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Kirkwood Gaps
Jan Vrbik

We first solve the planar Kepler problem of an asteroidʼs motion, 
perturbed by the gravitational pull of Jupiter. Analyzing the 
resulting differential equations for its orbital elements, we 
demonstrate the mechanism for creating a gap at the 2:1 
resonance (the asteroid making two orbits for Jupiterʼs one), and 
briefly mention the case of other resonances (3:2, 3:1, etc.). We 
also discuss reasons why the motion becomes chaotic at these 
resonances. 

‡ Planar Kepler Problem
Our aim is to solve the equation

(1)r.. +m
r

r3
= e f,

where m is the Sun’s mass multiplied by the gravitational constant, r is the asteroid’s two-
dimensional  location (we represent  vectors  as  complex quantities;  r  is  the  corresponding
length), and e f is Jupiter’s perturbing force, in the simplest form equal to

(2)e m
R ei l t - r

R ei l t - r 3
-

ei l t

R2
.

Here,  e > 0.001  is  Jupiter’s  mass  (relative  to  the  Sun’s  mass)  and  R ei l t  is  Jupiter’s
location (relative to the Sun’s center). At this point, we take Jupiter’s orbit to be a perfect
circle of radius R in the plane of the asteroid’s orbit and l to be its constant angular speed
(see [1]).
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To solve (1),  we introduce a new dependent variable U,  and a new independent variable
s, by

(3)

r = U2,

dt

ds
= 2 r

a

m
,

where a is a positive (and at this point arbitrary) function of s. This definition implies that
r = U U, where U denotes the complex conjugate of U.
The original equation now reads

(4)U ''-
a '

2 a
U ' U -U ' U '+ 2 a = 2 e a fU U3,

where the prime indicates differentiation with respect to s.

We verify this as follows.

D@w_, tD :=
D@w, sD

2 U@sD U@sD a@sD ê m
;

DADAU@sD2, tE, tE +
m

U@sD U@sD3
- e m f 2 a@sD U@sD U@sD3 ë m êê

Expand

2 a@sD - 2 f e a@sD U@sD U@sD3 -

U@sD a£@sD U£@sD

2 a@sD
- U£@sD U£

@sD + U@sD U££@sD

‡ Unperturbed Solution
It is easy to show that the general solution to (4), when f = 0, is

(5)U =
a

1+ b2
IeiHs-s0L + b e-iHs-s0LM ei fê2,

where a,  b,  s0,  and f  are  arbitrary constants  (subject  to  a > 0 and 0 § b < 1),  called or-
bital  elements.  We  next  verify  that  this  solution  satisfies  equation  (4)  (simplified,  since
now a ' = 0 and f = 0).
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ModuleB8U<,

U =
a

1 + b2
HExp@I Hs - pLD + b Exp@-I Hs - pLDL Exp@I f ê 2D;

Assuming@a > 0,
ComplexExpand@Conjugate@UD D@U, 8s, 2<D -

D@U, sD Conjugate@D@U, sDD + 2 aD êê SimplifyD

F

0

Squaring U yields

(6)r =
a

1+ b2
Ie2 iHs-s0L + 2 b + b2 e-2 iHs-s0LM ei f,

which is the usual ellipse (a  is the length of its semimajor axis and 2 b
1+b2

 is its eccentric-

ity), first stretched along the x axis and then rotated by the angle f. The remaining orbital
element s0 is the value of s at aphelion. 

