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Negative Binomial Regression

Michael L. Zwilling

Negative binomial regression is implemented using maximum
likelihood estimation. The traditional model and the rate model
with offset are demonstrated, along with regression diagnostics.

Traditional Model

Negative binomial regression is a type of generalized linear model in which the dependent
variable Y is a count of the number of times an event occurs. A convenient parametriza-
tion of the negative binomial distribution is given by Hilbe [1]:

Fy+1/a) 1 Y ap Y
py)=PY =y = [ ) ( J , (1)
T+ DI/ \1+apu 1+au

where ¢ > 0 is the mean of Y and « > 0O is the heterogeneity parameter. Hilbe [1] derives

this parametrization as a Poisson-gamma mixture, or alternatively as the number of fail-

ures before the (1 /)™ success, though we will not require 1 /& to be an integer.

The traditional negative binomial regression model, designated the NB2 model in [1], is
Inp=Bo+Brxi+Paxa+-+ Bpxp, (2)
where the predictor variables x;, x;, ..., x,, are given, and the population regression coeffi-

cients By, B, B2, ..., B, are to be estimated.

Given a random sample of n subjects, we observe for subject i the dependent variable y;

and the predictor variables x,;, xy;, ..., Xp;. Utilizing vector and matrix notation, we let
B=(Bo B B> -+ Bp)', and we gather the predictor data into the design matrix X as
follows:
Loxyp xip o0 xpp
T o xn e Xy,
1 Xnl Xp2 ot Xpp

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.



2 Michael L. Zwilling

Designating the i row of X to be x;, and exponentiating (2), we can then write the distribu-
tion (1) as

r()’i + 1/(1) 1 1/a ael -B Vi
pOyi) = ,i=1,2, ..., n
Fi+HIA /@) 1 +ae? l+aeB

We estimate « and S using maximum likelihood estimation. The likelihood function is

. o T(i+1/a) 1 et )
L(a/,,B)—l_[P(Yi)—l_[r(yi+1)r(l/a)( /3) { B]’

Xi* Xi*
i 1 l+ae l+ae

and the log-likelihood function is

In L(a, B) = Z(yi Ina+y;(x;-B)—
i=1 (3)

1 1 1
(y,- + —] In(1+ae"*)+1n F(y,- + —) ~InT(y;+1)—1In r(—]}

a a o
The values of @ and S that maximize In L(«, 8) will be the maximum likelihood estimates

we seek, and the estimated variance-covariance matrix of the estimators is = = —H™!,
where H is the Hessian matrix of second derivatives of the log-likelihood function. Then
the variance-covariance matrix can be used to find the usual Wald confidence intervals
and p-values of the coefficient estimates.

m Example 1: Traditional Model with Simulated Data

We will use Mathematica to replicate some examples given by Hilbe [1], who uses R and
Stata. We start with simulated data generated with known regression coefficients, then re-
cover the coefficients using maximum likelihood estimation. We will generate a sample of
n = 5000 observations of a dependent random variable Y that has a negative binomial dis-
tribution with mean given by (2), using p = 2, @ = 0.50, and 8 = (2.00).75 —1.25)". The
design matrix X; will contain independent standard normal variates.

SeedRandom[12 345];
nl = 5000;
X1 = Prepend[#, 1] & /@
RandomVariate[NormalDistribution[], {nl, 2}];
yl =
Table [RandomVariate [

1

NegativeBinomialDistribution [ -,

1
a 1 +an1|Ii]]'/3]

{a-0.50,
B - {2.00, 0.75, -1.25}}], (i, nl}];
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Negative Binomial Regression 3

Now we define and maximize the log-likelihood function (3), obtaining the estimates of @
and 5. Some experimentation with starting values for the search may be required, and the

accuracy goal may need to be lowered; we could obtain good starting values for S using

Poisson regression via GeneralizedLinearModelFit, while « is usually between
0.0and 4.0 [1].

GeneralizedLinearModelFit[{X1l, yl},
ExponentialFamily » "Poisson"]

FittedModel || ,2-01709#1+0.726365112-1.25206 113

But we arbitrarily set all starting values to 1.0 and successfully find the correct estimates.

