
The Mathematica® Journal

Random Walks on the World
Wide Web
Todd Silvestri

This article presents RandomWalkWeb, a package developed to
perform random walks on the World Wide Web and to visualize
the resulting data. Building upon the packageʼs functionality, we
collected empirical network data consisting of 35,616 unique
URLs (approximately 133,500 steps). An analysis was performed
at the domain level and several properties of the web were
measured. In particular, we estimated the power-law exponent g
for the in- and out-degree distributions, and obtained values of
2.10± 0.09 and 2.36± 0.1, respectively. These values were found
to be in good agreement with previously published results.

‡ 1 Introduction
The World Wide Web (WWW), commonly referred to as simply “the web,” is a vast infor-
mation network accessible via the Internet. Initially proposed in 1989 [1], the web grew
out of the work of Tim Berners-Lee while at the European Organization for Nuclear Re-
search, known as CERN.
Two software technologies form the core of the web, namely the HyperText Markup
Language (HTML) and the Hypertext Transfer Protocol (HTTP). The HTML (or source)
of a web page contains elements known as tags that describe the content of the document.
For instance, the anchor < a > tag defines a hyperlink, or link, to another document. Each
file (or resource) on the web is identified by a Uniform Resource Locator (URL). A
browser or other user agent may request a file via HTTP by specifying its URL. The
response—typically the requested file—is again transmitted by HTTP from the web server
to the client.
The topology of large-scale complex networks, such as the web, can be explored using
graph theoretic methods (see [2] and references therein). Specifically, the web can be
viewed as a directed graph, where the web pages are vertices and the hyperlinks are edges.
Unfortunately, two problems exist due to the nature of the web: (1) it cannot be indexed
(or mapped) in its entirety; and (2) analyzing the corresponding graph would be highly
computationally intensive. In fact, a recent announcement [3] suggests that the web may
contain at least 1012 unique URLs.

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The topology of large-scale complex networks, such as the web, can be explored using
graph theoretic methods (see [2] and references therein). Specifically, the web can be
viewed as a directed graph, where the web pages are vertices and the hyperlinks are edges.
Unfortunately, two problems exist due to the nature of the web: (1) it cannot be indexed
(or mapped) in its entirety; and (2) analyzing the corresponding graph would be highly
computationally intensive. In fact, a recent announcement [3] suggests that the web may
contain at least 1012 unique URLs.
Despite its sheer size and complexity, it is possible to extract meaningful measures that
can be used to quantify the web’s structure. Using the method of random walks, one can
sample the network and examine a subgraph of the web.
In this method, one begins at a specified URL. The client requests the web page at that
URL, and the server responds with the document’s HTML. Next, the client extracts all
URLs from the web page and chooses one of them at random. Again, the client makes a re-
quest for the document at the chosen URL. If the server cannot be reached or the web
page cannot be found, the client simply chooses another URL at random. The entire pro-
cess is then repeated a finite number of times.
The focus of this article is on the application of random walks to the study of the World
Wide Web. In Section 2, we provide a brief overview of RandomWalkWeb, a package de-
veloped to perform random walks on the web and to visualize the resulting data. Next, in
Section 3, we build upon the package’s functionality and use it to perform a random walk
to sample the web. The collected empirical network data is then analyzed and several prop-
erties of the web are estimated. Finally, in Section 4, we provide a summary of our work
and give our concluding remarks.

‡ 2 A Brief Overview of RandomWalkWeb
In this section, we give a brief overview of RandomWalkWeb and demonstrate some of its
functionality.
The RandomWalkWeb Package (www.mathematica-journal.com/data/uploads/2013/09/
RandomWalkWeb.zip) is built upon the graph and network functionality introduced in
Mathematica 8. In addition, connectivity to the web is provided through .NET/Link and
requires the .NET Framework 2.0 (or higher).
The package consists of 28 public symbols covering the following four areas: (1) data col-
lection and visualization; (2) web page components; (3) operations on URLs; and (4) mes-
sage logging. Each symbol is fully documented and can be easily accessed through the
Mathematica help system.
We begin by loading the package.

Needs@"RandomWalkWeb`"D

2 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

A single random walk on the web can be executed, as described in Section 1, by using the
package’s namesake, RandomWalkWeb. The start (or origin) URL is specified, along
with the maximum number of steps ns to be taken.

