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Clusters Produced by 
Placing Rhombic 
Triacontahedra at the 
Vertices of Polyhedra
Sándor Kabai, Szaniszló Bérczi, and Lajos Szilassi

In this article we explore possible clusters of rhombic 
triacontahedra (RTs), usually by connecting them face to face, 
which happens when they are placed at the vertices of certain 
polyhedra. The edge length of such polyhedra is set to be twice 
the distance of a face of an RT from the origin (about 2.7527). 
The clusters thus produced can be used to build further clusters 
using an RT and a rhombic hexecontahedron (RH), the logo of 
Wolfram|Alpha. We briefly look at other kinds of connections and 
produce new clusters from old by using matching polyhedra 
instead of RTs.
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‡ Rhombic Triacontahedra (RT) and Rhombic 
Hexecontahedron (RH)
Here are the RT and RH.

rt = PolyhedronData@"RhombicTriacontahedron", "Faces"D;
rh = PolyhedronData@"RhombicHexecontahedron", "Faces"D;
Graphics3D@rt, Boxed Ø FalseD

Graphics3D@rh, Boxed Ø FalseD
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To find the possible candidate polyhedra, let us summarize the angles of face centers rela-
tive to the center of a single face of RT, as seen from the origin.
face radians degrees

1 0 0 °
1 p 180 °
4 p ê 2 90 °
4 p ê 5 36 °
4 2 p ê 5 72 °
4 3 p ê 5 108 °
4 4 p ê 5 154 °
4 p ê 3 60 °
4 2 p ê 3 120 °

The dimensions applicable in the clusters can be determined on the basis of the relation-
ship of the cube and RT. For instance, the cube edge is equal to the longer diagonal of the
face  of  the  RT  (a  golden  rhombus),  2 sinHarctanH1.618LL = 1.70129.  The  diagonal  of  the
cube equals the distance between opposite threefold vertices of the RT. 
Additional  information  for  finding  possible  candidate  polyhedra  comes  from  a  chart  of
truncations  prepared  by  Szaniszló  Bérczi.  Figure  1  shows  regular  (Platonic)  solids  pro-
jected on a sphere. Archimedean solids are deduced from the regular solids by the trunca-
tion operation. A Platonic or Archimedean solid can be identified by its vertex configura-
tion, because it  is  uniform; this is given by the Steiner symbol,  which lists the faces that
meet at  a vertex. For example, H4, 4, 4L  is  the Steiner symbol for the cube, because three
squares (4-sided faces) meet at each vertex. The RT-related structures should be arranged
according  to  the  third  row  of  the  table:  H5, 6, 6L,  H3, 5, 3, 5L,  H3, 10, 10L,  H5, 5, 5L,
H3, 4, 5, 4L, H4, 6, 10L. 
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Ú Figure 1. The periodic table of Platonic and Archimedean solids and tessellations supplemented 
by the sequence of one of the infinite numbers of two-dimensional hyperbolic tessellations. In or-
der to emerge, the regular solids are given in their projected-onto-sphere form.

For more help, we can consider the relationship of RT to cube and to RH, on the basis of
which all necessary dimensions can be calculated.

f = GoldenRatio;
a = ArcTan@fD;
b = ArcTan@1 ê fD;
b1 = ArcTan@1 ê f^2D;

This is the length of the cube edge.

ce = N@2 Sin@aDD

1.7013
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simple truncation sequence complex truncation

(3, 3, 3, 3, 3) (3, 3, 3)

(3, 3, 3, 3)(3, 3, 3, 3, 4)

(3, 3, 3, 3, 5)

(3, 3, 3, 3, 6)

(3, 3, 4, 3, 4)

(3, 3, 3, 3, 7)

(3, 3, 3, 3, k)

(3, 3, 3, 3, 3)

(3, 3, 3, 3, 3, 3)

(4, 4, 4, 4) (4, 4, 4, 4) (4, 4, 4, 4) (4, 4, 4, 4)(4, 8, 8) (4, 8, 8) (4, 8, 8)

(3, 4, 6, 4)(4, 6, 12)

(3, 4, 5, 4)(4, 6, 10)
(5, 6, 6) (3, 5, 3, 5) (3, 10, 10) (5, 5, 5)

(6, 6, 6)(6, 6, 6) (3, 12, 12)(3, 6, 3, 6)

(3, 6, 6) (3, 6, 6) (4, 6, 6) (3, 4, 3, 4)

(3, 4, 4, 4)(4, 6, 8)(4, 4, 4)(3, 8, 8)(3, 4, 3, 4)(4, 6, 6)

(3, 3, 3)(3, 3, 3, 3)

.....