‡ Perturbed Solution
When f  is nonzero, we have to allow the orbital elements to be slowly varying functions
of s and U itself to be extended to

(7)U =
a

1+ b2
Iq+ b q-1 + Hc3 + i d3L q3M ei fê2,

where c3 + i d3  is a small complex number and q ª ei Hs-s0L. In general, the big parentheses
should contain terms with all odd powers of q  (including negative ones), but this form is
sufficient for our purpose.
Substituting trial solution (7) into the left-hand side of (4), discarding terms of the second
and higher degrees in e and b as too small, and collecting terms of the same degree in q,
we get the following coefficients of q-2, q0, and q2.
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LHS = ModuleB8U, OverBar<,

ei_ê;i>1 ^:= 0;
Derivative@1D@qD = Function@s, I H1 - e s0'@e sDL q@sDD;
w_ := w ê. 9Complex@a_, b_D -> Complex@a, -bD, q@sD -> q@sD-1=;

U = a@e sD 1 -
1

2
b@e sD2

Iq@sD + b@e sD ê q@sD + e Hc3 + I d3L q@sD3M Exp@I f@e sD ê 2D;

TableACoefficientA

IU D@U, 8s, 2<D + 2 a@e sD - D@U, sD D@U, sD -

e a'@e sD ê 2 ê a@e sD U D@U, sDM êê Expand, q@sD, iE,

8i, -2, 2, 2<E ê. e -> 1 ê. a@sD -> 1 ê. b@sD -> b ê.

bi_ê;i>1 Ø 0F;

MatrixForm@LHSD

-4 c3 + 4 Â d3 +
1
2
Â b a£@sD - Â b£@sD + b f£@sD

1
2
Â a£@sD + 4 s0£@sD - 4 Â b b£@sD - 2 f£@sD

-12 c3 - 12 Â d3 -
1
2
Â b a£@sD - Â b£@sD - b f£@sD

These  need  to  be  matched  against  the  coefficients  of  q-2,  q0,  and  q2  obtained  when  the
right-hand side of the equation is similarly expanded.
We now proceed to do just that. 

· Resonance Variable

To simplify  subsequent  computation,  we  use  units  that  make  both  m  and  a  (when  in  the
exact 2:1 resonance with Jupiter; see [2]) equal to 1. Referring to the perturbing force (2),
this makes R = 22ê3 and l = 1 ê 2; the new unit of time is roughly one year (0.944 years, to
be exact). According to the second line of (3), we get, to sufficient accuracy (i.e. using the
unperturbed solution and discarding higher powers of b),

(8)

t = 2 ‡ a U U ds = 2 ‡ a3ê2H1+ 2 b cosH2 Hs- s0LDL ds =

2 s+ 2 ‡ Ia3ê2 - 1M ds+ 2 b sinH2 Hs- s0LL ª

2 Hs- s0L+ 2 f - Y+ 2 b sinH2 Hs- s0LL.

The usual additive constant can always be eliminated by the corresponding choice of the
s-scale origin.
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The last equality defines the so-called “resonance” variable 

(9)Y = 2 f - 2 s0 + 2 ‡ Ia3ê2 - 1M ds.

This implies that

(10)Y ' = 2 f '- 2 s0 '+ 2 Ia3ê2 - 1M > 2 f '- 2 s0 '+ 3 Ha- 1L

since a > 1.

Replacing t by the last line of (8), Jupiter’s position is thus given by

(11)R ei tê2 = R q ei f-i Yê2+i b sinH2 Hs-s0LL,

where R = 22ê3. We are now ready to evaluate the coefficients of q-2, q0, and q2 by expand-
ing the right-hand side of (4).

RHS = ModuleB8U, J, f, OverBar<,

w_ := w ê. 9Complex@a_, b_D -> Complex@a, -bD,

q@sD -> q@sD-1=;

U = Hq@sD + b ê q@sDL Exp@I f ê 2D;
J = R q@sD ExpAI If - Y ê 2 + b Iq@sD2 - q@sD-2M ë 2 ë IME;

f =

SeriesB
J - U2

JIJ - U2M J - U2N
3ê2

-
J

R3
U
3
U 9q@sD2, 1, q@sD-2=,

8b, 0, 1<F ê. R Ø 22ê3 ê. q@sD Ø Exp@I z - I Y ê 2D êê

Normal êê Simplify êê PowerExpand;
G@w_D := NIntegrate@w, 8z, 0, 2 p<D;
Collect@f ê p êê ExpToTrig êê TrigExpand,

