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Inversive Geometry: Part 1

Inverting Generalized Circles, Ellipses,
Polygons, and Tilings

Jaime Rangel-Mondragon

This article explores the basic properties of inversive geometry
from a computational point of view. Topics included in this part
are involutions, generalized circles, and the inversion of
segments, arcs, triangles, and quadrilaterals. The applications
are to Nicomachus’s theorem, the inversion of tilings made by
regular polygons, and an inversive spirograph.

Introduction

The author of [1] describes the technique of inversion as a “dark art.” A suitable interpre-
tation of this description is offered by [2] as “an advanced technique, which can offer
considerable advantage in solving certain problems.” This article examines the basic prop-
erties of inversive geometry, starting from the introduction of involutions and the family
of generalized circles, the inversion of segments, arcs, triangles, and quadrilaterals with
applications to Nicomachus’s theorem, the inversion of tilings made by regular polygons,
and an inversive spirograph. This work extends and complements the material in [3, 4, 5].

Involutions

A transformation 7 that is not the identity with the property that 7(7(z)) = z is called an in-
volution (or an involutory transformation, self-inverse, or of period two). Familiar exam-
ples of involutions are multiplication by —1 and taking a reciprocal in arithmetic, taking a

complement in set theory, taking the conjugate of a complex number (i.e.,x+iy=x—1iy,
if x and y are real), geometrical reflection in a line, the matrix transpose and matrix in-
verse, and the mapping of a number x into @ — x, with a an arbitrary number.
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2 Jaime Rangel-Mondragon

An important example of an involution involves permutations. A permutation under the
operation of group composition is an involution if it is of order 2; that is, if it can be
written as a product of disjoint transpositions (cycles of length 2). For example, the 7-
permutation 5234176 maps 1 - 5,2 -52,3-53,4-54,5->1,6->7,7 - 6; it factors
into cycles as (15) (2) (3) (4) (67) or, leaving out the fixed points 2, 3, 4, as (15) (67).

PermutationCycles[{5, 2, 3, 4, 1, 7, 6}]

Cycles[{{1, 5}, {6, 7}}]

The number of involutory n-permutations grows quickly with #.

ParallelTable]|
Length[Select[Permutations[Range[n]],
PermutationOrder[#] == 2 &]], {n, 8}]

(0, 1, 3, 9, 25, 75, 231, 763}

These numbers can also be readily obtained by solving a recurrence equation [6].

Module[{n},

RecurrenceTable[
{a[l] =0, a[2] ==1, a[n] ==a[n-1]+(1+a[n-2]) (n-1)},
a[n], {n, 20}]]

{0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695,
140151, 568503, 2390479, 10349535, 46206735,
211799311, 997313823, 4809701439, 23758664095}

Consider reversion, f(z) = 1/z, an involution that maps a nonzero complex number to its
reciprocal. Let U be the unit circle given by the equation |z|=1 or x*+y? = 1, with
z=x+yi. It is easy to see that f maps the interior of U to its exterior and vice versa; that
is, |z| > 1iff |f(z)| < 1. Moreover, |f(z)|=1iff |z|= 1. Reversion maps the number
z = x+yi into the number z / |z [*, where z is the conjugate of z. Considering a complex
number as a point in the complex plane, if a point is close to the origin, its reversion is far
away, and vice versa.

Here is the reversion of a complex number.

1
ComplexExpand [ ]
Xx+yi1

b 4 iy

2

x?+y x? + y?
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Inversive Geometry: Part 1 3

Inversion, f(z) = 1 / Z, is an involution similar to reversion. For inversion, 0, z and f(z) are

collinear for nonzero z. The point z = x + yi inverts to the point z/ |z [2.

1
ComplexExpand[Conjugate[ ]]
x+yi

b4 i1y
+
2 x2,y2

2

X*+y

The following Manipulate compares reversion, inversion, and some similar transforma-
tions. Drag the point z; the arrow starts at z and ends at f(z) for the chosen transformation
f; the interior of U is colored blue.

Manipulate [

Module [

{x, vy, r, g},
If[Chop[Norm[Z]] ==0, Z = {0, .001}];
{x, v} =2;
r = Norm[Z];
q=Switch[T, 1, {x, - v} /r?, 2, {x, v}/r%, 3,
{x, y} /¥, 4, {x*-y*, -2xy}/r* 5, {x*-y?, 2xy}/r*,
1 1
6, {Cos[—ArcTan[x, y]], - Sin[—ArcTan[x, y]]}/ Vr ];
2 2

Graphics[{EdgeForm[Thick], ColorData[2, 6], Disk][],
Blue, Arrow[{Z, q}], Red, Disk[Z, .05], Disk[q, .05],
Style[{Text[TraditionalForm[z], Z, {0, -1.5}],

Text [TraditionalForm[f[z]], q, {-2, 0}]}, Black,
141},
Axes -» True, PlotRange - 3]

E

{{z, {.5, .3}}, Locator, Appearance - None},
Row[

{Control@{{T, 1, "£(z) ="},

1 z 1 T 1
{1—>l/z,2—>—,3—)—,4—)—,5—)—,6—)—},

z |z} z2 z2 vz

SetterBar}, Spacer[20], "Drag the point z."}

B

TrackedSymbols :» {T, Z}, SaveDefinitions -» True]
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-l

fiz)= | = =2 |=| = Drag the point
B = T 7| = e rag the point z.

B Generalized Circles and Ellipses

A linear transformation maps the family of lines to itself. The following theorem suggests
a family that may be preserved by inversion.

Theorem 1

Points (x,y) that satisfy the equation A (> +y*) +Bx+Cy+D =0, with A, B, C, D
real numbers, invert into points that satisfy the equation D (3 +y*) +Bx+Cy +A =0.

Applying the transformation corresponding to inversion of Cartesian points verifies this.

Simplify[A x?+y?) +Bx+Cy+D /.

{xox/(x+v?), you/(x*+v")}]

A+Bx+Dx%?+Cy+Dy?

x? + y?
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Inversive Geometry: Part 1 5

Let ©(A, B, C, D) be the set of points that satisfy the first equation in theorem 1. This four-
parameter family includes points (for instance, when A = 1 and D = B2 + C2), lines (when
A =0), circles (when A = 1), the whole plane (when A = B = C = D =0), and the empty
set(whenA=B=C=0,D=1).

Define a generalized circle to be a line or circle. (The function genCircle defined be-
low constructs the graphics objects to draw the line or circle.) Under inversion, the gen-
eralized circle (A, B, C, D) transforms into the generalized circle &(D, B, C, A). If
A =0, (and A, B are not simultaneously 0), then &(A, B, C, D) is a line. If A # 0, the equa-
tion A(x? +y%)+Bx+ Cy+ D =0 corresponds to a circle with center — (B, C) /(2 A) and

radius \/BZ+C2—4AD/ 2 A|, provided that B2+ C2 > 4AD.If D =0, 6(A, B, C, D)

passes through the origin. For any nonzero k, ©(A,B,C,D) is the same as
SkA,kB,kC, kD).