(3, 3, 3, 3, 3, 3, 3)

(3, 3, 3, 3.....3, 3)

.....

k

(7, 6, 6)

(k, 6, 6)

.....

(3, 7, 3, 7)

(3, k, 3, k)

.....

(3, 14, 14)

(3, 2k, 2k)

.....

(4, 6, 14)

(4, 6, 2k)

.....

(3, 4, 7, 4)

(3, 4, k, 4)

.....

(7, 7, 7)

(k, k, k)

.....



This is the length of the cube diagonal, which is equal to the length of the threefold axis di-
agonal of the RT.

d3 = ce Sqrt@3D

2.94674

This is the face distance of the RT.

fd = f ce

2.75276

This is the length of the fivefold axis diagonal of the RT.

d5 = Sqrt@ce^2 + fd^2D

3.23607

The  relationship  of  the  RT,  cube,  and  a  golden  rectangle  can  be  used  to  determine
dimensions.

goldr =
Rotate@Polygon@88-ce ê 2, 0, -f ce ê 2<, 8ce ê 2, 0, -f ce ê 2<,

8ce ê 2, 0, f ce ê 2<, 8-ce ê 2, 0, f ce ê 2<<D, -b,
80, 1, 0<D;

cub = PolyhedronData@"Cube", "Faces"D;
cubn = Rotate@Scale@cub, 0.999 ce 81, 1, 1<, 80, 0, 0<D,

-b, 80, 1, 0<D;

Graphics3D@88Opacity@0.2D, rt<, 8Green, cubn<, Yellow,
goldr<, SphericalRegion Ø True, Boxed Ø False,

ViewPoint -> 810, 10, 0<, ViewAngle Ø 0.07D

The relationship of the RT, RH, and a plane perpendicular to the threefold axis that  cuts
the RT and RH in half can be used to determine the angles between the RT faces.
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The relationship of the RT, RH, and a plane perpendicular to the threefold axis that  cuts
the RT and RH in half can be used to determine the angles between the RT faces.

rt = PolyhedronData@"RhombicTriacontahedron", "Faces"D;
rh = PolyhedronData@"RhombicHexecontahedron", "Faces"D;
rhc = Scale@rh, 0.618 81, 1, 1<, 80, 0, 0<D;
p =

Polygon@
0.8 88-2, -2, 0<, 82, -2, 0<, 82, 2, 0<, 8-2, 2, 0<<D;

Graphics3D@
8Rotate@Rotate@88Yellow, rhc<, Opacity@0.7D, rt<, b,

80, 1, 0<D, HPi ê 2 - ArcTan@0.618^2DL, 80, 1, 0<D,
Green, p<, SphericalRegion Ø True, Boxed Ø False,

ViewPoint -> 82, 10, 4<, ViewAngle Ø 0.11D

Here are the definitions used in the constructions.

rtn = Rotate@rt, 2 Pi ê 10, 80, 0, 1<D;
rhn = Rotate@rh, 2 Pi ê 10, 80, 0, 1<D;
ico = PolyhedronData@"Icosahedron", "Faces"D;
icov = PolyhedronData@"Icosahedron", "VertexCoordinates"D;
tico = PolyhedronData@"TruncatedIcosahedron", "Faces"D;
icon = Scale@ico, 2 Sin@aD 81, 1, 1<, 80, 0, 0<D;
dod = PolyhedronData@"Dodecahedron", "Faces"D;
td = PolyhedronData@"TruncatedDodecahedron", "Faces"D;
dodn = Scale@dod, 2 Cos@aD 81, 1, 1<, 80, 0, 0<D;
dodv = PolyhedronData@"Dodecahedron",

"VertexCoordinates"D;
id = PolyhedronData@"Icosidodecahedron", "Faces"D;
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‡ Icosahedron (ICO)
The icosahedron (ICO) is one of the five Platonic solids.

