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Differential equation models for population dynamics are now 
standard fare in single-variable calculus. Building on these 
ordinary differential equation (ODE) models provides the 
opportunity for a meaningful and intuitive introduction to partial 
differential equations (PDEs). This article illustrates PDE models 
for location-dependent carrying capacities, migrations, and the 
dispersion of a population. The PDE models themselves are 
built from the logistic equation with location-dependent 
parameters, the traveling wave equation, and the diffusion 
equation. The approach presented here is suitable for a single 
lecture, reading assignment, and exercise set in multivariable 
calculus. Interactive examples accompany the text and the 
article is designed for use as a CDF document in which some of 
the input can remain hidden.

‡ Introduction: Ordinary Differential Equations and 
Population Dynamics
The  ordinary  differential  equations  with  which  students  are  most  familiar  are  the  equa-
tions  for  exponential  and  logistic  population  growth  (see  [1],  for  example).  Historically,
Thomas Malthus initiated the mathematical treatment of population dynamics [2]. His in-
vestigations  into  the  consequences  of  exponential  growth  in  human  populations  coupled
with linear growth in agricultural production led him to a pessimistic view of the eventual
fate of humankind, involving misery and starvation.
Pierre-Francois  Verhulst  and  others  considered  how  to  model  factors  that  might  retard
exponential  growth,  among  which  the  roles  of  disease  and  famine  had  been  suggested
already by Malthus. In his 1838 paper [3], Verhulst transformed the discussion into a math-
ematical model by writing

(1)y£ = m y- jHyL.

Here m y corresponds to exponential growth and the term -jHyL corresponds to the effect
of obstacles that slow the growth rate and that depend on the population size y. A simple
form for the obstacle term is jHyL = k y2, and setting m = k A yields the factored form
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Here m y corresponds to exponential growth and the term -jHyL corresponds to the effect
of obstacles that slow the growth rate and that depend on the population size y. A simple
form for the obstacle term is jHyL = k y2, and setting m = k A yields the factored form

(2)y£ = k yHA- yL,

the  form we  use  in  this  article.  Verhulst  solved  this  equation;  showed  how it  led,  in  the
long  run,  to  a  bounded  population  size;  and  used  actual  population  data  to  calculate  the
size of the limiting population for Belgium according to the model.  He termed the graph
of  the  solution  the  logistic  curve:  the  word  logistic  has  its  origins  in  the  Greek
“logistikē”—the art of calculating—and Verhulst was the first to be able to calculate the ef-
fects of obstacles on the growth of human populations.

The logistic equation is especially useful for introducing ideas involving the qualitative be-
havior of solutions, in particular the notion of a stable equilibrium. We now write the rele-
vant ODE as

(3)y£ = k yHA- yL; k, A > 0, yH0L = y0 ¥ 0.

In the logistic model, yHtL is the population size at time t. Using the terminology of popula-
tion dynamics, the parameters in this model are the growth constant, k, which controls the
rate  of  population growth near  y = 0;  the carrying capacity,  A,  which limits  the eventual
size  of  the  population;  and  the  initial  population  size  y0.  DSolve  gives  an  explicit  for-
mula for the solution to the corresponding initial value problem.

odeLogistic = D@y@tD, tD == k y@tD HA - y@tDL;
yLogistic =
y@tD ê. First@QuietüDSolve@8odeLogistic, y@0D == y0<, y, tDD

A ‰A k t y0

A - y0 + ‰A k t y0

The usual  textbook formula  for  the  solution  divides  both  numerator  and denominator  by
eA k t  to  obtain  yHtL = A yo

y0+HA-y0L e-A k t
.  From  this  simplified  formula  it  is  easy  to  check  that

yH0L = y0 and that limtØ¶ yHtL = A for y0 ¹≠ 0. 

