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This article presents RandomWalkWeb, a package developed to 
perform random walks on the World Wide Web and to visualize 
the resulting data. Building upon the packageʼs functionality, we 
collected empirical network data consisting of 35,616 unique 
URLs (approximately 133,500 steps). An analysis was performed 
at the domain level and several properties of the web were 
measured. In particular, we estimated the power-law exponent g 
for the in- and out-degree distributions, and obtained values of 
2.10± 0.09 and 2.36± 0.1, respectively. These values were found 
to be in good agreement with previously published results.

‡ 1 Introduction
The World Wide Web (WWW), commonly referred to as simply “the web,” is a vast infor-
mation  network  accessible  via  the  Internet.  Initially  proposed  in  1989 [1],  the  web grew
out of the work of Tim Berners-Lee while at the European Organization for Nuclear Re-
search, known as CERN.
Two  software  technologies  form  the  core  of  the  web,  namely  the  HyperText  Markup
Language (HTML) and the Hypertext Transfer Protocol (HTTP). The HTML (or source)
of a web page contains elements known as tags that describe the content of the document.
For instance, the anchor < a > tag defines a hyperlink, or link, to another document. Each
file  (or  resource)  on  the  web  is  identified  by  a  Uniform  Resource  Locator  (URL).  A
browser  or  other  user  agent  may  request  a  file  via  HTTP  by  specifying  its  URL.  The
response—typically the requested file—is again transmitted by HTTP from the web server
to the client.
The  topology  of  large-scale  complex  networks,  such  as  the  web,  can  be  explored  using
graph  theoretic  methods  (see  [2]  and  references  therein).  Specifically,  the  web  can  be
viewed as a directed graph, where the web pages are vertices and the hyperlinks are edges.
Unfortunately,  two problems exist  due to the nature of the web: (1) it  cannot be indexed
(or  mapped)  in  its  entirety;  and  (2)  analyzing  the  corresponding  graph  would  be  highly
computationally intensive.  In fact,  a  recent  announcement  [3]  suggests  that  the web may
contain at least 1012 unique URLs.
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The  topology  of  large-scale  complex  networks,  such  as  the  web,  can  be  explored  using
graph  theoretic  methods  (see  [2]  and  references  therein).  Specifically,  the  web  can  be
viewed as a directed graph, where the web pages are vertices and the hyperlinks are edges.
Unfortunately,  two problems exist  due to the nature of the web: (1) it  cannot be indexed
(or  mapped)  in  its  entirety;  and  (2)  analyzing  the  corresponding  graph  would  be  highly
computationally intensive.  In fact,  a  recent  announcement  [3]  suggests  that  the web may
contain at least 1012 unique URLs.
Despite  its  sheer  size  and  complexity,  it  is  possible  to  extract  meaningful  measures  that
can be used to quantify the web’s structure. Using the method of random walks, one can
sample the network and examine a subgraph of the web.
In  this  method,  one  begins  at  a  specified  URL.  The  client  requests  the  web  page  at  that
URL,  and  the  server  responds  with  the  document’s  HTML.  Next,  the  client  extracts  all
URLs from the web page and chooses one of them at random. Again, the client makes a re-
quest  for  the  document  at  the  chosen  URL.  If  the  server  cannot  be  reached  or  the  web
page cannot be found, the client simply chooses another URL at random. The entire pro-
cess is then repeated a finite number of times.
The focus of this article is on the application of random walks to the study of the World
Wide Web. In Section 2, we provide a brief overview of RandomWalkWeb, a package de-
veloped to perform random walks on the web and to visualize the resulting data. Next, in
Section 3, we build upon the package’s functionality and use it to perform a random walk
to sample the web. The collected empirical network data is then analyzed and several prop-
erties of the web are estimated. Finally, in Section 4, we provide a summary of our work
and give our concluding remarks.

‡ 2 A Brief Overview of RandomWalkWeb
In this section, we give a brief overview of RandomWalkWeb and demonstrate some of its
functionality.
The  RandomWalkWeb  Package  (www.mathematica-journal.com/data/uploads/2013/09/
RandomWalkWeb.zip)  is  built  upon  the  graph  and  network  functionality  introduced  in
Mathematica  8.  In  addition,  connectivity  to  the  web  is  provided  through  .NET/Link  and
requires the .NET Framework 2.0 (or higher).
The package consists of 28 public symbols covering the following four areas: (1) data col-
lection and visualization; (2) web page components; (3) operations on URLs; and (4) mes-
sage  logging.  Each  symbol  is  fully  documented  and  can  be  easily  accessed  through  the
Mathematica help system.
We begin by loading the package.

