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Fourier-space representation of the partial differential equations
describing nonlinear dynamics of continuous media in cylindrical
geometry can be achieved using Chandrasekhar—Kendall (C—K)
functions defined over infinite domain as an orthogonal basis for
solenoidal vector fields and their generating function and its
gradient as orthogonal bases for scalar and irrotational vector
fields, respectively. All differential and integral operations
involved in translating the partial differential equations into
transform space are then carried out on the basis functions,
leaving a set of time evolution equations, which describe the rate
of change of the spectral coefficient of an evolving mode in
terms of an aggregate effect of pairs of interacting modes
computed as an integral over a product of spectral coefficients of
two physical quantities along with a kernel, which involves the
following integral:

D((m,y), (m',y), (m",y") = [ rdr n(y 1) Jw(y' 1) I (y" 1),

involving the product of three Bessel functions of the first kind of
integer order. This article looks at this integral’s properties using
a semi-empirical approach supported by numerical experiments.
It is shown that this integral has well-characterized singular
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behavior. Significant reduction in computational complexity is
possible using the proposed empirical approximation to this
integral.

m Introduction

Fourier-space representation of the nonlinear dynamics of continuous media is useful in
studies on turbulent or self-organizing behavior that looks at the transport of energy across
a wide range of scale lengths. Many problems in physics possess a native cylindrical geom-
etry, and for such cases Chandrasekhar—Kendall (C—K) functions [1] (curl eigenfunctions)
provide a complete orthogonal basis [2] for solenoidal fields, under appropriate boundary
conditions. C—K functions defined over a finite cylinder have been used as an orthogonal
basis for spatial-spectral expansion methods in plasma physics, usually in the incompress-
ible regime [3, 4, 5], which neglects the role of irrotational fields in plasma dynamics.
However, there are important physical effects [6] that involve a nonlinear interaction be-
tween solenoidal and irrotational fields, which can be studied only if both irrotational and
solenoidal fields are taken into account on an equal footing.

The limitation to incompressible flows (or solenoidal fields in general) in spatial-spectral
methods referred to above arises from the fact that the radial component of C-K functions
and the radial derivative of their generating function (scalar potential solution of the
Helmholtz equation) cannot both be zero on the same finite cylinder, so that the gradient
of the generating function does not provide an orthogonal basis for irrotational flow. In
contrast, when defined over an infinite domain, the generating function and its gradient do
serve as orthogonal bases for scalar and irrotational vector fields, respectively. This is
equivalent to Fourier-space representation in cylindrical geometry.

Although the mathematics of Fourier-space representation deals with spatial dimensions
of the system and Fourier-space coordinates ranging from zero to infinity, no physical sys-
tem has infinite size, and physical models of continuous media often stipulate a lower
bound on scale lengths as a condition for their applicability. An infinite domain thus has a
utilitarian meaning within the context of a physical theory: the upper and lower limits of in-
tegral transforms used in a physical theory are physically meaningful large and small num-
bers; mathematical zero and infinity are used to obtain the limit of a sequence of calcula-
tions with increasingly smaller and larger limits of integration in the interest of obtaining
a tractable model and experimentally verifiable predictions [7].

The C-K functions, eigenfunctions of the curl operator in cylindrical geometry (defined

by unit vectors T, é, Z and with coordinates (r, 6, z)) are defined as VXA =skA,
s = +1,0 < k < o0. The set of eigenfunctions, labeled by the four parameters m, k, y, s, is
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Amys = k2 explim 6 — ik z) (% F((sk+6) Jps (YD) + (k= 6) Ty (¥ 1) +
(M

R

9((s k+K) D1 (v 1) = (k= K) Ty 1 (y 1)) + 272 Ty r))-

The parameter s labels circular polarizations and m is the azimuthal mode number; the ra-
dial mode number y and axial mode number « are related to the magnitude of the eigen-

value by the relation k = 4/ y* + % . The orthogonality relations over an infinite cylinder

are:

21
f do fmdz fwr dr A:ru()/s(r’ 0,2)- Am'K'y‘s'(r’ 0,2) =
o —eo JO (2)

8 71-2 k_z y(smm' 6ss' 6(/( - K|) 6(7’ - 7‘)
For the infinite domain, the generating function of C—K functions
Yy, 6, 2) = Iy r) expim 6 — ik z) (3)

satisfies the relation

2
f do fdz fwrdr l//jnky(ra 0,2) wm'K'y'(rv 0,2) =
0 —eo JO “4)

472 Y S Sk = K" Sy =y,

and its gradient satisfies the following relations

2
f dafmdszrderﬁany(r,H,Z)'Vlﬁmnayv(rﬁ,Z)=
0 —00 0

47212y S Sk — ") Sy =),

2 1
f do fmdz fmr dr Vlﬁ;:my(r, 0,z2)- Am'K'y‘ s(r,6,2) =
0 —00 0 (5)

A2 i k72 (kY = K'Y) O Ok — k") S(y —¥") = 0,

2
f do fmdz fwrdr Vwmky(r, 6, z2) 'Am'K'y‘s'(ra 0,2) =
0 -0 0

—i(= 1" 47 k2 (kY + K" Y) O (K + k) Sy —y') = 0.

The orthogonality between the gradient of the generating function and the C-K functions
is an exact consequence of their structure and does not depend on their asymptotic behav-
ior. Partial differential equations of the nonlinear dynamics of continuous media can be
translated into cylindrical Fourier space by performing all differential and integral opera-
tions with respect to spatial variables on the basis functions, leaving a set of time evolu-
tion equations. As an example, the equation of continuity,

on

E+V~(nv)=0, (6)
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can be written in transform space as

ony,(o, t)

ot -

)/ 4

-— rsr (05 1) B (07", ) SP[(m, ), ( ",

= ZM_ZW f f W n m. o). (m'. o

(m",o"),s'] @)

y (o] (o) 0y

- m(o- t) m(o-" )
{ <2>[(m, o), (m', ), (m", o")] -

k'SO[m, o), (m', o), (m", "]},

with the following shorthand notation: f "= f; dk' Lm dy'; o< (k,7y). The spectral coef-
ficient of density is n,,(k, v, t), that of solenoidal velocity is w,,(k, ¥, t), and that of irrota-

tional velocity is u,,(k, v, t). The functions S, ---, $®® of mode numbers used in equation
(7) are defined as

SOl o). (', o), (", ). 5'] = f & 1WAy s V) ary =

ik 47 S sy O(K' + K" = K)

Y'Y
{55 Gk R Dlm, ), '+ 1,9, " = 1, 9) - @®)

! n

Yy

(s"k'=k)D[(m,y),(m'—1,y"), (m"+1,y")] -

¥ Dlm, 7). (m', ¥, (m", ¥},

$PLom, o), (m', o), (m", "] = f & F W (Vmrioy - V) Yy =

Y'y
—4 7% 8 (e (K" + K" = K) {T Dl(m,y),(m'=1,y"), (m"+1,y")] +

- ©)
a4
= Dlm ), '+ 1y, " = 1]+
€ K" Dlm, ), m', ¥, (", Y"1},
$O[m, 7). (m', o), (m", "] = f & Wy Yy Yy =
(10)

472 S, (mvmn 6K+ K" = 1) DLm, y), (m', "), (m", y")].

Time-evolution equations like (7) describe the rate of change of the spectral coefficient of
an evolving mode on the left-hand side (LHS) in terms of an aggregate effect of pairs of in-
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teracting modes on the right-hand side (RHS) computed as an integral over a product of
spectral coefficients of two physical quantities along with a kernel. The physics contained
in the vector and differential operators of the partial differential equations is transferred to
the functions of mode numbers similar to S, ---, $®, which involve the following inte-
gral over an infinite domain consisting of products of three Bessel functions of the first
kind of integer order,

Dltm, ), (m', ¥, (m", y"), o0] = f Fdr Iy P) Iy P I ). (an

This integral, referred to in the next section as the triple-Bessel (or 3B) integral, belongs
to a class of integrals discussed by Watson [9, 10], whose analytical theory is not known
and is the subject of this article. From (7), its properties as a distribution are seen to be rele-
vant, but not its numerical value as a conventional Riemann integral, which may not exist
for some values of its arguments. The comment made above concerning the utilitarian
meaning of infinity in physical theory applies in this context, where properties of a se-
quence of integrals similar to (11) with increasingly larger but finite upper limit can be in-
vestigated usefully. The upper limit of integration is therefore mentioned as an argument
in (11). Whenever the argument is not mentioned, it is implied to be infinity.