Other families of polynomials in two variables that include generalized circles do
not transform their members into members of the same family; that is, they are not
closed under inversion. For instance, the six-parameter family of equations
Ax2+By?’+Cxy+Dx+Fy+G =0 includes conic sections, but some invert into
quartics.

Simplify[Ax?+By’+Cxy+Dx+Fy+G/.
{xox/(x+¥"), yoy/ (x*+¥")}]
1
(x? +y?)?
(Ax*+Gx*+Cxy+Fx*y+By?+2Gx’y*+Fy’+Gy* +Dx (x? +y?))
Theorem 2

A line passing through different points (x|, y1) and (x,, y») corresponds to the gener-
alized circle 60, y, —y1, X1 —X2, X2 y1 —X1 ¥2) if y1 # y» and ©(0, 0, 1, —y) otherwise.

The parameters needed to describe such a line are obtained by solving the following
equation.

Solve[xl+cyl+d=x2+cy2+d=0, {c, d}]

- -

yl—y2' yl-y2

x1 - x2 x2yl-x1y2
te-- 40— )
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6 Jaime Rangel-Mondragon

Theorem 3

A circle with center (a, B) and radius p corresponds to the generalized circle
o, —2a, -2 B, a? +5* —?).

This result is readily obtained by expanding the Cartesian equation of such a circle.
Expand[ (x-a)? + (v - B)? == p?]
xX2+y?-2x0+0®-2yB+pB% =02

From a structural point of view, if a generalized circle is mapped to itself, it is said to be
preserved by inversion. (Warning: that is not the same as saying that a point on a general-
ized circle is mapped to itself; for instance, a rotation about the center of a circle preserves
the circle but moves each point of the circle.) In that case, A = D. If A = D = 0, the line
passes through the origin and each point is inverted into its negative. If A = D # 0, and
B? + C? = 4 A2, the circle A(x* +y*) + Bx+ Cy+ A = 0 is preserved. Assume its center is
at a point of the form (%, 0). Then, in particular, the point (& —p, 0) is inverted into the
point (k& + p, 0).

d-p
(d-p)?

(e )

Hence p? + 1 = d?; that is, the origin, center, and either of the two intersection points of
the circle and the unit circle U form a right triangle; hence the circle is orthogonal to U.
This condition turns out to be necessary and sufficient for a generalized circle to be pre-
served. Theorem 1 implies the following results, which also apply conversely.

Quiet@Solve[ =d+p, {d, p}]

1. Any circle not passing through the origin inverts into a circle not passing through
the origin (in fact passing through its intersection points with the unit circle U, if

any).

2. Any circle passing through the origin inverts into a line not passing through the ori-
gin (in fact passing through its intersection points with U, if any; in general, this
line is parallel to the tangent of the circle at the origin).

3. Any line passing through the origin is preserved by inversion (any point is mapped
into its negative).

4. Any line not passing through the origin inverts into a circle passing through the ori-
gin (and its intersection points with U, if any).
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Inversive Geometry: Part 1 7

To make inversion continuous, define the inversion of the origin to be a legal point, the
“point at infinite,” oo, making the phrase “nonzero” unnecessary when talking about inver-
sion. Inversion is thus a one-to-one map of the extended plane.

Conversions of generalized circles to and from graphics primitives are handled by the fol-
lowing functions.

genCircle[{}] = {};

genCircle[{0, B_, C_, D_}] :=
If[Chop[B] == 0, If[Chop[C] == 0, {},
Line[{{O, -D/C}, {1, -D/C}}1],
I1f[Chop[C] = 0, Line[{{-D/B, 0}, {-D/B, 1}}],
Line[{{0, -D/C}, {1, (D-B) /C}}1]]

genCircle[{A_, B_, C_, D_}] :=
If[Chop[32+c2-4AD] <0, {},

Circle[—{B, C}/ (21), '\/BZ+C2—4AD/Abs[2A]”

toGenC[{}] = {};
toGenC[Circle[{a_, B_}, p_1] := {1, -2a, -2 B, a®+B%-p?}

toGenC[Line[{{x1_, y1_}, {x2_, y2_}}]1] :=
If[ (Chop[xl-x2] == 0) A (Chop[yl-y2] ==0), {},
If[Chop[yl-y2] =0, {0, O, 1, -y1},
If[Chop[x1l-x2] =0, {O, 1, O, -x1},
{0, y2-y1, x1-x2, x2yl-x1y2}]]]

invert[{}] = {};

invert[{A_, B_, C_, D_}] := {D, B, C, A}
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For example, the following Manipulate shows how a line and a circle behave under in-
version. To vary their positions, drag the two small disks. For a line, the disks are points
on the line; for a circle, one disk is the center and the other is on the circumference. You
can also choose a family of parallel lines or a family of concentric circles. The arrows
show the action of the inversion on the two control points.

Manipulate|

Module[
{p, 9, u, v, w, i, ol, o2},
{p, 4} = pq;

If[Chop[Det[pq]] =0, p=p+ {0, .01};
q=q9+{.01, 0}];
{u, v} = {p-100 Normalize[q-p], p+ 100 Normalize[q-p]};
w={{0, -1}, {1, O0}}.Normalize[v-u];
ol = Switch[op, 1, {Line[{u, v}]}, 2,
{Circle[p, Norm[p-q]]}, 3,
Table[Line[{u+iw, v+iw}], {i, -6, 6, .5}], 4,
Table[Circle[p, i Norm[p-q]], {i, .2, 6, .2}1];
02 = Map[genCircle[invert[toGenC[#]]] &, ol];
Graphics |
{EdgeForm['I‘hick] , ColorData[2, 6], Disk[], Red, ol,
Blue, o2, Disk[#, .05] & /@ {p, q}, Black,
If[arrows, {Arrow[{p, p/Norm[p]z}] ’

Arrow[{qa, q/Norm[q]?*}]}, {}]},
Axes » (op < 3), PlotRange - 3]
|
{{pa, {{2, 1}, {-2, 2}}}, Locator, Appearance - None},
Row [ {
Controle@e{{op, 1, ""}, {1 > " line ", 2 " circle ",
3> " parallel lines ", 4 > " concentric circles "}},
Spacer[20],
Control@ {arrows, {True, False}}, Spacer[10],
"Drag a point."
1,

SaveDefinitions -» True]
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Inversive Geometry: Part 1 9

Iline circle | parallel lines concentric circles | arrows D Drag a point.

Concentric circles do not invert into concentric circles, and the center of a circle does not
invert into the center of its inversion (although the two centers are collinear with the ori-
gin). The center of the inverted circle can even be outside the original circle! (This particu-
larly applies to Ui, its interior gets mapped into its exterior and its center gets mapped to
00.) The next section shows how to locate the center of the inversion of a given circle.