RandomWalkWeb@"http:êêwolfram.comê", 10D êê Column

http:êêwolfram.comê
http:êêproducts.wolframalpha.comê
http:êêwww.wolfram.comêmathematicaêhow-mathematica-made-

wolframalpha-possible.html
http:êêwww.stephenwolfram.comê
http:êêwww.wolframalpha.comê
http:êêwww.wolframalpha.comêexamplesê
http:êêwww.wolframalpha.comêexamplesêGeochronology.html
http:êêwww.wolframalpha.comêinputê?i=continental+map+for+the

+Karoo+ice+age&lk=3
http:êêwww.wolframscience.comê
http:êêwww.wolframalpha.comê
http:êêwww.wolfram.comê

RandomWalkWeb returns a list of successfully visited URLs, displayed here as a
column. If the function is evaluated from a notebook-based front end, the walk’s progress
is displayed in the window status area. In the event that it reaches a URL with zero valid
outgoing links, RandomWalkWeb will attempt to backtrack at most one step. The
function may exit prematurely; that is, the number of steps returned is less than ns, if all
previous hyperlinks have been exhausted.
One may wish to perform multiple random walks from the same URL. This can be accom-
plished by using PerformRandomWalks. Like RandomWalkWeb, we specify the start
URL and the maximum number of steps to be taken. Additionally, we pass the number of
random walks nw to be performed as the function’s second argument.

PerformRandomWalks@"http:êêwolfram.comê", 3, 8D

3

The value that is returned indicates the number of successfully exported data files.

The root directory used to store the data files is specified by $BaseDataDirectory.
By default, this is set to the current working directory. For each unique URL passed to
PerformRandomWalks, a folder is created in the root data directory whose name is a
32-character, hexadecimal-formatted MD5 hash of that URL. The successfully visited
URLs from each walk are exported as separate human-readable plain text files. The name
of each file is a combination of a label, specified by $DataFilePrefix, and the walk
number.

Random Walks on the World Wide Web 3

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

In the next example, we examine previously collected network data (available at
www.mathematica-journal.com/data/uploads/2013/09/RW_Data_1.zip). We begin by spec-
ifying both $BaseDataDirectory and $DataFilePrefix.

$BaseDataDirectory =
FileNameJoin@8NotebookDirectory@D, "RW_Data_1"<D;

$DataFilePrefix = "2012-09-28_RW";

The data can be easily imported and visualized by using RandomWalkGraph. Here, we
are interested in the first seven steps extracted from the second random walk.

RandomWalkGraph@"http:êêwolfram.comê", 82<, 7D

: ,

881, mathematica-journal.com<, 82, stephenwolfram.com<,
83, wolframalpha.com<, 84, wolfram.com<,

85, wolfram-media.com<, 86, wolframscience.com<<>

The first part of the returned list is a Graph object, while the last part contains a list of
enumerated vertices. All graphs returned by RandomWalkGraph are simple directed
graphs; that is, they contain neither loops nor multiple edges.
Similarly, one can construct a graph from multiple data files. Here, we combine all steps
from the first and third random walks.

RandomWalkGraph@"http:êêwolfram.comê", 81, 3<, 8D

: ,

881, complex-systems.com<, 82, computerbasedmath.org<,
83, twitter.com<, 84, wolframalpha.com<, 85, wolfram.com<,

86, wolfram-media.com<, 87, wolframscience.com<<>

4 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The graphs can be visually enhanced by using the VertexIcon option. With VertexÖ
Icon set to True, RandomWalkGraph attempts to download each vertex’s associated
favorite icon and uses it in place of the default vertex shape. RandomWalkGraph also
accepts the same options as the built-in function Graph.

RandomWalkGraph@"http:êêwolfram.comê", 81, 3<, 8,
VertexIcon Ø True, VertexSize Ø MediumD

: , ::1, , complex-systems.com>,

:2, , computerbasedmath.org>, :3, , twitter.com>,

:4, , wolframalpha.com>, :5, , wolfram.com>,

:6, , wolfram-media.com>, :7, , wolframscience.com>>>

‡ 3 Properties of the Web
In this section, we build upon RandomWalkWeb’s functionality and use it to perform a ran-
dom walk to sample the web. The collected empirical network data is then analyzed and
several properties of the web are estimated.
A Note on Timings

The timings reported in this section were measured on a custom workstation PC using the
built-in function AbsoluteTiming. The system consists of an Intel® Core’ i7 CPU
950 @ 4 GHz and 12 GB of DDR3 memory. It runs Microsoft® Windows’ 7 Profes-
sional (64-bit) and scores 1.23 on the MathematicaMark8 benchmark.