Transformation of the equations of continuity and momentum conservation in the two-
fluid model of plasma into cylindrical Fourier space involves 115 instances of the 3B inte-
gral in 19 expressions similar to those described in equations (8)—(10) [8]. Investigations
of plasma phenomena involving nonlinear interaction between solenoidal and irrotational
fields, such as self-organization or turbulence in the two-fluid plasma model, would bene-
fit considerably if an adequate approximation of the 3B integral becomes available. This
is the motivation of the present work.

m Properties of the Triple-Bessel Integral

The 3B integral is trivially invariant under permutation of pairs of arguments (m,y),

(m',y"), (m",y"). If the arguments vy, y', y" are scaled as y =ya, y' =vy'a, y" = y"a,

then the integral scales as

Dl(m.9). (m", 7, (m", "), co] = a2 D[(m, y), (m', ¥"), (m", y"), o].
Since azimuthal mode numbers can be positive or negative integers or zero,

Dl(m,y), (m',y"), (=m",y"), co] = (= 1)" D[(m, ), (m',y"), (m", y"), o],

reflecting the property of Bessel functions of integer orders: J_,(x) = (= 1)" J,(x).
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Using the known relations for Bessel functions

f)’ dy Jn(y 1) Iy ') = 171 6 = 1);
0

12)
t[mn#LAyﬂLAyW)=745W—73,
0
InE+Y) = > S ey I () T 39, (13)
m'=—co
the following properties of the triple-Bessel integral can be derived as
fwy dy Ju(y 1) Dl(m, y), (m', "), (m",y"), 0] =
’ (14)

fqu dr' Jy(y'r') Jw(y" ') r! O(r=r") =Jny'n) I (y" ).
0

The 3B integral is thus the Hankel transform of J,,,(y'r) J,»(y" r) of order m, and its in-
verse Hankel transform is also seen to exist.

Relations (12) and (13) yield

D Sy Dlm, ), (m', 7)), (m", y"), 0] =

m'=—oo

”fmrerﬁCyr) D O sy Iy ) T (7" 1) (15

0

m'=—oo
= fmrdrfm(w)fm((y'+y”)r) = +y") o +y" =)
0
Fory = 0,J,(y r) = 6,,0- If in addition m' = m",

Dl(m,0), (m',y"), (m',y"), 0] = 8, 0(y) " S (y' —y". (16)

Form =0,m' = m", the following result is known [10, p. 412] in terms of Legendre func-
tions Pﬁf , Ql;:

Dl(m,y), (m',y"), (m',y"), 00] =

0. V<O -y
[ v
1/2( zijyz)y2 e (7 —y" <Y<y +y")? 17
vy (155
1 M2 (P
o 3 ]y/:(yaz;zyz ) /4 ° (')/' +’y”)2 < 72‘
vy W((T) —1)
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The following simpler case is also known, corresponding to the case v = 0, equation 3 in
Watson’s treatise [10, p. 411]:

D[(m,y),(m',y"), (m',y"), c0] =
erd, =y <Y< +y")

0’ ,y2 < (yv _711)2 01”)’2 > (,yv +,yn)2

. Y= —yVoryr=(0'+y

(18)

o ||)2

where A = i Vi +y' +y) @ +y' =y =7 +y") =y +y' +y").

Relations (15)—(18) point to the existence of singular behavior of the 3B integral at spe-
cific values of its arguments. While (17) and (18) are formulas for the 3B integrals in the
sense of Riemann integrals, (15) and (16) refer to them in the sense of distributions.

m Approximation to the Triple-Bessel Integral

This integral occurs as part of a kernel in an integral over the mode numbers y', y" over
the interval [0, oo], which itself is a term in a summation over azimuthal mode numbers
m', m" (integers) from —oo to +oco. Although the exact evaluation of this integral in the
sense of a Riemann integral is probably not possible [9], the existence of the singular be-
havior noted above suggests that its behavior in the neighborhood of singularities provides
the dominant contribution. In view of known difficulties in the analytical approach [10]
and the availability of the sophisticated numerical integrator in Mathematica 8.0.4, a semi-
empirical approach [11] is chosen. The upper limit of integration is taken as a large but fi-
nite number R, so that the required integral can be treated as the limit of a sequence for in-
creasing R.

For large values of argument, the Bessel function can be approximated as [10]:

2 1 1
Jp(x) ~ | — cos|x— —mm— — n|forlarge x. (19)
TX 2 4
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The scaling property of the 3B integral discussed above suggests that the radial mode num-
bers can always be scaled so that approximation (19) becomes a good approximation in
most of the infinite domain of integration (except perhaps in a small region around r = 0).
This yields

R
D[(m,)/),(m',y'),(M",V"),R]=f0Ferm(YV)Jm'(Y'F)Jm”(y"r)

2 2 2 R 1 1
~ | — — — xfr_/ drcos(yr——mﬂ——ﬂ)
ny ny' ay" 0 2 4

1 1 1 1
cos|v'r——m'n— —ml|cos|y"r——m"n——n|=
(7 2 4 ) (y 2 4

1 R 1 3
_— r_1/2drcos((y+y'+y")r— -(m+m'+m")— —n)
- /271.,)/,}/!,)/” 0 2 4 (20)
1 R ) 1
+ 2 dr cos (y-v'-y"Yr——m-m'-m")+—n
T ’27.[,}/,}/',}/” 0 2 4
1 R " 1 1
+—fr_/drcos y+y'-y"Yr——m+m'-m")——n
T ’27(')/'}/")/” 0 2 4
1 R 1
+— 12 dr cos (y-y'+y"Yr——m-m+m")—- —m|.
A 2nyy'y" 0 2 4
Each integral on the right-hand side of (21) is of the form
R
I(P,Q,R)Efr_l/zdr-cos(Pr+Q7r/2+(2p+1)7r/4); o
0
p=-2,—1,0and Qis an integer.
For P =0,
I(P,Q,R)=cos(Qn/2+R2p+1)n/4)2VR. (22)
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For P £ 0,

R
I(P, Q,R)=cos(Q7r/2+(2p+1)7r/4)fr‘l/zdrcos(|P| r)—
0

R
sin(Qn/2+ (2 p+1)x/4)sign(P) f r 12 drsin(|P| r) =
0

C(\/ 277 '|P|R )
2VE {cos(@r/2+@p+ Dr/4) - (23)
277 |PIR

S(\/ 277" |PIR )}
\V2r ' |PIR |

The functions C(x) = ﬁcos(ﬂ 1 / 2) dt and S(x) = Ksin(ﬂ 1 / 2) dt are the Fresnel cosine
and sine integrals. Applying (24) to (21),

Dl(m,y),(m',y"), (m",y"), R] =

1 1 1
- {{cos(— a(m+m' +m")) + sin(— am+m'+ m”)]}
2 2

T 2yy'y"

C(\/Zﬂ“ ly+v'+y"|R )

sin(Qn/2+@2p+1)r/4)sign(P)

V2r y+y + "R

1 1
{cos(— am+m'+ m")) - sin(— am+m'+ m"))}
2 2

S(\/Zﬂ'_] ly+y'+y"IR )
sign(y +y'+7vy") +
277 ly+v'+9"|R

1
T 2yy'y"

C(\/zn-‘ |y—y'—y"|R)

1

{{COS(E a(m—m'— m")) + sin[% am—m'— m"))}

V2r =y —y"IR
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1 1
{COS(— a(m—m'— m")) - sin(— am—m'— m“))}
2 2

%J2r4w—r—yWR)
sign(y —y'—vy") +
V27 ly-y'-y'IR

{{cos(% am+m'— m")) - sin[% am+m'— m“)]}

1
Ty 2yy'y"

({sz*w+¢—yWR)

+

Varty+y —y"IR

1 1
{cos(— a(m+m' — m")) + sin(— am+m' — m“))}
2 2

S(\/27r_] ly+y'—=¥"IR )
sign(y +y'—v") +
27 ly+y'=y"IR

1
Ty 2yy'y"

C(\/27r_1 ly—v'+¥y"|R )

1

{{COS(E a(m—m'+ m")) - sin(% am—m'+ m")]}

+

V2r =y + "R

1 1
{cos(— a(m—m'+ m")] + sin[— am—m'+ m“)J}
2 2

S(\/27r_l ly—v'+¥"|R )

sign(y —=y'+7v")

