
The Mathematica® Journal

Negative Binomial Regression
Michael L. Zwilling

Negative binomial regression is implemented using maximum 
likelihood estimation. The traditional model and the rate model 
with offset are demonstrated, along with regression diagnostics.

‡ Traditional Model
Negative binomial regression is a type of generalized linear model in which the dependent
variable Y  is  a count of the number of times an event occurs.  A convenient parametriza-
tion of the negative binomial distribution is given by Hilbe [1]:

(1)pHyL = PHY = yL =
GHy+ 1 ê aL

GHy+ 1L GH1 ê aL

1

1+a m

1êa a m

1+a m

y

,

where m > 0 is the mean of Y  and a > 0 is the heterogeneity parameter. Hilbe [1] derives
this  parametrization  as  a  Poisson-gamma mixture,  or  alternatively  as  the  number  of  fail-
ures before the H1 ê aLth success, though we will not require 1 ê a to be an integer.
The traditional negative binomial regression model, designated the NB2 model in [1], is

(2)ln m = b0 + b1 x1 + b2 x2 +º⋯+ bp xp,

where the predictor variables x1, x2, …, xp are given, and the population regression coeffi-
cients b0, b1, b2, …, bp are to be estimated.

Given a random sample of n  subjects,  we observe for subject  i  the dependent variable yi
and  the  predictor  variables  x1i, x2i, …, xpi.  Utilizing  vector  and  matrix  notation,  we  let
b = H b0 b1 b2 º⋯ bp L¬, and we gather the predictor data into the design matrix X  as
follows:

X =

1 x11 x12 º⋯ x1p
1 x21 x22 º⋯ x2p
ª ª ª ª

1 xn1 xn2 º⋯ xnp

.
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Designating the ith row of X to be xi, and exponentiating (2), we can then write the distribu-
tion (1) as

pHyiL =
GHyi + 1 ê aL

GHyi + 1L GH1 ê aL

1

1+a exiÿb

1êa a exi ÿb

1+a exi ÿb

yi

, i = 1, 2, …, n.

We estimate a and b using maximum likelihood estimation. The likelihood function is

LHa, bL = ‰
i=1

n

pHyiL = ‰
i=1

n GHyi + 1 ê aL

GHyi + 1L GH1 ê aL

1

1+a exiÿb

1êa a exiÿb

1+a exiÿb

yi

,

and the log-likelihood function is

(3)

ln LHa, bL = ‚
i=1

n

yi ln a+ yi Hxi ÿ bL-

yi +
1

a
lnI1+a exi ÿbM+ ln G yi +

1

a
- ln GHyi + 1L- ln G

1

a
.

The values of a and b that maximize ln LHa, bL will be the maximum likelihood estimates
we  seek,  and  the  estimated  variance-covariance  matrix  of  the  estimators  is  S = -H-1,
where H  is the Hessian matrix of second derivatives of the log-likelihood function. Then
the  variance-covariance  matrix  can  be  used  to  find  the  usual  Wald  confidence  intervals
and p-values of the coefficient estimates.

‡ Example 1: Traditional Model with Simulated Data
We will use Mathematica to replicate some examples given by Hilbe [1], who uses R and
Stata. We start with simulated data generated with known regression coefficients, then re-
cover the coefficients using maximum likelihood estimation. We will generate a sample of
n = 5000 observations of a dependent random variable Y  that has a negative binomial dis-
tribution with mean given by (2), using p = 2, a = 0.50, and b = H2.00 L .75 - 1.25L¬. The
design matrix X1 will contain independent standard normal variates.

SeedRandom@12 345D;
n1 = 5000;
X1 = Prepend@Ò, 1D & êü

RandomVariate@NormalDistribution@D, 8n1, 2<D;
y1 =

TableBRandomVariateB

NegativeBinomialDistributionB
1

a
,

1

1 + a ‰X1PiT.b
F ê.

