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Motion of a Spinning Top
Jan Vrbik

Both approximate and exact solutions for the motion of a 
spinning top are constructed with the help of quaternions.

‡ Quaternion Algebra
A  quaternion  is  a  four-dimensional  quantity  consisting  of  a  scalar,  say  A,  and  a  three-
dimensional vector a, collectively denoted A ª HA, aL. Addition of two quaternions is com-
ponent-wise, 

(1)HA, aLÅ⊕ HB, bL = HA+ B, a+ bL,

(we do not need to add quaternions in this article). Their multiplication follows the rule

(2)HA, aLÄ⊗ HB, bL = HA B- a ÿ b , A b+ B a- aäbL.

It  is important to note that such multiplication is associative  (even though noncommuta-
tive). This can be verified by the following.

8A_, a_<Î8B_, b_< :=
8A B - a.b, A b + B a - aäb< êê TrigReduce êê Simplify

H8A, 8a1, a2, a3<<Î8B, 8b1, b2, b3<<LÎ8C, 8c1, c2, c3<< -
8A, 8a1, a2, a3<<ÎH8B, 8b1, b2, b3<<Î8C, 8c1, c2, c3<<L êê

Expand

80, 80, 0, 0<<

When the scalar part of a quaternion is zero, it is called a pure quaternion. Since this consti-
tutes an important special case, we will extend our definition of multiplication accordingly.

8A_, a_<Îb_ := 8-a.b, A b - aäb< êê TrigReduce êê Simplify

The operation of conjugation simply changes the sign of the vector part of a quaternion.

8A_, a_< := 8A, -a<
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Based on the corresponding Taylor expansion, it is possible to evaluate various functions
of  a  quaternion.  Of  these,  the  most  important  is  the  exponential  function,  which,  in  this
article, we need only with pure-quaternion arguments. 

PQExp@a_D := ModuleB:n = a.a êê PowerExpand>,

8Cos@nD, a ê n Sin@nD<F

‡ Rotation
Rotating a 3D vector x with respect to an axis through the origin (with a unit direction of
à) by an angle a can be achieved by 

(3)
x ' = e-aê2 ÎxÎeaê2 = Kcos

a

2
, -à sin

a

2
OÎHx˛ Å⊕ x¶LÎKcos

a

2
, à sin

a

2
O =

x˛ Å⊕ x¶ ÎHcos a, à sin aL = x˛ Å⊕ Hx¶ cos a+aäx¶ sin aL,

where a = a à  (a  vector of length a  and unit  direction à),  and x˛  and x¶  are the parallel
and perpendicular (to a)  parts  of  x,  respectively [1].  Note that  x˛  and a  commute,  while
x¶ and a anticommute.

One can show that a quaternion R has the form of eaê2  if and only if RÎR ª RÎR = 1 (a
pure  scalar).  Alternately,  the  same R  can be  parametrized by the  three  Euler  angles  (see
the next section).
By taking a = t w, where t  is time, we achieve constant rotation with an uniform angular
velocity w. Note that

(4)w = 2 RÎR
°
,

where R = eHwê2L t, and R
°
 denotes its time derivative.

The previous formula can be generalized to any time-dependent R, as can be seen by differ-
entiating x ' = RÎxÎR, thus

(5)
x° ' = RÎxÎR

°
+R

°
ÎxÎR = RÎxÎRÎRÎR

°
+R

°
ÎRÎRÎxÎR =

RÎxÎRÎw+wÎRÎxÎR
2

=
x 'Îw-wÎx '

2
= wäx ',

where w is now the instantaneous angular velocity at time t, which may change with time.
Note  that  RÎR

°
 must  be  a  pure  quaternion  (take  the  time  derivative  of  RÎR = 1  to  see

that). Now, any rotation R can be applied to the axes of the original (inertial) system of co-
ordinates,  thus creating the corresponding new, rotating (noninertial)  frame. Components
of any vector x  can then be expressed in either the old, or (often and more conveniently)
the  new  coordinates;  the  latter  will  be  given  by  RÎxÎR.  The  angular  velocity  w,  in  the
new coordinates, will thus have components given by 2 R

°
ÎR. This becomes an important

and helpful tool: even though the laws of physics are normally valid only in inertial coordi-
nates, the resulting equations often simplify when expressed in the rotating frame.
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and helpful tool: even though the laws of physics are normally valid only in inertial coordi-
nates, the resulting equations often simplify when expressed in the rotating frame.

