
The Mathematica® Journal

Controlling Robots Built with
the LEGO® MINDSTORMS®
NXT Brick
Denis Cousineau

The NXT is a general-purpose processor that can be used to
control motors and sensors; it is ideal for building autonomous
robots. It can also communicate with more elaborate software
located on a computer, using a Bluetooth communication port. In
this article, we show how to communicate with the NXT by
sending the correct bytes. We also introduce a package that
manages all the exchanges through functions. These functions
can be used in conjunction with dynamic cells to display the
robotʼs status and control the robotʼs motor.

‡ Introduction
Robots are ideal vehicles for testing cognitive theories regarding learning, adaptations,
and classification of environmental stimuli. Most robots are built around a central proces-
sor in charge of dealing with the motor output and the sensory input. To that end, in 2006
LEGO released a new programmable brick, the LEGO MINDSTORMS NXT. This brick,
equipped with four sensor inputs and three motor outputs, has 256 kilobytes of flash mem-
ory in which files can be stored. It can run programs compiled for the brick (files ending
with the .rxe extension and compiled for this system using LEGO LabVIEW or third-
party compilers such as NBC or NXC). The versatility and low cost of this brick has made
it an ideal vehicle for developing robotic projects.
The NXT is well-suited for developing autonomous robots such as scouting robots. Learn-
ing algorithms can also be tested; for example, to find the exit of a maze more aptly than
by trial and error. Finally, the NXT can also be used to study social cognition models, in
which multiple robots must interact to enhance the group survival rate.
This article shows how to control the brick over a Bluetooth communication link. We also
introduce the Math4NXT package, which makes the task easier. Used in conjunction with
Mathematica’s built-in Dynamic command, controlling a LEGO robot becomes very
simple.

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

‡ Establishing a Communication Link
The first time you start the NXT brick, use your computer’s Bluetooth tools to look for the
brick and establish a communication link. On that very first use, you have to provide a
passkey on the brick (default is “1234”) and on the computer. Then you need to choose
the “Dev” service available on the brick. At that point, a virtual serial communication port
(a COM port) is allocated to serve as a communication link between the computer and the
brick. The exact COM port given is variable (e.g. COM11) but remains constant for this
NXT-computer pair (detailed instructions to achieve the pairing can be found in [1]).
Once you know which COM port to use, you do not need to repeat the process.
The NXT brick has an operating system (firmware) that immediately handles requests
received from the COM port. It does so even if the brick is currently running a program.
These commands are called direct commands in the LEGO documentation [2]. Direct
commands include file manipulation, motor control, sensor configuration and reading, and
communication between bricks. Commands are sent over the COM port as telegrams
composed of a succession of bytes (numbers between 0 and 255). For some commands, a
reply can be returned by the brick, also in the form of a telegram. Each telegram is
preceded by the length of the telegram, given as a WORD number, that is, using two
bytes. Hence, controlling the NXT brick is simply a matter of sending the correct bytes in
the correct order over a serial port.
In order to use a serial COM port, use the Mathematica package called SerialIO [3]. This
package has two parts. The first is an executable program, suited for your computer’s pro-
cessor and operating system. SerialIO provides such programs for Linux and Windows
OS (both 32 and 64 bit) as well as for Mac OS X. The second part has the Mathematica
functions that can be used in your project. It includes the commands SerialOpen and
SerialClose to open and close a communication link on a given COM port, and SeriÖ
alWrite and SerialRead to send or receive bytes from the COM port. The following
figure illustrates the different layers through which information goes during a communica-
tion between an NXT brick and a computer.

2 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Ú Figure 1. The software architecture by which an NXT brick and a computer can communicate.
The last three boxes on the right represent Mathematica programs, and the last two are given by
the package Math4NXT described next.

Get the package SerialIO from Wolfram Library Archive and install it in a folder of your
choice (a good place is in the Mathematica AddOns folder, under the ExtraPackages sub-
folder). For convenience, you can set your working directory to this path so that the Math-
Link-compatible program is located automatically using the following instruction.

SetDirectory@
FileNameJoin@8$InstallationDirectory, "AddOns",

"ExtraPackages", "SerialIO", $SystemID<DD;

Then load the package with Needs.