· 3.1 Data Collection

ü 3.1.1 Random Walk with Jumps

Let us define a new function called RandomWalkWithJumps.

RandomWalkWithJumps@
originURL_String?AbsoluteLinkQ,
numJumps_Integer ê; numJumps ¥ 0,
numSteps_Integer ê; numSteps ¥ 1

D :=

Random Walks on the World Wide Web 5

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

D :=
Module@8$FunctionName = "RandomWalkWithJumps",

dataDirectory, i, numWalks = numJumps + 1, pt,
url = originURL, successfulURLs, totalNumSteps = 0,
dataFileName, urlHistory = 8<, totalUniqueURLs<,

LogMessage@"DEBUG", "Entering " <> $FunctionName <> "."D;

dataDirectory =
FileNameJoin@8$BaseDataDirectory,

IntegerString@Hash@originURL, "MD5"D, 16D<D;
If@! FileExistsQ@dataDirectoryD,
CreateDirectory@dataDirectoryD;

D;

For@i = 1, i § numWalks, i++,
If@$Notebooks,
pt = PrintTemporary@"Walk " <> ToString@iD <> " of " <>

ToString@numWalksD <> ": " <> urlD;
D;
LogMessage@"INFO", "Walk Number: " <> ToString@iD <>

" Hof " <> ToString@numWalksD <> "L"D;

successfulURLs = RandomWalkWeb@url, numStepsD;

If@successfulURLs =!= $Failed,
totalNumSteps += Length@successfulURLsD - 1;,
H* else *L
successfulURLs = 8<;

D;

dataFileName =
FileNameJoin@8dataDirectory,

$DataFilePrefix <> ToString@iD <> ".txt"<D;
Export@dataFileName, successfulURLsD;

urlHistory = Union@urlHistory, successfulURLsD;
totalUniqueURLs = Length@urlHistoryD;

If@totalUniqueURLs > 0,
url = RandomChoice@urlHistoryD;,
H* else *L
Break@D;

D;

If@$Notebooks,
NotebookDelete@ptD;

D;
D;

LogMessage@"DEBUG", "Exiting " <> $FunctionName <> "."D;
8totalNumSteps, totalUniqueURLs<

D

The function behaves like PerformRandomWalks (see Section 2) except that, instead
of returning to the start URL, RandomWalkWithJumps “jumps” to a URL chosen at
random from the walk’s history. From there, the function attempts to perform an addi-
tional ns steps, and the process is repeated. The number of walks completed is given by
nw = n j + 1, where n j is the specified number of jumps.

6 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The function behaves like PerformRandomWalks (see Section 2) except that, instead
of returning to the start URL, RandomWalkWithJumps “jumps” to a URL chosen at
random from the walk’s history. From there, the function attempts to perform an addi-
tional ns steps, and the process is repeated. The number of walks completed is given by
nw = n j + 1, where n j is the specified number of jumps.

Before using RandomWalkWithJumps to collect empirical network data, we set up a
few package parameters.

$BaseDataDirectory =
FileNameJoin@8NotebookDirectory@D, "RW_Data_2"<D;

$DataFilePrefix = "2012-10-22_RW";

Next, we change the location of the log file (see Appendix).

$LogFileName =
FileNameJoin@8$BaseDataDirectory, "messages.log"<D;

Finally, we specify a generic user agent string (see Appendix).

$UserAgent = "Mozillaê5.0 Hcompatible; RWWê1.4L";

For this particular walk, our goal is to perform a total of 150,000 steps.

nj = 599;
ns = 250;
nw = nj + 1;

ns * nw

150 000

We now evaluate RandomWalkWithJumps.

RandomWalkWithJumps@"http:êêwolfram.comê", nj, nsD

8133 505, 35 616<

The function exits after nearly 26 hours on the web. The returned list shows that approxi-
mately 89% of the requested number of steps was completed. Additionally, we see that
35,616 unique URLs were visited.