8b, Sin@YD, Cos@YD<, GD êê Simplify êê Chop

F

8HCos@YD - Â Sin@YDL
H1.03966 + 8.79527 b Cos@YD - H0. + 4.88823 ÂL b Sin@YDL,

0.438956 + 8.30394 b Cos@YD - H0. + 5.99971 ÂL b Sin@YD,
HCos@YD + Â Sin@YDL
H0.119127 + 2.52099 b Cos@YD - H0. + 1.38605 ÂL b Sin@YDL<
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· Resulting Equations

Matching the coefficients of q-2,  q0,  and q2  between the left- and right-hand sides of (4)
yields three complex (six real) linear equations for a ', b ', f ', s0 ', c3, and d3. These can be
easily solved, resulting in the following three expressions for a ', b ', and Y ', respectively.

Module@8sol<,
sol =
NSolve@Flatten@8Thread@ComplexExpand@Re@LHSD ã Re@RHSDDD,

Thread@ComplexExpand@Im@LHSD ã Im@RHSDDD<D,
8a'@sD, b'@sD, f'@sD, s0'@sD, c3, d3<D@@1DD êê

Simplify êê Chop;
8

Series@a'@sD ê. sol, 8b, 0, 1<D êê Simplify,
Series@b'@sD ê. sol, 8b, 0, 0<D,
Series@2 f'@sD - 2 s0'@sD ê. sol, 8b, 0, -1<D êê Chop

< êê Column
D

-5.99971 Sin@YD b + O@bD2

0.749964 Sin@YD + O@bD1

0.749964 Cos@YD
b

+ O@bD0

Only the leading term of the corresponding b-expansion has been kept in each case. One
can show that the additional terms would only minutely affect the resulting solution.

‡ Dynamics of 2:1 Resonance
The forced  changes  of  the  asteroid’s  orbital  elements  when  in  or  near  the  2:1  resonance
are thus described to sufficient accuracy by the following three differential equations

(12)

a ' = -6 e b sin Y,
b ' = 0.75 e sin Y,

Y ' =
0.75 e

b
cos Y- 3 Ha- 1L.

Clearly, a '+ 8 b b ' = 0, which implies that a+ 4 b2 ª 1+K is a constant of motion. Multi-
plying the last equation of (12) by b, replacing a by 1+K - 4 b2, and collecting all terms
on the right-hand side yields

(13)0 = 0.75 e cos Y- 3 K b + 12 b3 - b Y '.
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Multiplying each term by b ' (or, equivalently, by 0.75 e sin Y) results in

(14)0 = 0.75 e b ' cos Y- 3 K b b '+ 12 b3 b '- 0.75 e sin Y b Y ',

which makes it obvious that

(15)0.75 e b cos Y-
3 K

2
b2 + 3 b4

is  another  constant  of  motion.  Displaying  the  corresponding  contours  when  K = 0.016
illustrates that there are four distinct types of solution to (12).

ContourPlotA.00075 b Cos@YD - 3 ê 2 K b2 + 3 b4 ê. K -> .016,

8Y, -.5, 4<, 8b, .0, .08<, ContourShading -> False,
PlotPoints -> 150, Contours -> 70, FrameLabel -> 8Y, b<E

Specifically,  there  are  two  centers  (at  Y = 0  and  Y = p,  of  low  and  high  eccentricity,
respectively)  and  their  basins,  with  the  resonance  variable  librating.  Between  these  two
basins, and then again at high eccentricities, there are two regions (separated by a hyper-
bolic fixed point) where Y circulates.
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In  all  four  cases  b,  and  correspondingly  a,  oscillate  in  a  regular  manner;  there  is  no
tendency  to  “clear”  the  resonance  region.  To  achieve  just  that,  an  extra  perturbation  is
required. 