Needs@"SerialIO`"D

The command is successful if you can see a process named SerialIO running in the back-
ground of your computer. The following command opens a COM port and therefore estab-
lishes a communication link with the brick (it must be turned on).

mybrick = SerialOpen@"COM11"D;

If you have an NXT brick and wish to evaluate the input cells in this article, select any in-
put cell while holding the Alt key; that selects all input cells. Then from the Mathematica
menu, choose Cell £ Cell Properties £ Evaluatable. Without an NXT brick, running these
commands returns error messages or unevaluated input.

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 3

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

To see if the connection is open, look at the brick LCD display in the upper-left corner. If
you see <, it means the connection is not established. However, <> means that the
connection is established. The variable mybrick contains the stream descriptor of the
COM port and is used in all subsequent communications. Closing the COM port is done
with the following instruction.

SerialClose@mybrickD

Exiting Mathematica (or ending the kernel) also closes the COM port and purges the pro-
cess SerialIO running in the background.

‡ Sending a Telegram and Getting the Reply
The SerialIO package was made to send text over the COM port (either individual charac-
ters or strings of text). However, for controlling the NXT, it makes more sense to send
numbers directly. Hence, we need to convert numbers to the corresponding letters in the
ASCII code before sending them. This is a bit awkward and we propose a neater solution
later.
A telegram always begins with one byte indicating whether the NXT should return a reply
telegram or not. This is your choice, but many commands sent to the brick only return a sta-
tus byte (0 for success, or an error message). In the case of a status byte, the reply tele-
gram is not useful. To ask for a reply, the first byte must be 0; 128 means that the NXT
must not send a reply.
The second byte of a telegram is always the command number. These numbers are given
in the LEGO Group documentation [2]. The subsequent bytes depend on the command
sent.
For example, asking the NXT to play a sound is achieved by the direct command
PlayTone. Its command number is 3. Then two parameters must be provided: the tone
frequency (a number between 200 and 14000) and the tone duration (in milliseconds, a
number between 0 and 65535). These two parameters are coded as UWORD (unsigned
WORD), that is, over two bytes, the least significant byte first. For convenience, we write
a conversion function toUWORD.

toUWORD@value_D := 8Mod@value, 256D, Quotient@value, 256D<

4 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Hence, a tone frequency of 480 Hz for a duration of two seconds corresponds to the follow-
ing bytes.

toUWORD@480D
toUWORD@2000D

8224, 1<

8208, 7<

The whole telegram would then correspond to the following.

telegram = 80, 3, 224, 1, 208, 7<;

It must be preceded by the telegram length, obtained with the following instruction.

telegramlength = toUWORD@Length@telegramDD

86, 0<

We concatenate the two parts to get a complete message, and get a list of the characters cor-
responding to the numbers given (those characters may not be viewable on your computer
system) with this line of code.

message = Map@FromCharacterCode,
Flatten@8telegramlength, telegram<DD

9! , �, �, ! , à, , Ð, ! =

Let us send those characters to the NXT brick, one by one.

Map@SerialWrite@mybrick, ÒD &, messageD

9! , �, �, ! , à, , Ð, ! =

You should hear a tone now. Because we asked for a reply (the first byte was zero), we
need to read it.

reply = SerialRead@mybrickD

! �! ! �

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 5

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Again, the reply is composed of text (the characters of which may not be easily viewable).
Let us convert them to a list of numbers.

ToCharacterCode@replyD

83, 0, 2, 3, 0<

The bytes returned are, in order: the length of the returned telegram, coded over two bytes
in UWORD (here 3, 0 means a telegram of length 3); the number 2 indicates that this is a
reply telegram; the number 3 indicates the command number that issued a reply (here, 3 is
the number for the command PlayTone); and finally, the status of the command (where 0
indicates a success). The command PlayTone does not return other information; some di-
rect commands may return more complex telegrams.
As an example, we send the command GetBatteryLevel. This command has number 11
and requires no parameters (no extra information). If a reply is asked for (but it is point-
less to send this command and not ask for a reply), it returns the status of the command (0
for success) followed by two bytes indicating the voltage of the batteries on the NXT
in millivolts. To decipher the voltage, let us create another conversion function,
fromUWORD.

fromUWORD@bytelo_, bytehi_D := bytehi * 2561 + bytelo * 2560

Let us assemble the telegram, concatenate the telegram length, convert this to a list of char-
acters, and send them.