Needs@"RandomWalkWeb`"D
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A single random walk on the web can be executed, as described in Section 1, by using the
package’s  namesake,  RandomWalkWeb.  The  start  (or  origin)  URL  is  specified,  along
with the maximum number of steps ns to be taken.

RandomWalkWeb@"http:êêwolfram.comê", 10D êê Column

http:êêwolfram.comê
http:êêproducts.wolframalpha.comê
http:êêwww.wolfram.comêmathematicaêhow-mathematica-made-

wolframalpha-possible.html
http:êêwww.stephenwolfram.comê
http:êêwww.wolframalpha.comê
http:êêwww.wolframalpha.comêexamplesê
http:êêwww.wolframalpha.comêexamplesêGeochronology.html
http:êêwww.wolframalpha.comêinputê?i=continental+map+for+the

+Karoo+ice+age&amp;lk=3
http:êêwww.wolframscience.comê
http:êêwww.wolframalpha.comê
http:êêwww.wolfram.comê

RandomWalkWeb  returns  a  list  of  successfully  visited  URLs,  displayed  here  as  a
column. If the function is evaluated from a notebook-based front end, the walk’s progress
is displayed in the window status area. In the event that it reaches a URL with zero valid
outgoing  links,  RandomWalkWeb  will  attempt  to  backtrack  at  most  one  step.  The
function may exit  prematurely; that is,  the number of steps returned is less than ns,  if  all
previous hyperlinks have been exhausted.
One may wish to perform multiple random walks from the same URL. This can be accom-
plished by using PerformRandomWalks. Like RandomWalkWeb, we specify the start
URL and the maximum number of steps to be taken. Additionally, we pass the number of
random walks nw to be performed as the function’s second argument.

PerformRandomWalks@"http:êêwolfram.comê", 3, 8D

3

The value that is returned indicates the number of successfully exported data files.

The root  directory used to  store  the  data  files  is  specified by $BaseDataDirectory.
By  default,  this  is  set  to  the  current  working  directory.  For  each  unique  URL  passed  to
PerformRandomWalks,  a folder is created in the root data directory whose name is a
32-character,  hexadecimal-formatted  MD5  hash  of  that  URL.  The  successfully  visited
URLs from each walk are exported as separate human-readable plain text files. The name
of each file is a combination of a label, specified by $DataFilePrefix, and the walk
number.
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In  the  next  example,  we  examine  previously  collected  network  data  (available  at
www.mathematica-journal.com/data/uploads/2013/09/RW_Data_1.zip). We begin by spec-
ifying both $BaseDataDirectory and $DataFilePrefix.

$BaseDataDirectory =
FileNameJoin@8NotebookDirectory@D, "RW_Data_1"<D;

$DataFilePrefix = "2012-09-28_RW";

The data can be easily imported and visualized by using RandomWalkGraph. Here, we
are interested in the first seven steps extracted from the second random walk.

RandomWalkGraph@"http:êêwolfram.comê", 82<, 7D

: ,

881, mathematica-journal.com<, 82, stephenwolfram.com<,
83, wolframalpha.com<, 84, wolfram.com<,

85, wolfram-media.com<, 86, wolframscience.com<<>

The first  part  of the returned list  is  a Graph  object,  while the last  part  contains a list  of
enumerated  vertices.  All  graphs  returned  by  RandomWalkGraph  are  simple  directed
graphs; that is, they contain neither loops nor multiple edges.
Similarly, one can construct a graph from multiple data files. Here, we combine all steps
from the first and third random walks.

RandomWalkGraph@"http:êêwolfram.comê", 81, 3<, 8D

: ,

881, complex-systems.com<, 82, computerbasedmath.org<,
83, twitter.com<, 84, wolframalpha.com<, 85, wolfram.com<,

86, wolfram-media.com<, 87, wolframscience.com<<>
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The graphs can be visually enhanced by using the VertexIcon option. With VertexÖ
Icon  set to True,  RandomWalkGraph  attempts to download each vertex’s associated
favorite  icon and uses  it  in  place  of  the  default  vertex shape.  RandomWalkGraph  also
accepts the same options as the built-in function Graph.