8a Ø 0.50,

b Ø 82.00, 0.75, -1.25<<F, 8i, n1<F;

Now we define and maximize the log-likelihood function (3), obtaining the estimates of a
and b. Some experimentation with starting values for the search may be required, and the
accuracy goal may need to be lowered; we could obtain good starting values for b  using
Poisson  regression  via  GeneralizedLinearModelFit,  while  a  is  usually  between
0.0 and 4.0 [1].
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Now we define and maximize the log-likelihood function (3), obtaining the estimates of a
and b. Some experimentation with starting values for the search may be required, and the
accuracy goal may need to be lowered; we could obtain good starting values for b  using
Poisson  regression  via  GeneralizedLinearModelFit,  while  a  is  usually  between
0.0 and 4.0 [1].

GeneralizedLinearModelFit@8X1, y1<,
ExponentialFamily Ø "Poisson"D

FittedModelB ‰2.01709Ò1+0.726365Ò2-1.25206Ò3 F

 But we arbitrarily set all starting values to 1.0 and successfully find the correct estimates.

lnL1@X_, y_, a_, b_D :=

ModuleB8n = Length@yD<,

‚
i=1

n

yPiT Log@aD + yPiT HXPiT.bL - yPiT +
1

a
LogA1 + a ‰XPiT.bE +

LogGammaByPiT +
1

a
F - LogGamma@yPiT + 1D - LogGammaB

1

a
F F

results1 = FindMaximum@lnL1@X1, y1, a, bD,
88a, 1.0, 0.01, 4.0<, 8b, 81.0, 1.0, 1.0<<<,
AccuracyGoal Ø 6D

8-15 429.2, 8a Ø 0.49929, b Ø 82.00163, 0.755827, -1.25551<<<

Define two helper functions.

bs@X_D := Array@b, Length@X@@2DDD, 0D

flattenrules@8_, 8xx_ Ø xxval_, yy_ Ø yyvals_<<D :=
8xx -> xxval,

Thread@Array@yy, Length@yyvalsD, 0D -> yyvalsD< êê Flatten

flattenrules@results1D

8a Ø 0.49929, b@0D Ø 2.00163, b@1D Ø 0.755827, b@2D Ø -1.25551<
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Next, we find the standard errors of the estimates. The standard errors are the square roots
of the diagonal elements of the variance-covariance matrix S,  which as mentioned above
is given by S = -H-1, where H is the Hessian matrix of second derivatives of the log-like-
lihood function. First, define the Hessian for any function.

HessianH@f_, x_D := D@f, 8Flatten@xD, 2<D

Then we find the Hessian and S at the values of our parameter estimates.

VarianceCovarianceMatrix@X_, y_, results_D :=
-Inverse@

HessianH@lnL1@X, y, a, bD ê. b Ø bs@XD, 8a, bs@XD<D ê.
flattenrules@resultsDD

Hv1 = VarianceCovarianceMatrix@X1, y1, results1DL êê
MatrixForm

0.000173092 -7.39458 µ 10-7 1.02221 µ 10-6 -1.05205 µ 10-6

-7.39458 µ 10-7 0.000155043 -0.0000266927 0.0000479428

1.02221 µ 10-6 -0.0000266927 0.00015131 -0.0000161681

-1.05205 µ 10-6 0.0000479428 -0.0000161681 0.000168057

Finally, these are our standard errors.

StdErr1 = Diagonal@v1D

80.0131564, 0.0124516, 0.0123008, 0.0129637<

We can now print a table of the results: the estimates of the coefficients, their standard er-
rors, and the Wald z statistics, p-values, and confidence intervals.

coefficients1 = Last êü flattenrules@results1D

80.49929, 2.00163, 0.755827, -1.25551<

CoefficientsTable@coefficients_, StdErr_, labels_D :=
Module@8zStatistics, pValues, displaypValues, lower,

upper<,
zStatistics = coefficients ê StdErr;
pValues = 2 CDF@NormalDistribution@D, -Abs@zStatisticsDD;
displaypValues =
Table@8NumberForm@Round@pValuesPjT, 0.0001D, 85, 4<D<,

8j, Length@labelsD<D êê Flatten;
lower = coefficients - 1.96 StdErr;
upper = coefficients + 1.96 StdErr;
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Textü
Column@
8TableForm@