The built-in Mathematica  function Manipulate  lets you vary the parameters k,  A,  and
y0 interactively to see the effect of varying those parameters graphically. Equilibrium solu-
tions for the model (values of y for which y£ = 0) occur at y = 0 and y = A. The carrying
capacity A is indicated by the dashed horizontal line (slope zero) in the figure, while the so-
lution curve is purple. The initial value y0 is the height of the curve at its intersection with
the y axis. How would you describe the effect of varying the growth constant k?
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Manipulate@
Plot@8carryingCapacity,

yLogistic ê. 8k Ø growthConstant, A Ø carryingCapacity,
y0 Ø initialPopulation<<,

8t, 0, 600<, PlotRange -> 8-.3, 2<, AxesOrigin -> 80, 0<,
AxesLabel Ø 8t, y<,

Ticks Ø 888150, " "<, 8300, " "<, 8450, " "<, 8600, " "<<,
88.6, " "<, 81.2, " "<, 81.8, " "<<<,

PlotStyle Ø 8Dashed, Thick<, PlotLabel -> "Logistic Growth",
Epilog Ø
8Text@Row@8Style@"y", ItalicD, " = ", Style@"A", ItalicD,

"\nstable"<D, 830, carryingCapacity + .15<D,
Text@Row@8Style@"y", ItalicD, " = 0\n unstable"<D,
830, -.15<D<

D,
88growthConstant, 0.01, "growth constant k"<, 0.01,
0.2, .001, Appearance Ø "Labeled"<,

88carryingCapacity, 1, "carrying capacity A"<, 0.5,
1.5, .001, Appearance Ø "Labeled"<,

88initialPopulation, 0.1, "initial population y0"<,
0.01, 1.9, .001, Appearance Ø "Labeled"<,

SaveDefinitions Ø TrueD

growth constant k 0.01

carrying capacity A 1

initial population y0 0.1

t

y
Logistic Growth

y = A
stable

y = 0
unstable

From Population Dynamics to Partial Differential Equations 3

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.



The  equilibrium  solution  y = A  is  stable,  since  whenever  y0 > 0,  limtØ¶ yHtL = A.
(However,  yHtL = A  for  some  time  t  only  if  y0 = A,  and  hence  yHtL = A  for  all  times  t.)
Since solution curves starting near y = 0 do not satisfy limtØ¶ yHtL = 0, this equilibrium so-
lution is not stable. This information can be captured in a “phase diagram,” shown in the
next  section.  The  diagram  visually  condenses  the  claims  just  made:  solution  curves  di-
verge away from y = 0 and converge toward y = A.  Use the sliders above to verify these
claims, based on the plots of the various solution curves. Since this article is primarily con-
cerned with the shapes of solution curves for the differential equations models we study,
graphs do not include units on the axes.

‡ A Key Concept: The Time Evolution of a Spatial Profile 
Curve
Now consider  the case of  a  population that  is  spread out  along a  narrow strip  of  land or
sea, which we will  think of as a line. An initial  study of the population might result  in a
function u0HxL  giving the size of the population at  location x  along the strip.  But popula-
tion  size  is  a  dynamic  quantity,  so  we should  really  employ a  function  of  two variables,
time and location, in our attempt to model its evolution. Thus, the population size at time t
and  location  x  is  uHt, xL  with  uH0, xL = u0HxL  recording  the  observed  initial  population
distribution.
We model the time evolution of the population using the partial differential equation

(4)
¶∂u

¶∂ t
= k u H AHxL- uL; k, AHxL > 0, uH0, xL = u0HxL ¥ 0.