RandomWalkGraph@"http:êêwolfram.comê", 81, 3<, 8,
VertexIcon Ø True, VertexSize Ø MediumD

: , ::1, , complex-systems.com>,

:2, , computerbasedmath.org>, :3, , twitter.com>,

:4, , wolframalpha.com>, :5, , wolfram.com>,

:6, , wolfram-media.com>, :7, , wolframscience.com>>>

‡ 3 Properties of the Web
In this section, we build upon RandomWalkWeb’s functionality and use it to perform a ran-
dom walk to sample the web. The collected empirical  network data is  then analyzed and
several properties of the web are estimated.
A Note on Timings

The timings reported in this section were measured on a custom workstation PC using the
built-in  function  AbsoluteTiming.  The  system consists  of  an  Intel® Core’  i7  CPU
950  @ 4  GHz  and  12  GB of  DDR3 memory.  It  runs  Microsoft®  Windows’  7  Profes-
sional (64-bit) and scores 1.23 on the MathematicaMark8 benchmark.

· 3.1 Data Collection

ü 3.1.1 Random Walk with Jumps

Let us define a new function called RandomWalkWithJumps.

RandomWalkWithJumps@
originURL_String?AbsoluteLinkQ,
numJumps_Integer ê; numJumps ¥ 0,
numSteps_Integer ê; numSteps ¥ 1

D :=
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D :=
Module@8$FunctionName = "RandomWalkWithJumps",

dataDirectory, i, numWalks = numJumps + 1, pt,
url = originURL, successfulURLs, totalNumSteps = 0,
dataFileName, urlHistory = 8<, totalUniqueURLs<,

LogMessage@"DEBUG", "Entering " <> $FunctionName <> "."D;

dataDirectory =
FileNameJoin@8$BaseDataDirectory,

IntegerString@Hash@originURL, "MD5"D, 16D<D;
If@! FileExistsQ@dataDirectoryD,
CreateDirectory@dataDirectoryD;

D;

For@i = 1, i § numWalks, i++,
If@$Notebooks,
pt = PrintTemporary@"Walk " <> ToString@iD <> " of " <>

ToString@numWalksD <> ": " <> urlD;
D;
LogMessage@"INFO", "Walk Number: " <> ToString@iD <>

" Hof " <> ToString@numWalksD <> "L"D;

successfulURLs = RandomWalkWeb@url, numStepsD;

If@successfulURLs =!= $Failed,
totalNumSteps += Length@successfulURLsD - 1;,
H* else *L
successfulURLs = 8<;

D;

dataFileName =
FileNameJoin@8dataDirectory,

$DataFilePrefix <> ToString@iD <> ".txt"<D;
Export@dataFileName, successfulURLsD;

urlHistory = Union@urlHistory, successfulURLsD;
totalUniqueURLs = Length@urlHistoryD;

If@totalUniqueURLs > 0,
url = RandomChoice@urlHistoryD;,
H* else *L
Break@D;

D;

If@$Notebooks,
NotebookDelete@ptD;

D;
D;

LogMessage@"DEBUG", "Exiting " <> $FunctionName <> "."D;
8totalNumSteps, totalUniqueURLs<

D

The function behaves like PerformRandomWalks  (see Section 2)  except  that,  instead
of  returning  to  the  start  URL,  RandomWalkWithJumps  “jumps”  to  a  URL  chosen  at
random  from  the  walk’s  history.  From  there,  the  function  attempts  to  perform  an  addi-
tional  ns  steps,  and the  process  is  repeated.  The  number  of  walks  completed  is  given by
nw = n j + 1, where n j is the specified number of jumps.
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The function behaves like PerformRandomWalks  (see Section 2)  except  that,  instead
of  returning  to  the  start  URL,  RandomWalkWithJumps  “jumps”  to  a  URL  chosen  at
random  from  the  walk’s  history.  From  there,  the  function  attempts  to  perform  an  addi-
tional  ns  steps,  and the  process  is  repeated.  The  number  of  walks  completed  is  given by
nw = n j + 1, where n j is the specified number of jumps.

Before  using  RandomWalkWithJumps  to  collect  empirical  network  data,  we  set  up  a
few package parameters.

$BaseDataDirectory =
FileNameJoin@8NotebookDirectory@D, "RW_Data_2"<D;

$DataFilePrefix = "2012-10-22_RW";

Next, we change the location of the log file (see Appendix).

$LogFileName =
FileNameJoin@8$BaseDataDirectory, "messages.log"<D;

Finally, we specify a generic user agent string (see Appendix).

$UserAgent = "Mozillaê5.0 Hcompatible; RWWê1.4L";

For this particular walk, our goal is to perform a total of 150,000 steps.

nj = 599;
ns = 250;
nw = nj + 1;

ns * nw

150 000

We now evaluate RandomWalkWithJumps.