telegram = 80, 11<;
telegramlength = toUWORD@Length@telegramDD;
message = Map@FromCharacterCode,

Flatten@8telegramlength, telegram<DD;
Map@SerialWrite@mybrick, ÒD &, messageD

9! , �, �, ! =

Now, let us read the reply and convert it to numbers.

reply = SerialRead@mybrickD êê ToCharacterCode

85, 0, 2, 11, 0, 247, 27<

6 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The first two bytes are the reply length (5 bytes); 2 and 11 indicate that this is a reply for a
GetBatteryLevel command; 0 indicates that the command was successful; and finally, 247
and 27 indicate the battery voltage, which we convert to a number with fromUWORD, de-
fined above.

fromUWORD@247, 27D

7159

Hence, the batteries convey 7.16 volts, much below the expected 9 volts for fresh batteries.

‡ Override SerialWrite to Send an Integer or a List of
Integers
Because it is more convenient to think in terms of numbers sent to the brick rather than
characters, we expand the command SerialWrite contained in the package SerialIO to
include the possibility of sending individual integers between 0 and 255 (bytes), and also
to send a list of bytes.

ByteQ@x_D := 0 § x § 255

SerialWrite@port : SerialPort@_String, _IntegerD,
datum_IntegerD :=

SerialIO`SerialWrite@port, FromCharacterCode@datumD
D ê; ByteQ@datumD

SerialWrite@port : SerialPort@_String, _IntegerD,
data_ListD :=

Map@SerialIO`SerialWrite@port, ÒD &, data
D ê; And üü Map@ByteQ, dataD

With this expansion, a whole message (composed of bytes) can be sent in one call to
SerialWrite. For example, the following instructions assemble again the PlayTone
command (this time without a reply).

tone = 480;
duration = 2000;
telegram = 8128, 3, toUWORD@toneD, toUWORD@durationD< êê

Flatten;
telegramlength = toUWORD@Length@telegramDD;
message = Flatten@8telegramlength, telegram<D

86, 0, 128, 3, 224, 1, 208, 7<

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 7

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The whole message is sent with one command call.

SerialWrite@mybrick, messageD;

‡ The Direct Commands Provided in Math4NXT
The above shows how any command can be sent to the NXT brick and its reply read.
Afterward, it is simply a question of assembling a telegram in the right order with the
right information, and—if asked for—reading the reply and segmenting it into the correct
information. To that end, the documentation provided by the LEGO Group ([2], particu-
larly the appendix 2) is quite complete.
To make things simpler, we coded all the direct commands in a package called Math-
4NXT. First get the package Math4NXT. Since it uses the package SerialIO in the back-
ground, also install this package in a path that is searched by Mathematica (e.g.
FileNameJoin@8$InstallationDirectory, "AddOns", "ExtraPackÖ
ages "," SerialIO "<D). Then load Math4NXT using the following instruction.

Needs@"Math4NXT`",
FileNameJoin@8$HomeDirectory, "Documents", "Binaries",

"Math4NXT.m"<DD

Math4NXT loaded.
Do ? Math4NXT`* to see all the functions available
or ? NXT* for the direct commands

and ? M4N* for the higher-level commands.

Since we did not place the package Math4NXT in a folder searched by Mathematica, we
provided its path in the Needs instruction. Then open the serial port (if this was not al-
ready done) as before.

mybrick = SerialOpen@"COM11"D;

All the direct commands begin with the letters NXT. Hence, to read the battery level, the
command in the package is called NXTGetBatteryLevel.

? NXTGetBatteryLevel

NXTGetBatteryLevel@portD returns the
battery level HmVL. Default option is ReplyØTrue.

res = NXTGetBatteryLevel@mybrickD

8Status Ø 0, VoltageMV Ø 7062, Percent Ø 78.4667%<

By default, the command returns the answer using named strings (e.g. "Status"). You
can extract one piece of information as usual.

8 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

By default, the command returns the answer using named strings (e.g. "Status"). You
can extract one piece of information as usual.

"VoltageMV" ê. res

7062

This format can be changed, for example to raw (i.e. bytes as in the previous two sec-
tions), using the option ResultFormat.