8coefficients, StdErr, zStatistics, displaypValues< êê
Transpose, TableHeadings Ø
8labels, 8"Estimate", "Std. Err.",

Row@8Style@"z", ItalicD, "-Statistic"<D,
TraditionalForm@P > Abs@zDD<<D,

"",
TableForm@8coefficients, lower, upper< êê Transpose,
TableHeadings Ø
8labels, 8"Estimate", "95% CI lower",

"95% CI upper"<<D
<D

D

CoefficientsTable@coefficients1, StdErr1, Prepend@bs@X1D, aDD

Estimate Std. Err. z-Statistic P > †z§
a 0.49929 0.0131564 37.9502 0.0000
b@0D 2.00163 0.0124516 160.753 0.0000
b@1D 0.755827 0.0123008 61.4453 0.0000
b@2D -1.25551 0.0129637 -96.8481 0.0000

Estimate 95% CI lower 95% CI upper
a 0.49929 0.473503 0.525077
b@0D 2.00163 1.97723 2.02604
b@1D 0.755827 0.731717 0.779936
b@2D -1.25551 -1.28092 -1.2301

We see that in each case the confidence interval has captured the population parameter.

‡ Traditional Model for Rates, Using Offset 
If the dependent variable Y  counts the number of events during a specified time interval t,
then  the  observed  rate  Y ê t  can  be  modeled  by  using  the  traditional  negative  binomial
model above, with a slight adjustment. We note that t can also be thought of as area or sub-
population size, among other interpretations that lead to considering Y ê t a rate.
Since EHY ê tL = m ê t, we make the following adjustment to model (2) above:

lnHm ê tL = b0 + b1 x1 + b2 x2 +º⋯+ bp xp,

which can also be written as:

(4)ln m = b0 + b1 x1 + b2 x2 +º⋯+ bp xp + ln t.

This last term, ln t, is called the offset. So in our log-likelihood function, instead of replac-
ing m with exiÿb, we replace m with exiÿb+ln t, resulting in the following:
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This last term, ln t, is called the offset. So in our log-likelihood function, instead of replac-
ing m with exiÿb, we replace m with exiÿb+ln t, resulting in the following:

(5)

ln LHa, bL =

‚
i=1

n

yi ln a+ yi Hxi ÿ b + ln tiL- yi +
1

a
lnI1+a exiÿb+ln tiM+ ln G yi +

1

a
-

ln GHyi + 1L- ln G
1

a
.

Then we proceed as before, maximizing the new log-likelihood function in order to esti-
mate the parameters.

‡ Example 2: Traditional Model with Offset for the Titanic 
Data
The Titanic survival data, available from [2] and analyzed in [1] using R and Stata, is sum-
marized in Table 1, with crew members deleted.

Survived Cases Age Sex Class
14 31 child female third
13 13 child female second
1 1 child female first
13 48 child male third
11 11 child male second
5 5 child male first
76 165 adult female third
80 93 adult female second
140 144 adult female first
75 462 adult male third
14 168 adult male second
57 175 adult male first

Ú Table 1. Titanic survival dataset.

Why did fewer first-class children survive than second class or third class? Was it because
first-class children were at extra risk? No, it was because there were fewer first-class chil-
dren on board the Titanic  in the first place. So we do not want to model the raw number
(Y) of survivors; instead, we want to model the proportion (Y ê cases) of survivors, which
is the survival rate. So in (4) we need t to be the number of cases.
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We set  up  the  design matrix,  with  indicators  1  for  adults  and males,  and using indicator
variables for second class and third class, which means first class will be a reference.

ones = ConstantArray@1, 12D;
age = 80, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1<;
sex = 80, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1<;
class2 = 80, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0<;
class3 = 81, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0<;
X2 = Join@Thread@List@ones, age, sex, class2, class3DDD;

Then we set up the dependent variable and the offset.

y2 = 814, 13, 1, 13, 11, 5, 76, 80, 140, 75, 14, 57<;
t2 = 831, 13, 1, 48, 11, 5, 165, 93, 144, 462, 168, 175<;