InLl[X_, y_, a_, B_] :=
Module[{n = Length[y]},

>

i=1

1 .
y[i] Log[a] + y[i] (X[i].B) - [y[[i]] + —) Log[l+ae li-?] 4
a

1 1
LogGamma[y[[i]] + —] - LogGamma [y[i] + 1] - LogGamma[—] )]
a a

resultsl = FindMaximum[1nLl[X1, y1, a, B],
{{a, 1.0, 0.01, 4.0}, {B, {1.0, 1.0, 1.0}}},
AccuracyGoal - 6]
{-15429.2, {aa—> 0.49929, 3> {2.00163, 0.755827, -1.25551}}}

Define two helper functions.

Bs[X_] := Array[B, Length[X[[2]]], O]

flattenrules[{_, {xx_ - xxval_, yy_-yyvals_}}] :=
{xx -> xxval,
Thread[Array[yy, Length[yyvals], 0] -> yyvals]} // Flatten

flattenrules[resultsl]

{0 > 0.49929, B[0] »2.00163, B[1] - 0.755827, B[2] » -1.25551}

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.



4 Michael L. Zwilling

Next, we find the standard errors of the estimates. The standard errors are the square roots
of the diagonal elements of the variance-covariance matrix X, which as mentioned above

is given by £ = —H~!, where H is the Hessian matrix of second derivatives of the log-like-
lihood function. First, define the Hessian for any function.

HessianH[f_, x_] :=D[f, {Flatten[x], 2}]
Then we find the Hessian and X at the values of our parameter estimates.

VarianceCovarianceMatrix[X_, y_, results_] :=
-Inverse[
HessianH[1nLl[X, y, a, B] /. B> Bs[X], {a, Bs[X]}] /.
flattenrules[results]]

(vl = VarianceCovarianceMatrix[X1l, yl, resultsl]) //
MatrixForm

0.000173092 -7.39458x107 1.02221x10°® -1.05205x10°°
-7.39458x 107 0.000155043 -0.0000266927 0.0000479428
1.02221x10® -0.0000266927 0.00015131 -0.0000161681
~1.05205%x10°° 0.0000479428 -0.0000161681 0.000168057

Finally, these are our standard errors.

StdErrl = \/Diagonal [v1]

{0.0131564, 0.0124516, 0.0123008, 0.0129637}

We can now print a table of the results: the estimates of the coefficients, their standard er-
rors, and the Wald z statistics, p-values, and confidence intervals.

coefficientsl = Last /@ flattenrules[resultsl]

{0.49929, 2.00163, 0.755827, -1.25551}

CoefficientsTable[coefficients_, StdErr_, labels_] :=
Module|[ {zStatistics, pValues, displaypValues, lower,
upper},
zStatistics = coefficients / StdErr;
pValues = 2 CDF [NormalDistribution[], -Abs[zStatistics]];
displaypValues =
Table[ {NumberForm[Round [pValues[j], 0.0001], {5, 4}1},
{j, Length[labels]}] // Flatten;
lower = coefficients - 1.96 StdErr;
upper = coefficients + 1.96 StdErr;
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Negative Binomial Regression 5

Texte
Column [
{TableForm|
{coefficients, StdErr, zStatistics, displaypValues} //

Transpose, TableHeadings -

{labels, {"Estimate", "Std. Err.",
Row[{Style["z", Italic], "-Statistic"}],
TraditionalForm[P > Abs[z]]}}],

TableForm[ {coefficients, lower, upper} // Transpose,
TableHeadings -
{labels, {"Estimate", "95% CI lower",
"95% CI upper"}}]
}]

CoefficientsTable[coefficientsl, StdErrl, Prepend[fBs[X1], a]]

Estimate Std. Err. z-Statistic P>z
a 0.49929 0.0131564 37.9502 0.0000
Bl0] 2.00163 0.0124516 160.753 0.0000
Bl1] 0.755827 0.0123008 61.4453 0.0000
Bl2] —1.25551 0.0129637 -96.8481 0.0000

Estimate 95% CI lower 95% CI upper

a 0.49929 0.473503 0.525077
BIl0] 200163 1.97723 2.02604
Bl1] 0.755827 0.731717 0.779936
Bl2] —-1.25551 -1.28092 -1.2301

We see that in each case the confidence interval has captured the population parameter.

m Traditional Model for Rates, Using Offset

If the dependent variable Y counts the number of events during a specified time interval ¢,
then the observed rate Y /¢ can be modeled by using the traditional negative binomial
model above, with a slight adjustment. We note that ¢ can also be thought of as area or sub-
population size, among other interpretations that lead to considering Y /¢ a rate.