NXTGetBatteryLevel@mybrick, ResultFormat Ø RawD

85, 0, 2, 11, 0, 178, 27<

Alternatively, the bytes sent and received can be displayed in a separate window using the
option Echo Ø True.

NXTGetBatteryLevel@mybrick, Echo Ø TrueD

8Status Ø 0, VoltageMV Ø 7062, Percent Ø 78.4667%<

This option opens the Messages window.

Ú Figure 2. The Messages window opens automatically when the option Echo Ø True is used.

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 9

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

All the direct commands are accessible.

? NXT*

Math4NXT`

NXT NXTGetVolume
NXTRequestFirstMod-

ule

NXTClose NXTKeepAwake
NXTRequestNextMod-

ule

NXTCloseModule NXTLSGetStatus
NXTResetInputScale-

dValue

NXTDelete NXTLSRead
NXTResetMotorPositi-

on
NXTFindFirst NXTLSWrite NXTSetBrickName

NXTFindNext NXTMessageRead NXTSetInputMode

NXTGetBatteryLevel NXTMessageWrite NXTSetOutputState

NXTGetCurrentProgr-
amName NXTOpenRead NXTSetVolume

NXTGetDeviceInfo NXTOpenWrite NXTStartProgram

NXTGetFirmwareVers-
ion NXTPlaySoundFile NXTStopProgram

NXTGetInputValues NXTPlayTone NXTStopSound

NXTGetOutputState NXTRead NXTWrite

NXTGetSleepTime NXTReadIOMap NXTWriteIOMap

‡ Extending the Direct Commands
The direct commands have many limitations. For one, due to the nature of the COM port,
messages cannot be longer than 253 bytes. This is a big limitation when dealing with files
that can be much longer. Also, the LEGO sensors all work in very different ways; some
sensors are passive, not requiring power, while others are active, and still others are pro-
grammable, like the I2C sensors. To make use of the commands more uniformly and to
avoid the length limitation, we programmed higher-level commands that deal internally
with these difficulties.

10 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The names of all of these commands begin with M4N.

? M4N*

Math4NXT`

M4NBrakeMot-
or M4NInitialize

M4NRunMotor-
For M4NStopMotor

M4NDownload-
ToNXTFile

M4NMotorFree-
Q

M4NSearchMo-
dules

M4NUploadFro-
mNXTFile

M4NFileExistsQ
M4NReadSens-

or M4NSetMotor

M4NFileNames M4NRunMotor M4NSetSensor

One example is the command M4NFileNames that lists all the files present on the brick
(optionally with the file size).

? M4NFileNames

M4NFileNames@port,filestemD lists all the files
on the NXT with a filename corresponding to filestem.
Wildcards are allowed. Default option is FileDetailsØNone.

M4NFileNames@mybrick, "*.*", FileDetails Ø AllD êê
TableForm

MotorControl22.rxe 37 530
! Startup.rso 4084
! Attention.rso 881
! Click.rso 229
Try-Color.rtm 4346
Try-Touch.rtm 1238
Try-Light.rtm 684
Try-Ultrasonic.rtm 1208
Try-Motor.rtm 676
Try-Sound.rtm 638

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 11

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

This command works by calling the direct commands NXTFindFirst (command num-
ber 134), NXTFindNext (135), and NXTClose (132), using the algorithm given in Pro-
gram 1. To see the multiple calls to NXT commands, use the option Echo Ø True in
M4NFileNames.

res=NXTFindFirst[mybrick,"*.*"];
While [("Status"/.res)ã0,

res=NXTFindNext[mybrick,"Handle"/.res]
]
NXTClose[mybrick];

Ú Program 1. General algorithm used by M4NFileNames to retrieve all the file names present on
the NXT brick. This algorithm does not show how to gather the file names (contained as bytes in
res) into a list.

Likewise, to facilitate the use of sensors, a command is provided that informs Mathemat-
ica of the sensor types connected. Afterward, reading the sensor is done according to the
type of sensor connected. To set the sensor type, use M4NSetSensor.

M4NSetSensor@mybrick, Sensor1 Ø TouchSensorD

After this, reading the sensor is done with a universal command, M4NReadSensor. To
keep in line with the convention of direct commands, the first sensor is on the NXT input
port 0.