We define the log-likelihood (5).

lnL2@X_, y_, t_, a_, b_D :=

ModuleB8n = Length@yD<,

‚
i=1

n

yPiT Log@aD + yPiT HXPiT.b + Log@tPiTDL -

yPiT +
1

a
LogA1 + a ‰XPiT.b+Log@tPiTDE + LogGammaByPiT +

1

a
F -

LogGamma@yPiT + 1D - LogGammaB
1

a
F

F

Now we maximize it to find the coefficients.

results2 = FindMaximum@lnL2@X2, y2, t2, a, bD,
88a, 1.0, 0.01, 4.0<, 8b, 81.0, 1.0, 1.0, 1.0, 1.0<<<,
AccuracyGoal Ø 6D

8-43.7168, 8a Ø 0.104034,
b Ø 80.613375, -0.670035, -0.98015, -0.374614, -0.907064<<<
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Then we find the standard errors of the coefficients.

VarianceCovarianceMatrix2@X_, y_, results_D :=
-Inverse@

HessianH@lnL2@X, y, t2, a, bD ê. b Ø bs@XD, 8a, bs@XD<D ê.
flattenrules@resultsDD

StdErr2 =
,Diagonal@VarianceCovarianceMatrix2@X2, y2, results2DD

80.0683913, 0.32834, 0.2535, 0.245967, 0.30709, 0.287539<

And again we can print a table of the results.

CoefficientsTable@Last êü flattenrules@results2D,
StdErr2, Prepend@bs@X2D, aDD

Estimate Std. Err. z-Statistic P > †z§
a 0.104034 0.0683913 1.52116 0.1282
b@0D 0.613375 0.32834 1.86811 0.0617
b@1D -0.670035 0.2535 -2.64313 0.0082
b@2D -0.98015 0.245967 -3.98488 0.0001
b@3D -0.374614 0.30709 -1.21988 0.2225
b@4D -0.907064 0.287539 -3.15458 0.0016

Estimate 95% CI lower 95% CI upper
a 0.104034 -0.0300126 0.238081
b@0D 0.613375 -0.0301722 1.25692
b@1D -0.670035 -1.1669 -0.173175
b@2D -0.98015 -1.46225 -0.498054
b@3D -0.374614 -0.97651 0.227283
b@4D -0.907064 -1.47064 -0.343488

But perhaps more useful for interpretation of the coefficients would be the Incidence Rate
Ratio  (IRR)  for  each  variable,  which  is  obtained  by  exponentiating  each  coefficient.
For  example,  out  of  a  sample  of  t  adults,  we  expect  that  the  survival  rate,  from  our
model  (4),  will  be  madults ê t = expHb0 + b1H1L+ b2HsexL+ b2Hclass2L+ b3Hclass3LL,  while
for  an  identical  number  t  of  children  we  expect  their  survival  rate  to  be
mchildren ê t = expHb0 + b1H0L+ b2HsexL+ b2Hclass2L+ b3Hclass3LL.  So  by  dividing  the  two
rates, we obtain the ratio of rates (IRR) to be

IRR =
madults ê t

mchildren ê t
=

expHb0 + b1H1L+ b2HsexL+ b2Hclass2L+ b3Hclass3LL

expHb0 + b1H0L+ b2HsexL+ b2Hclass2L+ b3Hclass3LL
= eb1 ,

which we estimate to be e-0.670034 = 0.51. Thus, our interpretation is that adults survived
at roughly half the rate at which children survived, among those of the same sex and class.
The standard error of IRR is found by multiplying the estimated IRR by the standard error
of the coefficient (see [1]), while a confidence interval for IRR is found by exponentiating
the confidence interval for the coefficient. Thus we obtain the following.
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which we estimate to be e-0.670034 = 0.51. Thus, our interpretation is that adults survived
at roughly half the rate at which children survived, among those of the same sex and class.
The standard error of IRR is found by multiplying the estimated IRR by the standard error
of the coefficient (see [1]), while a confidence interval for IRR is found by exponentiating
the confidence interval for the coefficient. Thus we obtain the following.

coefficients2 = Last êü flattenrules@results2D;
lower2 = coefficients2 - 1.96 StdErr2;
upper2 = coefficients2 + 1.96 StdErr2;

IRR = ‰coefficients2;
IRRStdErr = IRR StdErr2;
IRRlower = ‰lower2;
IRRupper = ‰upper2;

We do not need IRR for a or b0, so we drop them and then print the resulting table.