27 ly—=y'+y"IR
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This can be simplified as follows: When m" + m'+ m is an odd integer, the cosine term in
the ratio

{cos(;— am+m'+ m")) + sin(;— am+m'+ m"))}

{cos(% n(m+m'+ m”)) - sin(% a(m+m'+ m"))}

is zero, so that the ratio is — 1. Similarly, if this number is an even integer or zero, the sine
term is zero, so that the ratio must be +1. Hence this ratio can be represented as
(= Dtmm+mY) - Applying this logic to (25),

Dl(m, ), (m',y"), (m",y"),R] =
{cos(% am+m'+ m")) + sin(% am+m'+ m"))}
Ty 2yy'y"
{(C(\/N’l ly+y'+7"IR )— (=D sign(y +y' +y")
S(\/27T_1 ly+v'+¥"|R ))/(\/27r_1 ly+vy'+y"|R )}+
{cos(% am—-m'— m")) + sin(% am—-—m'— m"))}
T 2yy'y"
{(c(V2rm =y =y1R )= = signty ' =)
s(Var =y =y1r ) [(Var -y =yiR )+ 05

{cos(% am+m'— m")) - sin(% am+m' - m"))}

TN 2yy'y"

{(C(\/2 atly+y' =7"IR ) + (=D sign(y +y' = y")

S(\/27r‘1 ly+7'-7"IR ))/(\/271‘1 ly+y' =v"IR )}+

cos(% am—-—m'+ m")) - sin(% am—-—m'+ m"))}

T 2yy'y"

{((C(\/ 277 ly=y'+7"IR ) + (= DO sign(y —y' + y"))

s(Var =y erir)) [ (Vor -y ey )}
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A Figure 1.
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Equation (25) has the advantage that both its sides can be independently computed, and
their numerical equivalence and computational time can be compared, particularly at the
singular points. Each term in (25) has a factor of the form

Q:(6-a)R) =

some numerical values are shown in Table 1.

\ 277V € ~alR

The functions Q.(x), which are mirror images of each other, are plotted in Figure 1 and

12F
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Q.(x) +x

1.22747 1.30512 (Maximum)

1.0 0,2.72458

09 -0.278373, 3.07065

0.8 -0.527887, 3.40507

0.7 -0.761583, 3.75028
0.613735 —0.9564366748,4.077167171 (Half-Maximum)
0.6 —0.987166, 4.13361

0.5 -1.21026, 4.61558, 7.68346, 8.84224
04 -1.43586, 10.1598

0.3 -1.66937, 16.6852,20.3536, 21.607

A Table 1. Numerical values of functions Q. (x).

For a large but finite number R, only one term out of four in (25) dominates when
Y+ (y'+y") = xR™' < 1, and then the integral has the value

D[(m, ,yl +,y|v +XR_1), (m|’ ,y|)’ (mn’ ,yu)’ R] ~
{cos(m(m—m'—m")/2)+sin(m(m —m' —m") [/ 2)}

Qo (X) VR (27)

i}

ﬂ\/7r|y'+y"+xR‘l|y'y"

D[(m, |,)/| _ ,yu| +XR_1), (ml’ ,yl)’ (mn’ ,yu)’ R] ~
{cos(zr(m —sign(y' —y") (m'—=m")) /2) +
sin(z(m — sign(y' —y") (m'—m")) / 2)}

(28)
Q__ s (1) VR

;,y|_,y!|:#0.

P \/7((“7' _yul + XR71|)’)/')/”
The full width at half maximum (FWHM) of the peaks of D[(m, y), (m',y"), (m",y"), R]

as a function of any one of the radial mode number arguments is seen to be ~5R™!, irre-
spective of other arguments. The semi-empirical relations (27) and (28), based on a large
but finite upper limit of integration, are numerically validated in the next section, showing
that (20) is a reasonably good approximation near the upper and lower singularities at

y'+y"and|y'—y"|.
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When y' and y" are equal, the last two terms in (25) become comparable, and (28) breaks

down. However, the question of how close y' and y" can be before (28) breaks down can
form the basis of a numerical experiment. Set y" = y' (1 + yxR‘l), where y is a suffi-
ciently large positive number. Then (28) takes the form
D[(m, (Iy'y xl +x) R_l), (m',y", (m", v (1 + yxR_l)), R]
{cos(mr(m + sign(x) (m' —m")) [/ 2) + sin(zr(m + sign(x) (m' —m")) / 2)}
Q__ymesinoin-m () R (29)

Q

ny' \/ﬂ(llyxl + x]) (1 +yxR*1)
The ratio of the numerically evaluated LHS and RHS for randomly selected parameters
can be plotted against |y' —y"|/y' by varying y over many decades. This is considered in
the next section. The value of y above which the formula breaks down is seen to be of the
order of 10', irrespective of the upper limit of integration, which is varied over five

decades. The numerical experiments show that (28) remains valid for increasingly close
values of y' and y" as the limit of integration is increased.

The limit R — oo requires some care. It is seen from (27) and (28) that the maximum of
Dl(m,y), (m',y"), (m",y"),R] at |y £ (y'£y")| = 1.30521 R~! shifts to |y £ (y'£y")| =0

and tends to infinity. At the same time, the FWHM of the peak tends to zero. The
weighted area of the peak at y = |y'+y"| for a smooth weight function w(y) is defined in

terms of an arbitrarily small positive number ¢ and a function f(e) where lim._o f(€) = 1
as

+y"+0
f dy [y W) £© Dlm,y). (m'. ). (m", "), o] =
Y

+y'=6
lim [fd(xR_1)~W(7'+)’"+xR_1)\/7'+)’"+xR_1 (30)
R—o0 _5

f@D|(m,y'+y"+xR™"), (m', ", (m",y"),R]].

For smooth weight functions, w(y' +y"+ xR‘l) - w(y'+7y") in the limit as R — oo, and
the integral on the RHS of (29) can be written as

fd(xR_l)w(y‘+y”+xR‘1)f(e) y'+y"+xR!
-5

D[(m, v'+y" +xR_1), (m',y"), (m",y"), R] =
{cos(r(m —m' —m")/2) + sin(m(m —m' —m") [ 2)} (31)
wy'+vy") IR

0510y ) VE.
n W SR
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Observing that the integral f; Q. (x)dx does not converge, choose € = x/(R(y'+7y")),

fle)=1 / (1 + 62) in order to ensure convergence in the infinite limit of R. The integral on
the RHS of (30) is then evaluated with infinite limits

Q _ (m—m'—m”)( )
fd)w ch i (R_I)VR =
o 1+ (6 YR

(32)

32

7 v +y" erf[ﬁ Ay +Hy" ]

The weighted area under the peak is therefore given by the R — oo limit of (31)
'+y"+0
f dy -w(¥) f(© 4]y Dlim,y), (m',y"), (m",y"), co] =
Y'+y'=6

(33)

wy'+y YY"
{cos(mm—m'—m")/2) +sin(m(m —m' —m") / 2)} .

2 yl,yll

Similar logic can be applied to (28) when |y' —y"| is treated as a fixed nonzero number

Y —y"l+6
f dy - w(y) f©@~y Dlm.y). ('3, (m", 5", oo] =

ly'=y"l-6
{cos(m(m —sign(y' —y") (m'—m")) [ 2) +
sin((m — sign(y' —y") (m'—m")) / 2)} (34)

w(ly' =y"DAl Iy ="l

; ¥y =y" 0.
2 ,)/| ,yll
The region away from singularities does not need a finite upper limit of integration. For
this case, a better approximation for the 3B integral can be constructed by applying (19) to
only two out of three Bessel functions:
D[(m’ y)’ (m" ’y’)’ (m”’ 7“)’ OO] apprOX ~

sin(z(m'+m")/2)

- f dr Ju(yr)cos((y'+y")r) +
7T ',y|,_yll 0

cos(m(im'+m'")/2)

fdr Ju(yr)ysin((y'+y")r) +
0

NS -

cos(mim' —m'") /2)
fdr Iy ) cos(ly' =" r) +
0

' n

T™NYY
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sin(z(m' —m") /2) sign(y' —y") .
fwdr Jm(y r)sin(ly' =y"|r)
[Pl 0
TNYY
This can be computed by recognizing that (for positive 1)

By —w) cos(m arcsin(cuy‘l))

fdr Jm(yr)cos(wr) = -
0
vl 1- (wy‘l)z
(36)
sin(rm/2) Ow —y)
y[ (wy‘1)2 -1 + (wy‘l)] (wy‘l)2 -1
O(y — w) sin(m arcsin(wy™"))
fwa’r Ju(yr)sin(wr) =
0
val1- (wy‘l)z
(37)

cos(mm[2)O(w—1y)

7[ (W“)Q—H(W‘l)] (wy!) -1

The Heaviside ®-function in (36) and (37) excludes the singular points. Some general fea-
tures of this approximate expression require attention. For all pairs of primed azimuthal
mode numbers whose sum is even (or odd), the expression is unchanged. For y' = y", the

third term in (35) varies as (yy')~', and the fourth term is zero. For y > (y' +7y"), the ex-
pression oscillates rapidly as cos(m arcsin((y' +v") y‘l)) and at the same time falls off in

magnitude as y~'. For 0 <y < |y'—y"|, the last terms of (36) and (37) provide a sharp

fall. Significant magnitude of the expression is thus expected only in the region satisfying
the triangle inequality: |y' —y"| <y < (y'+7y") as in the analytical results (17) and (18).