RandomWalkWithJumps@"http:êêwolfram.comê", nj, nsD

8133 505, 35 616<

The function exits after nearly 26 hours on the web. The returned list shows that approxi-
mately  89%  of  the  requested  number  of  steps  was  completed.  Additionally,  we  see  that
35,616 unique URLs were visited.

Random Walks on the World Wide Web 7
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· 3.2 Analysis

ü 3.2.1 Data Import and Visualization

We proceed by importing the collected empirical network data (available at www.mathe-
matica-journal.com/data/uploads/2013/09/RW_Data_2.zip)  using  RandomWalkGraph.
The built-in function Range is used to generate a complete list of file numbers.

8graph, enumeratedVertices< =
RandomWalkGraph@"http:êêwolfram.comê", Range@nwD, nsD;

It takes approximately 68 seconds for the function to return the Graph object and list of
enumerated vertices.

graph
enumeratedVertices

881, 0713hb.com<, 82, 100kin10.org<,
83, 104.fr<, 84, 12321.org.cn<, 85, 123rj.com<,
86, 1394ta.org<, 87, 163.com<, 88, 1800postcards.com<,
89, 1915studios.com<, 810, 193.71.77.27<, á4308à,
84319, zope.org<, 84320, zq24.com<, 84321, zunicore.com<,
84322, zupuk.com<, 84323, zuqiubifen.com<,
84324, zvab.com<, 84325, zvooq.ru<, 84326, zweitehand.de<,
84327, zynga.com<, 84328, zz-police.com<<

Together, they contain all the information needed to perform a domain-level analysis.
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ü 3.2.2 Basic Measures

Using Mathematica’s built-in functions, we extract a few basic graph measures from our
data.
Let n be the number of vertices (i.e., domain names) in the graph.

n = VertexCount@graphD

4328

Similarly, let m be the number of edges (i.e., links).

m = EdgeCount@graphD

9665

In general, the degree ki  of vertex i is a count of the edges attached to it. For example, we
can use VertexDegree to get the number of links connected to a given domain name.

VertexDegree@graph, "wolfram.com"D

1

The mean vertex degree c of a graph is given by

(1)c =
1

n
‚
i=1

n

ki.

If a vertex is not specified, VertexDegree returns a list of degrees for all vertices in the
graph. Calculating c from our empirical network data is then straightforward.

c = N@Mean@VertexDegree@graphDDD

4.46627

Here, we report the mean absolute deviation from c.

N@MeanDeviation@VertexDegree@graphDDD

3.62206
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ü 3.2.3 In- and Out-Degree Distributions

For a directed graph, a vertex has both an in- and out-degree equal to the number of ingo-
ing and outgoing edges, respectively.

Let pkin  be the fraction of vertices in a directed graph that have in-degree k.  Similarly, let
pk
out  be  the  fraction  of  vertices  with  out-degree  k.  We  define  two  functions  to  calculate

these quantities.

pIn@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Count@VertexInDegree@gD, kD ê VertexCount@gD

pOut@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Count@VertexOutDegree@gD, kD ê VertexCount@gD

Both  pkin  and  pkout  can  be  viewed  as  the  probability  that  a  vertex  chosen  at  random  will
have  in-  and  out-degree  k,  respectively.  For  example,  using  our  empirical  network  data,
we can calculate the probability of randomly choosing a domain name with seven ingoing
links.

N@pIn@graph, 7DD

0.0030037

We use the built-in function Histogram to visualize the degree distributions.

hInDegreeDistribution =
Histogram@VertexInDegree@graphD, 81<, "Probability",
Frame Ø 88True, False<, 8True, False<<,
FrameLabel Ø 8"In-degree", "Fraction of vertices"<,
PlotRange Ø 880, 20<, 80, 0.8<<D;

hOutDegreeDistribution =
Histogram@VertexOutDegree@graphD, 81<, "Probability",
Frame Ø 88True, False<, 8True, False<<,
FrameLabel Ø 8"Out-degree"<,
PlotRange Ø 880, 20<, 80, 0.8<<D;

GraphicsRow@8hInDegreeDistribution, hOutDegreeDistribution<D
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ü 3.2.4 Power-Law Degree Distributions

Evidence suggests [4] that the in- and out-degree distributions of the web exhibit power-
law  behavior.  Here,  we  attempt  to  reproduce  those  results  using  our  collected  empirical
network  data.  We  proceed  by  defining  the  in-degree  cumulative  distribution  function
(CDF):

(2)Pk
in = ‚

j=k

kmaxHiL

p jin,

where  kmaxHiL  is  the  maximum  vertex  in-degree  of  the  graph  and  p jin  is  the  fraction  of
vertices  with  in-degree  j,  as  defined  earlier.  A  similar  expression  can  be  written  for  the
out-degree CDF, Pk

out.