Graphics3D@ico, Boxed Ø FalseD

Twelve RTs placed at the vertices of the icosahedron enclose an RH. Such RT clusters ap-
pear in photos of certain quasicrystals.

rtico = Map@Translate@rtn, ÒD &, fd icovD;
Graphics3D@88Opacity@0.3D, rtico<, Red,

Rotate@rh, Pi, 80, 0, 1<D<, SphericalRegion Ø True,
Boxed Ø False, ViewPoint -> 80, 0, 100<, ViewAngle Ø 0.01D
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Here is a cluster of 12 RHs without transparency.

Graphics3D@8rtico<, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 0, 100<, ViewAngle Ø 0.01D

When  dodecahedra  are  used  instead  of  RTs,  they  are  attached  to  each  other  along  their
edges.

rticodod = Map@Translate@dodn, ÒD &, fd icovD;
Graphics3D@88rticodod<, Red, Rotate@rh, Pi, 80, 0, 1<D<,
SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 0, 100<, ViewAngle Ø 0.01D
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‡ Truncated Icosahedron (TICO) (5, 6, 6)
The  truncated  icosahedron  (TICO)  is  the  shape  most  widely  used  for  a  soccer  ball.  It  is
also the overall structure of the C60 molecule, Buckminsterfullerene.

Graphics3D@tico, Boxed Ø False, SphericalRegion Ø True,
Boxed Ø False, ViewPoint -> 80, 10, 3<, ViewAngle Ø 0.1D

ticov = PolyhedronData@"TruncatedIcosahedron",
"VertexCoordinates"D;

rttico = Map@Translate@rtn, ÒD &, fd ticovD;
Graphics3D@
8rttico, Green, Scale@tico, 2.4 81, 1, 1<, 80, 0, 0<D<,
SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D
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Here ICOs replace RTs; the ICOs meet along their edges. 

icotico = Map@Translate@icon, ÒD &, fd ticovD;
Graphics3D@
8icotico, Green, Scale@tico, 2.4 81, 1, 1<, 80, 0, 0<D<,
SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D

‡ Icosidodecahedron (ID) (3, 5, 3, 5)
The icosidodecahedron (ID) can be constructed as a truncation of either an icosahedron or
a dodecahedron.

Graphics3D@id, Boxed Ø FalseD
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Here is the corresponding cluster.

idv = PolyhedronData@"Icosidodecahedron",
"VertexCoordinates"D;

rtid = Map@Translate@rt, ÒD &, fd idvD;
Graphics3D@8RGBColor@0, 1, 1D, rtid<, SphericalRegion Ø True,
Boxed Ø False, ViewPoint -> 80, 0, 10<, ViewAngle Ø 0.1D

Let us add 12 RTs at the vertices of the ICO.

rtico1 = Map@Translate@rtn, ÒD &, Hf^2 + fdL icovD;
Graphics3D@88RGBColor@0, 1, 1D, rtid<, Yellow,

Rotate@rtico1, Pi, 80, 0, 1<D<, SphericalRegion Ø True,
Boxed Ø False, ViewPoint -> 80, 0, 10<, ViewAngle Ø 0.1,
PlotRange Ø 88-7, 7<, 8-7, 7<, 8-7, 7<<D
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Now add 12 RHs at the vertices of the DOD.

rhicotip = Map@Translate@rhn, ÒD &, f fd dodvD;
Graphics3D@8Specularity@0.3D, RGBColor@1, 0.4, 0.3D,

Rotate@rhicotip, Pi, 80, 0, 1<D, 8RGBColor@0, 1, 1D, rtid<,
Yellow, Rotate@rtico1, Pi, 80, 0, 1<D<,

SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D

Add  some  more  RTs  at  the  vertices  of  an  ID.  This  construction  can  be  continued  by
adding more RTs and RHs.

rtid1 = Map@Translate@rt, ÒD &, f fd idvD;
Graphics3D@8rtid1, RGBColor@1, 0.4, 0.3D,

Rotate@rhicotip, Pi, 80, 0, 1<D, 8RGBColor@0, 1, 1D, rtid<,
Yellow, Rotate@rtico1, Pi, 80, 0, 1<D<,

SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D
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‡ Truncated Dodecahedron (TD) (3, 10, 10)
This is a special case of dodecahedron truncation, when the edge length is uniform.