‡ Spinning Top
Let us consider an axially symmetrical body (a “top”) of mass M , and parallel and perpen-
dicular (with respect to the body’s symmetry axis) moments of inertia equal to J˛  and J¶,
respectively.  We make  it  spin  around  its  axis,  place  the  bottom tip  of  its  (usually  tilted)
axis on a nonslip horizontal plane (a desk), and let it continue its motion subject to the ver-
tical gravity field. Let us also assume that the top’s center of mass is at a distance r from
its point of contact, that the gravitational acceleration is g, and that there is no friction.

To investigate the top’s motion, we introduce an inertial coordinate system with its origin
at  the  point  of  contact  and  its  z  direction  pointing  vertically  upward.  First  we  position  a
motionless  top  vertically  (its  symmetry  axis  aligned  with  the  z  direction)  on  the  desk’s
surface.  We then rotate  it  using a  fully  general,  time-dependent  rotation R,  parametrized
by three Euler angles, thus

(6)R = ‰k fê2 Î‰i qê2 Î‰k yê2,
where f is a rapidly increasing function of time that represents the actual spinning of the
top  around  its  symmetry  axis  (this  rotation  is  applied  first),  followed  by  tilting  the
spinning  top  by  an  angle  q  (potentially  a  slowly  varying  function  of  time)  around  the
inertial x direction, further followed by slowly rotating the spinning, tilted top around the
inertial z direction by an angle y, thus creating a so-called precession. Also: i, j (not used
in the last formula), and k are unit vectors along the x, y, and z directions, respectively, in
their pure-quaternion form.

· Equations of Motion

We now use the Lagrange technique to find the corresponding equations for the three Eu-
ler angles. The kinetic energy of the top equals one-half of the scalar product of its angu-
lar velocity with its angular momentum, as its motion is purely rotational. In the rotating
frame (this is when it becomes handy), this equals

(7)
J˛ wz'

2 + IJ¶ + M r2M Iwx'
2 +wy'

2M

2
,

where wx', wy', wz'  are the rotating-frame coordinates of w, and J¶ + M r2  (denoted J  from
now on; similarly, J˛ will be called J3) is the top’s moment of inertia with respect to a line
perpendicular to its symmetry axis, and passing through the origin (which is displaced by
r  from its  center  of  mass).  Usually  J > J3  (a  thin  circular  disk needs  r  to  be  bigger  than
only  one-half  of  its  radius  to  meet  this  condition),  but  our  results  are  valid  when  J § J3
as well.
Subtracting the potential energy M g r cos q ª J m cos q (by the definition of m) yields the
resulting Lagrangian.
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Subtracting the potential energy M g r cos q ª J m cos q (by the definition of m) yields the
resulting Lagrangian.

i = 81, 0, 0<; j = 80, 1, 0<; k = 80, 0, 1<;
R = HPQExp@k ê 2 f@tDDÎPQExp@i ê 2 q@tDDLÎPQExp@k ê 2 y@tDD;
w = I2 D@R, tDÎRM@@2DD;

L = 8J, J, J3<.w2 ë 2 - J m Cos@q@tDD êê Simplify

1

2
I-2 J m Cos@q@tDD + J q£@tD2 +

J Sin@q@tDD2 y£@tD2 + J3 Hf£@tD + Cos@q@tDD y£@tDL2M

Since the result is free of f and y (it contains only their time derivatives), the correspond-

ing ¶∂L
¶∂f
°  and ¶∂L

¶∂y
°  must be constants of motion [2].  The remaining equation is then obtained

from

(8)
d

dq

¶∂L

¶∂q
° =

¶∂L

¶∂q
.

This yields the following.

cm1 = D@L, f'@tDD êê Simplify
cm2 = D@L, y'@tDD êê Simplify
eq = D@D@L, q'@tDD, tD - D@L, q@tDD êê Simplify

J3 Hf£@tD + Cos@q@tDD y£@tDL

J Sin@q@tDD2 y£@tD + Cos@q@tDD J3 Hf£@tD + Cos@q@tDD y£@tDL

-Sin@q@tDD I-J3 y£@tD Hf£@tD + Cos@q@tDD y£@tDL +

J Im + Cos@q@tDD y£@tD2MM + J q££@tD

The first two expressions are constants of motion, while the last one must be equal to zero.