Before  bringing  it  in,  another  important  fact  needs  to  be  mentioned:  the  previous  four-
region solution occurs only when K > 0.0119. As soon as K  reaches this “critical value,”
the Y = 0 center and the hyperbolic fixed point merge into one, and then (for K < 0.0119)
both disappear, leaving only the Y = p basin and the high-eccentricity solutions, as seen in
the following plot.

ContourPlotA.00075 b Cos@YD - 3 ê 2 K b2 + 3 b4 ê. K -> .0119,

8Y, -.5, 4<, 8b, .0, .08<, ContourShading -> False,
PlotPoints -> 150, Contours -> 70, FrameLabel -> 8Y, b<E

This  helps  to  understand  the  actual  mechanism  of  clearing  the  gap,  which  is  discussed
next.
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· Kepler Shear

All  orbiting  bodies  are  constantly  bombarded  by  celestial  debris  (meteoroids  and  such).
When the body (such as an asteroid) is relatively small, this may affect its orbit, however
slightly,  due  to  the  following  effect:  at  aphelion,  the  asteroid  is  moving  rather  slowly
compared to nearby objects, and is more likely to be hit from behind; near perihelion, it is
the  exact  opposite.  It  can  be  shown  (see  [3])  that  this  will  add  a  term  proportional  to
i b2I3 q-2 - q2M to the right-hand side of (4), consequently modifying the expression for b',
namely

(16)b ' = 0.75 e sin Y-C b2,

where C is a small constant. To verify this, in the program of the Resulting Equations sec-
tion, add C I b2 83, 0, -1< (our code for C i b2I3 q-2 - q2M) to RHS and recompute b ',
allowing for the extra powers of b.

The  new  term  in  (16)  will  modify  the  corresponding  solution  to  (12)  in  the  following
ways:

Ë Each  center  becomes  attracting  (a  solution  within  its  basin  will  slowly  spiral  to-
ward the center).

Ë K  will  (more  slowly  yet)  decrease,  until  the  center  at  Y = 0  disappears.  At  that
point,  a  low-eccentricity  solution  is  suddenly  converted  into  a  high-eccentricity
orbit,  with  the  corresponding  sudden decrease  in  the  value  of  a,  as  demonstrated
next.

ModuleA

8e = .001, sol<,
BlockRandomA

SeedRandom@245D;
sol = NDSolveA9a'@sD ã -6 e b@sD Sin@Y@sDD,

b'@sD ã .75 e Sin@Y@sDD - .0005 b@sD2,
Y'@sD ã .75 e ê b@sD Cos@Y@sDD - 3 Ha@sD - 1L,
a@0D ã 1.01 + RandomReal@0.01D, b@0D ã RandomReal@0.04D,
Y@0D ã RandomReal@2 pD=, 8a, b, Y<, 8s, 0, 200 000<,

MaxSteps Ø 300 000E

E;

Plot@a@sD ê. sol@@1DD, 8s, 0, 200 000<, PlotPoints Ø 200,
AxesLabel Ø 8s, a<D

E
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50000 100000 150000 200000
s

0.98

0.99

1.00

1.01

1.02
a

Since the initial values of a, b, and Y are generated randomly, they will occasionally (after
removing  SeedRandom@245D)  result  in  starting  inside  (or  below)  the  gap.  Never-
theless, by running the program several times, one can verify that no initial condition now
allows a to stay inside the gap (meaning, roughly, 0.99 < a < 1.01).

· Other Perturbations

There are clearly many other perturbations acting on an asteroid beyond the two we have
considered so far (Jupiter’s gravity and Kepler shear). Rather than considering them indi-
vidually, we will combine them into a single new term added to the right-hand side of the
first equation in (12), since such a term is most effective in visibly affecting the nature of
the previous solution. To simplify matters, we make the new term a small constant, even
though in reality it may have a slow time dependence. The new equation then reads

(17)a ' = -6 e b sin Y+ k.

