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This article describes the development of a novel program to 
process Affymetrix microarray files, which are used in the biological 
sciences to establish differences in gene expression between two 
conditions (e.g., diseased tissue versus healthy tissue).

‡ Introduction and Background
Affymetrix gene expression microarrays (“chips”)  are a  commercial  implementation of  a
powerful concept originally introduced to the world by Shena and colleagues in 1995 [1].
When successfully implemented, gene expression microarrays let a biologist measure the
expression  of  thousands  of  genes  simultaneously  in  a  biological  sample,  such  as  heart
tissue,  and further,  to compare that  measure of expression between two biological  states,
such as  diseased heart  tissue  and healthy heart  tissue.  In  many ways,  the  introduction of
microarray  technology  has  created  a  revolution  in  biology,  transforming  the  field  into  a
“big data” science like its sister disciplines of physics and chemistry.
Gene  expression  microarrays  (Figure  1A)  are  manufactured  by  attaching  strands  of
deoxyribonucleic acid (DNA), corresponding to different genes of an organism, across the
surface of  a glass slide.  The basic process of  identifying genes that  are expressed begins
with the extraction of messenger RNA (mRNA) from a source, for example, healthy heart
cells  (Figure  1B).  The  molecule  mRNA  is  made  by  cells  when  a  gene  is  expressed,
meaning  its  physical  presence—assuming  it  can  be  reliably  detected—is  an  indicator  of
gene expression. By fluorescently labeling the mRNA and hybridizing it to the surface of
the  chip,  it  is  possible  to  quantify  the  intensity  of  multiple  genes’  expression  from  that
biological  source  by  using  a  scanner  able  to  measure  a  fluorescent  signal.  When  this
process  is  repeated  on  a  different  biological  source,  such  as  diseased  heart  tissue,  a
separate  gene  expression  profile  is  created  for  the  diseased  tissue,  which  can  then  be
computationally  compared  to  the  expression  profile  from  the  healthy  tissue.  In  this
manner, genes that are more highly expressed or more highly repressed in diseased tissue
can  be  identified  by  comparing  their  expression  profile  to  the  expression  profile  of  the
same  genes  in  the  healthy  tissue.  This  has  obvious  implications  for  determining  which
genes  may  be  playing  a  role  in  disease  development  or  any  other  biological  process  of
interest,  from  cancer  metastasis  and  drug  resistance  in  medicine  to  fruit  ripening  and
drought resistance in agriculture.
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deoxyribonucleic acid (DNA), corresponding to different genes of an organism, across the
surface of a glass slide.  The basic process of  identifying genes that  are expressed begins
with the extraction of messenger RNA (mRNA) from a source, for example, healthy heart
cells  (Figure  1B).  The  molecule  mRNA  is  made  by  cells  when  a  gene  is  expressed,
meaning  its  physical  presence—assuming  it  can  be  reliably  detected—is  an  indicator  of
gene expression. By fluorescently labeling the mRNA and hybridizing it to the surface of
the  chip,  it  is  possible  to  quantify  the  intensity  of  multiple  genes’  expression  from  that
biological  source  by  using  a  scanner  able  to  measure  a  fluorescent  signal.  When  this
process  is  repeated  on  a  different  biological  source,  such  as  diseased  heart  tissue,  a
separate  gene  expression  profile  is  created  for  the  diseased  tissue,  which  can  then  be
computationally  compared  to  the  expression  profile  from  the  healthy  tissue.  In  this
manner, genes that are more highly expressed or more highly repressed in diseased tissue
can  be  identified  by  comparing  their  expression  profile  to  the  expression  profile  of  the
same  genes  in  the  healthy  tissue.  This  has  obvious  implications  for  determining  which
genes  may  be  playing  a  role  in  disease  development  or  any  other  biological  process  of
interest,  from  cancer  metastasis  and  drug  resistance  in  medicine  to  fruit  ripening  and
drought resistance in agriculture.