Random Walks on the World Wide Web 7

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

· 3.2 Analysis

ü 3.2.1 Data Import and Visualization

We proceed by importing the collected empirical network data (available at www.mathe-
matica-journal.com/data/uploads/2013/09/RW_Data_2.zip) using RandomWalkGraph.
The built-in function Range is used to generate a complete list of file numbers.

8graph, enumeratedVertices< =
RandomWalkGraph@"http:êêwolfram.comê", Range@nwD, nsD;

It takes approximately 68 seconds for the function to return the Graph object and list of
enumerated vertices.

graph
enumeratedVertices

881, 0713hb.com<, 82, 100kin10.org<,
83, 104.fr<, 84, 12321.org.cn<, 85, 123rj.com<,
86, 1394ta.org<, 87, 163.com<, 88, 1800postcards.com<,
89, 1915studios.com<, 810, 193.71.77.27<, á4308à,
84319, zope.org<, 84320, zq24.com<, 84321, zunicore.com<,
84322, zupuk.com<, 84323, zuqiubifen.com<,
84324, zvab.com<, 84325, zvooq.ru<, 84326, zweitehand.de<,
84327, zynga.com<, 84328, zz-police.com<<

Together, they contain all the information needed to perform a domain-level analysis.

8 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

ü 3.2.2 Basic Measures

Using Mathematica’s built-in functions, we extract a few basic graph measures from our
data.
Let n be the number of vertices (i.e., domain names) in the graph.

n = VertexCount@graphD

4328

Similarly, let m be the number of edges (i.e., links).

m = EdgeCount@graphD

9665

In general, the degree ki of vertex i is a count of the edges attached to it. For example, we
can use VertexDegree to get the number of links connected to a given domain name.

VertexDegree@graph, "wolfram.com"D

1

The mean vertex degree c of a graph is given by

(1)c =
1

n
‚
i=1

n

ki.

If a vertex is not specified, VertexDegree returns a list of degrees for all vertices in the
graph. Calculating c from our empirical network data is then straightforward.

c = N@Mean@VertexDegree@graphDDD

4.46627

Here, we report the mean absolute deviation from c.

N@MeanDeviation@VertexDegree@graphDDD

3.62206

Random Walks on the World Wide Web 9

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

ü 3.2.3 In- and Out-Degree Distributions

For a directed graph, a vertex has both an in- and out-degree equal to the number of ingo-
ing and outgoing edges, respectively.

Let pkin be the fraction of vertices in a directed graph that have in-degree k. Similarly, let
pk
out be the fraction of vertices with out-degree k. We define two functions to calculate

these quantities.

pIn@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Count@VertexInDegree@gD, kD ê VertexCount@gD

pOut@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Count@VertexOutDegree@gD, kD ê VertexCount@gD

Both pkin and pkout can be viewed as the probability that a vertex chosen at random will
have in- and out-degree k, respectively. For example, using our empirical network data,
we can calculate the probability of randomly choosing a domain name with seven ingoing
links.

N@pIn@graph, 7DD

0.0030037

We use the built-in function Histogram to visualize the degree distributions.

hInDegreeDistribution =
Histogram@VertexInDegree@graphD, 81<, "Probability",
Frame Ø 88True, False<, 8True, False<<,
FrameLabel Ø 8"In-degree", "Fraction of vertices"<,
PlotRange Ø 880, 20<, 80, 0.8<<D;

hOutDegreeDistribution =
Histogram@VertexOutDegree@graphD, 81<, "Probability",
Frame Ø 88True, False<, 8True, False<<,
FrameLabel Ø 8"Out-degree"<,
PlotRange Ø 880, 20<, 80, 0.8<<D;

GraphicsRow@8hInDegreeDistribution, hOutDegreeDistribution<D

10 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

ü 3.2.4 Power-Law Degree Distributions

Evidence suggests [4] that the in- and out-degree distributions of the web exhibit power-
law behavior. Here, we attempt to reproduce those results using our collected empirical
network data. We proceed by defining the in-degree cumulative distribution function
(CDF):

(2)Pk
in = ‚

j=k

kmaxHiL

p jin,

where kmaxHiL is the maximum vertex in-degree of the graph and p jin is the fraction of
vertices with in-degree j, as defined earlier. A similar expression can be written for the
out-degree CDF, Pk

out.