IRR = Drop@IRR, 2D;
IRRStdErr = Drop@IRRStdErr, 2D;
IRRlower = Drop@IRRlower, 2D;
IRRupper = Drop@IRRupper, 2D;
Textü
TableForm@8IRR, IRRStdErr, IRRlower, IRRupper< êê Transpose,
TableHeadings Ø 88"age", "sex", "class2", "class3"<,

8"IRR", "IRR\nStd. Err.", "95% IRR\nCI lower",
"95% IRR\nCI upper"<<D

IRR IRR
Std. Err.

95% IRR
CI lower

95% IRR
CI upper

age 0.511691 0.129714 0.311332 0.840991
sex 0.375255 0.0923003 0.231715 0.607712
class2 0.687555 0.211141 0.376623 1.25518
class3 0.403708 0.116082 0.229778 0.709292

The confidence interval for the variable class2 contains 1.0, consistent with the lack of
significance of its coefficient, and indicating that the survival rate of second-class passen-
gers was not significantly different than that of first-class passengers. We will address this
after computing some model assessment statistics and residuals.
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‡ Model Assessment
Various  types  of  model  fit  statistics  and  residuals  are  readily  computed.  We  use  defini-
tions given in [1]; alternate definitions exist and would require only minor changes.
Commonly  used  model  fit  statistics  include  the  log-likelihood,  deviance,  Pearson  chi-
square  dispersion,  Akaike  Information  Criterion  (AIC),  and  Bayesian  Information
Criterion (BIC).
We already have the log-likelihood L as a byproduct of the maximization process. The de-
viance D is defined as

D = 2 ‚
i=1

n

HLHyi; yiL- LHmi; yiLL,

where LHmi; yiL is our log-likelihood function (5), and LHyi; yiL is the log-likelihood func-

tion with yi replacing mi. For our NB2 model, this simplifies to D = ⁄i=1
n di2, where

(6)di2 =
2 Jyi lnJ yi

mi
N- Jyi +

1
a
N ln J

1+a yi
1+a mi

NN if yi > 0
2
a

lnH1+a miL if yi = 0.

The  Pearson  chi-square  dispersion  statistic  is  given  by  ⁄i=1
n Hyi - miL2 ë Imi +a mi2M,  while

AIC and BIC are defined as

AIC =
2 HL - Hp+ 1LL

n
and

BIC = D- Hn- p- 1L ln n.

We compute these for the Titanic data above and display them.

dSquared@i_, y_, m_, A_D :=

2 JyPiT LogB yPiT

mPiT
F - IyPiT + 1

A
M LogB 1+A yPiT

1+A mPiT
FN yPiT ¹≠ 0

2
A
Log@1 + A mPiTD yPiT == 0

;
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ModelAssessment@coefficients_, X_, y_, t_D :=

ModuleB8m, n, results, deviance, Pearson, p, AIC, BIC<,

m = ‰X.Drop@coefficients,1D+Log@tD;
n = Lengthüy;
results = FindMaximum@lnL2@X, y, t, a, bD,

88a, 1.0, 0.01, 4.0<, 8b, Table@1.0, 8LengthüX@@1DD<D< <,
AccuracyGoal Ø 6D;

L = resultsP1T;

deviance = ‚
i=1

n

dSquared@i, y, m, coefficientsP1TD;

Pearson = ‚
i=1

n HyPiT - mPiTL2

mPiT + coefficientsP1T mPiT2
;

p = Length@XP2TD - 1;

AIC = -
2 HL - Hp + 1LL

n
;