As a circle is a particular kind of ellipse, it is interesting to see the inversion of a general
ellipse. The following Manipulate shows such an inversion; you can drag the center of
the ellipse with a locator and vary the lengths of its axes with a pair of sliders. Contour
lines showing concentric ellipses are optional; increase the zoom slider if the display is all
one color.
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Manipulate [

Module [

{cx, cy},
{cx, cy} =c;

Show[Graphics [ {EdgeForm[Thick], ColorData[2, 6],

Disk[{0, O}, 1], Opacity[.5], ColorData[2, 5],
Disk[c, {a, b}]}, PlotRange -» z],

If[cl,
(-ex +x)? . (-ey+y)?
a2 b2

{x, -8, 8}, {y, -8, 8}, Contours—»lo],

14

If[cll =1, ContourPlot[

2 2
(—cx+ > 2) (—CY+ _Y_z 2)
X°+y X°+y
ContourPlot[ " . , {x, -8, 8},
a b

{y, -8, 8}]
[fexr2Zm) (rove25)

B
ContourPlot [ x + =1,
a2 b2

{x, -8, 8}, {y, -8, 8}]

]
]
J.

"Drag the locator.",
{{a, 1, "horizontal axis"}, .1, 4, Appearance - "Labeled"},
{{b, .6, "vertical axis"}, .1, 4, Appearance -» "Labeled"},
{{c, {-.1, 0}}, Locator},
Dynamice@
Row [

{Control[{{cl, False, "contour lines"}, {True, False}}],

If[cl,

Control[{{cll, 1, ""},
{1 - "family", 2 » "family inverted"}}], ""1}1,

{{z, 4, "zoom"}, 2, 8, Appearance - "Labeled"},

SaveDefinitions -» True]
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Inversive Geometry: Part 1 11

Drag the locator.

horizontal axis M 1
o
vertical axis (] 0.6
)
contour lines D
M
zoom 4
)

(| <

B Inversion in an Arbitrary Circle

Up to now, inversion has been in the unit circle; it can be generalized to use any circle
M. Temporarily using complex numbers to represent points in the plane, assume
M = O(y, p), which means M has center y and radius p (assume p > 0). The generaliza-
tion takes three steps: first transform M into U by translating y to the origin and scaling by
1/p. Second, invert in U. Third, scale back by p and translate back by . As these opera-
tions are rigid motions, all the properties of inversion apply to the generalized inversion.
Generalized inversion is implemented by the function invZ.

]

2

invzZ[{y_, p_}, z_] :=7+Conjugate[
z-vy
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The explicit Cartesian coordinates for inverting points come from expanding the follow-
ing expression.

ComplexExpand [invZ[{yx+yy i, p}, x+y1i]]

x p? ¥x p?
YX + - +
(X-¥x)%+ (-y+vyy)? (x-¥yx)?+ (-y+vyy)?
. y 02 Yy 02
1 Yy+ -
(x-yx)2+ (my+yy)? (x-¥yx)Z2+ (-y+vy)?

Then, operating with Cartesian coordinates, the function inver inverts a given point p in
M = O(y, p).

inver[{vy_, _}, v_1 =1{};

e (p-Y)
(p-v%)-(P-Y)

inver([{y_, p_}, P_] :=¥+
For example, the functions give matching results when applied to corresponding representa-
tions of the same point in the plane. The latter form is more convenient here.

invZ[{1+21i, 3}, 4+51]

5 71
— + —

2 2

inver[{{1, 2}, 3}, {4, 5}]

An interesting property of inversion is adopted by many authors as an alternative way of
defining inversion. Let g be the inversion of the point p # 7y in the circle M = O(y, p). It is
easy to verify that the product of the distance of p to y and the distance of g to 7y is a con-

stant equal to p?.

rulel = {p » {px, PY}, ¥ > {¥%X, ¥¥}};
Simplify[ (Norm[y - inver[{y, p}, p]] Norm[y -p] /. rulel) /.

Abs[xx_]% » xx?, ((px-¥x)2+ (py-¥¥)?>0) /\ (0> 0)]

02

Therefore, define the point g as the inverse of p if g is that unique point such that its dis-
tance to y times the distance of p to y is p? [7].
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Inversive Geometry: Part 1 13

Before obtaining the Cartesian coordinates corresponding to inverting circles and lines,
first consider the following problem. What is the center of the circle through three differ-
ent noncollinear points a, b, ¢?

The function disSq computes the square of the distance between two given points &, k
and is used by the function cir3 that computes the required center.

dissq[h_, k_] := (k-h).(k-h)

cir3[a_, b_, c_] :=Module[{xx, vy},
First]

{xx, yy} /.
Solve[disSq[{xx, yy}, a] = disSq[{xx, yy}, b] ==

dissq[{xx, yy}, c]l, {xx, yy}11]
For example, here is an explicit formula for the center of such a circle through
a=(x,y1),b = (x2,y2),and ¢ = (x3, y3).

simplifiedcenter =
Simplify[cir3[{x1, yl}, {x2, y2}, {x3, y3}] /.

Abs[xx_12 - xxz]

{(x3% (-yl+y2) +x2% (yl-y3) -

(%1% + (y1-y2) (y1-¥3)) (y2-¥3))/
(2 (x3 (-yl+y2) +x2 (yl-y3) +x1 (-y2+y3))),
(-x22 x3+x1? (-x2+x3) +x3 (y1? -y2?) +

x1 (x227x32+y227y32> + X2 <x327y12+y32>)/
(2 (x3 (yl-y2) +x1 (y2-y3) +x2 (—yl+y3)))}

This is its radius.

Fullsimplify[Norm[simplifiedcenter - {x1, y13}1 /.

Abs [xx_]?% - xx?]

1
2—\/(<((x1—x2)2+ (y1-y2)?)
((x1-%3)2+ (yl1-y3)2) ((x2-%3)2+ (y2-y3)?)) /
(X3 (-yl+y2) +x2 (yl-y3) +x1 (-y2+y3) )2)
The denominators of the expressions for the center and radius contain a factor that is zero

only when a, b, and c are collinear.

rule2 = {a » {x1, y1}, b-> {x2, y2}, ¢ > {x3, y3}};
Det[{c-a, b-a} /. rule2]

x2yl-x3yl-x1y2+x3y2+xly3-x2y3
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14 Jaime Rangel-Mondragon

Now consider an arbitrary circle V that does not pass through the center v of M. Invert y
in V to y' and then invert y' in M to y". Then the inversion of V in M is a circle with cen-
ter v". The equality of the following two results verifies this property.

rule3 = {y - {yx, y¥}, M- {{yx, ¥y}, p}, V- {{vx, vy}, vr}};
FullSimplify[inver[M, inver[V, y]] /. rule3]

(VX - yx) p?
{Yx+ I
—vr? + (VX -yx)%+ (Vy - YY) ?

(vy - vy) p?
vy )

—vr2+ (vR-yx)%2+ (VY - yy)?

rule4 = (M- {{¥x, ¥¥}, P}};
FullSimplify[cir3[inver[M, {vx+vr, vy}] /. rule4,
inver[M, {vx-vr, vy}] /. rule4,
inver[M, {vx, vy+vr}] /. ruled]]

2

(VXK -¥X) p
{YX‘*' r
—vr2+ (vR-yx)Z+ (VY - yy)?
(vy - vy) o?
- }

—vr2 + (VX -yx)%+ (Vy - YY) ?