M4NReadSensor@mybrick, 0D

0

The result is either 1 for “pressed” or 0 for “unpressed.” This command works the same
way whatever type of sensor is connected. Hence, if you connect the ultrasound sensor on
the third sensor input, you can issue the following two commands.

M4NSetSensor@mybrick, Sensor3 Ø UltrasoundSensor,
Echo Ø TrueD

M4NReadSensor@mybrick, 2, Echo Ø TrueD

6

The ultrasound sensor is a complex sensor aimed at detecting the distance of obstacles in
front of it (in centimeters). It is equipped with a microprocessor that follows the I2C proto-
col. It must first be powered up and time given to it to boot up before a reading can be
made. Using the option Echo Ø True, you see that much more exchange of information
is needed to initialize an ultrasound sensor than to initialize a touch sensor. Yet, all these
transactions are completely invisible with the M4N commands.

12 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

‡ Working with Motors
Another limitation of the direct commands provided by the NXT’s firmware concerns the
motor control. The new LEGO motors contain tacho counters that keep track of the num-
ber of degrees of rotation executed. However, the direct command can only stop a motor
once a target number of degrees is reached, so that in effect, the motor overturns.
PID control of a motor is a more effective way of controlling rotation. It sets a target num-
ber of degrees and adjusts the power of the motor so that it slows down when the target is
almost reached (using integral and derivative; see [4, 5]).
The authors of [5] developed a PID controller for the NXT. This controller is located on
the NXT brick; the computer sends a target movement, and the controller takes control of
the motor, adjusting the power until the target number of degrees is reached. The con-
troller program is called MotorControl22.rxe, for Version 2.2.
Get the program MotorControl22.rxe and transfer it to the brick. To do so, import the con-
tents of the file into Mathematica and download this to the NXT. Once set (this step may
take a few minutes over Bluetooth as the controller is 37 kilobytes long), start the con-
troller. Here are the instructions to do so; the first part checks that the file is not already on
the brick.

If@Ÿ M4NFileExistsQ@mybrick, "MotorControl22.rxe"D,
content = Import@$HomeDirectory <> "MotorControl22.rxe",

"Byte"D;
M4NDownloadToNXTFile@mybrick, "MotorControl22.rxe",
contentD;

D
NXTStartProgram@mybrick, "MotorControl22.rxe"D

Finally, inform your program of what type of motors you have and to which port they are
connected using M4NSetMotor.

M4NSetMotor@mybrick, MotorA Ø TachoMotor,
MotorC Ø RegularMotorD

Incidentally, M4NSetMotor uploads MotorControl22.rxe if it is not present on the brick,
and starts this program if it is not currently running. Therefore, you do not have to worry
about these technicalities and can rely on M4NSetMotor alone.

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 13

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Now that the controller is up and running, you can send orders to it using commands re-
lated to motors.

? M4N*Motor*

Math4NXT`

M4NBrakeMotor M4NRunMotor M4NSetMotor

M4NMotorFreeQ M4NRunMotorFor M4NStopMotor

M4NRunMotor, M4NStopMotor, and M4NBrakeMotor can be used on regular mo-
tors as well as on tacho motors. However, M4NRunMotorFor can only be used with
tacho motors and involves the PID controller. Once a motor is controlled by the PID con-
troller, you should not send other instructions to it. Therefore, the predicate
M4NRunMotorFreeQ can be used to check if the controller is done.
The following instruction starts the two motors.

M4NRunMotor@mybrick, 80, 2<D

Stop the motors using two different modes (M4NBrakeMotor locks the motor, whereas
M4NStopMotor ceases to power the motor).

M4NBrakeMotor@mybrick, MOTORAD
M4NStopMotor@mybrick, MOTORCD

The following instructions check that motor MOTORA is free before a movement, during
the movement (10 complete turns), and six seconds after the movement began.

M4NMotorFreeQ@mybrick, MOTORAD
M4NRunMotorFor@mybrick, MOTORA, MotorPower Ø 100,
TachoLimit Ø 3600D

M4NMotorFreeQ@mybrick, MOTORAD
Pause@6D
M4NMotorFreeQ@mybrick, MOTORAD

True

False

True

14 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

‡ Configuring a Robot
At the level of the program, a robot has a certain configuration, defined by what sensors
are connected to the input and what motors are connected to the output. We showed two
commands earlier that can be used to define the sensors and the motors.