A computational survey of the behavior of the above approximation to the 3B integral can
be graphically presented in terms of scaled parameters 7' =y~ 'y', ¥" = y~! y", making

use of the scaling relation mentioned above:

Dl(m,y), (m',y"), (m",¥"), 0] = ¥* Dl(m, 1), (m', 7, (m", 7"), eo].
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This may be conveniently displayed in terms of the scaled ¥:

Yo=A =17 =7"D/G'+7" =17 =7"D.
This parameter is negative below the lower singularity and greater than 1 above the upper
singularity.

This is considered in the next section.

m Numerical Exploration of the Triple-Bessel Integral

Numerical exploration of the triple-Bessel integral, treated as a function of y for given val-
ues of y', ¥", uses Mathematica 8.0.4, which implements sophisticated algorithms for nu-

merical integration of highly oscillating functions with user-defined precision. Since the in-
tegral is expected to diverge at y = |y'£y"|, the upper limit of numerical integration is

kept at a high but finite number, which is also a parameter varied in the study.

Although the NIntegrate function in Mathematica is well tested, it is nevertheless pru-
dent to benchmark it against the known result (18) in order to confirm that its options and
parameters are correctly chosen for the intended application. The result of benchmark cal-
culations is displayed in Figure 2, which summarizes the results of thousands of calcula-
tions with randomly generated arguments satisfying the triangle inequality and located
near the lower singularity, upper singularity, or between the singularities. It is seen that
there is quite good, but not perfect, agreement between the numerically calculated result
and the formula for the following options: MaxRecursion - 1000,
AccuracyGoal —» 11, PrecisionGoal - 11, and WorkingPrecision - 50,
which were chosen after a few trials.

Outside the triangle inequality region, NIntegrate gives very small values, consistent
with the zero value from the analytical formula.

The upper limit of integration used in these calculations is symbolic Infinity, which is
interpreted by NIntegrate as a large number that delivers the requested performance.
The upper limit thus may not be the same in all calculations of the triple-Bessel integral.
Using arbitrary fixed large numbers for the upper limit, however, gives absurd results.
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Benchmark Test within Triangle Inequality
Summary of 3600 calculations

100+ B
70 .4 ]

50F°44 g

30 *‘-‘r . B

15¢ b

Numerical Integration + Formula
O
4
[ ]

1 I I I | I
10710 1077 1074 0.1 100 10°

Formula

A Figure 2. Result of 3600 calculations of D[(0, y), (0, ¥, (0, ¥"), co] with randomly chosen y' and
v'" in various decade ranges and y randomly chosen to lie in the region between |y' — y"| and
' +v".

Figures 3 and 4 show the detail of the variation (magnified 10’ times) of the triple-Bessel
integral, treated as a function of y for y'=4.5, y" =37, m'=2, m" =3, m =15 in the
neighborhood of (y'+vy") and |y'—y"| , with integration limit 10'°. The relevant Mathe-

matica code is shown in Appendix 2. Figure 3 took over six hours to generate on a Core-2
Duo, 2 GHz, 4 GB ram machine. The resemblance of the shape of the plot to the functions
Q. (x) is evident. Note the glitches at values of y away from the singularity, showing that

the numerical integrator does not work well for some values of the parameters. Since
v'—vy" >0, the sign of the singularity in Figure 4 (time of computation: nearly nine

hours) is negative for the given values of azimuthal mode numbers, as predicted by (29).
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1500 — -
1000 |- i
Q = 4
500 - -
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Bl I | | =
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(r=('+y") x 10

A Figure 3. 107 magnification detail in the neighborhood of (y' +y"):y'=45,y"=3.7,m'=2, m" = 3,
m = 5. Time required: about 22000 seconds.
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A Figure 4. 107 magnification detail in the neighborhood of |y' —y"|: y'=4.5,y" =37, m'=2, m" =3,
m=5. Time required: about 31000 seconds.
A randomized parameter space survey of (27) was carried out using the following proto-
col: 200 values of y' and y" were chosen randomly in each of four decades from 107" to
10° , X was chosen randomly in the range —50 to 50, and integers m, m', m" were chosen
randomly in the range O to 100. For each set of parameters, the result of numerical integra-

tion over the limit 10", r in the range of 9-12, divided by the value calculated using (27),
was plotted against the latter. The result is summarized in Figure 5. A similar exercise for
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equation (28) is summarized in Figure 6. The code used is described in Appendix 3. It is
seen that a higher integration limit gives less deviation from the formula.

Upper Singularity Random Test
Summary of calculations with 1010 random sets

®

- 1
= + 4
E ]
5
50 ]
i1 ]
o3 ]
g | ]
‘gﬂ L 4
i . ]
CE i
2
g | () e ]
5
3 %
i ° ]
Of | o I I I I |
107 1074 0.01 1 100 104

Formula

A Figure 5. Randomized parameter space survey of formula (27).

Numerical Integration + Formula

0.0

05

Lower Singularity Random Test
Summary of calculations with 1000 random sets

T T
* o e
L °
L ® Peo ‘ [} 1
L e Wu i.l ' ]
L ° Py ]
° S . L J
[ ]
[ ]
[ )
L ° ]
L P} i
L I [ ] I ! ! ! d
107 1074 0.01 1 100 10*
Formula

A Figure 6. Randomized parameter space survey of formula (28).

Upper limit 10°

Upper limit 10"
Upper limit 10"!
Upper limit 102

Upper limit 10"

Upper limit 10°

Upper limit 10"
Upper limit 10"!
Upper limit 102

Upper limit 10"

As discussed in the previous section, (28) is expected to break down when y'and y" are

sufficiently close, since the assumption concerning domination of only one term of (25)
fails. This phenomenon is explored in the following test. (See Appendix 4).
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The closeness of y' and y" is quantified in terms of a multiple y of the parameter x R~!,
which scans the width of the peak by setting y" = y' (1 +yx R‘l). For a set of randomly se-
lected parameters m, m', m",y', and x, the ratio of values obtained from numerical integra-
tion and (28) is plotted against y, which varies over 11 decades from 10° to 10'°. This plot

is generated for five values of upper integration limit 10'*, 10", 10", 10", and 10"® for
the same set of randomly selected parameters, This is repeated for many randomly se-
lected sets of m, m', m" in the range O to 100, 50 random values of y' in each of four
decades from 107! to 10?, and x in the range —50 to 50. The result is shown in Figure 7.
The formula is seen to hold good when y is above 10'°, irrespective of the limit of
integration.

Nearly Degenerate Case Random Test
Summary of calculations with 200 random sets

e Upper limit 10"
= Upper limit 10"
* Upper limit 10'®
A Upper limit 10"7
Y Upper limit 10'®

Numerical Integration + Formula

10* 106 108 100
y

-20 lom e
1

A Figure 7. Randomized parameter space survey of formula (28) with y" =y’ (1 + yxR").
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The same dataset is displayed as a function of |y' —y"| /" in Figure 8 for different values

of the upper limit of integration.