InDegreeCDF@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Sum@N@pIn@g, jDD, 8j, k, Max@VertexInDegree@gDD<D

OutDegreeCDF@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Sum@N@pOut@g, jDD, 8j, k, Max@VertexOutDegree@gDD<D

Next, we use both functions to generate data spanning their entire degree domains.

dataInDegreeCDF = Table@8k, InDegreeCDF@graph, kD<,
8k, 0, Max@VertexInDegree@graphDD<D;

dataOutDegreeCDF = Table@8k, OutDegreeCDF@graph, kD<,
8k, 0, Max@VertexOutDegree@graphDD<D;

The resulting CDF data is visualized using the built-in function ListLogLogPlot.

lllpInDegreeCDF = ListLogLogPlot@dataInDegreeCDF,
AspectRatio Ø 1, Frame Ø True,
FrameLabel Ø
8"In-degree", "Cumulative distribution function"<,

Joined Ø True, PlotRange Ø FullD;
lllpOutDegreeCDF = ListLogLogPlot@dataOutDegreeCDF,

AspectRatio Ø 1, Frame Ø True, FrameLabel Ø 8"Out-degree"<,
Joined Ø True, PlotRange Ø FullD;

GraphicsRow@8lllpInDegreeCDF, lllpOutDegreeCDF<D

1 5 10 50100 500

0.001

0.01

0.1

1

In-degree

Cu
m
ul
at
iv
e
di
str
ib
ut
io
n
fu
nc
tio
n

1 5 10 50100 500

0.001

0.01

0.1

1

Out-degree

Random Walks on the World Wide Web 11

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The log-log plots reveal approximate power-law behavior in the degree distributions of
the web.
Now, let us assume that the degree distributions are proportional to k-g for k ¥ kmin,
where kmin is some minimum degree for which the power law holds. Following [5], we
use the maximum likelihood estimator (MLE) g̀ to estimate the power-law exponents:

(3)g̀ > 1+ NB‚
i=1

N

ln
ki

kmin -
1
2

F
-1

,

where N is the number of vertices with degree ki ¥ kmin. This approximation remains accu-
rate, provided kmin t 6. The standard error on g̀ is given by

(4)s =
g̀ - 1

N
.

We encapsulate equations (3) and (4) in the following function.

PLExponentEstimated@
g_?DirectedGraphQ,
kmin_Integer ê; kmin ¥ 6,
distType_String ê;
StringMatchQ@distType, 8"InDegree", "OutDegree"<D

D :=
Module@8$FunctionName = "PLExponentEstimated",

vertexDegrees, ki, M, exponentMLE, expStandardError<,
Switch@distType,
"InDegree",
vertexDegrees = VertexInDegree@gD;,
"OutDegree",
vertexDegrees = VertexOutDegree@gD;

D;

ki = Select@vertexDegrees, Ò ¥ kmin &D;
M = Length@kiD;

exponentMLE =
1 + M * Total@Map@N@Log@Ò ê Hkmin - 1 ê 2LDD &, kiDD^-1;

expStandardError = HexponentMLE - 1L ê Sqrt@MD;

8exponentMLE, expStandardError<
D

12 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Evaluating PLExponentEstimated yields an estimate of the power-law exponent.

PLExponentEstimated@graph, 6, "InDegree"D

82.10333, 0.0922647<

PLExponentEstimated@graph, 6, "OutDegree"D

82.36154, 0.0957979<

Here, the minimum value for kmin was used. We see that gin = 2.10± 0.09 and
gout = 2.36± 0.1 for the in- and out-degree distributions of the web, respectively. These
values are in good agreement with those reported in [4].