Theorem 4

If the circle V=0(c, o) inverts in M = O(vy, p) into the circle W, then the center of
Wisy+(c=y)*/(|c—y P —0?) and its radius is o p*] | | ¢ =y B =02 |.

The vertical bars in the last expression have two different meanings: the modulus of a vec-
tor and the absolute value of a number. Theorem 4 arises from using the property men-
tioned in the previous paragraph. First we obtain the square of the radius of W.

rule5 = {y -» {yx, vy}, M- {{¥x, ¥y}, o}, ¢ - {cx, cy},
V- {{cx, cy}, o}};

FullSimplify|
disSq[inver[M, inver[V, ¥]], inver[M, {cx+0, cy}]] /.
rule5 /. Abs[xx ]2% - xxz]

4 <2

ot o

((ex-yx)2+ (cy -vy)?-0?)”
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Inversive Geometry: Part 1 15

Match the center of W with ¢ to get the following.

FullSimplify@Reduce][ (c == inver[M, inver[V, y¥]]) /. rule5]

CX+\/— (cy -vy)2+p*+0% =vyx|]|

2 - cex

YX+\/—<CY—YY)2+DZ+O &&p¢0)|\

(cy == Yy &&CcxX == yX&& 0 # 0)

So a circle V = O(c, 0) is inverted into a concentric circle if ¢ is outside the circle of inver-
sion M = O(y, p) and |c —7y | = o2+ 2. This implies that M and V are orthogonal. There-
fore, a circle inverts into a concentric circle (and necessarily of the same radius, i.e. itself)
iff it is orthogonal to M. To visualize these ideas, consider the following Manipulate
that inverts a pattern of tangent circles.

invCir[M: {y_, po_}, {cV_, rV_}] :=Module[
{n=dissq[cV, ¥] -xV?, h, k},
If[n =0,
h = inver[M, cV + rV Normalize[cV-¥]];
k={{0, -1}, {1, O}}.Normalize[cV-Y];
Line[{h+ 100k, h-100k}],
Circle[y+ (cV-7) p*/n, rvp? /abs [n]]

]
]

Manipulate[
Module[
{gl il j}l
g =
Join[Flatten[Table[{{i, j}- (n+1) /2, .5}, {i, n},
{i, n}1, 11,
Flatten[Table[{{i, j}-(n+1)/2+ .5 {1, 1}, .2071},
{il n_l}l {JI n_l}]l 1]];
Graphics[{EdgeForm[Thick], Opacity[.5], ColorData[2, 6],
Disk[y, p], ColorData[5, 7],
If[io, Map[ (invCir[{y, p}, #] /. Circle -» Disk) &, g], {}]1,
Black, If[go, Circle@@# & /@g, {}]}, PlotRange - z,
ImagePadding - 1]
1,
Row[{"Drag the locator.", Spacer[50],

Control@{{n, 4, "complexity"}, Range[10], Setter}}],
{{p, .5, "radius of circle of inversion"}, 0, 5, Slider},
Row [ {

Control[{{go, True, "grid"}, {True, False}}],

Spacer([3],

Control[{{io, True, "inversion"}, {True, False}}],

Spacer[4], Control[{{z, 2, "zoom"}, .01, 6, Slider}]

1,

{{y¥, {0, 0}}, Locator},
SaveDefinitions —» True]
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ootz comsenw [372] 3] a5 o] 7] 8] 5] ]

radius of circle of inversion :B

grid D inversion l:‘ zoom CU

B Inverting Segments and Arcs

The inversion of a polygon is a closed sequence of arcs of circles that go through the cen-
ter of inversion. Consider the problem of finding an arc through three noncollinear points
a, b, and c. As stated, this problem has many solutions; by assuming one of the points is
not an endpoint of the arc, there is a unique answer. The function seg3 constructs such
an arc and includes an argument to control whether the arc passes through the point b.

cir3N[a_, b_, c_] :=Module[{xx, yY},
First][

{xx, yy} /.
NSolve[disSq[ {xx, yy}, a] == disSq[ {xx, yy}, b] ==

dissq[{xx, yy}, cl, {xx, yy}1]

at[{x_, y_}] :=Module[{u = ArcTan[x, y]}, u+If[u<0, 27w, 0]]
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seg3[a_, b_, c_, over_] := Module[{ce, aa, ac},
ce = cir3N[a, b, c];
{aa, ac} =at/@{a-ce, c-ce};
If[aa > ac, ac=ac+27];
If[Det[{b-a, c-a}] <0, {aa, ac} = {ac, aa};

If[aa>ac, aa=aa-27n]];

If[! over, {aa, ac} = {ac, aa+27n}];
Circle[ce, Norm[ce - a], {aa, ac}]

]

The following Manipulate applies the function seg3 to any three noncollinear points,
optionally passing through one of them.

Manipulate[
Module[{a, b, c, ce},
{a, b, ¢} = abc;
If[Chop[Det[{b-a, c-a}]] =0,
{a, b, ¢} = abc = abc + RandomReal[{-.01, .01}, {3, 2}11;
ce = cir3N[a, b, c];
Graphics[{Thick, {Dotted, Circle[ce, Norm[ce-a]]},
seg3[a, b, ¢, ox==1], Red,
EdgeForm[Thin], Disk[a, .03], Disk[c, .03],
Text [Style["x", Bold, 30], b]}, PlotRange - 1]
1,
{{abc, {{-.2, -.8}, {.5, -.2}, {-.1, .4}}}, Locator,
Appearance - None},
Row [
{Control@{{ox, 1, "passing over x?"},
{1-" yes ", 2->" no "}}, Spacer[30],
"Drag a red point."}],
SaveDefinitions -» True]
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passing over x? ves no | Drag a red point.

Let the inversion of the point /2 be 4' and the point k be k'. There are four cases for the in-
version of the finite line segment /4 k in the circle M = O(y, p).

1. If h = k, the segment is a point and inverts into the point /' = k'.

2.If h# k and h =y, the segment hk inverts into a ray starting at k', going away
from q.
3. If h, k, and g are collinear, there are two subcases:
a. If g is in between & and k, the inverse is the union of two rays, one starting at
h', the other starting at k', and both going away from 7.

b. Otherwise, & and k are on the same side of vy, and the inverse of 4 k is a line seg-
ment joining #' and k' on the same side of y as 2 and k, but now switched

around.

4. If h and k are not collinear with 7y, consider the circle passing through vy, h', and
k'. The inversion of 4 k is the arc joining &' and k' that does not pass through .

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.