Nearly Degenerate Case Random Test
Summary of calculations with 200 random sets
Integration limit 10'°

Nearly Degenerate Case Random Test
Summary of calculations with 200 random sets
Integration limit 107

S. K. H Auluck

Nearly Degenerate Case Random Test
Summary of calculations with 200 random sets

Integration limit 10
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Summary of calculations with 200 random sets
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A Figure 8. Randomized parameter space survey of formula (28) with y" = ' (1 + yxR‘l). The agree-
ment between numerical integration and formula becomes better at closer values of |y' —y"|/y' as

the limit of integration is increased.
Formula (28) is seen to be valid for increasingly smaller values of difference in y' and y"
as the limit of integration is increased: less than a few parts per million when the integra-

tion limit is 10'®. For infinite limit of integration, the formula should therefore hold for ar-
bitrarily close y' and y".

The significance of numerical validation of (27) and (28) demonstrated above is that the de-
pendence of the polarity of the peak on the three azimuthal mode numbers is correctly re-

produced without a single error in several thousand calculations (where y' and y" differ

more than a few parts per million), in addition to a reasonable agreement with peak ampli-

tude and shape, for a large number of randomly selected parameters.

A similar exercise for the better approximation for regions away from singularities, for-
mula (35), gives a very different picture: the formula overestimates the numerically calcu-
lated integral by several orders of magnitude. In order to understand this, a randomized sur-

vey of the approximation (35) and the numerical integration with upper limits 10%, 109,

10% was carried out and is summarized below. The program used in this survey is given
in Appendix 5. The parameters used in the survey were: MaxRecursion — 1000,
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AccuracyGoal —» 11, PrecisionGoal —» 11, WorkingPrecision - 200.
NIntegrate did not report any errors. Consistency of the trend in the survey suggests
that the 3B integral tends to zero for the infinite upper limit of integration when
v# |y'+y"|: a (tentative) conclusion, which is predicated on the assumption that
NIntegrate works correctly in these kinds of calculations. That can, in principle, be fur-
ther examined by repeating this test for a much larger number of calculations and many dif-
ferent sets of options.

Using symbolic Infinity for the upper limit in these calculations is found to give ab-
surd results. There is thus a distinct possibility that NIntegrate sometimes behaves in
an anomalous manner while calculating the triple-Bessel integral.

Random Test Away from Singularities

Summary of 1500 calculations

107

10716

10-% ® Formula

m  Upper limit 10
10—36
®  Upper limit 10%

1074

Numerical Integration or formula

A Upper limit 10%°

10756

Scaled y

A Figure 9. Randomized survey of f)[(m, 1, m', %", m",¥"), R] as functions of scaled ¥, which are
V=A=' =%"D/F' +¥"—1¥'—7"]) for various upper limits compared with (35).

The reasonable degree of agreement between the results of three theoretical formulas
((18), (27), and (28)) and numerical integration (with symbolic Infinity as the upper
limit for (18) and a large number as the upper limit in (27) and (28)), with randomly se-
lected parameters, tends to establish the credibility of numerical integration. At the same
time, the fact that absurd results are produced by using a large number as the upper limit
in the test for (18) and symbolic Infinity as the upper limit in the above test suggests
that there is scope for improvement in the implementation of NIntegrate.
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m Proposed Approximate Formula for the Triple-Bessel
Integral

The above discussion and numerical experimentation lead to the following observations,
subject to the caveat concerning the correct behavior of NIntegrate:

1. D[(m, y), (m',y"), (m",y"), o] tends to infinity asy — |y' = y"|.
2. The FWHM of the peak of D[(m, y), (m',y"), (m",y"), R] at y = |y' £ ¥"| tends to
zero as R — oo.

3. The weighted integrals (32) and (33) over this peak converge to finite values for
smooth weight functions.

4. Both outside and within the triangle inequality region |y'—y"| <y < (y'+7vy"),
Dlm,y), (m',y"), (m",y"), o] is negligibly small.

These observations suggest the following approximate semi-empirical representation of
the 3B integral in the sense of distribution with respect to y for smooth weight functions:

Dl(m,y), (m',y"), (m",y"), oo] =
{cos(mm—m'—m")/2) +sin(m(m —m' —m") / 2)}

oty—=(y'+v")
2y
+{cos(r(m — (m'—m")) /2) + sin(x(m — (m' —m")) / 2)}
(38)
oy—(y' =y DHY' —y"
2/ y'y"

+{cos(mm+ (m' —m")) /2) + sin(n(m + (m' —m")) / 2)}

y—="=yNHY"-¥).
2 ,y|,y||
Here, H(x) = 1 for x = 0, and H(x) = 0 for x < 0. Note the inclusion of the case y' = y":

this is proposed as the generalization of the results displayed in Figure 8 to the infinite inte-
gration limit. Putting y =0, m = 0, m' = m" in (38) recovers the usual orthogonality for-

mula (12) for Bessel functions, supporting the discussion concerning equation (33) and
also the inclusion of the y' = y" case.
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Essentially, (38) assumes, without rigorous mathematical proof but with supporting evi-
dence from a limited number of numerical experiments [11], that the integral of arbitrary
weight functions within and outside the triangle inequality region |y'—y"| <y < (y'+7y")
is negligibly small as compared with the contribution from the singularities. The analyti-
cal results (17) and (18) support this assumption for the region outside the triangle
inequality. An argument supporting the assumption outside the triangle inequality region
is outlined in Appendix 6. As with all approximations, (38) may have a kind of remainder,
probably representing the contribution within the triangle inequality region, whose upper
bound is at present not determined. The approximate nature of this formula is evident not
only from the use of approximation (19) in the above discussion, but also from the fact
that it cannot be used to obtain the exact relations (14) and (15).

Its only claim to merit is that it is a less restrictive approximation than the total neglect
of irrotational and scalar fields in spatial-spectral treatments of nonlinear dynamics of
continuous media. Adoption of (38) as a kind of tentative semi-empirical model for the
triple-Bessel integral, at least until a better replacement becomes available, would enable
construction of a theoretical framework for studying effects arising out of the nonlinear in-
teraction of solenoidal and irrotational electron modes in the two-fluid plasma model in
cylindrical geometry [6], which is currently an intractable problem. This framework can
be improved if and when further research, hopefully motivated by this discussion, leads to
a better representation of (38).

m Discussion

The insight gained above about the properties and numerical behavior of the 3B integral
has significant implications concerning the usefulness of the Fourier space representation
of nonlinear dynamics of continuous media in cylindrical geometry. The question, how far
is infinity?, in the context of a physical theory, is seen to have an answer in terms of the er-
ror with which a physical quantity, such as radial mode number, might be defined using
an experimental procedure. Two radial mode numbers may then be considered equivalent
if their difference lies within the error band. The reciprocal of this error band would then
represent the order of magnitude of the limit of integration in coordinate space, which re-
produces, within experimental errors, the result that nonlinear interaction of these modes
generates a near-zero radial-mode-number mode.

The origin of the singularities in this integral, treated as a function of three radial and
three azimuthal mode numbers, can be seen from (20) to lie in resonant interaction be-
tween three waves of radial mode numbers vy, y', ¥", having phases governed by the az-
imuthal mode numbers m, m', m", when any radial mode number equals the sum or differ-
ence of the other two radial mode numbers.
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The triple-Bessel integral occurs in expressions that describe how the rate of change of the
spectrum of a given quantity (the evolving mode), labeled by mode numbers {m, «, v, s}

without primes, depends on the interaction between the spectra of two other quantities, la-
beled by primed mode numbers (the interacting modes) and is accompanied by the factor
Om, m+m"- The semi-empirical model (38) then takes on a much simpler form, expressed be-
low as a distribution with respect to y" using the invariance with respect to a permutation

of pairs of arguments (m, y), (m',y"), (m", y"):

Dl(m,y), (m',y"),(m—m',y"), o] ~

1 ,
——— {6 -y =Y DHy -y + (= D" " - (' =y H@' = y) + (39)
27!

D" 60" -y +y))-

According to the model formula (40), the contribution of the 3B integral to the evolution
of the spectrum is governed by two singularities. One evolves the spectrum toward higher
radial mode numbers than the radial mode numbers of interacting quantities, generating
smaller radial scale lengths and steeper gradients as in shock formation or turbulence. The
other evolves the spectrum toward radial scale lengths larger than the radial scale lengths
of the interacting modes, indicating the formation of a larger structure, as in self-organiza-
tion. The tendencies toward turbulence/shock formation or self-organization are influ-
enced by azimuthal mode numbers.