When k > 0, the old solution is not much affected, only the sudden crossing of the gap be-
comes a touch faster. Things change dramatically when k < 0; in this case, there is (when
C ÿ k ` e2  and  k ` C)  a  fixed  point  below  the  gap  to  which  most  solutions  are  drawn
(except for initial values of a > 1.01; these are outside the basin of its attraction, and the
corresponding solutions just slowly drift away from the gap). We can demonstrate this by
running  the  following  program  several  times  to  explore  all  possibilities  (again,  after  re-
moving SeedRandom@3D).
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ModuleA

8e = .001, sol<,
BlockRandomA

SeedRandom@3D;
sol = NDSolveA9a'@sD ã -6 e b@sD Sin@Y@sDD + 0.000001,

b'@sD ã .75 e Sin@Y@sDD - .0005 b@sD2,
Y'@sD ã .75 e ê b@sD Cos@Y@sDD - 3 Ha@sD - 1L,
a@0D ã 0.97 + RandomReal@0.05D, b@0D ã RandomReal@0.05D,
Y@0D ã RandomReal@2 pD=, 8a, b, Y<, 8s, 0, 300 000<,

MaxSteps Ø 400 000E;

Plot@a@sD ê. sol@@1DD, 8s, 0, 300 000<, PlotPoints Ø 200,
AxesLabel Ø 8s, a<D

E

E

50000 100000 150000 200000 250000 300000
s

0.990

0.995

1.000

a

As already  mentioned,  the  value  of  k  may,  in  reality,  slowly  change  in  time.  But,  as  we
have seen, regardless of its value and sign, a gap is always cleared.
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‡ Chaos
In  a  similar  manner,  one  can  show  that,  when  Jupiter’s  eccentricity  (g > 0.05)  is  ac-
counted  for,  f  appears  on  the  right-hand  side  of  (12),  implying  that  the  three  equations
must be extended to the following four:

(18)

a ' = -6 e b sin Y- 1.08 e g sin HY- fL,
b ' = 0.75 e sin Y- e gH3.13 sin H2 Y- fL- 0.36 sin fL,

Y ' = e
0.75 cos Y+ gH3.13 cosH2 Y- fL- 0.36 cos fL

b
- 3 Ha- 1L,

f ' = e
0.75 cos Y+ gH3.13 cos H2 Y- fL- 0.36 cos fL

b
.

At  this  point,  we  have  not  yet  included  Kepler’s  shear,  nor  any  other  additional  per-
turbation.
Let us see how this changes the original, very regular solution near the 2:1 resonance.

ModuleB

8e = .001, g = .05, sol<,

BlockRandomB

SeedRandom@287D;
sol =

NDSolveB

:a'@sD ã -6 e b@sD Sin@Y@sDD - 1.08 e g Sin@Y@sD - f@sDD,

b'@sD ã .75 e Sin@Y@sDD + 0.36 e g Sin@f@sDD +
3.13 e g Sin@2 Y@sD - f@sDD,

Y'@sD ã

1

b@sD
H.75 e Cos@Y@sDD + 0.36 e g Cos@f@sDD +

3.13 e g Cos@2 Y@sD - f@sDDL - 3 Ha@sD - 1L,
f'@sD ã

1

b@sD
H.75 e Cos@Y@sDD + 0.36 e g Cos@f@sDD +

3.13 e g Cos@2 Y@sD - f@sDDL,
a@0D ã 0.99 + RandomReal@0.02D, b@0D ã RandomReal@0.1D,

Y@0D ã RandomReal@2 pD, f@0D ã RandomReal@2 pD>,

8a, b, Y, f<, 8s, 0, 100 000<, MaxSteps Ø 200 000F

F;
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Columnü8
Plot@b@sD ê. sol@@1DD, 8s, 0, 100 000<, ImageSize Ø 360,
PlotPoints Ø 200, AxesLabel Ø 8s, b<D,

Plot@a@sD ê. sol@@1DD, 8s, 0, 100 000<, ImageSize Ø 360,
PlotPoints Ø 200, AxesLabel Ø 8s, a<D

