
The Mathematica® Journal

Advanced Animation in
Mathematica
Operating on the Animation Scene Graph in
XML (X3D)
Stewart Dickson

The motivation for this article lies in 3D computer graphics animation
systems that were developed twenty to thirty years ago. The author
particularly sees the connection between Mathematica and the animation
system that ran in Genera Lisp on the Symbolics platform. This article
presents a method for programmatically operating on an animation scene
graph in Mathematica represented in the X3D extension of the Extensible
Markup Language (XML). Below is presented historical and conceptual
background on the animation scene graph and a contemporary example.
Further motivation came from comparing the user interface design of a
current, advanced animation system to an animation scene graph
implemented in X3D and uploaded to Wolfram|Alpha Pro. Finally, this
article presents an instance where an X3D scene graph was used in the
“Fingerspelling Sign Language” Demonstration [1].
Mathematica organizes text, computable mathematical typesetting, and graphics as a note-
book document. 3D computer graphics simulation, animation, and rendering systems orga-
nize graphics primitives so as to give the user a handle on the complexity required to
model reality—a formidable task. An animation system, such as Autodesk Maya [2], pre-
sents complexity in a hierarchical way such that it can be selectively hidden, but subparts
of it can be easily navigated to in order to manipulate the graphics primitives that make up
the simulated 3D graphic scene.

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Ú Figure 1. Pt. Reyes [3, 4].

In Mathematica and in an advanced 3D graphics animation or simulation system, the task
of representing 3D graphics primitives for manipulation and then passing them off to
graphics hardware or to an external system for high-quality rendering is the same, but a
high-performance animation system approaches the task differently from Mathematica. In
the early 1990s, Silicon Graphics, Inc. (SGI) devised the scene graph as a hierarchical
mechanism for organizing complex 3D graphics simulations. The scene graph model has
been adopted by most powerful animation systems. But, expressions in Autodesk Maya—
the language it provides to extend its capabilities to model real-world processes—are very
limited. The high-performance animation system is optimized to manipulate complexity,
but not to generate it.
The Mathematica language's ability to computationally model reality is absolutely unlim-
ited. Circa 1993, the Symbolics S-Graphics package was widely thought to contain the
best geometrical modeling system available for animation [5]. Symbolics spawned the
Open Genera Lisp system and the Macsyma computer algebra system. The bottom-level
string-rewriting system of Mathematica is like Lisp. Mathematica's programming
paradigm promotes use of (lambda) functions. I think that these parallels between Mathe-
matica and a very advanced, albeit historically early, computer animation system should
not be dismissed.
Advanced 3D graphics animation and simulation systems can benefit from Mathematica’s
programming language and Mathematica graphics can benefit from the hierarchical organi-
zation of the animation scene graph. It is easy to get started using a scene graph in Mathe-
matica. I used this technique in the animated hand model of the “Fingerspelling Sign
Language” Wolfram Demonstration [1].

2 Stewart Dickson

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Advanced 3D graphics animation and simulation systems can benefit from Mathematica’s
programming language and Mathematica graphics can benefit from the hierarchical organi-
zation of the animation scene graph. It is easy to get started using a scene graph in Mathe-
matica. I used this technique in the animated hand model of the “Fingerspelling Sign
Language” Wolfram Demonstration [1].
The scene graph is a basic structure of the SGI Open Inventor system [6]. (See Figure 2
and also the Coin3D project) [7]. These systems render graphic primitives interactively by
traversing the scene graph (it is a tree structure) and emitting OpenGL code (a language un-
derstood by graphics hardware) [8] for the graph Shape node entities as they are traversed
[9]. Graphics Shape primitives are animated by placing 3D coordinate Transform nodes
ahead of them in the scene graph [10]. A transformation stack is accumulated as the traver-
sal descends tree branches, and the stack of transforms is applied to the graphics shape
primitives and emitted as OpenGL (or other RenderAction) directives as they are encoun-
tered [11].

Ú Figure 2. “Example of a Scene Graph” (Chapter 1, Figure 1-2 , [6]).