InDegreeCDF@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Sum@N@pIn@g, jDD, 8j, k, Max@VertexInDegree@gDD<D

OutDegreeCDF@g_?DirectedGraphQ, k_Integer ê; k ¥ 0D :=
Sum@N@pOut@g, jDD, 8j, k, Max@VertexOutDegree@gDD<D

Next, we use both functions to generate data spanning their entire degree domains.

dataInDegreeCDF = Table@8k, InDegreeCDF@graph, kD<,
8k, 0, Max@VertexInDegree@graphDD<D;

dataOutDegreeCDF = Table@8k, OutDegreeCDF@graph, kD<,
8k, 0, Max@VertexOutDegree@graphDD<D;

The resulting CDF data is visualized using the built-in function ListLogLogPlot.

lllpInDegreeCDF = ListLogLogPlot@dataInDegreeCDF,
AspectRatio Ø 1, Frame Ø True,
FrameLabel Ø
8"In-degree", "Cumulative distribution function"<,

Joined Ø True, PlotRange Ø FullD;
lllpOutDegreeCDF = ListLogLogPlot@dataOutDegreeCDF,

AspectRatio Ø 1, Frame Ø True, FrameLabel Ø 8"Out-degree"<,
Joined Ø True, PlotRange Ø FullD;

GraphicsRow@8lllpInDegreeCDF, lllpOutDegreeCDF<D
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The  log-log  plots  reveal  approximate  power-law  behavior  in  the  degree  distributions  of
the web.
Now,  let  us  assume  that  the  degree  distributions  are  proportional  to  k-g  for  k ¥ kmin,
where  kmin  is  some  minimum degree  for  which  the  power  law  holds.  Following  [5],  we
use the maximum likelihood estimator (MLE) g̀ to estimate the power-law exponents:

(3)g̀ > 1+ NB‚
i=1

N

ln
ki

kmin -
1
2

F
-1

,

where N is the number of vertices with degree ki ¥ kmin. This approximation remains accu-
rate, provided kmin t 6. The standard error on g̀ is given by

(4)s =
g̀ - 1

N
.

We encapsulate equations (3) and (4) in the following function.

PLExponentEstimated@
g_?DirectedGraphQ,
kmin_Integer ê; kmin ¥ 6,
distType_String ê;
StringMatchQ@distType, 8"InDegree", "OutDegree"<D

D :=
Module@8$FunctionName = "PLExponentEstimated",

vertexDegrees, ki, M, exponentMLE, expStandardError<,
Switch@distType,
"InDegree",
vertexDegrees = VertexInDegree@gD;,
"OutDegree",
vertexDegrees = VertexOutDegree@gD;

D;

ki = Select@vertexDegrees, Ò ¥ kmin &D;
M = Length@kiD;

exponentMLE =
1 + M * Total@Map@N@Log@Ò ê Hkmin - 1 ê 2LDD &, kiDD^-1;

expStandardError = HexponentMLE - 1L ê Sqrt@MD;

8exponentMLE, expStandardError<
D
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Evaluating PLExponentEstimated yields an estimate of the power-law exponent.

PLExponentEstimated@graph, 6, "InDegree"D

82.10333, 0.0922647<

PLExponentEstimated@graph, 6, "OutDegree"D

82.36154, 0.0957979<

Here,  the  minimum  value  for  kmin  was  used.  We  see  that  gin = 2.10± 0.09  and
gout = 2.36± 0.1  for  the  in-  and  out-degree  distributions  of  the  web,  respectively.  These
values are in good agreement with those reported in [4].

ü 3.2.5 Distribution of Top-Level Domains

We examine the distribution of top-level domains (TLDs) in our data. Examples of TLDs
include com, net, and org.
First,  the  domain  names  are  extracted  from the  list  of  enumerated  vertices.  We then  ex-
tract the last part of each domain name and use EffectiveTLDNameQ (see Appendix)
to filter the results.

domainNames = enumeratedVertices@@All, 2DD;
tlds = Select@Map@Last@StringSplit@Ò, "."DD &, domainNamesD,

EffectiveTLDNameQD

8com, org, fr, cn, com, org, com, com, com, fr,
á4304à, org, com, com, com, com, com, ru, de, com, com<

Next, we get the total number of TLDs and tally the list.