This is just a modification of the logistic equation in which the carrying capacity A now de-
pends  on  location  AHxL.  This  allows  the  new model  to  account  for  environmental  condi-
tions that vary from place to place. The function u = uHt, xL is now the unknown function
that  solves  the  PDE.  In  this  setting,  the  role  of  the  initial  value,  formerly  played  by  the
number y0, is being played by the function uH0, xL = u0HxL. Essentially, what we have is a
separate initial value problem at each location.
We will call the graph of uH0, xL the initial profile curve. Think of uHt, xL for a given value
of t as the profile curve for the population at time t. Its graph shows how the total popula-
tion  is  distributed  along  the  line.  The  left-hand  side  of  our  PDE  gives  the  time  rate  of
change of the function uHt, xL, and we will interpret the right-hand side as the rule govern-
ing the time evolution of the initial profile curve uH0, xL. This idea, the time evolution of a
profile curve, is crucial to what follows.
Here is an example that illustrates this point of view. The location-dependent carrying ca-
pacity  is  given  by  the  function  AHxL = 300+ 100 cosJ 2 p50 xN,  and  the  growth  constant  is

k = 0.04. Plots of AHxL and u0HxL are shown below.
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GraphicsRowB:

PlotB3 + CosB
2 p

50
xF, 8x, 0, 100<, PlotRange Ø 80, 4.5<,

Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,
881.5, " "<, 83, " "<, 84.5, " "<<<,

PlotLabel Ø Row@8"Carrying Capacity ", HoldForm@A@xDD<DF,

PlotB
3 + CosA 2 p x

50
E

1 + ExpA3 + CosA 2 p x
50

EE
, 8x, 0, 100<,

PlotRange Ø 80, 4.5<,
Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,

881.5, " "<, 83, " "<, 84.5, " "<<<,

PlotLabel Ø "Initial Population u0HxL"F

>, ImageSize Ø 8400, 150<F

Carrying Capacity AHxL Initial Population u0HxL

We might predict  that  the initial  population will  evolve toward the carrying capacity.  To
see whether this  prediction is  accurate,  we use Manipulate  to show the evolving pro-
file curve as t increases. Use the “Reset and Play” button to show the time evolution.
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ModuleB8u<,

uLogistic =
u@t, xD ê.
First@
QuietüDSolve@8D@u@t, xD, tD ã k u@t, xD HA - u@t, xDL

H*logistc PDE *L, u@0, xD ã u0<, u@t, xD, 8t, x<DD;

ManipulateBPlotB:3 + CosB
2 p x

50
F H* carrying capacity *L,

uLogistic ê. :k Ø 0.04, A Ø 3 + CosB
2 p x

50
F,

u0 Ø
3 + CosA 2 p x

50
E

1 + ExpA3 + CosA 2 p x
50

EE
, t Ø time>>, 8x, 0, 100<,

AxesLabel Ø 8x, Style@"u", ItalicD<, PlotRange Ø 80, 4.5<,
PlotStyle Ø 8Dashed, Automatic<,

Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,

881.5, " "<, 83, " "<, 84.5, " "<<<F,

8time, 0, 100<, SaveDefinitions Ø True, ControlType Ø TriggerF

F

time

x

u

Here is a thought experiment: suppose we were to change the initial population curve, leav-
ing the carrying capacity at each location x the same; would you expect the new initial pro-
file curve to evolve to AHxL? Can you explain why this is so?
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Here is a thought experiment: suppose we were to change the initial population curve, leav-
ing the carrying capacity at each location x the same; would you expect the new initial pro-
file curve to evolve to AHxL? Can you explain why this is so?
Another thought experiment: what would be the effect of a larger value of k on the time it
takes for the initial population to approach equilibrium?
Once again, we can summarize the investigation with a “phase diagram.”