The computational advantage of the semi-empirical model of the 3B integral presented
above can be judged by comparison with the approach of Chen, Shan, and Montgomery
(CSM) [4, 5]. The first advantage over the method of CSM is that the spatial-spectral repre-
sentation of irrotational vector fields as well as scalar fields becomes possible in addition
to solenoidal fields: while the CSM method is limited to solenoidal fields only, over the in-
finite domain, an orthogonal basis becomes simultaneously available for scalar, irrota-
tional, and solenoidal fields, facilitating the investigation of effects due to their nonlinear
interaction [6]. The second advantage is that rather than computing a table of numerical
values of coupling coefficients for an infinity (or a suitably large number) of azimuthal
mode numbers, the dependence on azimuthal mode numbers is reduced to a simple compu-
tation of sign of a term. The semi-empirical formula (40) takes on the role of the table of
coupling coefficients in the Galerkin approach of CSM [4, 5].

The spatial-spectral representation of the equation of continuity then becomes

ony(k, vy, 1)
ot -
. Jr
—i\/7 Z fdx'fdy'ﬁwmv(K',y',t){(w'—Ky')
m'=—co ¥ 0 K‘ +y‘

)m—m'

M (K=K, Yy =y, O H(y—y)+(yk' —ky") (=1
M (K =K', y' =y, ) H(y'—y) -
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YK +KY) (=D Bk =K',y +7', D) +

. i
o.sﬁm;mﬁdx'fdy' 7@ (K'Y, 1)

{(yy' + KK Nk =K'y =y, ) Hly = y") +
KK +yY) (=D Bk =K'y =y, ) Hy' = y) +
Ke'=y Y)Y (D" Bk =&,y + 7', D)}

The third advantage is the significant reduction in the computational complexity of equa-
tion (7) noticed in its reduced form (40): reduction in the number of integrations, simpler
dependence on azimuthal mode numbers, and simpler form of the coupling factors. This
opens up the possibility of doing computations similar to those of CSM without the restric-
tion to incompressible flow and with a much larger number of modes.

m Summary and Conclusion

This article concerns the integral of the product of three Bessel functions of the first kind
of integer orders over the semi-infinite domain [0, oo], which is encountered when trans-
forming a system of nonlinear partial differential equations containing solenoidal vector
fields, scalar fields, and irrotational vector fields, using Chandrasekhar—Kendall functions,
their generating function, and its gradient as orthogonal bases over the semi-infinite do-
main. Known properties of this integral, which show singular behavior, are summarized.
Using the approximation of Bessel functions for large arguments, it is shown that the
triple-Bessel integral represents resonant three-wave interaction that leads to singularities
when one argument equals the sum or difference of the other two arguments. Numerical in-
vestigations using Mathematica have been used to validate a scaling formula for the polar-
ity, absolute magnitude, and shape of the singular peak with a large finite upper limit of in-
tegration. A semi-empirical approximate formula of the integral has been suggested in
terms of the Dirac delta function for regions near the singularities for smooth weight func-
tions. It is shown that the computational complexity of a cylindrical Fourier-space represen
tation of the equation of continuity is reduced considerably using this formulation. This
opens up the possibility of computational efforts similar to those of CSM without restric-
tion to incompressible dynamics for a much larger number of modes.
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m Appendix 1
This generates Figure 2.

SetDirectory[NotebookDirectory[]];
list = {{1.0, 1.0, {1.0, 1.0, 1.0}}};
message = {"AT LOWER SINGULARITY", "BETWEEN SINGULARITIES",
"AT UPPER SINGULARITY"};
Formula[yl_, ¥2_, ¥3_] :=
Module[{}, I£f[¥1®< (¥2-¥3)?, 0,
If[ (y2-¥3)2 <¥1% < (¥2+¥3)?,
(mxSQre[ (¥l +¥2+¥3) » (¥1+¥2-v¥3) » (¥y1-v2+y3) *
(-¥l+y2+¥3)]1/2.)7%,
1£[ (v2+¥3)? <¥1?, 0]]]];
int[yl_, ¥2_, ¥3_, ps_] :=
SetPrecision|[
NIntegrate|
SetPrecision[x * BesselJ[0, yl x x] * BesseldJ[0, ¥2 *x] *
BesselJ [0, y3 *xx], ps], {x, O, Infinity},
MaxRecursion -» 1000, AccuracyGoal - 11,
PrecisionGoal -» 11, WorkingPrecision - ps], 10];
Do[Print [message[[r]]];

Do |
Do[
Print[" q= ", q, " #", i, " ", DateString[]];
{¥1, ¥2} = SetPrecision[RandomReal[{lo.q, 10.‘1*2}, 2] ’

10];
{¥3} = SetPrecision]|

If[r == 1, RandomReal[{Abs [yl - ¥2] *1.00001,

Abs[yl -y2] *1.0001}, 1],
If[r == 2, RandomReal[{Abs [yl - ¥2] *1.00001,
(¥l +y2) *x0.999}, 1],
If[r == 3, RandomReal[{ (¥l +¥2) *x0.999,
(¥l +vy2) *0.999999}, 1],
If[r == 4, RandomReal[{0., Abs[yl -¥2] *0.999999},
1],
If[r == 5, RandomReal[{ (¥l +¥2) »1.00001,
(¥1+¥2) »10.}, 1111111

, 10];
Print["yl=", y1, "\ny2=", ¥2, "\ny3= ", ¥3];
il = Formula[yl, ¥2, ¥3]; i2 = int[¥l, ¥2, ¥3, 50];
If[il == 0, Ratio = Null, Ratio=1i2/1il];
Print["Formula gives:", il, "\nNIntegrate gives:",

i2, "\nRatio=", Ratio];

AppendTo[list, {il, Ratio, {y1l, ¥2, ¥3}}1,
{i, 200}
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]
{a, -2, 3}
] 14
{r, 1, 3, 1}
E
Export["D000-1list.csv", list];
listplot = Table[{list[[i]][[1]], list[[i]]1[[2]1]},
{i, 2, Length[list]}];
Show[ListLogLogPlot[listplot, PlotRange - Full,
Mesh -» All, Frame -» True, LabelStyle -» {Black, Medium},

FrameLabel -» {{"Numerical Integration and Formula", ""},

{"Formula",

StringForm]|
"Benchmark Test within Triangle Inequality\nSummary

of °° calculations", (Length[listplot])] }}1,
LogLogPlot[1.0, {x, Min[Abs[listplot]],
Max[Abs[listplot]]}]]
NotebookSave [EvaluationNotebook[]];

m Appendix 2

This generates Figures 3 and 4.

Dm_,ml_, m2_, vy , ¥l _, ¥2_, ps_, limit_] :=

NIntegrate[

SetPrecision|[
r *x BesseldJ[m, y*r] * Besseld[ml, yl*xr] *

Besseld[m2, y2xr], ps], {r, 0, limit},
MaxRecursion -» 1000, AccuracyGoal » 8, PrecisionGoal - 8,
WorkingPrecision - ps];

¥l =N[4.5, 30]; ¥y2=N[3.7, 30];ml=2;m2=3;m3=5;

Ay = Abs [yl - ¥2]; 2y = y1 +¥2;

Plot[D[ml, m2, m3, y1, ¥2, Zy+xx+107°, 30, 10'°],
{xx, -1000, 1000}, PlotRange -» Full, Mesh - All,

LabelStyle -» Directive[Black, Small],
PlotStyle -» Directive[Black, AbsoluteThickness[Medium]],

MeshStyle » Directive[PointSize[Small], Black],
Frame -» True, FrameLabel -» {"y-(y'+y''))x10%¥", "D"},
WorkingPrecision -» 30, ImageSize - Full] // AbsoluteTiming

Plot[D[ml, m2, m3, yl, ¥2, Ay +xx+1071°, 30, 101"],
{xx, -1000, 1000}, PlotRange -» Full, Mesh » All,

LabelStyle -» Directive[Black, Small],
PlotStyle -» Directive[Black, AbsoluteThickness[Medium]],

MeshStyle » Directive[PointSize[Small], Black],

Frame - True, FrameLabel - {" (y-1¥'-¥'"'l) x 10%°", D"},
WorkingPrecision » 30, ImageSize —» Full] // AbsoluteTiming
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m Appendix 3
This generates Figure 5.