Introducing a new variable F by

(9)f
°
=

J F
°
+ HJ - J3L y

°
cos q

J3
,

the last three expressions simplify further. It is also important to realize that the transfor-
mation (9)  replaces  only  the  f  parameter  (the  speed of  spinning);  if  we are  interested  in
the behavior of y and q  only (as is usually the case), we get the same solution regardless
of whether we use f (in the old set of equations) or F (in the new one).
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So, let us see what the new results look like.

cm1 = cm1 ê J ê. f'@tD Ø HJ F'@tD + HJ - J3L y'@tD Cos@q@tDDL ê J3 êê

Simplify
cm2 = cm2 ê J ê. f'@tD Ø HJ F'@tD + HJ - J3L y'@tD Cos@q@tDDL ê J3 êê

Simplify
eq = eq ê J ê. f'@tD Ø HJ F'@tD + HJ - J3L y'@tD Cos@q@tDDL ê J3 êê

Simplify

F£@tD + Cos@q@tDD y£@tD

Cos@q@tDD F£@tD + y£@tD

-m Sin@q@tDD + Sin@q@tDD F£@tD y£@tD + q££@tD

The  equations  are  now  much  simpler,  and  the  number  of  parameters  has  been  reduced
from three to only one (namely m, whose dimension is sec-2). 
We can now easily infer a possibility of what we call a “steady” solution, with a constant
value of q (say q0) and

(10)
F = F

°
0 t +F0,

y = y
°
0 t +y0,

where F
°
0 and y

°
0 are two constants whose product must be equal to m. To relate the preces-

sion speed y
°
0 to the actual spinning speed, say f

°
0, we have to solve (based on (9))

(11)J3 f0
°
=

m J

y
°
0

+ HJ - J3L y
°
0 cos q0

for y0
°

, which yields

(12)
y0
°
=

J3 f0
°
± IJ3 f0

°
M
2
- 4 m J HJ - J3L cos q0

2 HJ - J3L cos q0
,

where the negative sign corresponds to the usually observed “slow” precession (assuming,
from now on, that f0

°
> 0), whereas the positive sign yields a hard-to-achieve “fast” preces-

sion. When J = J3 (spherically symmetrical top), we get only the “slow” solution y0
°
= m

f0
° .

For a fast-spinning top, the previous formula yields, to a good approximation, y0
°
= J m

J3 f0
° ;

the precession speed is practically independent of q0.
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· Approximate Solution

The actual motion is usually more complicated than a steady solution of the previous sec-
tion, as q may undergo periodic oscillations, called nutation. Assuming that the amplitude
of these is small, we can expand the three dependent variables of our equations around the
steady-state solution: 

(13)

q = qs + e q1,
y
°
= y

°
s + e y

°
1,

F
°
=

m

y
°
s

+ e F
°
1,

where the first term of each right-hand side is a constant, the second term remains time de-
pendent,  and  e  is  small.  We  substitute  these  into  the  three  equations,  neglecting  e2  and
higher powers of e.

aux = 8cm1, cm2, eq< ê. 9q@tD Ø qs + e q1@tD, q''@tD Ø e q1''@tD,

y'@tD Ø y
°
s + e y1'@tD, F'@tD Ø m ê y

°
s + e F1'@tD=;

approx = Coefficient@Series@aux, 8e, 0, 1<D, eD

:-Sin@qsD y
°
s q1@tD + F1

£@tD + Cos@qsD y1
£@tD,

-
m Sin@qsD q1@tD

y
°
s

+ Cos@qsD F1
£@tD + y1

£@tD,

Sin@qsD y
°
s F1

£@tD +
m Sin@qsD y1

£@tD

y
°
s

+ q1
££@tD>

Each of the three expressions must be equal to zero.
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We solve the first two equations for y1 ' and F1 ' and substitute into the last equation.

aux = Solve@8approx@@1DD ã 0, approx@@2DD ã 0<,
8y1'@tD, F1'@tD<D êê Simplify

approx@@3DD ê. aux êê Simplify

::y1
£@tD Ø

Csc@qsD Jm - Cos@qsD y
°
s
2
N q1@tD

y
°
s

,

F1
£@tD Ø

Csc@qsD J-m Cos@qsD + y
°
s
2
N q1@tD

y
°
s

>>

: -2 m Cos@qsD +
m2

y
°
s
2
+ y
°
s
2

q1@tD + q1
££@tD>

Solving for q1  (and, subsequently, for y1  and F1) is now quite easy. Note that the coeffi-
cient of q1 in the last expression is always non-negative.

Also  note  that  y
°

 will  be  always  positive  (assuming  “slow”  precession),  whenever  the
following condition is met:

(14)
Jm- cos qs y

°
s
2
N e

y
°
s sin qs

< y
°
s.

Reversing the above inequality results in so-called looping orbits (in terms of the path of
the axis, when displayed on a unit sphere: see below), with y

°
 periodically changing direc-

tion;  making the  two sides  of  (14)  equal  to  each other  results  in  cuspidal  orbits  (when q
reaches its smallest value, y

°
 becomes zero).

If desired, one can extend the approximate solution to achieve e2 (and higher) accuracy.