ModuleB8A, plt, offset, arrows, lbl<,

A@x_D := 3 + CosB
2 p

50
xF;

plt = Plot@A@xD, 8x, 0, 100<D;
offset = .2;
arrows = Graphics@

8Table@8Arrowheads@.025D,
Arrow@88x, A@xD + 4 offset<, 8x, A@xD + offset<<D<,

8x, 5, 95, 18<D,
Table@8Arrowheads@.025D,

Arrow@88x, A@xD - 4 offset<, 8x, A@xD - offset<<D<,
8x, 5, 95, 18<D,

8Gray,
Table@8Arrowheads@.025D,

Arrow@88x, 0 + offset<, 8x, 0 + 4 offset<<D<,
8x, 5, 95, 18<D<,

8Gray,
Table@8Arrowheads@.025D,

Arrow@88x, 0 - offset<, 8x, 0 - 4 offset<<D<,
8x, 5, 95, 18<D<<D;

lbl = Graphics@Text@HoldForm@A@xDD, 8105, 4<DD;
Show@8plt, arrows, lbl<, AxesLabel Ø 8x, u<,
PlotRange Ø 880, 110<, 8-1, 5<<, AxesOrigin Ø 80, 0<,

Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,
881.5, " "<, 83, " "<, 84.5, " "<<<,

PlotLabel Ø
Row@8"Stability of Equilibria for ",

HoldForm@D@u, tD == k u HA@xD - uLD<DD

F
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AHxL

x

u

Stability of Equilibria for
¶∂u

¶∂ t
‡ k u HAHxL - uL

As  before,  the  diagram  indicates  the  equilibrium  solutions,  which  are  the  curves  along
which  ¶∂u

¶∂t  is  zero  at  every  point.  These  are  graphs  of  the  functions  uHt, xL = 0  and
uHt, xL = AHxL.  The  arrows  indicate  that  if  u0HxL > 0  at  every  location  x,  then
limtØ¶ uHx, tL = AHxL, so that AHxL can be termed a stable equilibrium for this PDE.

A final note: another variation of logistic growth is given by ¶∂u
¶∂t = kHxL uHA- uL, where the

carrying capacity is constant, but the growth constant k, that is, the speed with which the
initial population approaches the equilibrium population, depends on location.

‡ Migrating Populations
In the previous example, the time evolution of the profile curve was governed by a right-
hand side that involved only the values of the function uHt, xL. The next PDE we consider
has  the time evolution at  location x  governed by the slope of  the  profile  curve at  x.  The
simplest  equation  of  this  type  has  the  time  rate  of  change  of  u  proportional  to  its  slope,
¶∂u
¶∂t = -c ¶∂u

¶∂x , with uH0, xL = u0HxL.

We can interpret the solution to this PDE in terms of a migratory population with the pa-
rameter  c  controlling  the  speed  of  the  migration  as  shown  in  the  output  from
Manipulate  displayed  below (use  the  “speed”  buttons  to  vary  c).  Data  for  the  migra-
tion of gray whales along the California coastline would provide a real-life example of the
phenomenon we are  modeling.  In  the graphic,  it  is  best  to  use the “Reset”  button before
changing the speed.
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Module@8U<,
UMigration =
U@t, xD ê.
First@DSolve@8D@U@t, xD, tD ã -c D@U@t, xD, xD

H* migration PDE *L,
U@0, xD ã PDF@NormalDistribution@25, 6D, xD<,

U@t, xD, 8t, x<DD;
Manipulate@Plot@UMigration ê. 8c -> speed, t -> time<,

8x, 0, 100<, AxesLabel Ø 8x, u<,
Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,

88.02, " "<, 8.04, " "<, 8.06, " "<<<,
PlotLabel Ø

Row@8"Migrating Population\n",
HoldForm@D@u, tD = -c D@u, xDD<DD,

88speed, 10, "speed c"<, 810, 50<<,
88time, 0, "time t"<, 0, 1<,

ControlType Ø 8SetterBar, Trigger<, SaveDefinitions Ø TrueD
D

speed c 10 50

time t

x

u

Migrating Population
¶∂u

¶∂ t
= -c

¶∂u

¶∂x

DSolve  gives  the following formula for  the solution to  the PDE ¶∂u
¶∂t = -c ¶∂u

¶∂x ,  which we
might call the migration equation. As usual, the initial population profile is uH0, xL = u0HxL.
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DSolve  gives  the following formula for  the solution to  the PDE ¶∂u
¶∂t = -c ¶∂u

¶∂x ,  which we
might call the migration equation. As usual, the initial population profile is uH0, xL = u0HxL.

