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Relativistic Motion of a 
Charged Particle and Pauli 
Algebra
Jan Vrbik

We introduce some key formulas of special relativity and apply 
them to the motion of a spinless, charged point particle of unit 
mass, subject to the Lorentz force due to an external 
electromagnetic field. 

‡ Pauli Algebra
An element of Pauli algebra consists of a complex scalar, say A, and a three-dimensional
complex vector a, denoted A ª HA, aL, which thus has eight real dimensions. In effect, this
is a generalization of quaternion algebra, but with complex instead of real components. In
this article, we call these elements “spinors.”

A product of two spinors is a spinor defined by

(1)HA, aLÄ⊗ HB, bL = HA B+ a ÿ b , A a+ B a+ i aäbL,

where · and ä are the dot and cross products, respectively. Note that this multiplication is
associative,  implying  that  we  do  not  need  parentheses  when  multiplying  three  or  more
spinors. But multiplication is not commutative (the result depends on the order of factors).

There are two important unary (single-argument) operations on spinors: the first is called
a  reflection  (denoted  A-),  which  changes  the  sign  of  the  vector  part,  that  is,
A- ª HA, -aL; the second takes the complex conjugate of A and of each component of a;
it is denoted A*. Finally, just for convenience, we let A+  denote the combination of both
of these, that is, HA-L* = HA*L-. Note that

(2)
HAÄ⊗BL- = B- Ä⊗A- and
HAÄ⊗BL* = B* Ä⊗A* but
HAÄ⊗BL+ = A+ Ä⊗B+,

which are quite easy to verify.
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The corresponding Mathematica routines look and work like this.

8A_, a_< Ä⊗ 8B_, b_List< := 8A B + a.b, A b + B a + Â aäb<
82 + 3 Â, 83 - Â, -2 + 4 Â, 1 - 3 Â<< Ä⊗ 8-3 + Â, 84 + 3 Â, 2 - 3 Â, 4 + Â<<

821 + Â, 8-32 + 19 Â, 23 - 14 Â, 26 + 47 Â<<

8A_, a_<- := 8A, -a<
82 + 3 Â, 83 - Â, -2 + 4 Â, 1 - 3 Â<<-

82 + 3 Â, 8-3 + Â, 2 - 4 Â, -1 + 3 Â<<

8A_, a_<* := 8A, a< ê. Complex@q_, w_D Ø Complex@q, -wD
82 + 3 Â, 83 - Â, -2 + 4 Â, 1 - 3 Â<<*

82 - 3 Â, 83 + Â, -2 - 4 Â, 1 + 3 Â<<

From now on we consider a three-dimensional vector to be a special case of a spinor, mean-
ing that a is shorthand for H0, aL. We can easily compute various functions of spinors (and
of  three-dimensional  vectors,  as  a  special  case).  Thus,  for  example,  assuming that  d  is  a
three-dimensional vector with real components, we find

(3)

expHdL = 1+ d+
dÄ⊗ d

2
+
dÄ⊗ dÄ⊗ d

3!
+
dÄ⊗ dÄ⊗ dÄ⊗ d

4!
+ ... =

1+
d2

2
+

d4

4!
+ ... + d

`
d +

d3

3!
+

d5

5!
+ ... = coshHdL+ d

`
sinhHdL,

where d is the length of d and d
`
ª d

d
 is a unit vector in the same direction.

Similarly, for a three-dimensional vector with pure imaginary components (which we ex-
press in the form i a to keep the elements of a real), the same kind of expansion yields

(4)

expHi aL = 1+ i a-
aÄ⊗a

2
- i

aÄ⊗aÄ⊗a

3!
+
aÄ⊗aÄ⊗aÄ⊗a

4!
+ ... =

1-
a2

2
+
a4

4!
+ ... + i à a-

a3

3!
+
a5

5!
+ ... = cosHaL+ i à sinHaL,

again where a is the length of a and à ª a
a

 is a unit vector in the same direction.
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This can be easily extended to a complex-vector argument, as follows.