Inversive Geometry: Part 1

Similar results apply to the inversion of an arc. The following Manipulate shows all
these cases as they apply to line segments and arcs. The initial segments or arcs are shown
in red and their inversions in blue. Control locators are drawn in red. When a segment/arc
is such that its corresponding line/circle passes through vy, say that it does so directly if y
is part of the segment/arc and indirectly otherwise.

di[p_, col_] := {If[col == 1, Red, ColorData[2, 7]],
Disk[p, .08]}

li[s_, col_] := {If[col == 1, Red, ColorData[2, 7]], Line[s]}

Manipulate[
Module[{M = {{O, O}, 1}, h, k, i, u, v},
{h, k, i} = hki;
(» h, k, i and {0, 0} must be all different «)
If [Length[Union[Chop /@ {h, k, i, {0, 0}}]] < 4,
hki = {(h, k, i} = {h, k, i} + RandomReal[{-.01, .01}, {3, 2}]
1i
{u, v} = {inver[M, h], inver[M, k]};
Graphics [ {EdgeForm[Black], ColorData[2, 6], Disk][],
Thick, Black,
Switch[cases,
1, {Style[Text["both ends equal", {O, -2.8}, {0, O}],
15], Arrow[{h, u}], di[h, 1], di[u, 2]},
2, {
Style[Text["an end on the center of inversion",
{o, -2.8}, {0, 0}], 15],
If[
segArcs =1,
{1i[{h, {0, 0}}, 1], li[{u, u+ 100 Normalize[u]}, 2],
di[u, 21},
{Red, seg3[{0, 0}, h, k, True], di[k, 1],
li[{u+ 100 Normalize[u-v], v}, 2]}

Style|
Text["directly covering the center of inversion”,
{0, _2‘7}1 {0, o}]l 15]!
If[
segArcs == 1,
{
k = -Abs[k.Normalize[h]] Normalize[h];
v = inver[M, k];
li[{h, k}, 1],
li[{u, u+ 100 Normalize[u]}, 2],
li[{v, v+ 100 Normalize[v]}, 2]
}s
{
Red, seg3[h, {0, 0}, k, True],
li[{u, u+ 100 Normalize[u-v]}, 2],

19
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li[{v, 100 Normalize[v-u]}, 2]
}
1,
di[h, 1], di[k, 1], di[u, 2], di[v, 2]
Yy
4, {
Style|
Text["indirectly covering the center of inversion",
{0, '2'7}1 {0, o}]l 15]!
If[
segArcs == 1,
{
k = Abs[k.Normalize[h]] Normalize[h];
v = inver[M, k];
li[{h, k}, 1],
li[{u, v}, 2]
}r
{Red, seg3[h, {0, 0}, k, False], 1i[{u, v}, 2]}
1,
di[h, 1], di[k, 1], di[u, 2], di[v, 2]
Yy
5, {
Style|
Text["not passing through the center of inversion",
{0, '2'7}1 {0, o}]l 15]!
If[
segArcs == 1,
{1i[{h, k}, 1], seg3[u, inver[M, (h+k) /2],
v, Truel]},
{
Red, seg3[h, i, k, False],
ColorData[2, 7], seg3[u, inver[M, i], v, False],
di[i, 1]}1, di[h, 1], di[k, 1], di[u, 2], di[v, 2]
}
1,
Brown, Disk[{0, 0}, .05]}, PlotRange - 3]
1,
{{segArcs, 1, Spacer[30]},
{1- " line segments ", 2-» " arcs "}},
Row [
{Control@{{cases, 1}, {1-" 1 ", 25" 2 ",3>5" 3a ",
45" 3b ",5-5" 4 "}},
Spacer[30], "Drag a red point."}],
{{hki, {{-1.5, -1}, {-1, -1}, {2, 2}}}, Locator,
Appearance - None},
SaveDefinitions - True]
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| line segments arcs |
cases I 1 % | 3a | 3b | 4 | Drag a red point.

both ends equal

B Inverting a Triangle and a Quadrilateral

The function invSeg encapsulates the four cases appearing in the inversion of a segment
mentioned in the previous section.

invSeg[M_, {h_, h_}] := inver[M, h]

invSeg[M: {v_, _}, {v_, k_}] :=
Module[{u = inver[M, k]}, Line[{u, u+ 100 Normalize[k-y]}]]

invSeg([M: {y_, _}, {h_, ¥_}] := invSeg[M, {y, h}]
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invSeg[M: {y_, _}, {h_, k_}] :=
Module[{hl, k1}, (* h,k,q collinear =)
{hl1, kl1} = {inver[M, h], inver[M, k]};
If[
Norm[h - y] + Norm[k - y¥] == Norm[h - k],
(» g is between h and k =*)
{Line[{h1l, hl + 100 Normalize[h-y¥]}],
Line[{kl, k1l + 100 Normalize[k-¥]}]},
Line[{hl, k1}]
]
1/iDet[{h-vy, k-¥}] ==

invSeg[M_, {h_, k_}] :=
Module[{a, ¢, ce, aa, ac}, (* h,k,y not collinear =)
{hl, k1} = {inver[M, h], inver[M, k]};
seg3[hl, inver[M, (h+k) /2], k1, True]
1

invAll[M_, p_] :=
Quiet@Map[invSeg[M, #] &, Partition[p, 2, 1, 1]]

The function invSegq is used to invert a general triangle and a general quadrilateral. As
mentioned before, the inversion of a polygon is a figure made by adjoining arcs of circles
that pass through ¢g. (The geometry of coincident arcs is the same as the geometry of poly-
gons. Just invert them!) However, the interior of a polygon does not invert to the interior
of its inverse. The function £i11 fills this interior for aesthetics.

£ill[{
Circle[cl_, rl_, {al_, B1_}],
Circle[c2_, r2_, {a2_, B2_}1,
Circle[ec3_, r3_, {a3_, B3_}]
} =
Module[{t, t1, t2, t3, t4, mi, d1, 42, 43, d4},
tl = Table[cl +rl {Cos[t], Sin[t]},
{t, al, 1, .01 (Bl-al)}];
t2 = Table[c2 +r2 {Cos[t], Sin[t]},
{tl a2l /321 .01 (/32 —a2) }];
t3 = Table[c3 +r3 {Cos[t], Sin[t]},
{t, a3, B3, .01 (B3-a3)}]:
{d1, d2, d3, d4} =
Norm /@ {Last[tl] - First[t2], Last[tl] - Last[t2],
Last[tl] -First[t3], Last[tl] -Last[t3]};
mi =Min[dl, 42, d3, d44];
t4 = Join[tl, Which[mi == d1, t2, mi == d2, Reverse[t2],
mi ==d3, t3, True, Reverse[t3]]];
If[(mi=d3)\ (mi=d4), t3 =t2];
{d1, d2} =
Norm /@ {Last[t4] - First[t3], Last[t4] -Last[t3]};
mi =Min[dl, d2];
Polygon[Join[t4, Which[mi == d1l, t3, True, Reverse[t3]]]]
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£fillJ
{
Circle[cl_, rl_, {al_, B1_}],
Circle[c2_, r2_, {a2_, B2_}],
Circle[e3_, r3_, {a3_, B3_}1,
Circle[c4 , r4_, {a4_, B4_}1}] :=
Module[{t, t1, t2, t3, t4, t5, t6, mi, d1, d2, 43, d4,
ds, d6},
tl = Table[cl +rl {Cos[t], Sin[t]},
{t, al, B1, .01 (Bl-al)}];
t2 = Table[c2 +r2 {Cos[t], Sin[t]},
{t, a2, B2, .01 (B2-a2)}];
t3 = Table[c3 +r3 {Cos[t], Sin[t]},
{t, a3, B3, .01 (B3 -a3)}];
t4 = Table[c4 +r4 {Cos[t], Sin[t]},
{t, a4, B4, .01 (B4-a4)}];
{d1, d2, 43, d4, d5, d6} =
Norm /@ {Last[tl] - First[t2], Last[tl] - Last[t2],
Last[tl] -First[t3], Last[tl] -Last[t3],
Last[tl] -First[t4], Last[tl] -Last[t4]};
mi =Min[dl, 42, 43, d4, 45, d6];
t5 = Join[tl,
Which[
mi == dl, t2,
mi == d2, Reverse[t2],
mi ==d3, t3,
mi == d4, Reverse[t3],
mi == d5, t4,
True, Reverse[t4]
1
1i
If[(mi=d3)\ (mi=d4), t3 =t2];
If[(mi=d5)\ (mi=d6), t4 =t2];
{d1, 42, 43, 44} =
Norm /@ {Last[t5] - First[t3], Last[t5] -Last[t3],
Last[t5] - First[t4], Last[t5] -Last[t4]};
mi = Min[d1l, 42, d3, d44];
t6 = Join[t5, Which[mi == d1, t3, mi == d2, Reverse[t3],
mi == d3, t4, True, Reverse[t4]]];
I£[(mi==d3)\ (mi==d4), t4=1t3];
{d1, d2} =
Norm /@ {Last[t6] - First[t4], Last[t6] -Last[t4]};
mi = Min[d1l, d2];
Polygon[Join[t6, Which[mi == d1, t4, True, Reverse[t4]]]]
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The following Manipulate shows a triangle or quadrilateral and the corresponding
filled inversion. You can zoom by changing the radius of the circle of inversion M. For
what positions of g do the sides of a given triangle invert into three congruent circles?
Hint: it has something to do with its incircle. What about a quadrilateral?