Graphics3D@td, Boxed Ø FalseD

This cluster of 60 RTs can be interpreted as being assembled from 20 sets of three RTs.

tdv = PolyhedronData@"TruncatedDodecahedron",
"VertexCoordinates"D;

rttd = Map@Translate@rt, ÒD &, fd tdvD;
Graphics3D@8rttd<, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 0, 10<, ViewAngle Ø 0.1D
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‡ Dodecahedron (DOD) (5, 5, 5)
The usual pentagonal dodecahedron is one of the five Platonic solids.

Graphics3D@dod, Boxed Ø FalseD

Here is its associated cluster.

dodv = PolyhedronData@"Dodecahedron", "VertexCoordinates"D;
rtdod = Map@Translate@rtn, ÒD &, fd dodvD;
Graphics3D@8Yellow, rtdod<, SphericalRegion Ø True,
Boxed Ø False, ViewPoint -> 80, 0, 10<, ViewAngle Ø 0.1D
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This investigates how the basic polyhedron relates to its associated cluster.

Manipulate@
Graphics3D@8Scale@dod, en 81, 1, 1<, 80, 0, 0<D, Yellow,

rtdod<, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 0, 10<, ViewAngle Ø 0.1D,

88en, 3.7, "enlarge"<, 1, 5<, TrackedSymbols Ø en,
SaveDefinitions Ø TrueD

enlarge

The cluster of 20 RTs can be fitted with 12 RHs placed at the vertices of an ICO.
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rhico = Map@Translate@rhn, ÒD &, f fd icovD;
Graphics3D@88Yellow, rtdod<, RGBColor@0, 0.7, 1D, rhico<,
SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D
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‡ Great Rhombicosidodecahedron (GRID) (4, 6, 10)
This  is  a  beautiful  shape.  Somewhat  similar  shapes  can  be  seen  in  some photographs  of
quasicrystals.

grid = PolyhedronData@"GreatRhombicosidodecahedron",
"Faces"D;

Graphics3D@grid, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 8-4, 10, 5<, ViewAngle Ø 0.1D

Here is its associated cluster.

gridv = PolyhedronData@"GreatRhombicosidodecahedron",
"VertexCoordinates"D;

rta = Rotate@rt, b, 80, 1, 0<D;
rtgrid = Map@Translate@rta, ÒD &, fd gridvD;
Graphics3D@
8rtgrid, Yellow, Scale@grid, 2.3 81, 1, 1<, 80, 0, 0<D<,
SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D
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‡ Small Rhombicosidodecahedron (SRID) (3, 4, 5, 4)
An  SRID  has  60  vertices.  In  the  related  cluster,  each  RT  is  connected  to  four  adjacent
RTs, as opposed to the TICO-based cluster, where each RT is connected to only three adja-
cent RTs.

srid = PolyhedronData@"SmallRhombicosidodecahedron",
"Faces"D;

Graphics3D@srid, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 8-4, 10, 5<, ViewAngle Ø 0.1D

Here is its associated cluster.

sridv = PolyhedronData@"SmallRhombicosidodecahedron",
"VertexCoordinates"D;

rta = Rotate@rt, b, 80, 1, 0<D;
rtsrid = Map@Translate@rta, ÒD &, fd sridvD;
Graphics3D@
8rtsrid, Green, Scale@srid, 2.3 81, 1, 1<, 80, 0, 0<D<,
SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D
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This cluster can also be extended by adding RHs, for example at the vertices of an ICO. 

rhico1 = Map@Translate@rhn, ÒD &, f^2 fd icovD;
Graphics3D@8rtsrid, RGBColor@0, 1, 0.5D,

Rotate@rhico1, -b, 80, 1, 0<D<, SphericalRegion Ø True,
Boxed Ø False, ViewPoint -> 810, 0, 3<, ViewAngle Ø 0.1D

‡ Summary of Truncations and Their Clusters
Here is a summary of the clusters that correspond to the various truncations.

Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8ico, rtico<D
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Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8tico, rttico<D

Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8id, rtid<D
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Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8td, rttd<D

Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8dod, rtdod<D
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Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8grid, rtgrid<D

Row@Graphics3D@Ò, Boxed Ø False, ImageSize Ø 200D & êü
8srid, rtsrid<D
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‡ Cube (4, 4, 4)
The cube is one of the five Platonic solids.

Graphics3D@cub, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 8-4, 10, 5<, ViewAngle Ø 0.15D

Here is its associated cluster.

cubv = PolyhedronData@"Cube", "VertexCoordinates"D;
rtcub = Map@Translate@rta, ÒD &, 2.7527 cubvD;
Graphics3D@8rtcub<, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 8-4, 10, 5<, ViewAngle Ø 0.1D
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‡ Two Johnson Solids
A number of Johnson solids can be considered as parts of the above polyhedra.  The two
shown here could be used as structures.

pgc = PolyhedronData@"PentagonalGyrobicupola", "Faces"D;
mdi = PolyhedronData@"MetabidiminishedIcosahedron",

"Faces"D;
Graphics3D@pgc, Boxed Ø FalseD

Graphics3D@mdi, Boxed Ø FalseD
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Here are their clusters.

pgcv = PolyhedronData@"PentagonalGyrobicupola",
"VertexCoordinates"D;

rtpgc = Map@Translate@rt, ÒD &, fd pgcvD;
Graphics3D@8rtpgc<, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 10, 6<, ViewAngle Ø 0.1D

mdiv = PolyhedronData@"MetabidiminishedIcosahedron",
"VertexCoordinates"D;

rtmdi = Map@Translate@rta, ÒD &, fd mdivD;
Graphics3D@8rtmdi<, SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 10, 0<, ViewAngle Ø 0.1D
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‡ Connections with Vertices
Interesting  clusters  can  also  be  produced  when  the  RTs  meet  at  their  vertices.  For  in-
stance, RTs at RT vertices meet with their fivefold tips.

rtv = PolyhedronData@"RhombicTriacontahedron",
"VertexCoordinates"D;

rtrt = Map@Translate@rt, ÒD &, d5 rtvD;
rtbig = Scale@rt, 1.535 fd 81, 1, 1<, 80, 0, 0<D;
Graphics3D@8rtrt, 8Yellow, Opacity@0.7D, rtbig<,

Green, Scale@rt, 3.26 81, 1, 1<, 80, 0, 0<D<,
SphericalRegion Ø True, Boxed Ø False, ViewPoint -> 80, 0, 10<,
ViewAngle Ø 0.1D

 RTs at the vertices of a rhombic dodecahedron (RD) meet with their threefold tips. Adja-
cent pairs of RTs overlap in a flat golden rhombohedron, creating another closed structure.

Manipulate@
Graphics3D@8Map@Translate@rtb, ÒD &, m d3 rdvD, rd<,
SphericalRegion Ø True, Boxed Ø False,
ViewPoint -> 80, 10, 0<, ViewAngle Ø 0.1D,

88m, 1, "close"<, 1, 0.812<, TrackedSymbols :> m,
SaveDefinitions Ø True,
Initialization Ø H

f = GoldenRatio;
a = ArcTan@fD;
b = ArcTan@1 ê fD;
ce = N@2 Sin@aDD;
d3 = ce Sqrt@3D;
rt = PolyhedronData@"RhombicTriacontahedron", "Faces"D;
rtb = Rotate@Rotate@rt, b, 80, 1, 0<D, Pi ê 4, 80, 0, 1<D;
rdv = PolyhedronData@"RhombicDodecahedron",

"VertexCoordinates"D;
rd = PolyhedronData@"RhombicDodecahedron", "Faces"D;

LD
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close
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