ü 3.2.5 Distribution of Top-Level Domains

We examine the distribution of top-level domains (TLDs) in our data. Examples of TLDs
include com, net, and org.
First, the domain names are extracted from the list of enumerated vertices. We then ex-
tract the last part of each domain name and use EffectiveTLDNameQ (see Appendix)
to filter the results.

domainNames = enumeratedVertices@@All, 2DD;
tlds = Select@Map@Last@StringSplit@Ò, "."DD &, domainNamesD,

EffectiveTLDNameQD

8com, org, fr, cn, com, org, com, com, com, fr,
á4304à, org, com, com, com, com, com, ru, de, com, com<

Next, we get the total number of TLDs and tally the list.

totalNumTLDs = Length@tldsD;
talliedTLDs = Tally@tldsD

88com, 2557<, 8org, 490<, 8fr, 28<, 8cn, 49<, 8jp, 131<,
8ch, 18<, 8it, 18<, 8net, 150<, 8ru, 25<, 8nl, 39<,
á73à, 8lu, 1<, 8cz, 1<, 8sh, 1<, 8am, 1<, 8ro, 1<,
8travel, 1<, 8jobs, 1<, 8va, 1<, 8pro, 1<, 8mq, 1<<

Random Walks on the World Wide Web 13

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

The relative frequency of each TLD is then calculated and the data is sorted—both numeri-
cally and alphabetically.

relFreqTLD = Map@8First@ÒD, N@Last@ÒD ê totalNumTLDsD< &,
talliedTLDsD;

relFreqTLD = GatherBy@Sort@relFreqTLD, Last@Ò1D > Last@Ò2D &D,
LastD;

relFreqTLD = Flatten@Map@Sort@ÒD &, relFreqTLDD, 1D

88com, 0.591351<, 8org, 0.113321<, 8net, 0.0346901<,
8jp, 0.030296<, 8pl, 0.0275208<, 8de, 0.0219704<,
8uk, 0.0210453<, 8gov, 0.0185014<, 8ca, 0.0134135<,
8cn, 0.0113321<, á73à, 8ps, 0.000231267<,
8ro, 0.000231267<, 8sh, 0.000231267<, 8to, 0.000231267<,
8tr, 0.000231267<, 8travel, 0.000231267<, 8tt, 0.000231267<,
8uy, 0.000231267<, 8va, 0.000231267<, 8xxx, 0.000231267<<

Finally, we visualize the resulting data using the built-in function BarChart.

BarChart@relFreqTLD@@ ;; 15, 2DD,
ChartLabels Ø Placed@relFreqTLD@@All, 1DD, Axis,

Rotate@Ò, p ê 4D &D, Frame Ø True,
FrameLabel Ø 8"", "Relative frequency"<,
FrameTicks Ø 88Union@80, 1<, Range@0.1, 0.9, 0.1DD, None<,

8None, None<<, GridLines Ø 8None, Automatic<,
PlotLabel Ø "Top-Level Domain Distribution",
PlotRange Ø 8All, 8-0.06, 0.6<<D

Here, the relative frequencies of the top 15 TLDs are compared.

14 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

‡ 4 Conclusion
In this article, we have presented RandomWalkWeb, a package developed to perform
random walks on the World Wide Web and to visualize the resulting data. Building upon
the package’s functionality, we collected empirical network data consisting of 35,616
unique URLs. A domain-level analysis was performed and several properties of the web’s
structure were measured. We examined the in- and out-degree distributions and verified
their approximate power-law behavior. The power-law exponents were estimated to be
gin = 2.10± 0.09 and gout = 2.36± 0.1, in good agreement with previously published
results.
The RandomWalkWeb Package relies upon the graph and network functionality intro-
duced in Mathematica 8. In addition, the package was designed to take advantage of the
client-server communication features provided by the .NET Framework. The choice to use
.NET/Link affects only a small number of package functions, and it would be a straightfor-
ward task to reimplement those functions to utilize other technologies, e.g., J/Link.
RandomWalkWeb can also be improved and expanded in many different ways. For
instance, one could modify the code to allow functions like RandomWalkWeb to be eval-
uated on parallel subkernels. Another possibility would be to construct a full-featured
Mathematica-based crawler capable of exploring the web’s structure more methodically.
Finally, since Mathematica forms the foundation of Wolfram|Alpha, one could easily
imagine the web-based computational knowledge engine returning graph theoretic
answers to users’ queries regarding the World Wide Web.

‡ Appendix: Design of RandomWalkWeb
This appendix provides some details on the design and implementation of the Ran-
domWalkWeb Package. Readers are strongly encouraged to review the fully documented
source code.

· Web Page Components

ü GetSource

The first operation in performing a random walk on the web is to request and obtain the
HTML (or source) of a web page. The most straightforward way to accomplish this is to
use the built-in function Import.