M4NSetSensor@mybrick, Sensor1 Ø TouchSensorD
M4NSetMotor@mybrick, MotorA Ø TachoMotor,
MotorC Ø RegularMotorD

We created a general command, M4NInitialize, whose purpose is to set all these
items in one command. In addition, it can also be used to set the volume level and give a
name to the brick (if you have many bricks, a good habit is to rename them by the COM
port to which they are connected).

M4NInitialize@mybrick, Sensor1 Ø TouchSensor,
MotorA Ø TachoMotor, MotorC Ø RegularMotor, Level Ø 1,
SetName Ø "Com11"D

All systems ok!

In addition, M4NInitialize checks that the firmware version on the NXT is compati-
ble with this package and checks that the battery has enough charge (it returns a warning
if not). It is also possible to give the path of the folder containing the controller MotorCon-
trol22.rxe with the option MotorControlPath in case it is not already on the NXT.

‡ Dynamic Control of the Robot
The M4N and NXT commands can be used dynamically. For example, to get the current
state of the touch sensors, you can follow these steps.
First, initialize the sensors using M4NInitialize or M4NSetSensor.

M4NSetSensor@mybrick, Sensor1 Ø TouchSensor,
Sensor2 Ø TouchSensor, Sensor3 Ø TouchSensor,
Sensor4 Ø TouchSensorD

The ShowSensor function creates a panel with a title containing On or Off, based on
the sensor value. This function uses some options for aesthetic purposes only.

ShowSensor@n_D := Panel@
If@M4NReadSensor@mybrick, n - 1D ã 1, "On", "Off"D,
"Sensor " <> ToString@nD,
BaseStyle Ø 8FontColor Ø Red, FontSize Ø 36<,
ImageSize Ø 1. µ 72, Alignment Ø CenterD

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 15

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Then, we can use ShowSensor four times in a row to get a row of indicators.

Dynamic@
8ShowSensor@1D, ShowSensor@2D, ShowSensor@3D,
ShowSensor@4D<, UpdateInterval Ø 0.1

D

The option UpdateInterval determines at what interval the sensors are consulted.

As a last example, we create a joystick that controls two motors. The speed of rotation of
the motor (adjusted by the MotorPower option) depends on the up/down position of the
joystick. In addition, the motors move synchronously if the left/right position of the joy-
stick is centered.
We first define an extended ClickPane that responds to more events than the regular
ClickPane function.

myClickPane@object_, opts___D := DynamicModule@8k1, k2, k3<,
Dynamic@
EventHandler@object,
"MouseClicked" ß H

If@Hk1 = CurrentValue@"AltKey"DL, AltClick ê. 8opts<D;
If@Hk2 = CurrentValue@"ControlKey"DL,
CtrlClick ê. 8opts<D;

If@Hk3 = CurrentValue@"ShiftKey"DL,
ShiftClick ê. 8opts<D;

If@Not@k1D && Not@k2D && Not@k3D, Click ê. 8opts<D
L,

"MouseDragged" ß H
If@Hk1 = CurrentValue@"AltKey"DL,
AltMovingMouse ê. 8opts<D;

If@Hk2 = CurrentValue@"ControlKey"DL,
CtrlMovingMouse ê. 8opts<D;

If@Hk3 = CurrentValue@"ShiftKey"DL,
ShiftMovingMouse ê. 8opts<D;

If@Not@k1D && Not@k2D && Not@k3D, MovingMouse ê. 8opts<D
L,

"MouseUp" ß H
If@Hk1 = CurrentValue@"AltKey"DL,
AltReleaseMouse ê. 8opts<D;

If@Hk2 = CurrentValue@"ControlKey"DL,
CtrlReleaseMouse ê. 8opts<D;

If@Hk3 = CurrentValue@"ShiftKey"DL,
ShiftReleaseMouse ê. 8opts<D;

If@Not@k1D && Not@k2D && Not@k3D, ReleaseMouse ê. 8opts<D
L

D

D
D

16 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

We must not forget to initialize the motors (so that the PID controller is turned on).

M4NInitialize@mybrick, MotorA Ø TachoMotor,
MotorB Ø TachoMotorD;

That is it. The following shows a panel with a red dot (the top of the joystick). It con-
stantly sets the motor power to be proportional to the position of the joystick. In addition,
if the joystick is released, it returns to the center with an exponential function imple-
mented by the variable mult. Finally, if you click the pane anywhere, the joystick
instantly returns to the center with a beep.