Module@8u<,
pdeMigration = D@u@t, xD, tD ã -c D@u@t, xD, xD;
uMigrationSoln@c_, u0_D@t_, x_D :=
u@t, xD ê.
First@DSolve@8pdeMigration, u@0, xD ã u0@xD<, u@t, xD,

8t, x<DD;
Row@8"u@t,xD = ", uMigrationSoln@c, u0D@t, xD<D
D

u@t,xD = u0@-c t + xD

You may have seen in previous courses how changing f HxL to f Hx - aL changes the graph.
Consider the y value y0 = f H0L on the graph of f HxL; this same y value occurs on the graph
of f Hx - aL,  but now it occurs at x = a,  since y0 = f H0L = f Ha- aL.  Likewise, you see that
y1 = f Hx1L = f HHx1 + aL- aL,  so  that  the  same  y  value,  y1,  that  occurred  at  x1  along  the
graph of f HxL will occur along the graph of f Hx - aL at input value x1 + a. Since this rela-
tionship  holds  for  every  x1,  we  conclude  that  the  graph of  f Hx - aL  is  a  horizontal  trans-
lation of the graph of f HxL  to the right by a  units. In our setting, u0Hx - c tL  gives a graph
that  is  the  graph  of  u0HxL  displaced  to  the  right  by  c t  units.  Note  how  displacement  =
speed µ time.
An application of the chain rule shows that u0Hx - c tL satisfies the migration equation for
any initial population distribution u0. This model also applies to the familiar stadium wave
and is commonly referred to as the traveling wave equation. Jean le Rond d’Alembert first
introduced PDEs for waves and methods for solving them in his study of vibrating strings
[4].  In  fluid  dynamics,  ¶∂u

¶∂t = -c ¶∂u
¶∂x  is  a  simplified  version  of  the  transport  equation  that

models how dissolved solids travel along with a current.
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· Seasonal Migration

The migration of gray whales is seasonal, ranging from the southern Baja peninsula near
the Tropic of Cancer to the Chukchi Sea north of the Arctic Circle [5]. To model the peri-
odic  nature  of  the  whales’  migration,  we  can  translate  the  initial  graph  using  a  periodic
function  to  obtain  uHt, xL = u0Hx - A sinHc tLL.  Now  uHt, xL  satisfies  the  periodic  migration
equation

(5)
¶∂u

¶∂ t
= -A c cosHc tL

¶∂u

¶∂x
; uH0, xL = u0HxL ¥ 0,

with  u0HxL  as  the  initial  profile  curve.  You  can  see  how  the  factor  -A c cosHc tL  comes
from the chain rule. The parameter c still governs the speed of the migration; can you pre-
dict the feature of the graph that is related to the parameter A?

ModuleB8U<,

USeasonal =
U@t, xD ê.
First@
DSolve@
8D@U@t, xD, tD ã

-A c Cos@c tD D@U@t, xDH* seasonal PDE *L, xD
H* seasonal PDE *L,

U@0, xD ã PDF@NormalDistribution@50, 6D, xD<,
U@t, xD, 8t, x<DD;

ManipulateB

Plot@USeasonal ê. 8A Ø amplitude, c -> speed, t -> time<,
8x, 0, 100<,

AxesLabel Ø 8x, u<, PlotLabel Ø Row@8"Seasonal Migration\n",
HoldFormüD@u, tD, " = ", -A c Cos@c tD,
HoldFormüD@u, xD<D,

Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,
88.02, " "<, 8.04, " "<, 8.06, " "<<<D,