<

D

20000 40000 60000 80000 100000
s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

b

20000 40000 60000 80000 100000
s

0.96

0.98

1.00

1.02

1.04

a

One  can  see  that  the  solution,  under  these  circumstances,  occasionally  becomes  quite
chaotic (very sensitive to initial conditions), in which case b can reach rather large values.
Beyond that,  nothing very interesting happens to a;  its value always remains in the reso-
nance region. Clearly, chaos is not the main reason for clearing the gaps, as is often incor-
rectly stated.
The same conclusion can be reached when including inclination  between the two orbital
planes.  In  that  case,  a  set  of  six  differential  equations  is  needed  (one  for  the  inclination
and the other for the remaining Euler angle), and the chance of getting a chaotic solution
slightly increases. But no gap clearing is ever observed (without the crucial extra perturba-
tions of our previous solutions).
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The same conclusion can be reached when including inclination  between the two orbital
planes.  In  that  case,  a  set  of  six  differential  equations  is  needed  (one  for  the  inclination
and the other for the remaining Euler angle), and the chance of getting a chaotic solution
slightly increases. But no gap clearing is ever observed (without the crucial extra perturba-
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‡ Other Resonances
For resonances of the type n : Hn- 1L  (where n  is a small integer),  the resulting equations
and the corresponding conclusions remain almost identical  to those of the 2:1 case (only
numerical  coefficients  differ).  Thus,  for  example,  for  a  motion  near  the  3:2  resonance,
we get

(19)

a ' = -24.7 e b sin Y,
b ' = 1.55 e sin Y,

Y ' =
1.55 e

b
cos Y- 6 Ha- 1L.

For n : Hn- 2L  resonances, the situation is slightly more complicated, as higher powers of
b become the leading terms on the right-hand side of each equation. We quote results for
the important case of 3:1 resonance (also investigated in [4]).

(20)
a ' = -4.61 e b2 sin Y,
b ' = 1.15 e b sin Y,
Y ' = 0.47 e + 2.30 e cos Y- 3 Ha- 1L.

This trend (of increasing powers of b on the right-hand side of each equation, with the ex-
ception of Y ') continues, as we move on to n : Hn- 3L and n : Hn- 4L resonances. Thus, for
example, we get

(21)
a ' = -39.4 e b3 sin Y,
b ' = 7.38 e b2 sin Y,
Y ' = 1.16 e - 6 Ha- 1L,

for the 5:2 resonance, and

(22)
a ' = -245 e b4 sin Y,
b ' = 40.8 e b3 sin Y,
Y ' = 1.88 e - 9 Ha- 1L,

for 7:3.
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This  time  (i.e.  beyond  the  n : Hn- 1L  case),  the  exact  mechanism  for  creating  a  gap  is
slightly different from the 2:1 case: when k > 0, there is no longer any fixed point below
the gap; instead, a makes a quick transition through the gap, and stabilizes its value above
it,  in  a  manner  similar  to  the  k < 0 case  (except  for  the  reversal  of  direction),  which  we
now demonstrate using the 7:3 resonance.

ModuleA

8e = .001, sol<,
BlockRandomASeedRandom@7D;

sol = NDSolveA9a'@sD ã -245 e b@sD4 Sin@Y@sDD + 0.00000001,

b'@sD ã 40.8 e b@sD3 Sin@Y@sDD - .000001 b@sD2,
Y'@sD ã 1.88 e - 9 Ha@sD - 1L, a@0D ã 0.999, b@0D ã 0.05,
Y@0D ã RandomReal@2 pD=, 8a, b, Y<, 8s, 0, 100 000<,

MaxSteps Ø 200 000EE;

Plot@a@sD ê. sol@@1DD, 8s, 0, 100 000<, PlotPoints Ø 200,
AxesLabel Ø 8s, a<D

E

20000 40000 60000 80000 100000
s

0.9990

0.9995

1.0000

1.0005

1.0010

a

In the general case of n : Hn- kL resonance, the gap becomes narrower with increasing k.
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