Manipulate|[
Module[{v, c, iA},
(* all locators must be different =)
If [Length[Union[Chop /@cpqrs]] < 5,
cpqrs = cpqrs + RandomReal[{- .01, .01}, {5, 2}]1];

v = Take[Rest[cpqrs], If[op=1, 3, 4]];

c = First[cpqrs];

iA = invAll[{c, r}, Vv];

Graphics[{EdgeForm[Thin], Opacity[.5], ColorData[2, 6],
Disk[c, r], ColorData[4, 3], Polygon[v], Opacity[1l],
Red, Disk[#, .07] & /@v, Disk[c, .07], Black,

Map [Arrow[{#, inver[{c, r}, #]}] &, v], Opacity[.7],
Yellow, fill[iA], Black, Thick, ia,
{Red, Red, Disk[#, .07] & /@v, Disk[c, .07]}},
PlotRange - 3]
1,
{{cpars, 1. {{0, O}, {-1.5, 2}, {-1, -2.5}, {2, -1},
{2.5, 0}}}, Locator, Appearance - None},

{{r, 1, "radius of inversive circle"}, .001, 3,

Appearance - "Labeled"},

Row|[ {Spacer[140], "Drag a red point."}],

{{op, 1, ""}, {1 > " triangle ", 2 " quadrilateral "}},

SaveDefinitions - True]
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radius of inversive circle D 1

Drag a red point.

| triangle quadrilateral |

B Inverting the Visual Proof of Nicomachus’s Theorem

Nicomachus’s theorem [8, 9] states that Y7_, k&3 = (3}, k)?. This section inverts a well-
known pattern showing a proof without words of this identity.

To justify the identity, consider the pattern made by half-squares and squares of increas-
ing integer side lengths. The area of the big square is the square of the sum of the side
lengths on the base 1 +2+3 + ... + 7. On the other hand, this area is the sum of the indi-
vidual areas of the interior squares, taking into account that two half-squares make a

whole square: 1+2x22+3x32+...4+772. Logically these quantities are the same;
hence Nicomachus’s theorem.
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Module[{b, n=17},
Graphics [ {EdgeForm[Thin], White,

Table|[
b=1i(i-1)/2;
{

Rectangle[{b, 0}, {b+1i, i/ 2}],
Table[Rectangle[{b, i/2+ij}, {b+1i, 1/2+1 (j+1)}],
{jl ol 1/2'1}]1
Rectangle[{0, b}, {i/2, b+1i}],
Table[Rectangle[{i/2+ij, b}, {1/2+1i(J+1), b+1i}],
{jl o, i/2—2}]
3y {il 2, n, 2}
1,
Table[b=1i (i-1) /2;
{
Table[Rectangle[{b, ij}, {b+1i, 1j+4i}], {j, 0, 1/2}],
Table[Rectangle[{i j, b}, {1ij+i, b+1i}],
{jl ol 1/2_1}]}1 {11 ll n, 2}
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In order to get a symmetrical version, promote the half-squares into squares.

Module[{b, n=17},
Graphics [ {EdgeForm[Thin], White,
Table[b=i (i-1) /2;
{
Rectangle[{b, -i/2}, {b+1i, i/2}],
Table[Rectangle[{b, i/2+1i3j}, {b+1i, i/2+1i (j+1)}],
{jl ol i/z_l}]l
Rectangle[{-i/2, b}, {i/2, b+1i}],
Table[Rectangle[{i/2+ij, b}, {1/2+1i(J+1), b+1i}],
{jl ol 1/2_2}]
Y
{il 2’ nl 2}]’
Table[b=1i (i-1) /2;
{
Table[Rectangle[{b, ij}, {b+1i, 1j+4i}], {j, 0, 1/2}],
Table[Rectangle[{i j, b}, {1ij+i, b+1i}],
{3, 0, i/2-1}]
Y}, {i, 1, n, 2}]
1
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Add replicas around the lower-left vertex of the unit square made by rotating this pattern
90, 180, and 270 degrees to obtain a symmetrical pattern. Then eliminate repeated
squares; moreover, eliminate repeated segments from adjacent squares using filter.

filter = {

{x___, {a:{ax_, ay_}, {bx_, ay_}}, ¥y___.

{{bx_, ay_}, c: {cx_, ay_}}, z___} » {x, {a, ¢}, ¥, 2z},
{x___, {{bx_, ay_}, c:{cx_, ay_}}, ¥Y___.

