

In[58]:= System‘Factorf2
Out[58]= 1.0000000000000007.00000000000000  7.00000000000000x2  1.000000000000000x3 

1.000000000000000x5  15.00000000000000y  7.00000000000000 x y 
1.000000000000000x2 y  2.000000000000000x3 y 
1.000000000000000x4 y  2.000000000000000y2 
2.000000000000000x y2  1.000000000000000x3 y2 
2.000000000000000x y3  1.000000000000000x2 y3

With the SNAP  package,  for example,  we can factor  it  numerically  with  a back-
ward error bound.

In[59]:= ChopFactorf2, 0.0000001
Out[59]= 1.000000000000000  x2  2.0000000000000 1.0000000000000x y7.00000000000000 x3  1.0000000000000y  1.000000000000 x y2

If  we  use  a  SNAP  structure,  its  tolerance  is  automatically  used  as  a  backward
error bound.

In[60]:= f2s  SNAPExpandx^2  y x  2 y  1 x^3  y^2 x  y  7, 0.0000001
Out[60]= 7.  7. x2  1. x3  x5  15. y  7. x y  1. x2 y 

2. x3 y  x4 y  2. y2  2. x y2  x3 y2  2. x y3  x2 y3

In[61]:= ChopFactorf2s
Out[61]= 1.000000000000000  x2  2.0000000000000 1.0000000000000x y7.00000000000000 x3  1.0000000000000y  1.000000000000 x y2
‡ Conclusion

The SNAP package is useful for almost all users who have to work with polynomi-
als with errors in their coefficients. Users may think that Mathematica has its own
accuracy  and  precision  system,  and  therefore  another  structure  like  those  in
SNAP is unnecessary. This will be true in the future; however, at least now, most
of  the  latest  algorithms  for  numerical  or  empirical  polynomials  cannot  operate
with  coefficient-wise  accuracy  and  precision.  Using  only  significant  digits  like
Mathematica’s  cannot  answer  the  algebraic  problems,  though  it  can  guarantee
significant  digits  of  coefficients  generated  by  polynomial  arithmetic.  Moreover,
most  of  the  algorithms  in  symbolic-numeric  computations  have  to  use  matrix
computations  and  are  not  compatible  with  coefficient-wise  concepts,  since  they
usually use matrix norms. Depending on the algorithm, by using absolute irreduc-
ibility testing, for example, we can combine them with Mathematica’s coefficient-
wise error scheme and we plan to incorporate that in a future release.

Moreover,  we  are  considering  whether  computing  Canonical  Comprehensive
Gröbner  Bases  (CCGB)  should  be  integrated  into  the  SNAP  package  since  we
have  implemented  CCGB  in  Mathematica  and  some  kind  of  CCGB  is  the  only
way to treat  numerical errors  exactly. They can be represented as parameters  on
coefficients;  however,  this  method  is  so  time-consuming  that  this  release  does
not have CCGB routines. We note that Mathematica can compute Gröbner bases
numerically,  but we think any result is not guaranteed mathematically.  However,
Mathematica’s  built-in  computation  of  numerical  Gröbner  bases  is  more
advanced  than  finding  pseudo-solutions  numerically,  which is  very  difficult,  and
there are few known academic results.
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