BIC = deviance - Hn - p - 1L Log@nD;
8L, deviance, Pearson, AIC, BIC<

F

ModelAssessmentTable@coefficients_, X_, y_, t_D :=
TextüTableForm@ModelAssessment@coefficients, X, y, tD,

TableHeadings Ø
88"Log-likelihood", "Deviance", "Pearson", "AIC",

"BIC"<<D

ModelAssessmentTable@coefficients2, X2, y2, t2D

Log-likelihood -43.7168
Deviance 12.4795
Pearson 11.0715
AIC 8.11947
BIC -4.91485

These model assessment statistics are most useful when compared to those of a competing
model, which we pursue in the next section after computing residuals.
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‡ Residuals
The  raw  residuals  are  of  course  yi - mi,  while  the  Pearson  residuals  are

Hyi - miL ì mi +a mi2 , and the deviance residuals are HsgnHyi - miLL di, as defined in (6).

These  residuals  can be  standardized by dividing by 1- hi ,  where  the  hi  are  the  lever-
ages obtained from the diagonal of the hat matrix W1ê2 XHX ' W XL-1 X ' W1ê2,  for W  equal
to the nän diagonal matrix, with mi ê H1+a miL as the ith element of the diagonal.

Here are the unstandardized residuals for the Titanic data.

UnstandardizedResiduals@coefficients_, X_, y_, t_D :=

ModuleB8rawResiduals, m, PearsonResiduals,

DevianceResiduals<,
m = ‰X.Drop@coefficients,1D+Log@tD;
rawResiduals = y - m;

PearsonResiduals =
y - m

m + coefficientsP1T m2
;

DevianceResiduals =

TableBSign@y2PiT - mPiTD

dSquared@i, y, m, coefficientsP1TD , 8i, Lengthüy<F;

8rawResiduals, PearsonResiduals, DevianceResiduals<

F

UnstandardizedResidualsTable@coefficients_, X_, y_, t_D :=
Textü
TableForm@UnstandardizedResiduals@coefficients, X, y, tD êê

Transpose, TableHeadings Ø
88<, 8"Raw\nresiduals", "Pearson\nresiduals",

"Deviance \nresiduals"<<D
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UnstandardizedResidualsTable@coefficients2, X2, y2,
t2D

Raw
residuals

Pearson
residuals

Deviance
residuals

-9.11076 -1.02715 -1.17269
-3.50578 -0.523491 -0.557314
-0.846654 -0.570629 -0.63435
-0.428274 -0.075488 -0.0761329
5.75903 2.0237 1.67408
1.53517 0.707087 0.651037
13.0575 0.599055 0.564238
19.5796 0.9332 0.853039
3.93218 0.0865899 0.0857962
8.86544 0.388343 0.373189
-26.9577 -1.83646 -2.4307
-5.05222 -0.23489 -0.241116

And here are the leverages and the standardized residuals.

LeveragesAndStandardizedResiduals@coefficients_, X_,
y_, t_D :=

ModuleB8m, h, PearsonResiduals, DevianceResiduals,

StandardizedPearsonResiduals,
StandardizedDevianceResiduals<,

m = ‰X.Drop@coefficients,1D+Log@tD;

W = DiagonalMatrixB
m

1 + coefficientsP1T m
F;

H*W=DiagonalMatrixA m

1+a m
Eê.a->coefficientsP1T;*L

h = DiagonalAW1ê2.X.Inverse@Transpose@XD.W.XD.

Transpose@XD.W1ê2E ;
8PearsonResiduals, DevianceResiduals< =
RestüUnstandardizedResiduals@coefficients, X, y, tD;

StandardizedPearsonResiduals =
PearsonResiduals

1 - h
;

StandardizedDevianceResiduals =
DevianceResiduals

1 - h
;

8h, StandardizedPearsonResiduals,
StandardizedDevianceResiduals<

F
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LeveragesAndStandardizedResidualsTable@coefficients_,
X_, y_, t_D :=

Textü
TableForm@
LeveragesAndStandardizedResiduals@coefficients,

X, y, tD êê Transpose,
TableHeadings Ø
88<, 8Row@8"Leverages\nH", Style@"h", ItalicD, "L"<D,