totalNumTLDs = Length@tldsD;
talliedTLDs = Tally@tldsD

88com, 2557<, 8org, 490<, 8fr, 28<, 8cn, 49<, 8jp, 131<,
8ch, 18<, 8it, 18<, 8net, 150<, 8ru, 25<, 8nl, 39<,
á73à, 8lu, 1<, 8cz, 1<, 8sh, 1<, 8am, 1<, 8ro, 1<,
8travel, 1<, 8jobs, 1<, 8va, 1<, 8pro, 1<, 8mq, 1<<
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The relative frequency of each TLD is then calculated and the data is sorted—both numeri-
cally and alphabetically.

relFreqTLD = Map@8First@ÒD, N@Last@ÒD ê totalNumTLDsD< &,
talliedTLDsD;

relFreqTLD = GatherBy@Sort@relFreqTLD, Last@Ò1D > Last@Ò2D &D,
LastD;

relFreqTLD = Flatten@Map@Sort@ÒD &, relFreqTLDD, 1D

88com, 0.591351<, 8org, 0.113321<, 8net, 0.0346901<,
8jp, 0.030296<, 8pl, 0.0275208<, 8de, 0.0219704<,
8uk, 0.0210453<, 8gov, 0.0185014<, 8ca, 0.0134135<,
8cn, 0.0113321<, á73à, 8ps, 0.000231267<,
8ro, 0.000231267<, 8sh, 0.000231267<, 8to, 0.000231267<,
8tr, 0.000231267<, 8travel, 0.000231267<, 8tt, 0.000231267<,
8uy, 0.000231267<, 8va, 0.000231267<, 8xxx, 0.000231267<<

Finally, we visualize the resulting data using the built-in function BarChart.

BarChart@relFreqTLD@@ ;; 15, 2DD,
ChartLabels Ø Placed@relFreqTLD@@All, 1DD, Axis,

Rotate@Ò, p ê 4D &D, Frame Ø True,
FrameLabel Ø 8"", "Relative frequency"<,
FrameTicks Ø 88Union@80, 1<, Range@0.1, 0.9, 0.1DD, None<,

8None, None<<, GridLines Ø 8None, Automatic<,
PlotLabel Ø "Top-Level Domain Distribution",
PlotRange Ø 8All, 8-0.06, 0.6<<D

Here, the relative frequencies of the top 15 TLDs are compared.
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‡ 4 Conclusion
In  this  article,  we  have  presented  RandomWalkWeb,  a  package  developed  to  perform
random walks on the World Wide Web and to visualize the resulting data. Building upon
the  package’s  functionality,  we  collected  empirical  network  data  consisting  of  35,616
unique URLs. A domain-level analysis was performed and several properties of the web’s
structure  were  measured.  We  examined  the  in-  and  out-degree  distributions  and  verified
their  approximate  power-law  behavior.  The  power-law  exponents  were  estimated  to  be
gin = 2.10± 0.09  and  gout = 2.36± 0.1,  in  good  agreement  with  previously  published
results.
The  RandomWalkWeb  Package  relies  upon  the  graph  and  network  functionality  intro-
duced in Mathematica  8.  In addition,  the package was designed to take advantage of the
client-server communication features provided by the .NET Framework. The choice to use
.NET/Link affects only a small number of package functions, and it would be a straightfor-
ward task to reimplement those functions to utilize other technologies, e.g., J/Link.
RandomWalkWeb  can  also  be  improved  and  expanded  in  many  different  ways.  For
instance, one could modify the code to allow functions like RandomWalkWeb to be eval-
uated  on  parallel  subkernels.  Another  possibility  would  be  to  construct  a  full-featured
Mathematica-based crawler capable of exploring the web’s structure more methodically.
Finally,  since  Mathematica  forms  the  foundation  of  Wolfram|Alpha,  one  could  easily
imagine  the  web-based  computational  knowledge  engine  returning  graph  theoretic
answers to users’ queries regarding the World Wide Web.

‡ Appendix: Design of RandomWalkWeb
This  appendix  provides  some  details  on  the  design  and  implementation  of  the  Ran-
domWalkWeb  Package.  Readers  are  strongly  encouraged to  review the  fully  documented
source code.