88amplitude, 10, "A"<, 810, 30<<,
88speed, 10, "speed c"<, 8 10, 20<<,

:8time, 0, "time t"<, 0, 2
p

10
>,

ControlType -> 8SetterBar, SetterBar, Trigger<,

SaveDefinitions Ø TrueF

F
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A 10 30

speed c 10 20

time t

x

u

Seasonal Migration
¶∂u

¶∂ t
= -A c cosHc tL

¶∂u

¶∂x

‡ Dispersion
In response to overcrowding in one location, a population may disperse over a wider area.
A model is provided by making the time evolution of the population graph proportional to
the concavity of the graph. To see why this works, recall that a local maximum is character-
ized via the second derivative test as occurring where the tangent line is horizontal and the
graph is concave down (negative second derivative). Thus, the model stipulates that near a
local maximum, the future population will decrease. We write the dispersion equation as 

(6)
¶∂u

¶∂ t
= d

¶∂2u

¶∂x2
; d > 0,

and refer to the proportionality constant d  as the dispersion coefficient.  The graph of the
so-called fundamental solution to this equation, 
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(7)uHt, xL =
1

4 p d t
exp

-x2

4 d t
,

is a bell-shaped curve whose standard deviation increases as time moves forward, starting
from some time t0 > 0. 

This verifies that this function solves the dispersion equation.

dispersionEquation = D@u, tD ã d D@u, x, xD;

u@t_, x_D :=
1

4 p d t
ExpB

-x2

4 d t
F;

dispersionEquation ê. 8u Ø u@t, xD<

True

The larger the dispersion coefficient, the faster the dispersion takes place; use the buttons
for  the  dispersion  coefficient  and  the  plus  and  minus  buttons  for  time  to  show  that  the
graph with dispersion coefficient 5 at time 20 is identical to the graph with dispersion coef-
ficient 20 at time 5.

uDispersion@d_D@t_, x_D :=
20

4 p d t
ExpB

-Hx - 50L2

4 d t
F;

Manipulate@Plot@uDispersion@dD@t, xD, 8x, 0, 100<,
PlotRange -> 80, 2.75<, AxesLabel Ø 8x, u<,
Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,

88.8, " "<, 81.6, " "<, 82.4, " "<<<D,
88d, 5, "dispersion coefficient d"<, 8 5, 20<<,
88t, 1, "time t"<, 1, 100, Appearance Ø "Open",
AppearanceElements Ø 8"InputField", "StepLeftButton",

"PlayPauseButton", "StepRightButton"<<,
ControlType -> 8SetterBar, Automatic<, SaveDefinitions Ø TrueD
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dispersion coefficient d 5 20

time t

1

x

u

In  these graphs,  the  total  population is  represented by the area under  the curve and does
not  change.  As time moves forward,  the  dispersion process  leads  to  a  population that  is,
for  practical  purposes,  uniformly  distributed.  In  chemistry,  our  dispersion  equation  is
called  the  diffusion  equation:  the  concentration  of  dye  in  a  liquid  diffuses  toward  a  uni-
form concentration over time. The origins of this equation are in the study of how heat dis-
sipates from a source. Joseph Fourier began circulating results on the mathematics of heat
conduction in 1807, when the heat equation was born. He published a treatise on the sub-
ject in 1822 [6].

‡ Combined Models
For  a  population  that  disperses  as  it  migrates,  we  can  combine  the  two  previous  models
via the advection-dispersion equation

(8)
¶∂u

¶∂ t
= d

¶∂2u

¶∂x2
- c

¶∂u

¶∂x
; d > 0.
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As you might expect, a fundamental solution involves replacing x by x - c t:

(9)uHx, tL =
1

4 p d t
exp

-Hx - c tL2

4 d t
.