SetDirectory[NotebookDirectory[]]; list = {{1.0, 1.0}};
O[x_, s_] ==
(FresnelC[Sqrt[2 x Abs[x] / 7w]] -
Sign[x] * s * FresnelS[Sqrt[2 x Abs[x] / 7]]) /
(Sqrt[2 xAbs[x] / 7]);
output = OpenWrite["Upper Singularity.out"];
formula[ml_, m2_, m3_, y1_, ¥2_, r_, X_] :=
(Cos[rr* (m3-ml-m2) /2] +Sin[s* (m3 -ml-m2) /2]) *
Q[X, (_1)m3—m2—m1] /
(N*Sqrt[n* (71 +y2+X * 10'r) *ylxy2 * 10’r]) ;
int[(ml_, m2_, m3_, ¥yl _, ¥2_,X , r_, ps_] :=
SetPrecision|
NIntegrate[
SetPrecision|[x » BesselJ[ml, yl »x] » BesselJ[m2, y2 *x] *
BesselJ [m3, (71 +Yy2+X % 10’r) * x] , ps] , {x, 0, 1or} ,
MaxRecursion -» 1000, AccuracyGoal - 11,
PrecisionGoal -» 11, WorkingPrecision - ps] ’ 10] ;
Do[
Do |
Print[" gq= ", q, " #", i, " ", DateString[]];
{ml, m2, m3} = RandomInteger[100, 3];
{¥1, ¥2} = SetPrecision|RandomReal[{10.%, 10.‘1*1}, 2], 10];
{X} = SetPrecision[RandomReal[{-30., 30.}, 1], 10];

Do |
Print|
"ml=", ml, " m2= ", m2, " m3= ", m3, " r=", r,
"yl= ", yl, " y2= ", ¥2, " ¥3=yl+y2+", X% 10°F
IE
il = N[formula[ml, m2, m3, y¥1, ¥2, r, X], 10];
i2 = int[ml, m2, m3, yl1l, ¥2, X, r, 50];

Print[" Formula gives:", il, "; NIntegrate gives:",
i2 ", ratio=", i2/il];

Write[output, "gq= ", q, " #", i, " ", DateString[],
" yl= ", ¥1, ¥2= r ¥2, " ¥3=yl+y2+", X*lo_rl

Formula gives:", il, "; NIntegrate gives:",

i2, " ratio=", i2/il];
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AppendTo[list, {il, i2/il}], {r, 9, 12}],
{i, 100}
],
{a, -1, 3}] ; Close[output];
Show |[ListLogLogPlot [Drop[list, 1], PlotRange - Full,
Mesh -» All, Frame -» True, LabelStyle -» {Black, Medium},
FrameLabel -» {{"Numerical Integration or Formula", ""},

{"Formula", StringForm["Summary of ~~ calculations"”,
(Length[list] -1)] }}1,

LogLogPlot[1.0, {x, 1077, Max[Drop[list, 1]1}]]
This generates Figure 6.

<< PlotLegends™
SetDirectory[NotebookDirectory[]];
list = Table[{{1., 0.,1, 1,1, 1., 1., 1., 1.}}, {i, 1, 5}];
Q[x_, s_] :=
(FresnelC[Sqrt[2 * Abs[x] / 7] ] -
Sign[x] * s * FresnelS[Sqrt[2 * Abs[x] / 7]]) /
(Sqrt[2 xAbs[x] / 7]);
formulafm_, ml_, m2_, y1_, ¥2_, r_, X ] :=
(Cos[7r* (m-Sign[yl-¥2] * (ml-m2)) /2] -
Sin[m* (m-Sign[yl-v¥2] * (ml1-m2)) /2]) *
Q[X, _ (_l)m—sign[y1-72]*(m1-m2)]/
(7% Sqrt [« Abs[Abs [yl -¥2] +X* 107" xyl»¥21077]);
int[(m_, ml_, m2_, ¥y1_, ¥2_, X_, r_, ps_] :=
SetPrecision[
NIntegrate|
SetPrecision[x*BesselJ[m, (Abs[xl -¥2] +X * 10"’) *x] *
BesselJ[ml, y1*x] »BesselJ[m2, y2*x], ps|,

{x, o, 10"}, MaxRecursion -» 1000, AccuracyGoal - 11,
PrecisionGoal -» 11, WorkingPrecision - ps,
Method -> {"GlobalAdaptive",
"MaxErrorIncreases" -» 10 000}] ’ 10] ;
Do [
Do[

Print[" q= ", q, #", i, " ", DateString[]];

{m, ml, m2} = RandomInteger[100, 3];

{¥l, ¥2} = SetPrecision[RandomReal[{lo.q, 10.q+2}, 2] , 15]

{X} = SetPrecision[RandomReal[{-50., 50.}, 1], 15];
Do [

.
I

Print[“m:", m, " ml=", ml, " m2=", m2, " r=", r,

||\n71= u, 71, n\n72= u, 72, u\nX=n, x’
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"\ny3=Abs [yl-¥2]+", X% 107%];
il = N[formula[m, ml, m2, yl1l, ¥2, r, X], 10];
i2 =int[m, ml, m2, y¥1, ¥2, X, r, 100];
ratio=12/1il;
Print["Formula gives:", il, "\nNIntegrate gives:",
i2, "\nratio=", ratio];
AppendTo[list[[r-8]],
{il, ratio, m, ml, m2, y1, ¥2, X, r}],
{r, 9, 13}],
{i, 200}
] 14
{a, -1, 3}];
Export["lower singularity random test list.csv", list];
listplot =
Table[Table[{1list[[j]]1[[i1][[1]], List[[J1][[4]10[2]1]},
{i, 2, Length[1list[[j]]1}], {3, 1, 5}];
plt = ListLogLinearPlot [Table[listplot (311, {3, 1, 531,
PlotRange -» Full, Mesh » All, Frame -» True,
LabelStyle » {Black, Small}, GridLines -» {{}, {1.0}},
PlotMarkers -» Automatic,
PlotLegend - {"Upper limit 10°", "Upper limit 10'°",

"Upper limit 10'!'", "Upper limit 102",

"Upper limit 10"}, LegendPosition - {0.8, -0.4},
LegendSize » 0.6, LegendSpacing » 0, LegendTextSpace » 5,
LegendShadow -» None, ImageSize - Full,

FrameLabel -» {{"Numerical Integration and Formula", ""},

{"Formula",

StringForm]|
"Lower Singularity Random Test\nSummary of
calculations with °° random sets"”,
Length[listplot[[1]]]] }}]

NotebookSave [EvaluationNotebook[]];
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m Appendix 4
This generates Figures 7 and 8.

<< PlotLegends™;
leg = {"Upper limit 10", "Upper limit 10%°",

16n 17n

"Upper limit 10°°", "Upper limit 10°'",
"Upper limit 10'%"};
leg = Style[#, FontFamily -» "Helvetica", FontSize » 12] & /@
leg;
SetDirectory[NotebookDirectory[]];
list = Table[{{1., O., 1.0, 1, 1,1, 1., 1., 1., 1.}},
{i, 1, 5}1;
Q[x_, s_] :=
(FresnelC[Sqrt[2 * Abs[x] /7] ] -
Sign[x] * s * FresnelS[Sqrt[2 xAbs[x] / 7]]) /
(Sqrt[2 *Abs[x] / 7]);
formula[ml_, m2_, m3_, y1_, ¥2_, r_, X_] :=
(Cos[mr* (m3 -Sign[yl -¥2] * (ml1-m2)) /2] -
Sin[rmr*x (m3 -Sign[yl-¥2] * (ml1-m2)) /2]) *
Q[x, _ (_1)m3—Sign[71—72]*(m1—m2)] /
(7r * Sqrt [7r * Abs [Abs [¥1-v¥2] +X = 10'r] *ylxy2 * 10'r] ) ;
int[(ml_, m2_, m3_, ¥yl ,¥2 ,X , r_, ps_] :=
SetPrecision|
NIntegrate|
SetPrecision [x * BesselJ[ml, ¥yl % x] »BesselJ[m2, ¥2 % x] *
BesselJ [m3, (Abs [¥l-¥2] +X=* 10'r) * x] , ps] ,
{x, 0, 10"}, MaxRecursion » 1000, AccuracyGoal - 11,
PrecisionGoal -» 11, WorkingPrecision - ps,
Method -> {"GlobalAdaptive",
"MaxErrorIncreases" -» 10 000}] ’ 10] :
Do [
Do[
{m, ml, m2} = RandomInteger[100, 3];
{¥l} = SetPrecision[RandomReal [{10.‘1, 10.q+1}, 1] , 20];
{X} = SetPrecision[RandomReal[{-50., 50.}, 1], 20];
Do[
po|
y = (r-13) »10.7;
¥2 = SetPrecision[71 * (1. +y*Xx10.77), 20] ;
dy =y*X%10.7%;
Print[" q= ", q, " #", i, " ", DateString[]];
Print|
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m=", m, ml=", ml, m2=", m2, r=", r,
"\nyl= ", y1, "\ny2= ", ¥2, "\nXx=", X, "\n¥=",