· Web Page Components

ü GetSource

The first  operation in performing a random walk on the web is  to request  and obtain the
HTML (or source) of a web page. The most straightforward way to accomplish this is to
use the built-in function Import.
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Import@"http:êêwolfram.comê", "Source"D

<!DOCTYPE html PUBLIC
"-êêW3CêêDTD XHTML 1.0 TransitionalêêEN"
"http:êêwww.w3.orgêTRêxhtml1êDTDêxhtml1-transitional.dtd">

<html xmlns="http:êêwww.w3.orgê1999êxhtml"
xml:lang="en" lang="en">

<head>

<link rel="shortcut icon"
href="êcommonêimages2003êf…unction displayIMGHL8

êê Insert no-flash image into the flash div
document.getElementByIdH'flash'L.innerHTML

= '<a href="êsystem-modelerê"><img
src="êimagesêhomepage2010ênoflash-wsm.png"
border="0" ê><êa>';

<
ê* DD> *ê
<êscript>
<êbody>
<êhtml>

There is, however, at least one drawback to this method. A website may be configured to
serve different content to different devices (e.g., mobile versus desktop). Various methods
exist for detecting the type of device making the request.
One technique in particular involves the server parsing the User-Agent HTTP header sent
by the client. The client software uses this header to identify itself to the server during re-
quests. For instance, if we pass a URL to Import and evaluate it using Mathematica 8, a
server  would  see  Mathematica ê 8.0 .4 .0 .0 PM ê 1.3 .1  as  its  user  agent  string.
Unfortunately, this string is immutable.
To circumvent this constraint, RandomWalkWeb implements its own HTML import func-
tion called GetSource. The function uses .NET/Link to communicate with the .NET run-
time. During HTTP requests, GetSource transmits the string assigned to $UserAgent.

$UserAgent

Mathematicaê8.0.4.0 RWWê1.4

We can request and obtain the HTML of a web page using GetSource.

GetSource@"http:êêwolfram.comê"D

8http:êêwolfram.comê,
<!DOCTYPE html PUBLIC "-êêW3CêêDTD XHTML

1.0 TransitionalêêEN"
"http:êêwww.w3.orgêTRêxhtml1êDTDêxhtml1-transitional.dtd">

<html xmlns="http:êêwww.w3.orgê1999êxhtml"
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<html xmlns="http:êêwww.w3.orgê1999êxhtml"
xml:lang="en" lang="en">

<head>

<link rel="shortcut icon"
href="êcommonêimages2003êf…nction displayIMGHL8

êê Insert no-flash image into the flash div
document.getElementByIdH'flash'L.innerHTML

= '<a href="êsystem-modelerê"><img
src="êimagesêhomepage2010ênoflash-wsm.png"
border="0" ê><êa>';
<

ê* DD> *ê
<êscript>
<êbody>
<êhtml>
<

The first  part  of  the returned list  is  the responding address.  Typically,  this  address is  the
same as the requested URL. However, it may differ due to one or more redirects. The last
part contains the HTML of the web page.
Let us now set $UserAgent to mimic a popular mobile device.

$UserAgent =
"Mozillaê5.0 HiPhone; CPU iPhone OS 5_0 like Mac

OS XL AppleWebKitê534.46 HKHTML, like GeckoL
Versionê5.1 Mobileê9A334 Safariê7534.48.3";

This time we pass a list of URLs to GetSource and inspect the responding addresses.

urls = 8"http:êêbing.comê", "http:êêfacebook.comê",
"http:êêweather.comê", "http:êêyahoo.comê"<;

GetSource@urlsD@@All, 1DD

8http:êêm.bing.comê?mid=10006,
http:êêm.facebook.comê?refsrc=http:êêwww.facebook.comê&_rdr
, http:êêm.weather.comê,
http:êêm.yahoo.comê?.tsrc=yahoo&mobile_view_default=true<

Here, we see that GetSource follows the redirects and obtains the HTML from mobile-
specific addresses. Having the ability to modify the user agent string allows us to perform
random walks on the so-called “mobile web.”
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· Operations on URLs

ü DomainName

RandomWalkWeb contains several functions that perform useful operations on URLs. One
in  particular,  DomainName,  is  used  both  in  standalone  form  and  internally  by
RandomWalkGraph  and related functions. As its name suggests, it extracts the domain
name from the specified URL.

url = "http:êêwww.example.netêdir1êpage1.html";
DomainName@urlD

example.net

At the heart of DomainName lies a list of known effective TLDs, or public suffixes, that
is imported from a data file and stored in memory during the package’s initialization. Ex-
amples  of  effective  TLDs  include  com,  co.uk,  and  nj.us.  The  file  is  located  in  the
Data folder under the package’s root directory. It consists of a base list [6] augmented by
user-specified additions.
We can evaluate $ETLDNInfo  and inspect the last part of the returned list to determine
the number of effective TLD names in the data file.