Since E(Y /t) = u/t, we make the following adjustment to model (2) above:

In(u/0) = Bo+Bixi+Brxz+ -+ B, xp,
which can also be written as:

1n/~‘=,30+,31X1+[32x2+---+[3pxp+lnt. 4)
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This last term, In ¢, is called the offset. So in our log-likelihood function, instead of replac-

ing p with e, we replace u with e

In L(a, B) =

n

i=1

InT'(y;+1)—1In F[

-B+Int

a

)

, resulting in the following:

1
Z(J’i Ina+y;(x;-B+1Int;) - (yi + —) ln(l + aex"‘ﬂ”“"') +In F[

1
Yit — |-
@ (&)

Then we proceed as before, maximizing the new log-likelihood function in order to esti-
mate the parameters.

m Example 2: Traditional Model with Offset for the Titanic

Data

The Titanic survival data, available from [2] and analyzed in [1] using R and Stata, is sum-

marized in Table 1, with crew members deleted.

Survived Cases Age Sex Class
14 31 child female third
13 13 child female second
1 1 child female first
13 48 child male third
11 11 child male second
5 5 child male first
76 165 adult female third
80 93 adult female second
140 144 adult female first
75 462 adult male third
14 168 adult male second
57 175 adult male first

A Table 1. Titanic survival dataset.

Why did fewer first-class children survive than second class or third class? Was it because
first-class children were at extra risk? No, it was because there were fewer first-class chil-
dren on board the Titanic in the first place. So we do not want to model the raw number
(Y) of survivors; instead, we want to model the proportion (Y /cases) of survivors, which
is the survival rate. So in (4) we need ¢ to be the number of cases.
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We set up the design matrix, with indicators 1 for adults and males, and using indicator
variables for second class and third class, which means first class will be a reference.

ones = ConstantArray[1l, 12];

age = {0, 0, 0, 0,0,0,1,1,1,1, 1, 1};
sex= {0, 0, 0,1,1,1,0,0,0,1, 1, 1};
class2={(0,1,0,0,1,0,0,1, 0,0, 1, 0};

class3={1,0,0,1,0,0,1,0,0,1, 0, O};
X2 = Join[Thread[List [ones, age, sex, class2, class3]]];

Then we set up the dependent variable and the offset.

y2 = {14, 13, 1, 13, 11, 5, 76, 80, 140, 75, 14, 57};
t2 = {31, 13, 1, 48, 11, 5, 165, 93, 144, 462, 168, 175};

We define the log-likelihood (5).

InL2[X , vy , t_, a_, B_] :=
Module[{n = Length[y]},

Z [YIIi]] Log[a] +y[i] (X[i].B +Log[t[i]]) -

i=1

: ; 1
Log [l + q eIl -Ariog(tlill] LogGamma[y [i] + —] -

a

. 1
(YlIl]] + =
a

1
LogGamma[y[i] + 1] - LogGamma [ —] ]
a

]

Now we maximize it to find the coefficients.
results2 = FindMaximum[1nL2[X2, y2, t2, a, B],
{{a, 1.0, 0.01, 4.0}, {B, {1.0, 1.0, 1.0, 1.0, 1.0}}},

AccuracyGoal - 6]

{-43.7168, {a—>0.104034,
B-{0.613375, -0.670035, -0.98015, -0.374614, -0.907064}}}
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Then we find the standard errors of the coefficients.

VarianceCovarianceMatrix2[X_, y_, results_] :=
-Inverse[
HessianH[1nL2[X, y, t2, a, B] /. B> Bs[X], {a, Bs[X]}] /.
flattenrules[results]]

StdErr2 =
—\/Diagonal [VarianceCovarianceMatrix2[X2, y2, results2]]

{0.0683913, 0.32834, 0.2535, 0.245967, 0.30709, 0.287539}

And again we can print a table of the results.