{a:{ax_, ay_}, {bx_, ay_}}, z___} » {x, {a, ¢}, ¥, 2},
{x___, {a:{ax_, ay_}, b:{bx_, ay_}}, y___,

{{ex_, ay_}, {dx_, ay_}}, z___} =
{x, {a, b}, y, 2} /; ax < cx <dx < bx

}i

The function nichoSegs computes the segments needed to form the next pattern shown,
which gives a visual proof of Nicomachus’s theorem [9].

nichoSegs[n_] :=
Module[{m = {{O, -1}, {1, O0}}, g, h, a, b, ax, ay, bx,
by, h2, xx, yy, u},
g={
Table[b=1i (i-1) /2;
{
Rectangle[{b, -i/2}, {b+1i, i/2}],
Table[Rectangle[{b, i/2+ij}, {b+1i, 1i/2+1i (jJ+1)}],
{jl ol i/Z—l}],
Rectangle[{-i/2, b}, {1/2, b+1i}],
Table[Rectangle[{i/2+ij, b}, {1i/2+1(j+1), b+1i}],
{j, 0, i/2-2}]
Yy
{i, 2, n, 2}],
Table[b=1 (i-1) /2;
{
Table[Rectangle[{b, ij}, {b+i, 1j+1i}],
{j, 0, i/2}],
Table[Rectangle[{i j, b}, {ij+i, b+1i}],
{j, 0, i/2-1}]
Yy
{i, 1, n, 2}]
}i
h = Union|[
Flatten[{
g,
g /. Rectangle[a_, b_] :» Rectangle[m.a, m.b],
g /. Rectangle[a_, b_] :» Rectangle[m.m.a, m.m.b],
g /. Rectangle[a_, b_] :» Rectangle[m.m.m.a, m.m.m.b]
}] /. Rectangle[{ax_, ay_}, {bx_, by_}] »
Rectangle[{Min[ax, bx], Min[ay, by]l},
{Max[ax, bx], Max[ay, by]}]
1

h2 = Union[Flatten[h /. Rectangle[{ax_, ay_}, {bx_, by_}] »

{
{{ax, ay}, {bx, ay}},
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{{bx, ay}, {bx, by}},
{{ax, by}, {bx, by}},
{{ax, ay}, {ax, by}}}, 1]
1i
u = Cases[h2, {{_, xx_}, {_, xx_}}]//. filter;
Join[u, u/. {xx_, yy_Integer} - {-yy, xx}]
1

Graphics[Line /@nichoSegs[7]]

The function nichoSegs computes the minimum number of segments necessary to pro-
duce the pattern. This is the number of segments up to n = 10.

ParallelTable[Length[nichoSegs[n]], {n, 10}]

{6, 10, 18, 30, 46, 66, 90, 118, 150, 186}
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The nth pattern has 2 (n2 — n + 3) segments and 2 n(n + 1) squares. Not removing unneces-
sary segments would give 8 n(n + 1) segments, so for large n, removing unnecessary seg-
ments is more than four times better. The following Manipulate shows Nicomachus’s
pattern in gray along with its inversion in red. You can change M and thus ¢ by dragging
the locator, and you can vary r with the slider.

Manipulate|[

Module[{nico, iA},
nico = nichoSegs[n];
If[io, iA = Map[invSeg[{c, r}, #] &, nico]];
Graphics[{EdgeForm[Thick],
If[ic, {Opacity[.5], ColorData[2, 6], Disk[c, r]}, {}].,
Gray, If[go, Line /@nico, {}], Red, Thick,
If[io, iA, {}]}, PlotRange - z]
1/
{{c, {0, 0}}, Locator},
Row[{"Drag the locator.", Spacer[40],
Control@{{n, 2, "squares on the side"}, Range[7],
Setter}}],
{{r, 1.3, "radius of circle of inversion"}, .01, 5,
Slider, Appearance - "Labeled"},
Row | {
Control[{{go, True, "show grid"}, {True, False}}],
Spacer([3],
Control[{{io, True, "show its inversion"},
{True, False}}], Spacer[3],
Control[{{ic, True, "show circle of inversion"},
{True, False}}]
1y
{{z, 2, "zoom"}, .01, 15, Slider, Appearance - "Labeled"},
SaveDefinitions -» True]
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Drag the locator. squares on the side Il dﬂdjﬂd
(] 1.3

radius of circle of inversion

uJ

show grid D show its inversion I:‘ show circle of inversion l:\

zoom m 2
8

B Inversive Tiling with Equilateral Triangles, Squares, and
Hexagons

There are only three ways to tile the plane with a regular polygon: using an equilateral tri-
angle, a square, or a regular hexagon. The goal of this section is to show the patterns aris-
ing from inverting these tilings. To that end, the functions ring3, ring4, and ring6
generate the corresponding set of pieces in a ring surrounding the circle of inversion (in
red).
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Here is the triangular case for the first level of complexity n = 1.

expand3[{x_, y_}] :=

Module[{s:'\/3_}, {{x+2, vy}, {x+1, y+s}, {x-1, y+s},
{(x-2, v}, {x-1, y-s}, {x+1, y-s}}]

ring3[n_] :=

Union@Flatten[NestList [Flatten[Join[expand3 /e#], 1] &,
{{0, 0}}, n], 1]

rule6={s—>'\/3_,M—>{{1, 1/«/3_}, 1/«/3_}};

Graphics [{EdgeForm['I‘hin] , Opacity[.5], Orange,

Map[Polygon[{tt, #+ {2, 0}, n+{1, «/3_}}] &, ring3[1]],
Red, Disk@e (M /. ru1e6)}]
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The corresponding functions inv3, inv4, and invé6 invert each of the segments form-
ing the tiling. For instance, here is the pattern for the triangular case.

inv3[M_, v_] := Module[{s = \/3_, ml=M/. rule6},

{
invSeg[ml, {v, v+ {2, 0}}],
invSeg[ml, {v+ {2, 0}, v+ {1, s}}],
invSeg[ml, {v+ {1, s}, v}]

}

]

Graphics[Map[inv3[M, #] &, ring3[1]]]
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Although the interiors of triangles are not preserved by inversion, they are filled to show
the interference patterns they produce. The idea is shown in the next figure; to avoid clut-
ter, only the first four members of ring3[1] are drawn. Lines join the vertices of the tri-
angles to their inversions.

With[{u = Take[ring3[1], 4], s= (s /. rule6), M=M /. ruleé6},
Graphics[{EdgeForm[Thin], Orange, Opacity[.5],

Map[Polygon[{#, #+ {2, 0}, #+ {1, s}}] &, u], Pink,

fill /eMap[inv3[M, #] &, u], Black, Circlee@e@eM,

Map [

{Line[{#, inver[M, #]}],

Line[{#+ {2, 0}, inver[M, #+ {2, 0}]}],
Line[{#+ {1, s}, inver[M, #+ {1, s}]}]} &, ul}
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Although the triangles do not overlap, the interiors of their inverses do. In fact, the inver-
sion of the central triangle contains the interiors of all the rest. The next level of complex-
ity renders the following pattern.

With[{M= (M /. rule6), u=ring3[2]},
Graphics[{EdgeForm[Thin], ColorData[5, 6], Opacity[.5],
fill /@eMap[inv3[M, #] &, u], Black, Circle@eM}]
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Finally, a detail showing the sixth level.