Ú Figure  1.  (A)  Basic  microarray  design  and  layout.  (B)  Extraction  of  mRNA—expressed  from the
nucleus of  a  healthy  heart  cell—and its  subsequent  fluorescent  labeling.  (C)  Hybridization  of  the
fluorescently labeled mRNA (“target”) to the surface of an Affymetrix microarray chip, and its subse-
quent scanning to quantify the fluorescent signal, assumed to be proportional to gene expression.
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The Affymetrix implementation of gene expression microarrays utilizes probesets, synthe-
sized in place, on the surface of the microarray chip (Figure 1C). Probesets are groups of
small  DNA  fragments  that  are  complementary  to  different  regions  of  the  same  mRNA
molecule made whenever a gene is expressed. By combining the fluorescent signal of the
probeset group, a single measure of gene expression is arrived at computationally, which
is the primary focus of the algorithm presented here. Probesets are composed of groups of
perfect match (“PM”) and mismatch (“MM”) probes. In the context of microarray analy-
sis,  the  term “probe”  refers  to  the  strands  of  DNA physically  tethered  to  the  microarray
chip  and  the  term “target”  refers  to  the  fluorescently  labeled  sample  of  mRNA obtained
from a biological source, which will be hybridized to the probes to measure gene expres-
sion. Perfect match probes are single-strand sequences of DNA, usually 25 nucleotides in
length, which have perfect complementarity to the mRNA sequence to which they are de-
signed  to  hybridize.  Mismatch  probes  are  identical  to  PM  probes,  with  the  exception  of
one nucleotide in the center of the molecule (typically at position 13) that is not a proper
match to the mRNA with which it is designed to hybridize. The purpose of MM probes is
to measure background fluorescent signal off the surface of the chip, which is one source
of technical noise. 
The analysis  of  microarray data involves numerous steps,  some of which are not  univer-
sally  performed,  but  whose  combination  is  collectively  referred  to  as  an  “analysis  path-
way.” The steps in an analysis pathway typically involve:

1. background correction: performed to remove fluorescent signal not due to biology

2. probe normalization: used to place the individual datasets of an experiment on the
same scale, so the datasets can be compared accurately

3. perfect  match (PM) probe correction: used to correct  biases in the PM probe sig-
nal, often due to differences in DNA sequence between the probes

4. summarization: performed to obtain a single measure of gene expression from the
multiple  measurements  obtained  by  each  probeset;  this  process  often  attempts  to
correct “probe” and “chip” technical noise

5. probeset  normalization:  sometimes  performed  to  make  the  probesets  between
datasets more directly comparable

6. differentially  expressed  genes  (DEG) test:  uses  a  statistical  test  to  identify  “true”
differentially expressed genes

Despite all of its positive aspects, microarray technology requires considerable knowledge
to use effectively, as the raw signal that is generated from the technology is almost always
noisy. The scientific literature is rife with algorithms designed to remove various sources
of known error, and it is immediately clear that there is no “perfect” algorithm that is uni-
versally  useful  in  all  experimental  situations.  Even so,  a  seminal  article  by Zhu and col-
leagues [2] evaluated different combinations of commonly used algorithms—representing
over 40,000 different  analysis  pathways—using a precisely controlled “spike-in” dataset,
which allowed the researchers to identify the most important steps common to a good anal-
ysis pathway.
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The algorithm presented  here  represents  a  merging of  several  of  the  “best  step”  analysis
pathway practices identified in [2]. Specifically, the algorithm presented here uses the fol-
lowing analysis pathway:

1. background correction: none

2. probe normalization: performed using quantile normalization [3]

3. perfect match (PM) probe correction: none

4. summarization: performed using median polish [4]

5. probeset normalization: none

6. differentially expressed genes (DEG) test: while probability data is provided to aid
interpretation, the identification of differentially expressed genes is not performed
with  statistical  methods,  but  instead  relies  on  graphical  interpretation  of  the  pro-
cessed data

The  algorithm  presented  here  does  not  perform  background  correction,  perfect  match
probe correction, or probeset normalization because the evidence presented in [2] suggests
that  these  steps  are  at  best  unnecessary  and  sometimes  even  detrimental.  Readers  inter-
ested in a deeper discussion of microarray technology and data analysis are referred to the
excellent reviews in [5, 6].

‡ The Affymetrix Differential Gene Expression Detection 
(AffyDGED) Algorithm
The AffyDGED algorithm is template-driven, meaning that the algorithm expects several
pieces of user-defined information to be provided in a notebook cell used as a template for
entering the information.

cellocation =
"C:\\Users\\Wookie\\Desktop\\Mathematica

Projects\\Mathematica Journal Projects\\Data\\Saliva
Biomarkers for Pancreatic Cancer Project\\Saliva
Biomarkers For Pancreatic Cancer - raw CEL data\\";

affycdflocation =
"C:\\Users\\Wookie\\Desktop\\Mathematica

Projects\\Mathematica Journal
Projects\\Data\\AffyChip Description
Files\\HG-U133_Plus_2\\LibFiles\\";

savelocationroot = "C:\\Users\\Wookie\\Desktop\\";

qnormversion = all;

studyname = salivadataset;
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experimentchips = 8GSM356796, GSM356797, GSM356798,
GSM356799, GSM356800, GSM356801, GSM356802, GSM356803,
GSM356804, GSM356805, GSM356806, GSM356807<;

controlchips = 8GSM356808, GSM356809, GSM356810,
GSM356811, GSM356812, GSM356813, GSM356814, GSM356815,
GSM356816, GSM356817, GSM356818, GSM356819<;

The  example  above  contains  several  variables  that  must  be  completed  by  the  user  to  let
AffyDGED do its job properly.
The variables requiring user input are:

1. cellocation:  This  variable  holds  the  directory  location  for  finding  the  CEL
data  of  the  microarray  hybridizations.  CEL files  contain  the  raw fluorescent  data
from a microarray experiment using Affymetrix technology.