CoefficientsTable[Last /@ flattenrules[results2],
StdErr2, Prepend[fs[X2], a]]

Estimate Std. Err. z-Statistic P>z
a 0.104034 0.0683913 1.52116 0.1282
Bl0] 0.613375 0.32834 1.86811 0.0617
Bl1] —-0.670035 0.2535 -2.64313 0.0082
Bl2] —-0.98015 0.245967 —3.98488 0.0001
B3] -0.374614 0.30709 —1.21988 0.2225
Bl4] —-0.907064 0.287539 —3.15458 0.0016
Estimate 95% CI lower 95% CI upper
a 0.104034 —-0.0300126 0.238081
Bl0] 0.613375 -0.0301722 1.25692
Bl1] -0.670035 —-1.1669 -0.173175
Bl2] —-0.98015 —1.46225 —-0.498054
BI3] -0.374614 -0.97651 0.227283
Bl4] —-0.907064 —-1.47064 —0.343488

But perhaps more useful for interpretation of the coefficients would be the Incidence Rate
Ratio (IRR) for each variable, which is obtained by exponentiating each coefficient.
For example, out of a sample of ¢ adults, we expect that the survival rate, from our
model (4), will be pqus /t = exp(By + B1(1) + Br(sex) + B(class2) + Bz(class3)), while
for an identical number ¢ of children we expect their survival rate to be
Hehitdren / T = €Xp(Bo + B1(0) + B1(sex) + By(class2) + B5(class3)). So by dividing the two
rates, we obtain the ratio of rates (IRR) to be
Hadults / t

IRR exp(By + B1(1) + Bo(sex) + B,(class2) + [5(class3))
 Heniaren /T XP(Bo + B1(0) + Balsex) + Ba(class2) + Bs(class3))

—-0.670034

P

which we estimate to be e = 0.51. Thus, our interpretation is that adults survived
at roughly half the rate at which children survived, among those of the same sex and class.
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The standard error of IRR is found by multiplying the estimated IRR by the standard error
of the coefficient (see [1]), while a confidence interval for IRR is found by exponentiating
the confidence interval for the coefficient. Thus we obtain the following.

coefficients2 = Last /@ flattenrules[results2];
lower2 = coefficients2-1.96 StdErr2;
upper2 = coefficients2 + 1.96 StdErr2;

coefficients2
IRR = e ;

IRRStdErr = IRR StdErr2;

IRRlower = el°"erZ,

IRRupper = e'PPer2;

We do not need IRR for « or Sy, so we drop them and then print the resulting table.

IRR = Drop[IRR, 2];
IRRStdErr = Drop[IRRStdErr, 2];
IRRlower = Drop[IRRlower, 2];
IRRupper = Drop[IRRupper, 2];
Texte@
TableForm[ {IRR, IRRStdErr, IRRlower, IRRupper} // Transpose,
TableHeadings -» {{"age", "sex", "class2", "class3"},
{"IRR", "IRR\nStd. Err.", "95% IRR\nCI lower",
"95% IRR\nCI upper"}}]

IRR IRR 95% IRR 95% IRR

Std. Err. CI lower CI upper

age 0.511691 0.129714 0.311332 0.840991

sex 0.375255 0.0923003 0.231715 0.607712
class2 0.687555 0211141 0.376623 125518

class3 0.403708 0.116082 0.229778 0.709292

The confidence interval for the variable class2 contains 1.0, consistent with the lack of
significance of its coefficient, and indicating that the survival rate of second-class passen-
gers was not significantly different than that of first-class passengers. We will address this
after computing some model assessment statistics and residuals.
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m Model Assessment

Various types of model fit statistics and residuals are readily computed. We use defini-
tions given in [1]; alternate definitions exist and would require only minor changes.

Commonly used model fit statistics include the log-likelihood, deviance, Pearson chi-
square dispersion, Akaike Information Criterion (AIC), and Bayesian Information
Criterion (BIC).

We already have the log-likelihood £ as a byproduct of the maximization process. The de-
viance D is defined as

D=2 (Lyis yi) = Ll y)),

i=1
where L(u;; v;) is our log-likelihood function (5), and L(y;; y;) is the log-likelihood func-
tion with y; replacing y;. For our NB2 model, this simplifies to D = 37, d;?, where

2(y,- 1n(§)—(y,- + i)ln(ﬂ)) if y; > 0

1+a y;

di? = (6)

2 In(1 +a ;) ify; = 0.
The Pearson chi-square dispersion statistic is given by >}"; (y;i — 1u)? / (,ul- +a /Jiz), while
AIC and BIC are defined as
2(L~(p+1)

n

AIC =

and
BIC=D-(n-p-1)Inn.