SPexp@a_D := ModuleB:a = TotalAa2E
1ê2

>, 8Cosh@aD, a ê a Sinh@aD<F

SPexp@82, -3, 2<D

:CoshB 17 F, :
2 SinhB 17 F

17
, -

3 SinhB 17 F

17
,
2 SinhB 17 F

17
>>

SPexp@8-Â, 4 Â, Â<D

:CosB3 2 F, :-
Â SinB3 2 F

3 2
,
2

3
Â 2 SinB3 2 F,

Â SinB3 2 F

3 2
>>

SPexp@82 - Â, -3 + 4 Â, 2 + Â<D êê N

8-13.7409 + 5.72248 Â, 8-6.77051 + 0.363558 Â,
13.1775 - 7.49763 Â, -4.35315 - 5.19827 Â<<

‡ Special Relativity
The basic idea of Einstein’s theory is to unite space and time into a single entity of space-
time,  whose  “points”  (or  events)  can  then  be  represented  by  real  spinors  of  type
X ª Ht, rL.  The  separation  between  any  two  such  events  constitutes  a  so-called  4-vector
Ht2 - t1, r2 - r1L  that,  when multiplied (in the spinor sense) by its own reflection, yields a
pure scalar Ht2 - t1L2 - Hr2 - r1L ÿ Hr2 - r1L. It is now postulated that this quantity must be in-
variant  (having  the  same  value)  in  all  inertial  coordinate  systems  (i.e.  those  that  differ
from  each  other  by  a  fixed  rotation  and/or  a  boost—a  motion  at  constant  velocity).  For
simplicity, our choice of units sets the speed of light (which must be the same in all iner-
tial systems) equal to 1.

The question is: how do we transform 4-vectors from one inertial frame to another, while
maintaining this invariance? The answer is provided by

(5)D ' = L* Ä⊗DÄ⊗ L,

where D and D '  represent a 4-vector in the old and new frame of reference, respectively,
and L is a spinor such that LÄ⊗ L- ª L- Ä⊗ L = 1. It is obvious that D ' remains real when-
ever D is real, and that

(6)
S ' = HD 'L- Ä⊗D ' = L- Ä⊗D- Ä⊗ L+ Ä⊗ L* Ä⊗DÄ⊗ L =

L- Ä⊗D- Ä⊗ HLÄ⊗ L-L* Ä⊗DÄ⊗ L = L- Ä⊗ S Ä⊗ L = S,
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where S = D- Ä⊗D (the scalar invariant of D). This shows that S has the same value in all
inertial  frames  of  reference.  Requiring  reflection  to  be  a  frame-independent  operation
(meaning that HD-L ' ª HD 'L- for every 4-vector) leads to

(7) HD-L ' = HL* Ä⊗DÄ⊗ LL- = L- Ä⊗D- Ä⊗ L+.

From this, we can see that D-  transforms differently from D, being an example of a four-
dimensional  covector  (a  4--vector,  in  our  notation).  Another  important  example  of  a
4--vector is the H¶∂t , “L  operator, where “  stands for the usual three-dimensional (spatial)
gradient (the collection of x, y, and z partial derivatives).

One can show that L- Ä⊗ L = 1 if and only if L = expI a2 M,  where a  is a “pure” vector (i.e.
three dimensional, but potentially complex valued). This is a fully general but rather incon-
venient form of L; fortunately, one can prove that any such L can be expressed as a prod-
uct of an ordinary three-dimensional rotation expIi a

2 M and a boost expJ d2 N, where a and d

are  real-valued  vectors.  To  see  that  expIi a
2 M  results  in  an  ordinary  rotation  of  the  vector

part of D (where the magnitude of a specifies the angle and the direction of a defines the
axis of rotation), consider

(8)
expK- i

a

2
OÄ⊗DÄ⊗ expKi

a

2
O =

ID, d»»M+ expH- i aLÄ⊗ d¶ = ID, d»» + cosHaL d¶ + sinHaL àäd¶M,

where d = d»» + d¶  is  the decomposition of d  into components parallel  and perpendicular

to a,  respectively. Note that ID, d»»M commutes with a  (and any function thereof);  conse-
quently,  it  remains  unchanged by this  transformation.  On the  other  hand,  d¶  and a  anti-
commute (i.e. aÄ⊗ d¶ = -d¶ Ä⊗ a), implying

(9)d¶ Ä⊗ expKi
a

2
O = expK- i

a

2
OÄ⊗ d¶

and,  consequently,  the  rest  of  (8).  One  can  thus  see  that  this  transformation  leaves  the
scalar part of a 4-vector intact, and rotates the vector part using à and a as the axis and an-
gle of rotation (of the old frame, with respect to the new one), respectively.