ScientificForm[y], "\ny3=Abs[yl-y¥2]+", X%10.P%10.7F

K

il = N[formula[m, ml, m2, yl1l, ¥2, r, X], 10];

i2 = int[m, ml1, m2, ¥1, ¥2, X, r, 100];

ratio=12/1il;

Print["Formula gives:", il, "\nNIntegrate gives:",

i2 "\nratio=", ratio];

AppendTo[list[[r-13]],

{il, Abs[dy], ratio, m, ml, m2, y1, ¥2, X, r}],

{p, 0, 10}], {r, 14, 18}], {i, 50}], {q, -1, 2}];
Export["Degenerate Case random test list.csv"”, list];
listplotl =

Table|[
Table|[
{list[[J1I[I41]1[[2]] *
10. " 1list[[J1][[4]1[[10]] /Abs[1ist[[F]]1[[Li]1][[9]1],
list[[F]1[[4110[3]1}, {i, 2, Length[list[[j]1]]1}],
{3, 1, 5}1;
listplot2 =
Table[Table[{1list[[j]]1[[4i1][[2]], 1ist[[JI]1[[L]11[[3]11},
{i, 2, Length[list[[j]1]1}], {3, 1, 5}];
pltl = ListLogLinearPlot [Table[listplotl[[j]], {j, 1, 5}1,
PlotRange » {-20., 20.}, Mesh » All, Frame - True,
LabelStyle » {Black, FontFamily » "Helvetica",
FontSize » 12}, GridLines -» {{}, {1.0}},
PlotMarkers » Automatic, PlotLegend - leg,
LegendPosition -» {0.8, -0.4}, LegendSize - 0.6,
LegendSpacing » 0, LegendTextSpace » 5, LegendShadow - None,
ImageSize -» Full,
FrameLabel -» {{"Numerical Integration and Formula", ""},
{"y", StringForm|[
"Nearly Degenerate Case Random Test\nSummary
of calculations with °° random sets"”,
Length[listplot[[1]]] /11] }}]

plt2 =
TableForm|
Table [ListLogLinearPlot [listplotz [[1+31],
PlotRange -» Full, Mesh » All, Frame -» True,
LabelStyle » {Black, FontSize > 9,

FontFamily -» "Helvetica"}, ImageSize » Scaled[0.5],
GridLines -» {{}, {1.0}}, PlotMarkers -» Automatic,
FrameLabel - {{"Numerical Integration and Formula", ""},

{"ty' ="ty

StringForm[
"Nearly Degenerate Case Random Test\nSummary
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of calculations with °~ random

sets\nIntegration limit 10 ",
Length[listplot[[1]]] /11, i+j+13]}}],

{i, 1, 3, 2}, {i, 1, 2}]]
NotebookSave [EvaluationNotebook[]];

m Appendix 5
This generates Figure 9.

<< PlotLegends ;
SetDirectory[NotebookDirectory[]];
list = {{1., 0., 0., 0., 0., {1,1,1, 1., 1., 1., 1.}}};
fcos[m_, v_, w_] :=
FullSimplify[FourierCosTransform[BesseldJ[m, y*r], r, w]] *
Sqrt[xr/ 2];
fsin[m_, ¥v_, w_] :=
FullSimplify[FourierSinTransform[Besseld[m, y*r], r, w]]
Sqrt[n/ 2];
formula[m_, ml_, m2_, ¥v_, ¥l_, ¥2_, ps_] :=
SetPrecision]
Re[
-Sin[(ml +m2) *7w/ 2] / (;t*Sqgrt [yl *y2]) *
fcos[m, ¥y, ¥1+vy2] +
Cos[(ml+m2) x5t/ 2]/ (;w*Sqrt [yl »y2]) *
fsin[m, y, ¥l +¥y2] +
Cos[(ml-m2) *x7w/ 2]/ (;r*xSqrt[yl » y2]) *
fcos[m, y, Abs[yl -¥2]] +
Sin[ (ml1-m2) »w/ 2] »Sign[yl -y2] / (;m*Sqrt[yl » ¥2]) *
fsin[m, ¥y, Abs[y1l-¥2]]1],
psl;
int [m_, mi_, m2_, yv_, ¥yl_, ¥2_, r_, ps_] :=
SetPrecision|

NIntegrate|
SetPrecision[x * BesselJ[m, y *x] * Besseld[ml, ¥yl % x] *
BesselJ[m2, ¥2+x], ps], {x, 0, 107},
MaxRecursion -» 1000, AccuracyGoal - 11,
PrecisionGoal » 11, WorkingPrecision - ps,
Method -> {"GlobalAdaptive",
"MaxErrorIncreases" » 10 000}] , 10] ;
Do |
Do
Print[" gq= ", q, " #", i, " ", DateString[]];
{m, ml, m2} = RandomInteger[20, 3];
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{¥1, ¥2} = SetPrecision|RandomReal[{10.9, 10.%'}, 2], 10];
¥s = (1-RAbs[yl-¥2]) / (¥y1+¥2-Abs[yl-v¥2]);
Print|
"m=", m, " ml=
¥l, "\ny2=", ¥2, "\nScaled y-=
17
il = formula[m, m1, m2, 1., y1, y2, 10];
i2 =int[m, ml1, m2, 1., y1, y2, 30, 200];
i3 =int[m, ml1, m2, 1., y1, ¥2, 60, 200];
i4 =int[m, ml1, m2, 1., y1, y2, 90, 200];
Print[
"formula gives:", il, "\nNIntegrate gives:", i2,

", ml, " m2=", m2, "\ny=1.", "\nyl= ",
n , YS

"for upper limit 103°",

"\nNIntegrate gives:", i3, "for upper limit 10°°",

"\nNIntegrate gives:", i4, "for upper limit 1090"];
AppendTo[list, {ys, i1, i2, i3, i4,

{m, ml, m2, 1., ¥1, ¥2, ys}}],

{i, 500}
]’
{qa, -1, 1}];

Export["Away from singularities random test list.csv”,
list];

listplot =
Table[Table[{list[[i]][[1]], Abs[list[[i]][[j+11]11},

{i, 2, Length[list]}], {3, 1, 4}];

ListLogPlot [listplot, PlotRange - Full, Mesh - All,
Frame -» True, ImageSize -> Full,
PlotLegend—»{"Formula", "Upper limit 10%°",

"Upper limit 10°°", "Upper limit 1090"},
LegendPosition » {0.8, -0.4}, LegendSize - 0.8,
LegendSpacing » 0, LegendTextSpace » 5, LegendShadow - None,

Joined -» {False, False, False, False},
PlotMarkers » Automatic, LabelStyle -» {Black, Small},

GridLines -» {{}, {1.0}},
FrameLabel - {{"Numerical Integration or Formula"”, ""},
{“Scaled ",

StringForm]|
"Random Test Away from Singularities\nSummary

of °° calculations",
(Length[listplotl])] }}];
NotebookSave[EvaluationNotebook[]];
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m Appendix 6

The following outlines an argument in support of the assumption that the 3B integral is
zero outside the triangle inequality region. Using the integral representation of the Bessel
function

1

2
Jukr)= nf dfexp(ikrcosf)exp(inb),
0

i

the 3B integral can be written as

Dl(m,y),(m',y"),(m",y"), o] = lin(} rdrJn(yr) Jyw(y'r) Ly (y" r) exp(—€r)
€ 0
2 2
dfexp(im'0") dfexp(im"0")
0

(_ l-)m+m'+m”

2
= —f dfexp(im0)
0

Q2 n)? 0

lim._,q fr dr-exp(—er)exp(ir(ycosf+vy'cosf'+y"cos "))
0

(_ i)m+m'+m" Q1 v
- . f df exp(im0) dfexp(im'")
Q2n)? 0 0

1

2
f dfexp(im"0")
0

(ycosf+7y'cosd'+y"cos ") '

The integral would be zero if y cos 8 +y'cos 8' +y" cos 8" has no zeros. This would corre-

spond to the region outside the triangle inequality.
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