Advanced Animation in Mathematica 3

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Open Inventor 2.0 became the basis for the first version of the Virtual Reality Modeling
Language (VRML 1.0) [12]; X3D [13] is the latest successor to VRML Version 2.0 [14]
(1997) and it is implemented in XML. In Open Inventor, Separator [15] nodes are objects
that inherit from the Group class (e.g., a Separator node is a kind of Group object) [16]. In
VRML 2.0, Transform nodes also act implicitly as a Group mechanism in the hierarchy as
well. Property nodes include Materials, which specify object surface illumination and ap-
pearance properties to be applied to subsequent Shape nodes in the scene graph tree.
If the Computable Document Format (CDF) is Mathematica’s answer to the Portable Docu-
ment Format (PDF), then CDF organizes Graphics3D objects in it as a two-dimen-
sional document. The X3D Document Object Model (DOM) [17] could be Mathematica’s
answer to organizing Graphics3D objects in the animation scene graph to represent a vir-
tual world.
The key to this observation was the work I did on the Wolfram|Alpha Pro XML file
upload scanner [18]. As of the time of this writing, Wolfram|Alpha and the Wolfram
Demonstrations Project are compatible with Mathematica 8. In this version, Mathematica
does not yet have an X3D importer, but I have discovered that it is actually much more
powerful to import an animation scene graph implemented in X3D using Mathematica’s
quite excellent XML importer. All you have to do to use it is to rename the X3D file to
use the .xml extension instead. The XML importer preserves the tree hierarchy of the
XML Document Object Model (DOM) and allows you to traverse the X3D animation
scene graph in Mathematica after the style of an advanced animation system such as
Autodesk Maya.
Figure 3 shows the Maya outliner user interface view of an animation rig to articulate a
“sausage” hand model constructed of Non-Uniform Rational B-Spline (NURBS) sphere
primitives. The tree structure represents the parent-child hierarchy of sphere geometry
nodes and their 3D coordinate transforms. The nodes in the graph are selectable and,
when selected, provide access to the Maya animation channel editor for the transform val-
ues (translation, rotation, scale) for each node.

4 Stewart Dickson

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Ú Figure 3. Outliner user interface in Autodesk Maya 2013.

Figure 4 shows the ExpressionTreePlot seen when you upload to Wolfram|Alpha
Pro the X3D scene graph for the hand model of the “Fingerspelling Sign Language”
Demonstration as an XML file. This file is supplied in the additional electronic files accom-
panying this article.

Advanced Animation in Mathematica 5

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The Wolfram|Alpha XML Pro upload response shows an ExpressionTreePlot,
restyled for Wolfram|Alpha, of a simplification of the XML DOM tree.

Ú Figure 4. The response to uploading an X3D hand animation rig as XML to Wolfram|Alpha Pro.

6 Stewart Dickson

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The XML file itself is of the following form.

<?xml version=”1.0” encoding=”UTF-8”?>
…
<!DOCTYPE X3D PUBLIC “ISO//Web3D//DTD X3D 3.0//EN” …
…
<head>
…
</head>
<Scene>
 <Group>
 …
 <Transform DEF=’Relbow’ translation=’0.0 0.0 0.0’
 rotation=’0.0 0.0 1.0 0.0’>
 …
 <Shape DEF=’Rhand_thumbMcarpalGeom’>
 <Sphere DEF=’Rhand_thumbMcarpalSphere’/>
 </Shape>
 …
 </Transform>
 …
 </Group>
 </Scene>
</X3D>
The XML should be imported into the Mathematica “Fingerspelling Sign Language”
Demonstration notebook source as follows.

Advanced Animation in Mathematica 7

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

handXML = XMLObject@"Document"D@
8
XMLObject@"Declaration"D@"Version" -> "1.0",
"Encoding" -> "UTF-8"D,

XMLObject@"Doctype"D@"X3D",
"Public" -> "ISOêêWeb3DêêDTD X3D 3.0êêEN",
…,
XMLElement@"X3D", 8"profile" -> "Interchange",

"version" -> "3.0",
…,
8XMLElement@"head", 8<,

…
8<D<, …<,

…D,
XMLElement@"Scene", 8<,
8XMLElement@"Group", 8<,

…
XMLElement@"Transform", 8"DEF" -> "Relbow",

"translation" -> 80.0, 0.0, 0.0<,
"rotation" -> 80.0, 0.0, 1.0, 0.0<<,

…
8XMLElement@"Shape",

8"DEF" -> "Rhand_thumbDistPhalGeom"<,
8XMLElement@"Sphere", 8<, 8<D, …, …<D<

D
D<

D
D

<, 8<, "Valid" -> TrueD;

The handXML expression is paraphrased for readability. Please see the “Fingerspelling
Sign Language” Demonstration notebook source for the complete expression. Where hier-
archy in the XML file is denoted by <tag>…</tag>, hierarchy in the Mathematica
XMLObject@8…XMLElement@8…<D …<D structure is denoted by bracketed lists. The
complete structure of the handXML expression is depicted in the ExpresÖ
sionTreePlot in the Wolfram|Alpha XML file upload result.
In order to generate Graphics from the XML object hierarchy, functions must be writ-
ten to translate X3D Transform and Shape nodes into the Mathematica Graphics3D
equivalents. I provide some of these functions in the downloadable source code for the
“Fingerspelling” Demonstration. In the X3D file, the Transform and Shape nodes are all
named using the "DEF" rule. In an advanced animation system like Maya, names carry a
huge amount of information and are absolutely essential.