Similarly, using L = expJ d2 N, we get

(10)
exp

d

2
Ä⊗DÄ⊗ exp

d

2
= expHdLÄ⊗ ID, d»»M+ d¶ =

JD coshHdL+ d»» ÿ d
`

sinh HdL, D sinh HdL d
`
+ coshHdL d»» + d¶N.

4 Jan Vrbik

The Mathematica Journal 14 © 2012 Wolfram Media, Inc.



Here, d can be replaced by v̀ arctanh v, where v̀ and 0 § v § 1 represent the unit direction
and the magnitude of a three-dimensional vector (a velocity of the old frame with respect
to the new one), respectively. This leads to the following simplified (and physically more
meaningful) result of such a boost, applied to D:

(11)
D+ d»» ÿ v

1- v2
,

d»» + D v

1- v2
+ d¶ .

· Electromagnetic Fields

A  4-vector  field  of  central  significance  is  the  electromagnetic  potential  Hj, AL,  where  j
and each component of A are real-valued functions of a spacetime location (i.e. of x, y, z,
and t). Now comes an important point: within the current framework, it is physically mean-
ingless  to  multiply  two  4-vectors  (we  would  not  know how to  transform such  a  product
from one inertial frame to another), but it is possible to multiply a 4--vector by a 4-vector,
creating what we call a mixed vector. It is thus quite legitimate to do

(12)H¶∂t , “LÄ⊗ Hj, AL = H¶∂tj +“ ÿA, ¶∂tA+“j+ i “ äAL,

creating a mixed vector, which has its own new way of transforming (shown shortly).

To  physically  interpret  the  right-hand  side  of  (12),  we  first  impose  the  so-called  Lorenz
condition (often misattributed to the more famous Lorentz) of  ¶∂tj +“ ÿA ª 0 (we prove
shortly  that  this  condition  is  frame  invariant),  and  identify  ¶∂tA+“j+ i “ äA  with
-E+ i B,  where  E  and  B  are  the  resulting  (real-valued)  electric  and  magnetic  fields,
respectively.

One can now show rather easily that L = expIi a
2 M will simply rotate the two fields. On the

other hand, a boost L = expJ d2 N results in 

(13)

exp -
d

2
Ä⊗ H0, -E+ i BLÄ⊗ exp

d

2
=

expH-dLÄ⊗ H0, -E¶ + i B¶L-E»» + i B»» =

-E¶ + väB¶ + i B¶ + i väE¶

1- v2
-E»» + i B»»,

since transforming a mixed vector M is done by M ' = L- Ä⊗MÄ⊗ L. In both cases (rotation
and  boost),  the  scalar  part  remains  equal  to  zero,  thus  proving  invariance  of  the  Lorenz
condition.
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Unlike 4-vectors, mixed vectors can be multiplied, yielding a new mixed vector (in terms
of its transformation properties). Thus, for example,

(14)H0, -E+ iBL≈ H0, -E+ iBL = IE2 -B2 - 2 iE ÿB, 0M
tells us that both E2 -B2 and E ÿB are invariant scalar fields.
Similarly, multiplying a 4-vector by a mixed vector returns a 4-vector; for example,

(15)H∑t , -“L≈ H0, -E+ iBL = H“ ÿE- i “ ÿB, -∑tE+ i ∑tB+ i “ äE+ “ äBL.
This  time,  the result  must  equal  the charge/current  density (yet  another basic 4-vector  of
the theory); this results in a compact, Dirac-algebra formulation of the usual Maxwell equa-
tions.  As  an  example,  the  following  program  computes  the  electromagnetic  field  of  a
point-like massive particle of a unit charge, moving at a uniform speed v along the z axis;
it also verifies that the result satisfies Maxwell’s equations.