Use the “Reset and Play” button to see how the initial data evolves.

uAdvectionDispersion@c_, d_D@t_, x_D :=

20

4 p d t
ExpB

-Hx - 20 - c tL2

4 d t
F;

Manipulate@Plot@uAdvectionDispersion@5, 10D@t, xD,
8x, 0, 100<, PlotRange Ø 80, 2<,

AxesLabel Ø 8x, u<,
Ticks Ø 88825, " "<, 850, " "<, 875, " "<, 8100, " "<<,

88.6, " "<, 81.2, " "<, 81.8, " "<<<D,
88t, 1, "time t"<, 1, 10<, ControlType Ø Trigger,
SaveDefinitions Ø TrueD

time t

x

u
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A more interesting combined model can be employed in the study of invasive species. The
figure below shows data related to the spread of gypsy moths in Wisconsin over a ten-year
period from 1996 to 2006 [7].

The darkest regions on the maps represent 11 or more moths per trapping area, which we
will take as the statewide carrying capacity. We let x represent the distance from the Mis-
sissippi  River  on the western edge of  the state,  with  the total  distance to  Lake Michigan
roughly 180 miles. We combine dispersion with logistic growth to obtain the PDE

(10)
¶∂u

¶∂ t
= d

¶∂2u

¶∂x2
+ k u HA- uL; d, k, A > 0.

This equation is solved numerically (think of applying Euler’s method to the entire profile
curve), and the time evolution of the initial profile curve is plotted below.

Module@8U, f<,
f@t_, x_, AA_, kk_D :=
AA 30 ê H30 + HAA - 30L Exp@-AA kk Hx - 144LDL;

solnFK@kk_, AA_, dd_D :=
NDSolve@
8D@U@t, xD, tD ã k U@t, xD HA - U@t, xDL + d D@U@t, xD, x, xD

H* Fisher–Kolmogorov PDE *L ê. 8k Ø kk, A Ø AA, d Ø dd<,
U@0, xD ã f@0, x, AA, kkD, U@t, 0D ã f@t, 0, AA, kkD,

U@t, 180D ã f@t, 180, AA, kkD<, U, 8x, 0, 180<,
8t, 1, 10<D;

UFisherKolmogorov = U ê. First@solnFK@.01, 100, 8DD;
Manipulate@Plot@UFisherKolmogorov@t, xD, 8x, 0, 180<,

PlotRange Ø 80, 100<,
AxesLabel Ø 8x, u<,

Ticks Ø 88845, " "<, 890, " "<, 8135, " "<, 8180, "180"<<,
8833, " "<, 866, " "<, 8100, "11"<<<D,

88t, 1, "time t"<, 1, 10<, ControlType Ø Trigger,
SaveDefinitions Ø TrueDD
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time t

180
x

11
u

You can see that the model does not fit the data precisely: the “edges” of the gypsy moth
population shown on the two maps are not as uniformly sharp as the model would predict.
Biological  systems are  complicated,  particularly  because  an  element  of  randomness  may
come into play. Still, the concept of a model that includes dispersion and logistic growth,
a variant of the Fisher–Kolmogorov equation, seems to capture most of the essential fea-
tures of the gypsy moth data.

Finally,  note that the total gypsy moth population is not constant,  as it  would be under a
dispersion-only model. Here the growth term k u HA- uL on the right-hand side of the equa-
tion overcomes dispersion, and as time moves forward, the population spreads across the
whole state, while its size approaches the carrying capacity A at each location.

‡ Summary
Using DSolve and Manipulate, we have illustrated three basic partial differential equa-
tions and interpreted the equations via a profile curve (a function of x at a specific time t)
that evolves with time, according to a rule that depends on function value, slope, or concav-
ity. In terms of population dynamics, these equations were used to model location-depen-
dent carrying capacity, migration, and dispersion. Combinations of the basic models were
used  to  capture  more  complicated  phenomena  in  a  conceptually  simple  way  that  is  suit-
able for students in a multivariate calculus class and that takes advantage of their previous
experience with ODEs. A beginning textbook for PDEs is [8]. Further applications to popu-
lation dynamics appear in [9].
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