8 Stewart Dickson

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

A node selection user interface for the Animated Hand Model of the “Fingerspelling”
Demonstration using a hierarchy of OpenerView instead of a static Grid of
Checkbox can be constructed automatically in Mathematica by recursively traversing
the X3D DOM tree (scene graph) using XMLObject. The structural hierarchy required to
articulate the hand bones through a kinematic transform stack is reflected in the structure
of the node selection user interface. Compare these graphics to the Outliner node selection
user interface from Autodesk Maya, which was built precisely for the task of managing
kinematic animation on a complex rig.

Ú Figure 5. A node selection user interface for the Animated Hand Model of the “Fingerspelling”
Demonstration using a hierarchy of OpenerView.

Advanced Animation in Mathematica 9

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

See also the Demonstrations “3D Skeletal Anatomy of the Arm” and “3D Skeletal
Anatomy of the Torso” [19, 20], which use a similar Graphics3D node selection user
interface.
In the “Fingerspelling” Demonstration, I stored animation channels for keyframes as lists
of node name and channel value rules.

base = 8<;
anim = 8“Rwrist_PITCH” Ø 0, "Rwrist_ROLL" Ø 0,

"Rhand_thumbPalm" Ø -0.46705,
"Rhand_thumbIndex" Ø -0.696228,

…, “Rhand_littleNear” Ø 0.2,
"Rhand_littleMedial" Ø 0.2,

"Rhand_littleJoint3" Ø 0.21<;

H* Joint rotation angles *L

Similarly, the node selection state is keyed by the Shape node name. The staticSeÖ
lection list contains twenty Name Ø value rules in the “Fingerspelling” Demonstra-
tion source, paraphrased here for readability.

staticSelection = 8

"Rhand_wristGeom" Ø False,
"Rhand_thumbMcarpalSphere" Ø False,
"Rhand_thumbProxPhalSphere" Ø False,
"Rhand_thumbDistPhalSphere" Ø False,
"Rhand_indexMcarpalSphere" Ø False,
"Rhand_indexProximSphere" Ø True,
…,
"Rhand_littleMedPhalSphere" Ø False,
"Rhand_littleDistPhalSphere" Ø False

<;

I apply the animated transform values to the X3D scene graph as imported into
Mathematica using ApplyXFormStack@element_XMLElement, xForm_List,
anim_List, anim_List, selection_ListD, a recursive function. Then I use
collectTransforms to collect a stack of geometric coordinate transforms from the
XML transform elements descending a branch. Then I apply Sow to a function that ap-
plies Mathematica geometric transforms to every XML Shape node encountered. To show
the Graphics3D, I apply Reap to the results of ApplyXFormStack as follows.

handGraphic = Graphics3D@
Flatten@DeleteCases@Flatten@Reap@

ApplyXFormStack@Ò, base, anim, staticSelectionD & êü
Cases@handXML, XMLElement@___D, 1DD, 1D,

NullD, 1D,
Boxed -> FalseD

10 Stewart Dickson

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Again, ApplyXFormStack calls collectTransforms descending the branches of
the scene graph tree—analogous to glPushMatrix of OpenGL—and applies that transform
stack to each Shape node it traverses. In the “Fingerspelling” Demonstration, we do ease-
in/ease-out interpolation between anim lists containing keyframe poses corresponding to
letters of the alphabet, then apply the interpolated rotation angle value to the joint trans-
form of the same name.
Reading X3D as XML fully exposes all of the security vulnerabilities inherent in import-
ing XML files into Mathematica. The Mathematica XML importer initially reads all of
the Graphics Coordinate, Coordinate Index, and Transform fields as strings, which then
must be converted to lists of numerical values using either ToExpression or Read. It
is easy to encode expressions into an XML file that can do damage to a computer execu-
tion environment or file system when Mathematica runs Read or ToExpression on
them. For similar reasons, Read and ToExpression are prohibited from Wolfram
Demonstration notebooks.

Ú Figure 6. An animated clip from the “Fingerspelling” Demonstration.

Advanced Animation in Mathematica 11

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

In “Fingerspelling Sign Language Using an Animated Hand Model,” keyframed ani-
mation curves are simple, sinusoidal ease-in/ease-out moves, whereas Maya uses cubic
spline curves to interpolate animation channels. But the key point here is what is required
to organize and animate multiple GraphicsComplex subparts of a complex
Graphics3D object in Mathematica. In my opinion, the X3D incarnation of VRML rep-
resented in the XML DOM tree is an excellent model for doing this.