With[{M= (M /. rule6), u=ring3[6]},
Graphics [ {EdgeForm[Thin], ColorData[5, 6], Opacity[.5],
fill /@Map[inv3[M, #] &, ul},
PlotRange -» {{.725, 1.275}, {.357, .87}}]
]
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Similarly, in the case of tiling with squares, here are the corresponding functions.

expand4[{x_, y_}] :=
{x+1, v},
{x+1, y+1},
{x, y+1},
{x-1, y+1},
{x-1, v},
{x-1, y-1},
{x, y-1},
{x+1, y-1}

ring4[n_] :=
Union@Flatten[NestList [Flatten[Join[expand4 /@#], 1] &,
{{0, 0}}, n], 1]

inv4[M_, v_] :=With[{ml = (M /. ruleb)},

{
invSeg[ml, {v, v+ {1, 0}}1],
invSeg[ml, {v+ {1, 0}, v+1}],
invSeg[ml, {v+1, v+ {0, 1}}],
invSeg[ml, {v+ {0, 1}, v}]

}

1

with[{M= {{1, 1} /2., 1/2.}, u=ring4[2]},
GraphicsRow|[ {

Graphics[{EdgeForm[Thin], Opacity[.5], Orange,
Map[Polygon[{#, #+ {1, O}, #+1, #+ {0, 1}}] &, ring4[1]],
Red, DiskeeM}],

Graphics[{EdgeForm[Thin], ColorData[5, 6], Opacity[.5],
fill /eMap[inv4[M, #] &, u], Black, Circle@@M}]

1]
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Here is a detail corresponding to the first four squares of the arrangement ring4 [1].

With[{u = Take[ring4[1], 4], M= {{1, 1} /2., 1/2.}},
Graphics|[{EdgeForm[Thin], Orange, Opacity[.5],

Map[Polygon[ {#, #+ {1, O}, #+1, #+ {0, 1}}] &, u]l,
Pink, fill /@Map[inv4[M, #] &, u], Black, CircleeeM,
Map [ {

Line[{#, inver[M, #]}],

Line[{#+ {1, 0}, inver[M, #+ {1, 0}]}1,

Line[{#+1, inver[M, #+1]}],

Line[{#+ {0, 1}, inver[M, &+ {0, 1}]}]

} &, u]

H
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And here is a detail of the sixth level. (The color assignment has to be made explicit and
does not rely only on overlapping as it did before.)

Module[{M = {{1, 1} /2., 1/2.}, u=ring4[6], i =0},
Graphics|[{
EdgeForm[Thin], Opacity[.5],
Map [
{ColorData[2, If[EvenQ[i], 4, 5]], i++;
£ill[#]} &,

Map[inv4[M, #] &, u]

]
}, PlotRange -» {{.25, .75}, {.25, .75}}]
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The tiling using regular hexagons cannot be colored with two colors, and there are too
many segments to place the center of M. So here is a line pattern.

expand6[{x_, y_}] :=With[{s= wﬁ?},

{

{x+3, y-s},
{x+3, y+s},
{x, y+2s},
{x-3, y+s},
{x-3, y-s},
{x, y-2s}

)]

ring6[n_] :=
Union@Flatten[NestList [Flatten[Join[expand6 /@#], 1] &,
{{0, 0}}, n], 1]

inv6 [M_, v_] :=Module[{s = '\/3_},
{invSeg[M, {v, v+ {2, 0}}],
invSeg[M, {v+ {2, 0}, v+ {3, s}}],
invSeg[M, {v+ {3, s}, v+{2, 2s}}],
invSeg[M, {v+ {2, 2s}, v+ {0, 2s}}],
invSeg[M, {v+ {0, 2s}, v+ {-1, s}}],

invSeg[M, {v+{-1, s}, v}1}]
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With[{s:'\/3_, M={{1, 1/«/3_}, 1/«/3_}},
Graphics[{EdgeForm[Thin], Opacity[.5], Orange,
Map[Polygon|[ {#, #+ {2, 0}, #+ {3, s}, H+
{2, 2s}, #+{0, 2s}, #+{-1, s}}] &, ring6[2]], Red,

Disk @@M}]]
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The second level of complexity corresponding to the above pattern is the following.

wanlfu= ({1, 1/ ¥}, 1/ ¥ )],

Graphics[{Map[inv6[M, #] &, ring6[2]], Black, Circle @@M}]]
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This detail shows the sixth level of complexity, made with shapes formed with six arcs, all
passing indirectly through g.

With[{M: {{1, 1/ «/3_}, 1/ «/3_}},
Graphics[Map[inv6[M, #] &, ring6[6]],
PlotRange - {{.8, 1.2}, {.47, .7}}]]

B An Inversive Spirograph

Finally, the following Manipulate shows an animated circle (orange) rotating inside a
circle (pale brown) and the patterns generated by a point at the end of a line at a variable
distance from the center of the circle. By varying the center and radius of the inversive cir-
cle, you can zoom in; the rotating radial line inverts into an arc orthogonal to the inversive
path. You can enlarge the inversion by dragging the center of the inversive circle (light
blue).

invCir[{q_, r_}, {Ac_, Ar_}] :=
Module[{n = disSq[Ac, q] - Ar?},

Disk|[q+ (Ac-q) r?/n, Arrz/Abs[n]]]
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Manipulate[
Module[{M, cen, u},
cen = (1-a) {Cos[t], Sin[t]};
M= {q, r};
Show [
Graphics[{EdgeForm[Thin], Opacity[.5],
If[w# 2,

{ColorData[2, 5], Disk[], ColorData[2, 3],

Disk[cen, a], {Opacity[1l], Black,
Line[{cen, u=cen+arm {Cos[t/a], -Sin[t/a]}}],
Disk[u, .04]}},
{1}
1,
If[w>1,

{ColorData[2, 6], Disk[q, r], Red, Disk[q, .05],
ColorbData[2, 5], invCir[M, {{O, 0}, 1}],
invCir[M, {cen, a}], Black,

{opacity[1],
invSeg[M,
{cen, cen+arm {Cos[t/a], -Sin[t/a]}}]1}},

{}

1}, PlotRange -» 3],
If[w# 2,
ParametricPlot[ (1l -a) {Cos[u], Sin[u]} +
arm {Cos[u/a], -Sin[u/al}, {u, 0, nn},
PlotPoints -» 100],
{}
1,
QuieteIf[w>1,
ParametricPlot[
inver[M, (1-a) {Cos[u], Sin[u]} +
arm {Cos[u/a], -Sin[u/a]}], {u, 0, nnx},
PlotPoints -» 300],
{}
1
1
1,
{{a, 0.5, "radius of rotating circle"}, O, 1,
Appearance - "Labeled"},
{{arm, 0.5, "length of rotating arm"}, .01, 2,
Appearance - "Labeled"},
{{ga, {1, 2}}, Locator, Appearance - None},
Row [
{Control@e{{r, 1, "radius of inversive circle"}, .01,
3, Appearance -» "Labeled", ImageSize -» Small},
Spacer[5], "Drag the red point."}],
{{n, 3, "number of turns"}, Range[10], Setter}, Delimiter,
{{w, 3, ""}, {1>" spirograph only ",
2 " inversion only ", 3 " both "}},
{{t, 0, "rotate"}, 0, nx, Appearance -» "Labeled"},
SaveDefinitions - True]
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radius of rotating circle B B 0.5

length of rotating arm M 0.5

=)
radius of inversive circle D B1 Drag the red point.

vt 3|35 o] 5] ] 2 ]

spirograph only | inversion only || both
rotate .B [+ 0]
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