EM = :0, 8x, y, z< í Ix2 + y2 + z2M3ê2>;
Lb = SPexp@80, 0, ArcTanh@vD ê 2<D;
EM = HLb- ≈ EML ≈ Lb êê PowerExpand êê Simplify;

EM = EM ê. z -> Hz - t vL ì 1 - v2

:0, : x + Â v y

1 - v2 Jx2 + y2 + H-t v+zL2
1-v2 N3ê2 ,

-Â v x + y

1 - v2 Jx2 + y2 + H-t v+zL2
1-v2 N3ê2 ,

-t v + z

1 - v2 Jx2 + y2 + H-t v+zL2
1-v2 N3ê2 >>

9dt, -9dx, dy, dz== ≈ EM ê. di_ q_ :> D@q, iD êê Simplify

80, 80, 0, 0<<
‡ Dynamics of a Point-Like Charged Particle

We choose units in which both the rest mass and the charge of the particle equal 1. Its in-
stantaneous location is denoted X ª  ( t, r, where the three components of r  are functions
of t. To make the subsequent equations frame independent (having the same form in all in-
ertial frames), we now need to introduce the particle’s so-called proper time t by

(16)dt

dt
= 1 -

dr
dt

2
.
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We  already  know  that Hdt, drL  transforms  as  a  4-vector; Hdt, -drL≈ Hdt, drL =Idt2 - dr 2, 0M,  thus dt2 - dr 2  and,  consequently, dt 1- r† 2  are  relativistically  invariant
(the dot over r implies differentiation with respect to t). Proper time t is then computed by
the corresponding integral, namely

(17)t ª ‡ 1- r† 2 dt,

which,  being  a  “sum” of  invariant  quantities,  is  an  invariant  scalar  as  well.  This  implies
that

(18)! ª
dX
dt

=
1

1- r† 2
, r†

1- r† 2

transforms as a 4-vector (we call it the 4-momentum of the moving particle).
The  motion  of  the  charged  particle  in  a  given  electromagnetic  field  can  now  be  estab-
lished by solving

(19)d!
dt

= Re@!≈ H0, E- iBLD,
where the right-hand side is the so-called Lorentz force, and “Re” takes the real part of its
argument (also a 4-vector). Note that “Re” applied to a 4-vector remains a 4-vector (since
the complex conjugate of a 4-vector transforms as a 4-vector, as one can readily verify).
Based on (18), the right-hand side of (19) equals

(20)
r† ÿE

1- r† 2
, E+ r† äB

1- r† 2
.

For a particle with a negative unit charge, the sign of this 4-vector would be reversed.
One way of solving the resulting 4-vector equation is to expand the left-hand side of (19):

(21)
d !

dt
=

1

1- r† 2
d !

dt
=

1

1- r† 2
r.. ◊ r†I1- r† 2M3ê2 ,

r..I1- r† 2M+ Ir.. ◊ r† M r†
I1- r† 2M3ê2 ,

which has to equal (20). Canceling the scalar factor of 1
1-r† 2

, we get

(22)
r.. ◊ r†I1- r† 2M3ê2 ,

r..I1- r† 2M+ Ir.. ◊ r† M r†
I1- r† 2M3ê2 = Hr† ÿE, E+ r† äBL.
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Finally, the first (scalar part) of these four equations can be obtained by taking the dot prod-
uct of the remaining three equations (the vector part) and r† , and is therefore redundant. All
we need to solve in the end is

(23)
r..I1- r† 2M+ Ir.. × r† M r†

I1- r† 2M3ê2
= E+ r† äB

or, equivalently (by solving for r..),

(24)r.. = 1- r† 2 @E+ r† äB- HE × r† L r† D,

the correctness of which can be easily verified by substituting this r.. into the left-hand side
of (23) and obtaining the right-hand side. These equations can, in general, be solved only
numerically.  The  resulting  r  will  be  a  three-component  function  of  a  frame-dependent
time t (proper time t was used only as an intermediate tool to assure agreement between in-
ertial frames of reference; our solution remains correct in any other such frame, after the
corresponding  transformation).  The  following  program  finds  the  motion  of  a  negatively
charged  particle  (chosen  because  an  attractive  force  makes  the  resulting  path  somehow
more  interesting,  compared  to  the  same-charge  repulsion)  in  the  field  of  the  previous
section.