We compute these for the Titanic data above and display them.

dSquared[i_, y_, u_, A_] :=

. yIil _ . 1 1+Ay[i] .
2 (y[il Log[ 1] - (y[il + ) Log[T5XEL]) yIil # 0 ;
2 Log[1+Au[i]] y[i] == 0
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ModelAssessment [coefficients_, X_,y , t_] :=

Module[{u, n, results, deviance, Pearson, p, AIC, BIC},

_ ~X.Drop[coefficients,1]+Log[t] ,
u=ce ’

n = Lengthey;

results = FindMaximum[1nL2[X, vy, t, a, B],
{{a, 1.0, 0.01, 4.0}, {B, Table[1.0, {Length@X[[1]]}]1} },
AccuracyGoal -» 6] ;

L = results[1];

n
deviance = ZdSquared[i, y, u, coefficients[1]];

i=1

= (yI[il - w[il)?
Pearson = Z i
{3 uIi] + coefficients[1] u[i]?
p = Length[X[2]] - 1;

2(L-(p+1))
AIC= - ———————;
n

BIC = deviance- (n-p-1) Log[n];
{£, deviance, Pearson, AIC, BIC}

ModelAssessmentTable[coefficients , X_, y_, t_] :=
Text@TableForm[ModelAssessment [coefficients, X, y, t],
TableHeadings -
{{"Log-likelihood", "Deviance", "Pearson", "AIC",
"BIC"}}]

ModelAssessmentTable[coefficients2, X2, y2, t2]

Log-likelihood |—-43.7168

Deviance 12.4795
Pearson 11.0715
AIC 8.11947
BIC —4.91485

These model assessment statistics are most useful when compared to those of a competing
model, which we pursue in the next section after computing residuals.
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m Residuals

The raw residuals are of course y;—y;, while the Pearson residuals are

i — W) / VMt w2, and the deviance residuals are (sgn(y; — i;)) d;, as defined in (6).

These residuals can be standardized by dividing by V 1 — h; , where the h; are the lever-
ages obtained from the diagonal of the hat matrix W2 xXxX'wXx)"' X' W2, for W equal
to the nxn diagonal matrix, with y; / (1 + a ;) as the i element of the diagonal.

Here are the unstandardized residuals for the Titanic data.

UnstandardizedResiduals[coefficients_, X _,y , t_] :=
Module[{rawResiduals, u, PearsonResiduals,

DevianceResiduals},
U= eX.Drop[coeff:Lc:Lents,1]+L(>g[t:] ;

rawResiduals =y - u;

. Y-u
PearsonResiduals = 7

\/u +coefficients[1] p?

DevianceResiduals =

Table [Sign [y2[4i] - #[i]]

'\/dSquared[i, y, u, coefficients[1]] , {1, Length@y}];

{rawResiduals, PearsonResiduals, DevianceResiduals}

]

UnstandardizedResidualsTable[coefficients_, X_, y , t_] :=
Texte@
TableForm[UnstandardizedResiduals[coefficients, X, y, t] //
Transpose, TableHeadings -
{{}, {"Raw\nresiduals", "Pearson\nresiduals",
"Deviance \nresiduals"}}]
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UnstandardizedResidualsTable[coefficients2, X2, y2,

t2]

Raw Pearson Deviance
residuals residuals residuals
-9.11076 -1.02715 —1.17269
-3.50578 —0.523491 —-0.557314
—0.846654 —-0.570629 —0.63435
-0.428274 —0.075488 -0.0761329
5.75903 2.0237 1.67408
1.53517 0.707087 0.651037
13.0575 0.599055 0.564238
19.5796 0.9332 0.853039
3.93218 0.0865899 0.0857962
8.86544 0.388343 0.373189
—26.9577 —1.83646 -2.4307
-5.05222 —-0.23489 -0.241116

And here are the leverages and the standardized residuals.

LeveragesAndStandardizedResiduals[coefficients_, X ,

Y t__] :=

Module[{u, h, PearsonResiduals, DevianceResiduals,

StandardizedPearsonResiduals,
StandardizedDevianceResiduals},

u=e

W::DiagonalMatrix[

(»W=DiagonalMatrix|

X.Drop[coefficients,1]+Log[t] ,
14

l+a

- ]
1 +coefficients[1] u '

]/.a—>coefficientsﬂ1];*)

h:=Diagonal[W”z.x.Inverse[Transpose[X].W.X].