‡ Acknowledgments
Thanks to George Fann, who first suggested that I look at X3D.

‡ References
[1] S. Dickson and S. Martell. “Fingerspelling Sign Language Using an Animated Hand Model”

from the Wolfram Demonstrations Project—A Wolfram Web Resource.
www.demonstrations.wolfram.com/FingerspellingSignLanguageUsingAHandModel.

[2] Autodesk. “Maya.” (Feb 1, 2013) usa.autodesk.com/maya.

[3] Wikipedia. “Reyes Rendering.” (Feb 1, 2013) en.wikipedia.org/wiki/Reyes_rendering.

[4] R. Cook, L. Carpenter, T. Porter, B. Reeves, D. Salesin, and A. R. Smith. “Pt. Reyes.” (Feb
14, 2013) alvyray.com/Art/PtReyes.htm.

[5] Wikipedia. “Symbolics.” (Feb 1, 2013) en.wikipedia.org/wiki/Symbolics.

[6] J. Wernecke, “The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open
Inventor’, Release 2,” Redwood City, CA: Addison-Wesley, 1994.
techpubs.sgi.com/library/dynaweb_docs/0630/SGI_Developer/books/Inv_Mentor/sgi_html/
index.html.

[7] Kongsberg Oil & Gas Technologies. “Coin3D.” (Feb 1, 2013)
bitbucket.org/Coin3D/coin/wiki/Home.

[8] Silicon Graphics, Inc. “OpenGL: The Industryʼs Foundation for High Performance Graphics.”
(Feb 1, 2013) www.opengl.org.

[9] Kongsberg Oil & Gas Technologies. “SoShape Class Reference [Node Classes].” (Feb 1,
2013) coin3d.bitbucket.org/Coin/classSoShape.html.

[10] Kongsberg Oil & Gas Technologies. “SoTransform Class Reference [Node Classes].” (Feb 1,
2013) coin3d.bitbucket.org/Coin/classSoTransform.html.

Kongsberg Oil & Gas Technologies. “SoGLRenderAction Class Reference [Action Classes].”
(Feb 1, 2013) coin3d.bitbucket.org/Coin/classSoGLRenderAction.html.

[11]

[12] VRML.org. “Virtual Reality Modeling Language.” (Feb 18, 2013)
web.archive.org/web/20121017095254/http://www.vrml.org.

[13] Web3D Consortium. “X3D Developers.” (Feb 4, 2013) www.web3d.org/x3d.

[14] A. Ames, D. Nadeau, and J. Moreland, VRML 2.0 Sourcebook, New York: John Wiley &
Sons, 1996. www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook/index.html.

[15] Kongsberg Oil & Gas Technologies. “SoSeparator Class Reference [Node Classes].” (Feb 4,
2013) coin3d.bitbucket.org/Coin/classSoSeparator.html.

12 Stewart Dickson

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

[16] Kongsberg Oil & Gas Technologies. “SoGroup Class Reference [Node Classes].” (Feb 4,
2013) coin3d.bitbucket.org/Coin/classSoGroup.html.

[17] w3schools.com. “XML DOM Tutorial.” (Feb 5, 2013) www.w3schools.com/dom/default.asp.

[18] Wolfram Research. “Wolfram|Alpha Pro XML File Upload Example.” (Feb 4, 2013)
www.wolframalpha.com/input/?i=+&examplefile=1&lk=3&fileinput=FileUpload%2FAnimated
Methane.xml.

[19] S. Dickson. “3D Skeletal Anatomy of the Arm” from the Wolfram Demonstrations Project—
A Wolfram Web Resource. demonstrations.wolfram.com/3DSkeletalAnatomyOfTheArm.

[20] S. Dickson. “3D Skeletal Anatomy of the Torso” from the Wolfram Demonstrations Project—
A Wolfram Web Resource. demonstrations.wolfram.com/3DSkeletalAnatomyOfTheTorso.

S. Dickson, “Advanced Animation in Mathematica,” The Mathematica Journal, 2013.
dx.doi.org/doi:10.3888/tmj.15-2.

List of Additional Material

Additional electronic files:

1. www.mathematica-journal.com/data/uploads/2013/02/RHandTootsie2scale.xml

About the Author

Stewart Dickson was a programmer of 3D computer graphics and animation for broadcast
video, theatrical film, digital cinema, and location-based entertainment from 1984 to
2002. He was a pioneer in digital sculpture from 1989. He has worked at Walt Disney Fea-
ture Animation, Oak Ridge National Laboratory, and the NOAA National Climatic Data
Center. He has worked at Wolfram Research since 2011.
Stewart Dickson
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820-7237
sdickson@wolfram.com

Advanced Animation in Mathematica 13

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