El = -HHEM + EM*L@@2DD ê 2 êê SimplifyL ê.
8x Ø x@tD, y Ø y@tD, z Ø z@tD<;

B = HHEM - EM*L@@2DD ê 2 ê Â êê SimplifyL ê.
8x Ø x@tD, y Ø y@tD, z Ø z@tD<;

aux = 8x'@tD, y'@tD, z'@tD<;
eqs =

ThreadB8x''@tD, y''@tD, z''@tD< ã

HEl + auxäB - HEl.auxL auxL 1 - aux.aux F ê. v Ø .5;

eqs = Flatten@8eqs, x@0D ã 0, y@0D ã 2, z@0D ã 2, x'@0D ã 0,
y'@0D ã 0, z'@0D ã 0<D;

sol = NDSolve@eqs, 8x, y, z<, 8t, 0, 8<D;
ParametricPlot@8y@tD, z@tD< ê. sol, 8t, 0, 8<,
ImageSize Ø 400D
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The  originally  stationary  unit-mass  particle  has  been  “captured”  by  the  moving  massive
particle  (which  is  assumed  to  be  so  heavy  that  its  own  motion  remains  unaffected),  and
will  continue  orbiting  it  (while  following  its  uniform  motion).  It  is  important  to  realize
that this formulation of the problem has ignored the fact that a moving particle generates
(and radiates) an electromagnetic field of its own, which would further modify its motion.
More importantly, we also know that, at an atomic level, the world is governed by quan-
tum mechanics,  ultimately resulting in a  totally different  description of  an orbiting parti-
cle. This is the reason why the last solution is only of mathematical interest. Under a wide
range of initial conditions, the light particle would be drawn to collide with the heavy one.

· Motion in a Constant Electromagnetic Field

Things become easier when E and B are both constant fields (in space and time). One can
then express P as N* Ä⊗P0Ä⊗N, where P0 is the initial value of the particle’s 4-momentum,
and N  is  a  spinor analogous to L  that  (instead of  transforming 4-vectors between inertial
frames) advances P to its current location. This time we find it more convenient to make
both  P  and  N  functions  of  proper  time  t.  Also,  one  must  not  forget  to  meet  the
P0

- Ä⊗P0 = 1 condition, which is then automatically maintained by P at all future times.
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Expanding the right-hand side of (19) yields

(25)

1

2
PÄ⊗ H0, E- i BL+ H0, E+ i BLÄ⊗P* =

1

2
N* Ä⊗P0Ä⊗NÄ⊗ H0, E- i BL+ H0, E+ i BLÄ⊗N* Ä⊗P0Ä⊗N.

This should equal the left-hand side of (19), namely

(26)N* Ä⊗P0Ä⊗
d N

dt
+

d N*

dt
Ä⊗P0Ä⊗N,

which implies that

(27)
d N

dt
=

NÄ⊗ H0, E- i BL
2

,

having the obvious solution

(28)N = expK
t

2
HE- i BLO;

a function of a mixed vector transforms as a mixed vector. After computing N and, conse-
quently, N* Ä⊗P0Ä⊗N, all we need to do is to integrate this last expression in terms of t to
get a solution for Hr, tL. A simple example follows.

EM = 85.8 Â, 0.5, 1. + 0.01 Â<; P0 = 82.07, 80.1, .9, 0.5<<;
Ns = SPexp@t ê 2 EMD êê PowerExpand;
P = HNs* Ä⊗ P0L Ä⊗ Ns êê ComplexExpand;
X = Integrate@P, tD êê TrigReduce êê Chop

8-0.0293244 Cos@5.69123 tD + 58.5293 Cosh@0.00175709 tD -
0.0344907 Sin@5.69123 tD + 1289.8 Sinh@0.00175709 tD,

80.000398497 Cos@5.69123 tD + 1265.6 Cosh@0.00175709 tD -
0.000101116 Sin@5.69123 tD + 57.2398 Sinh@0.00175709 tD,

0.0575475 Cos@5.69123 tD - 10.0575 Cosh@0.00175709 tD +
0.226794 Sin@5.69123 tD - 222.377 Sinh@0.00175709 tD,

-0.225068 Cos@5.69123 tD + 7.29507 Cosh@0.00175709 tD +
0.0534948 Sin@5.69123 tD + 111.291 Sinh@0.00175709 tD<<
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ParametricPlot3D@X@@2DD, 8t, 0, 3<D

1265.6

1265.7

1265.8

1265.9

-11.0
-10.5

-10.0

7.5

8.0

In this example, we have been able to obtain an explicit analytic solution.

In most textbooks (e.g.,  [1],  [2]),  the treatment we have described is done using conven-
tional tensor analysis,  with covariant and contravariant vectors.  It  is  always illuminating,
however, to obtain the same results using a completely different approach, such as the one
favored by Hestenes [3]. We have shown that Mathematica is capable of handling compu-
tations in any of several formalisms.
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