· Exact Solution

One can show that the original differential equation for q, namely

(15)q
..
+F

°
y
°

sin q -m sin q = 0

has the following constant of motion.

cm3 =
1

2
Iq'@tD2 + y'@tD2 + F'@tD2M + y'@tD F'@tD Cos@q@tDD +

m Cos@q@tDD;
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This can be easily verified.

D@cm3, tD ê q'@tD ê.
Solve@8D@cm1, tD ã 0, D@cm2, tD ã 0<, 8y''@tD, F''@tD<D@@
1DD êê Simplify

-m Sin@q@tDD + Sin@q@tDD F£@tD y£@tD + q££@tD

Making cm1  and cm2  equal to their initial values, we can solve for y
°
 and F

°
 and substitute

these  into  cm3  (minus  its  initial  value,  so  that  the  resulting  expression  must  be  equal  to
zero).

cm3 = cm3 -
1

2
Jq
°
0
2
+ y
°
0
2
+ F
°
0
2
N - y

°
0 F
°
0 Cos@q0D - m Cos@q0D;

eq =
cm3 ê.

Iaux = SolveA9cm1 ã F
°
0 + y

°
0 Cos@q0D, cm2 == F

°
0 Cos@q0D + y

°
0=,

8F'@tD, y'@tD<E@@1DDM êê Simplify;

The resulting differential  equation can be simplified by the q = 2 arccos l  transformation
[3].

eqn = TrigExpand@eq ê. q0 Ø 2 qD ê. 9q
°
0 Ø 0, q Ø ArcCos@l0D= êê

Simplify;
eqn = TrigExpand@eqn ê. q@tD Ø 2 qD ê.

:q'@tD Ø -2 l'@tD ì 1 - l@tD2 , q Ø ArcCos@l@tDD> êê

Simplify;
eqn = CollectAeqn I-1 + l@tD2M ë 2 êê Simplify, 8l'@tD, l@tD<,

SimplifyE

1

2
l0
2 J2 m + F

°
0
2
+ 2 l0

2 F
°
0 y
°
0 + y

°
0
2
N -

l0
4 IF

°
0 + y

°
0M

2

4 l@tD2
+

1

4
J-4 m - F

°
0
2
+ 2 F

°
0 y
°
0 - y

°
0
2
- 4 l0

2 Im + F
°
0 y
°
0MN l@tD2 + m l@tD4 - l£@tD2
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To simplify the subsequent solution, we have assumed (without loss of generality) that the
initial  time has been chosen to coincide with q  reaching its  maximum value (and, conse-
quently, l

°
0 = 0). The above equation can then be solved, using specific initial conditions,

which  must  satisfy  F
°
0 y
°
0 ¥ m  (due  to  (15),  since  q

..
0 § 0);  here  lsq  provides  the  solution

for l2.

8eqcf, L, aux< =

9CoefficientAeqn + l'@tD2, l@tD, 84, 2, 0, -2<E, l0
2, aux= ê.

ThreadA9l0, y
°
0, F

°
0, m= -> 80.85, 1, 3, 1<E;

d = x ê. SolveA0 ã eqcf.9x2 + 3 L x + 3 L2, x + 2 L, 1, 0=, xE@@1DD;

m = -eqcf.83 L + d, 1, 0, 0< ;

k = d eqcf@@1DD ë m2;

lsq = L + d JacobiSN@m t, kD2

0.7225 + 0.156255 JacobiSN@1.60195 t, 0.0608884D2

This can be easily transformed back to q; one can then find the corresponding F and y by

analytically integrating the expressions for y
°
 and (if desired) F

°
. Finally, the results can be

displayed graphically.

y
°
sol =

y'@tD ê. aux ê. 9Cos@q@tDD -> 2 l@tD2 - 1, Cos@q0D -> 2 L - 1= ê.

9l@tD2 Ø L + d J, l@tD4 Ø HL + d JL2=;

ysol = 3.7 + ApartAy
°
sol, JE ê.

:
c_.

a_. + b_. J
Ø

c EllipticPiB-
b

a
, JacobiAmplitude@m t, kD, kF

JacobiDN@m t, kD ì a m 1 - k JacobiSN@m t, kD2 >;

qsol = 2 ArcCosB lsq F;

Show@ParametricPlot3D@
8Cos@uD Sin@vD, Sin@uD Sin@vD, Cos@vD<, 8v, 0, Pi<,
8u, 0, 2 Pi<D,

ParametricPlot3D@
Evaluate@8Cos@ysolD Sin@qsolD, Sin@ysolD Sin@qsolD,

Cos@qsolD<D, 8t, 0, 10<DD
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One can now compute and display the top’s motion under various initial conditions, check
the accuracy of the approximate solution, and so forth. We will leave it for you to explore.
Have fun!
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