DynamicModule@8pt = 80, 0<, mult = 81, 1<<,
myClickPane@
Dynamic@
pt = pt µ mult;
M4NRunMotor@mybrick, MOTORA,
MotorPower Ø Round@100 If@ptP1T < 0, 1 + ptP1T , 1D ptP2TDD;

M4NRunMotor@mybrick, MOTORB,
MotorPower Ø Round@100 If@ptP1T > 0, 1 - ptP1T , 1D ptP2TDD;

Graphics@8
Red, Disk@pt, 0.05D,
Transparent, Rectangle@8-1.2, -1.2<, 81.2, 1.2<D

<,
8ImageSize Ø 84 µ 72, 4 µ 72<, Frame Ø True<

DD,
MovingMouse ß Hmult = 81, 1<; pt = MousePosition@"Graphics"D;

pt = 8Max@-1, Min@1, ptP1TDD, Max@-1, Min@1, ptP2TDD<L,
ReleaseMouse ß Hmult = 81 ê 3, 1<L,
Click ß Hpt = 80, 0<; Beep@DL

D
D

‡ A Line-Follower Project
To illustrate a simple example of an autonomous robot, we program the line-follower
robot. This robot’s purpose is to follow the edge of a line. The line should be dark on a
light background (or vice versa; the contrast along the edge is the important factor). To
achieve this, you need a robot equipped in the front with a light detector (see, for example,
the assembly instructions given on p. 33 of the MINDSTORMS education booklet [2]).

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 17

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

For this project, the configuration requires a light sensor and two motors, which we
initialize.

M4NInitialize@mybrick, MotorA Ø TachoMotor,
MotorC Ø TachoMotor, Sensor4 Ø LightActiveSensorD

All systems ok!

In a first phase, we need to calibrate the sensor so that the readings on light and dark sur-
faces are known. Use the following to average 100 readings while you move the robot
over a white surface.

white = Table@M4NReadSensor@mybrick, 3D, 8100<D êê N êê Mean

68.01

Then use this while moving the robot over a dark surface.

black = Table@M4NReadSensor@mybrick, 3D, 8100<D êê N êê Mean

47.

The mean of the above two values is the critical value. For a robot that follows the left
edge of a dark line, for readings lighter than the mean, we want the robot to steer to the
right (and for readings darker than the mean, we want the robot to steer to the left).

mean = Hwhite + blackL ê 2

57.505

The following short program moves the robot at a moderate speed (the variable
basespeed is set to 20) and adjusts the base speed according to the difference between
the current reading and the mean.

basespeed = 20; mult = 0.75;
M4NRunMotor@mybrick, 80, 2<, MotorPower Ø basespeed,
SpeedRegulation Ø FalseD

Do@
color = M4NReadSensor@mybrick, 3D;
M4NRunMotor@mybrick, 0,
MotorPower Ø Floor@basespeed - mult Hcolor - meanLDD;

M4NRunMotor@mybrick, 2,
MotorPower Ø Floor@basespeed + mult Hcolor - meanLDD,

8100<
D
M4NRunMotor@mybrick, 80, 2<, MotorPower Ø 0D

18 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The constant mult is used to control the magnitude of the steering. Larger values result
in a robot’s making abrupt changes in direction. This quantity should be small for smooth
movement. Yet, if there are abrupt curves in the trajectory, a small multiplier gives a robot
that cannot turn enough to find the edge again. See the conclusion for more discussion.

‡ Technical Limitations
There are a few direct commands that we chose not to implement in this package. These
are concerned with rebooting the NXT brick, changing its firmware, erasing the flash mem-
ory, or executing a reset. In essence, these commands destroy the robot.
With the M4N commands and the NXT commands, the robot can be controlled very effi-
ciently and very easily. However, the COM port is not very fast. Crucially, each switch in
the direction of communication of the port requires 6 ms. This is the reason why replies
should be avoided unless they are absolutely necessary. In some applications, these delays
may be so important that the program must be moved to the brick in whole or in part. The
PID controller MotorControl22.rxe is an example where the program is distributed over
the two machines: the computer sends target moves and the brick executes the decisions
millisecond by millisecond to achieve the requested move.