Random Walks on the World Wide Web 15

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Import@"http:êêwolfram.comê", "Source"D

<!DOCTYPE html PUBLIC
"-êêW3CêêDTD XHTML 1.0 TransitionalêêEN"
"http:êêwww.w3.orgêTRêxhtml1êDTDêxhtml1-transitional.dtd">

<html xmlns="http:êêwww.w3.orgê1999êxhtml"
xml:lang="en" lang="en">

<head>

<link rel="shortcut icon"
href="êcommonêimages2003êf…unction displayIMGHL8

êê Insert no-flash image into the flash div
document.getElementByIdH'flash'L.innerHTML

= '<img
src="êimagesêhomepage2010ênoflash-wsm.png"
border="0" ê><êa>';

<
ê* DD> *ê
<êscript>
<êbody>
<êhtml>

There is, however, at least one drawback to this method. A website may be configured to
serve different content to different devices (e.g., mobile versus desktop). Various methods
exist for detecting the type of device making the request.
One technique in particular involves the server parsing the User-Agent HTTP header sent
by the client. The client software uses this header to identify itself to the server during re-
quests. For instance, if we pass a URL to Import and evaluate it using Mathematica 8, a
server would see Mathematica ê 8.0 .4 .0 .0 PM ê 1.3 .1 as its user agent string.
Unfortunately, this string is immutable.
To circumvent this constraint, RandomWalkWeb implements its own HTML import func-
tion called GetSource. The function uses .NET/Link to communicate with the .NET run-
time. During HTTP requests, GetSource transmits the string assigned to $UserAgent.

$UserAgent

Mathematicaê8.0.4.0 RWWê1.4

We can request and obtain the HTML of a web page using GetSource.

GetSource@"http:êêwolfram.comê"D

8http:êêwolfram.comê,
<!DOCTYPE html PUBLIC "-êêW3CêêDTD XHTML

1.0 TransitionalêêEN"
"http:êêwww.w3.orgêTRêxhtml1êDTDêxhtml1-transitional.dtd">

<html xmlns="http:êêwww.w3.orgê1999êxhtml"

16 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

<html xmlns="http:êêwww.w3.orgê1999êxhtml"
xml:lang="en" lang="en">

<head>

<link rel="shortcut icon"
href="êcommonêimages2003êf…nction displayIMGHL8

êê Insert no-flash image into the flash div
document.getElementByIdH'flash'L.innerHTML

= '<img
src="êimagesêhomepage2010ênoflash-wsm.png"
border="0" ê><êa>';
<

ê* DD> *ê
<êscript>
<êbody>
<êhtml>
<

The first part of the returned list is the responding address. Typically, this address is the
same as the requested URL. However, it may differ due to one or more redirects. The last
part contains the HTML of the web page.
Let us now set $UserAgent to mimic a popular mobile device.

$UserAgent =
"Mozillaê5.0 HiPhone; CPU iPhone OS 5_0 like Mac

OS XL AppleWebKitê534.46 HKHTML, like GeckoL
Versionê5.1 Mobileê9A334 Safariê7534.48.3";

This time we pass a list of URLs to GetSource and inspect the responding addresses.

urls = 8"http:êêbing.comê", "http:êêfacebook.comê",
"http:êêweather.comê", "http:êêyahoo.comê"<;

GetSource@urlsD@@All, 1DD

8http:êêm.bing.comê?mid=10006,
http:êêm.facebook.comê?refsrc=http:êêwww.facebook.comê&_rdr
, http:êêm.weather.comê,
http:êêm.yahoo.comê?.tsrc=yahoo&mobile_view_default=true<

Here, we see that GetSource follows the redirects and obtains the HTML from mobile-
specific addresses. Having the ability to modify the user agent string allows us to perform
random walks on the so-called “mobile web.”

Random Walks on the World Wide Web 17

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

· Operations on URLs

ü DomainName

RandomWalkWeb contains several functions that perform useful operations on URLs. One
in particular, DomainName, is used both in standalone form and internally by
RandomWalkGraph and related functions. As its name suggests, it extracts the domain
name from the specified URL.

url = "http:êêwww.example.netêdir1êpage1.html";
DomainName@urlD

example.net

At the heart of DomainName lies a list of known effective TLDs, or public suffixes, that
is imported from a data file and stored in memory during the package’s initialization. Ex-
amples of effective TLDs include com, co.uk, and nj.us. The file is located in the
Data folder under the package’s root directory. It consists of a base list [6] augmented by
user-specified additions.
We can evaluate $ETLDNInfo and inspect the last part of the returned list to determine
the number of effective TLD names in the data file.