$ETLDNInfo êê Last

6065

DomainName works by first splitting the hostname into a list of components. 

StringSplit@Hostname@urlD, "."D

8www, example, net<

Next, the function takes the last part of the returned list and uses EffectiveTLDNameQ
to  test  whether  the  string  is  a  known  effective  top-level  domain.  If  it  is,  the  next-to-last
part of the list is prepended to the string and joined with a dot (a period). Again, the string
is  tested.  The  process  of  growing  and  testing  the  string  continues  until
EffectiveTLDNameQ gives False. The result is the domain name.
If  the  effective  TLD  cannot  be  determined,  DomainName  returns  the  equivalent  of
Hostname.

DomainName@"http:êêwww.example.zzzêdir1êpage1.html"D

www.example.zzz
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Hostname@"http:êêwww.example.zzzêdir1êpage1.html"D

www.example.zzz

If  message  logging  is  enabled  (see  later  in  this  appendix),  DomainName  logs  the  error
and hostname for later review. The user can then decide whether to add the missing effec-
tive TLD to the appropriate section of the data file.

· Message Logging

ü LogMessage

During code development,  it  is  often necessary to examine detailed error messages (e.g.,
.NET  exceptions)  or  to  trace  the  execution  path  of  a  function.  This  can  be  especially
difficult if the function is called repeatedly hundreds or even thousands of times. For these
reasons,  several  of  the  functions  in  RandomWalkWeb  have  been  designed  to  write  error,
informational, and debug-level messages to a plain text file.
By  default,  messages  are  written  to  messages.log  located  in  the  directory  given  by
$TemporaryDirectory.  Evaluating  $LogFileName  shows  the  fully  qualified
name of the log file.

$LogFileName

C:\Users\$UserName\AppData\Local\Temp\messages.log

One is free to change the name or location of the file. Also, message logging can be dis-
abled entirely by assigning an empty string to $LogFileName.
We  use  LogMessage  to  write  a  message  to  the  log  file,  specifying  its  level  of
importance.

msg = "$DebugLogging = " <> ToString@$DebugLoggingD;
LogMessage@"INFO", msgD

We can verify that the message was appended to the file.

ReadList@$LogFileName, StringD êê Last

@2012-10-10 19:44:12.003D INFO : $DebugLogging = False

Random Walks on the World Wide Web 19

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.



‡ Acknowledgments
The author is grateful to his family for their unwavering patience and support.

‡ References
[1] T. Berners-Lee. “Information Management: A Proposal.” (May, 1990)

www.w3.org/History/1989/proposal-msw.html.

[2] M. Newman, Networks: An Introduction, Oxford, UK: Oxford University Press, 2010.

[3] J.  Alpert  and  N.  Hajaj.  “We Knew the  Web  Was  Big...”  Google  Official  Blog  (blog,  Google,
owner). (Jul 25, 2008) googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.

[4] A. Barabási, R. Albert, and H. Jeong, “Scale-Free Characteristics of Random Networks: The
Topology  of  the  World-Wide  Web,”  Physica  A,  281(1–4),  2000  pp.  69–77.
doi:10.1016/S0378-4371(00)00018-2.

[5] A.  Clauset,  C.  Shalizi,  and M.  Newman,  “Power-Law Distributions in  Empirical  Data,”  SIAM
Review, 51(4), 2009 pp. 661–703. doi:10.1137/070710111.

[6] Mozilla Foundation. “Public Suffix List.” (Aug 2, 2012) publicsuffix.org.

T. Silvestri, “Random Walks on the World Wide Web,” The Mathematica Journal, 2013.
dx.doi.org/doi:10.3888/tmj.15-9.

About the Author

Todd  Silvestri  received  his  undergraduate  degrees  in  physics  and  mathematics  from  the
University  of  Chicago  in  2001.  As  a  graduate  student,  he  worked  briefly  at  the  Thomas
Jefferson National Accelerator Facility (TJNAF), where he helped to construct and test a
neutron detector  used in  experiments  to  measure  the  neutron electric  form factor  at  high
momentum  transfer.  From  2006  to  2011,  he  worked  as  a  physicist  at  the  US  Army  Ar-
mament  Research,  Development  and  Engineering  Center  (ARDEC).  During  his  time
there, he cofounded and served as principal investigator of a small laboratory focused on
improving the reliability of military systems. He is currently working on several personal
projects.
Todd Silvestri
New Jersey, United States
todd.silvestri@optimum.net

20 Todd Silvestri

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.