Transpose[X] .W

uz],
14

{PearsonResiduals, DevianceResiduals} =
Rest@UnstandardizedResiduals[coefficients, X, y, t];

PearsonResiduals

StandardizedPearsonResiduals = ;

StandardizedDevianceResiduals =

Y1-h

DevianceResiduals

4

1-h

{h, StandardizedPearsonResiduals,
StandardizedDevianceResiduals}

13
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LeveragesAndStandardizedResidualsTable[coefficients_,

X ,y_,%t_]:=
Texte
TableForm[

LeveragesAndStandardizedResiduals[coefficients,

X, vy, t] // Transpose,

TableHeadings -

{{}, {Row[{"Leverages\n (", Style["h", Italic], ")"}1,
"Standardized\nPearson\nresiduals",
"Standardized\nDeviance\nresiduals"}}]

LeveragesAndStandardizedResidualsTable[coefficients2,

X2, y2, t2]
Leverages Standardized Standardized
(h) Pearson Deviance
residuals residuals
0.445344 -1.37918 —-1.57461
0.439559 —-0.699268 —-0.744449
0.152831 —-0.619967 —0.689198
0.392289 —-0.0968343 —-0.0976616
0.276644 2.37941 1.96835
0.257581 0.820632 0.755581
0.487584 0.836864 0.788226
0.483857 1.29894 1.18736
0.566014 0.13144 0.130236
0.493325 0.54557 0.52428
0.493871 —2.58137 -3.41664
0511101 —0.335934 —0.344839
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Hilbe recommends plotting the Standardized Pearson residuals versus /i, with a poor
model fit indicated by residuals that are outside the interval £2 when the leverage is high.

ListPlot|
Most@LeveragesAndStandardizedResiduals[coefficients2,

X2, y2, t2] // Transpose,
AxesLabel -» {Style["h", Italic], "Std. Pearson Residuals"}]

Std. Pearson Residuals

0.2 03 V4 05,

T T T T T T T T T & T T

We have two Standardized Pearson residuals that are not within the range +2, one of
which has a high leverage. We also recall that the variable class2 was not significant.
Perhaps the model will be improved if we remove class2. All that is required is to re-
move class2 from the design matrix X, remove the corresponding starting value from
the maximizing command, and run the model again. We obtain the following assessment
statistics and standardized residuals for the revised model with class2 removed.

We set up design matrix X and find the coefficients.
X3 = Join[Thread[List[ones, age, sex, class3]]];
results3 = FindMaximum[1lnL2[X3, y2, t2, a, B],
{{a, 1.0, 0.01, 4.0}, {B, {1.0, 1.0, 1.0, 1.0}}},

AccuracyGoal - 6] ;
coefficients3 = Last /@ flattenrules[results3]

{0.133933, 0.365058, -0.614273, -0.917076, -0.729812}
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ModelAssessmentTable[coefficients3, X3, y2, t2]

Log-likelihood | —44.3705

Deviance 11.7129
Pearson 8.68622
AIC 8.06175
BIC —8.1664

LeveragesAndStandardizedResidualsTable[coefficients3,

X3, y2, t2]
Leverages Standardized Standardized
(h) Pearson Deviance

residuals residuals
0.435655 -1.09572 -1.2326
0.387444 —-0.902867 —-0.996893
0.0876473 —-0.351868 -0.3759
0.396719 —-0.0679446 —-0.0683983
0.268772 1.59492 1.37705
0.162966 1.16078 1.0196
0.476846 0.806843 0.755576
0.323239 0.327872 0.317654
0.334295 0.802214 0.745825
0.481837 0.292695 0.285484
0.321482 -2.27311 —3.22693
0.323096 0.141915 0.139939
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ListPlot]
Most@LeveragesAndStandardizedResiduals[coefficients3,

X3, y2, t2] // Transpose,
AxesLabel -» {Style["h", Italic], "Std. Pearson Residuals"}]

Std. Pearson Residuals

10.1 02 03 04

Comparing to the full model, we see that the assessment statistics have improved (they are
smaller, indicating a better fit), and the Standardized Pearson residuals with high lever-
ages are within the recommended boundaries. It appears that the model has been im-
proved by dropping class2.

Conclusion

The traditional negative binomial regression model (NB2) was implemented by maximum
likelihood estimation without much difficulty, thanks to the maximization command and
especially to the automatic computation of the standard errors via the Hessian.

Other negative binomial models, such as the zero-truncated, zero-inflated, hurdle, and cen-
sored models, could likewise be implemented by merely changing the likelihood function.
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