‡ Conclusion
One recent theory in cognitive science is the embodiment theory. It states that a cognitive
system must be in an interactive relation with the world to develop a meaningful represen-
tation of the world. This view contradicts the classical artificial intelligence (AI) view in
which cognitive agents manipulate tokens or symbols that may not necessarily be related
to aspects of the outside world. Hence, according to the AI view, the sensors and actuators
are independent of the cognitive functions and may be built separately. This view is ten-
able as long as we are devising cognitive systems in a virtual world (e.g. using computer-
based simulations). However, as soon as physical robots are actually constructed, we see
how difficult it is to hold this position.
The simple line-follower program shows this. In a virtual environment, the line-follower
simulator can be run at full speed and steering can be made as abrupt as desired, because
there is no inertia and no risk that the robot falls over. When the physical robot is built,
these become very serious concerns. Of course, the programmer adapts the program to
take these risks into account (reducing the speed and lowering the multiplier factor). Like-
wise, the white and black readings are calibrated by the programmer in a very simple
way. Yet, if the ambient lighting changes, the calibration must be done again. Further, as
said earlier, if the multiplier mult is too small, the robot may not be able to steer quickly
enough around a sharp curve. Finally, the line-follower robot uses wheels. If it used legs in-
stead, flexibility and possible muscle tear would come into play.
All the above concerns can be seen at worst as annoyances, at best as challenges for the
programmer. Yet, the simplest animals are immune to all of these concerns. The embodi-
ment theory holds that organisms developed adequate representations by interacting with
the world, and that those representations became robust with regard to all the possible
sources of fault. Representations and algorithms given by a programmer, on the other
hand, may not respond to real-life tests, however simple or elegant they are.

Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick 19

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

All the above concerns can be seen at worst as annoyances, at best as challenges for the
programmer. Yet, the simplest animals are immune to all of these concerns. The embodi-
ment theory holds that organisms developed adequate representations by interacting with
the world, and that those representations became robust with regard to all the possible
sources of fault. Representations and algorithms given by a programmer, on the other
hand, may not respond to real-life tests, however simple or elegant they are.
The NXT is a simple yet complete platform to test robots in real life. Combined with Math-
ematica’s computational power, it is easy to develop adaptive algorithms such as neural
networks and see what kind of representations are self-constructed by the robot. It remains
to be seen what the simplest adaptive line-follower program looks like.

‡ Acknowledgments
The author would like to thank Vincent Brault, Dominic Langlois, and Sylvain Chartier
from the CONEC laboratory, University of Ottawa, for their help during the development
of the Math4NXT package.

‡ References
[1] MathWorks. “Set Up a Bluetooth Connection.” (Feb 4, 2013)

www.mathworks.com/help/simulink/ug/bluetooth-communications.html.

[2] The LEGO Group. “LEGO MINDSTORMS NXT Bluetooth Developer Kit.” (Jan 7, 2013)
mindstorms.LEGO.com/en-us/support/files/default.aspx.

[3] R. Raguet-Schofield. “SerialIO.” Wolfram Library Archive. (Jan 7, 2013)
library.wolfram.com/infocenter/MathSource/5726.

[4] J. Sluka. “A PID Controller For LEGO MINDSTORMS Robots.” (Jan 7, 2013)
www.inpharmix.com/jps/PID_Controller_For _Lego _Mindstorms _Robots.html.

[5] Institute of Imaging & Computer Vision. “RWTH—MINDSTORMS NXT Toolbox.” (Jan 7,
2013) www.mindstorms.rwth-aachen.de/trac/wiki/MotorControl.

D. Cousineau, “Controlling Robots Built with the LEGO® MINDSTORMS® NXT Brick,” The Mathematica Jour-
nal, 2013. dx.doi.org/doi:10.3888/tmj.15–3.

About the Author

Denis Cousineau is a professor at the University of Ottawa in cognitive psychology. He
runs research in artificial intelligence as well as on human categorization processes.
Denis Cousineau
École de psychologie
Université d’Ottawa
136, rue Jean-Jacques Lussier
Ottawa (ON), K1N 6N5, CANADA
Denis.Cousineau@UOttawa.ca

20 Denis Cousineau

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