"Standardized\nPearson\nresiduals",
"Standardized\nDeviance\nresiduals"<<D

LeveragesAndStandardizedResidualsTable@coefficients2,
X2, y2, t2D

Leverages
HhL

Standardized
Pearson
residuals

Standardized
Deviance
residuals

0.445344 -1.37918 -1.57461
0.439559 -0.699268 -0.744449
0.152831 -0.619967 -0.689198
0.392289 -0.0968343 -0.0976616
0.276644 2.37941 1.96835
0.257581 0.820632 0.755581
0.487584 0.836864 0.788226
0.483857 1.29894 1.18736
0.566014 0.13144 0.130236
0.493325 0.54557 0.52428
0.493871 -2.58137 -3.41664
0.511101 -0.335934 -0.344839
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Hilbe  recommends  plotting  the  Standardized  Pearson  residuals  versus  h,  with  a  poor
model fit indicated by residuals that are outside the interval ±2 when the leverage is high.

ListPlot@
MostüLeveragesAndStandardizedResiduals@coefficients2,

X2, y2, t2D êê Transpose,
AxesLabel Ø 8Style@"h", ItalicD, "Std. Pearson Residuals"<D

0.2 0.3 0.4 0.5
h

-2

-1

1

2

Std. Pearson Residuals

We  have  two  Standardized  Pearson  residuals  that  are  not  within  the  range  ±2,  one  of
which has a high leverage.  We also recall  that  the variable class2  was not significant.
Perhaps the model will be improved if we remove class2.  All that is required is to re-
move class2  from the  design  matrix  X,  remove the  corresponding  starting  value  from
the maximizing command, and run the model again. We obtain the following assessment
statistics and standardized residuals for the revised model with class2 removed.
We set up design matrix X and find the coefficients.

X3 = Join@Thread@List@ones, age, sex, class3DDD;
results3 = FindMaximum@lnL2@X3, y2, t2, a, bD,

88a, 1.0, 0.01, 4.0<, 8b, 81.0, 1.0, 1.0, 1.0<<<,
AccuracyGoal Ø 6D;

coefficients3 = Last êü flattenrules@results3D

80.133933, 0.365058, -0.614273, -0.917076, -0.729812<
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ModelAssessmentTable@coefficients3, X3, y2, t2D

Log-likelihood -44.3705
Deviance 11.7129
Pearson 8.68622
AIC 8.06175
BIC -8.1664

LeveragesAndStandardizedResidualsTable@coefficients3,
X3, y2, t2D

Leverages
HhL

Standardized
Pearson
residuals

Standardized
Deviance
residuals

0.435655 -1.09572 -1.2326
0.387444 -0.902867 -0.996893
0.0876473 -0.351868 -0.3759
0.396719 -0.0679446 -0.0683983
0.268772 1.59492 1.37705
0.162966 1.16078 1.0196
0.476846 0.806843 0.755576
0.323239 0.327872 0.317654
0.334295 0.802214 0.745825
0.481837 0.292695 0.285484
0.321482 -2.27311 -3.22693
0.323096 0.141915 0.139939
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ListPlot@
MostüLeveragesAndStandardizedResiduals@coefficients3,

X3, y2, t2D êê Transpose,
AxesLabel Ø 8Style@"h", ItalicD, "Std. Pearson Residuals"<D
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h
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Comparing to the full model, we see that the assessment statistics have improved (they are
smaller,  indicating  a  better  fit),  and  the  Standardized  Pearson  residuals  with  high  lever-
ages  are  within  the  recommended  boundaries.  It  appears  that  the  model  has  been  im-
proved by dropping class2.

‡ Conclusion
The traditional negative binomial regression model (NB2) was implemented by maximum
likelihood estimation without  much difficulty,  thanks  to  the  maximization command and
especially to the automatic computation of the standard errors via the Hessian.
Other negative binomial models, such as the zero-truncated, zero-inflated, hurdle, and cen-
sored models, could likewise be implemented by merely changing the likelihood function.
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