$ETLDNInfo êê Last

6065

DomainName works by first splitting the hostname into a list of components.

StringSplit@Hostname@urlD, "."D

8www, example, net<

Next, the function takes the last part of the returned list and uses EffectiveTLDNameQ
to test whether the string is a known effective top-level domain. If it is, the next-to-last
part of the list is prepended to the string and joined with a dot (a period). Again, the string
is tested. The process of growing and testing the string continues until
EffectiveTLDNameQ gives False. The result is the domain name.
If the effective TLD cannot be determined, DomainName returns the equivalent of
Hostname.

DomainName@"http:êêwww.example.zzzêdir1êpage1.html"D

www.example.zzz

18 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

Hostname@"http:êêwww.example.zzzêdir1êpage1.html"D

www.example.zzz

If message logging is enabled (see later in this appendix), DomainName logs the error
and hostname for later review. The user can then decide whether to add the missing effec-
tive TLD to the appropriate section of the data file.

· Message Logging

ü LogMessage

During code development, it is often necessary to examine detailed error messages (e.g.,
.NET exceptions) or to trace the execution path of a function. This can be especially
difficult if the function is called repeatedly hundreds or even thousands of times. For these
reasons, several of the functions in RandomWalkWeb have been designed to write error,
informational, and debug-level messages to a plain text file.
By default, messages are written to messages.log located in the directory given by
$TemporaryDirectory. Evaluating $LogFileName shows the fully qualified
name of the log file.

$LogFileName

C:\Users\$UserName\AppData\Local\Temp\messages.log

One is free to change the name or location of the file. Also, message logging can be dis-
abled entirely by assigning an empty string to $LogFileName.
We use LogMessage to write a message to the log file, specifying its level of
importance.

msg = "$DebugLogging = " <> ToString@$DebugLoggingD;
LogMessage@"INFO", msgD

We can verify that the message was appended to the file.

ReadList@$LogFileName, StringD êê Last

@2012-10-10 19:44:12.003D INFO : $DebugLogging = False

Random Walks on the World Wide Web 19

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

‡ Acknowledgments
The author is grateful to his family for their unwavering patience and support.

‡ References
[1] T. Berners-Lee. “Information Management: A Proposal.” (May, 1990)

www.w3.org/History/1989/proposal-msw.html.

[2] M. Newman, Networks: An Introduction, Oxford, UK: Oxford University Press, 2010.

[3] J. Alpert and N. Hajaj. “We Knew the Web Was Big...” Google Official Blog (blog, Google,
owner). (Jul 25, 2008) googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.

[4] A. Barabási, R. Albert, and H. Jeong, “Scale-Free Characteristics of Random Networks: The
Topology of the World-Wide Web,” Physica A, 281(1–4), 2000 pp. 69–77.
doi:10.1016/S0378-4371(00)00018-2.

[5] A. Clauset, C. Shalizi, and M. Newman, “Power-Law Distributions in Empirical Data,” SIAM
Review, 51(4), 2009 pp. 661–703. doi:10.1137/070710111.

[6] Mozilla Foundation. “Public Suffix List.” (Aug 2, 2012) publicsuffix.org.

T. Silvestri, “Random Walks on the World Wide Web,” The Mathematica Journal, 2013.
dx.doi.org/doi:10.3888/tmj.15-9.

About the Author

Todd Silvestri received his undergraduate degrees in physics and mathematics from the
University of Chicago in 2001. As a graduate student, he worked briefly at the Thomas
Jefferson National Accelerator Facility (TJNAF), where he helped to construct and test a
neutron detector used in experiments to measure the neutron electric form factor at high
momentum transfer. From 2006 to 2011, he worked as a physicist at the US Army Ar-
mament Research, Development and Engineering Center (ARDEC). During his time
there, he cofounded and served as principal investigator of a small laboratory focused on
improving the reliability of military systems. He is currently working on several personal
projects.
Todd Silvestri
New Jersey, United States
todd.silvestri@optimum.net

20 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.