2. affycdflocation:  This  variable  holds  the  directory  location  for  finding  the
Affymetrix  CDF library file.  CDF stands  for  “chip  description file”  and refers  to
an Affymetrix file that describes, among other things, the location of the probes on
the specific type of Affymetrix chip being used.
Caution: Users should take care not to confuse the Computable Document Format
(.cdf) of Wolfram Research with the chip description files (.cdf) from Affymetrix.
Affymetrix CDF files cannot be opened directly by the Wolfram CDF Player.

3. savelocationroot:  This  variable  holds  the  location  where  the  user  would
like the final results of the analysis to be saved.

4. qnormversion:  This  variable  lets  the  user  select  between  two  options.  The
option  “all”  can  be  entered  to  perform quantile  normalization  using  all  the  chips
involved in an experiment at once, or alternatively, the option “condition” can be
entered,  which  directs  the  algorithm  to  perform  quantile  normalization  by  con-
dition,  that  is,  perform  quantile  normalization  twice,  once  using  the  data  in  the
experimental  condition  (such  as  diseased  heart  tissue)  and  then  a  second  time
using the control condition data (such as healthy heart tissue). When in doubt, it is
recommended that “all” be used.

5. studyname:  This  variable  lets  the  user  name  the  experiment/study  being  pro-
cessed by the AffyDGED algorithm. The output of AffyDGED is saved using this
name to the location provided in “savelocationroot” above.

6. experimentchips:  This variable contains a list  of  the experimental  condition
datasets being studied.

7. controlchips: This variable contains a list of the control condition datasets be-
ing studied.

To illustrate the features of the AffyDGED algorithm, we use data from a modestly sized
microarray  experiment  involving  the  detection  of  differentially  expressed  genes  between
the  saliva  of  pancreatic  patients  and  healthy  individuals  [7].  All  microarray  data  used  in
this  study and presented  here  is  publicly  available  at  NCBI’s  Gene Expression  Omnibus
portal (www.ncbi.nlm.nih.gov/geo), using the access number GSE14245.
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The first  tasks  completed  by  AffyDGED include  the  loading  of  raw data,  the  determina-
tion of the physical dimensions of the chip data, and the conversion of Affymetrix probe
position coordinates to equivalent Mathematica indices.

chipdimensions@chip_D := Module@8n, k<,
n = Length@chip@@All, 1DDD;
k = Length@chip@@1DDD;
8n, k<D

affyindextoMMAindices@affyindex_, chipsize_D :=
Module@8ax, ay, mmai1, mmai2<,
ay = Floor@HHaffyindex - 1L ê chipsize@@2DDLD;
ax = HaffyindexL - chipsize@@2DD * ay;
mmai1 = Hay + 1L;
mmai2 = Hax + 1L;
8mmai1, mmai2<D

starttime = AbsoluteTime@D;
SetDirectory@cellocationD;
celfilenames = FileNames@D;
celvarnames =
Table@StringSplit@celfilenames@@iDD, 8"."<D@@1DD,
8i, 1, Length@celfilenamesD<D;

Table@microarray@celvarnames@@iDDD =
Import@celfilenames@@iDDD, 8i, 1, Length@celfilenamesD<D;

chipsize = chipdimensions@microarray@celvarnames@@1DDDD;

SetDirectory@affycdflocationD;
cdffilenames = FileNames@D;
cdffile =

Import@
Flatten@StringCases@cdffilenames, ___ ~~ ".cdf" ~~ ___DD@@
1DDD;

ginfile =
Import@
Flatten@StringCases@cdffilenames, ___ ~~ ".gin" ~~ ___DD@@
1DDD;

probesetids = cdffile@@All, 1, 2DD;
dispatchrules =

Dispatch@
Thread@probesetids Ø Range@Length@probesetidsDDDD;

ginreorderinfo =
Ordering@Hginfile@@All, 4DD ê. dispatchrulesLD;

reorderedgin = ginfile@@ginreorderinfoDD;
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experimentchips = Map@ToString, experimentchipsD;
controlchips = Map@ToString, controlchipsD;

pmindexes =
Table@Select@cdffile@@i, 3, 2DD, Ò@@5DD ¹≠ Ò@@6DD &D@@

All, 4DD, 8i, 1, Length@cdffileD<D;
mmapmindices =
Map@Transpose,
Thread@affyindextoMMAindices@pmindexes, chipsizeDDD;

pmtemp =
Table@Extract@microarray@celvarnames@@iDDD,

mmapmindices@@jDDD, 8i, 1, Length@celvarnamesD<,
8j, 1, Length@mmapmindicesD<D;

Table@pmsignalraw@celvarnames@@iDDD = pmtemp@@iDD,
8i, 1, Length@celvarnamesD<D;

Clear@pmtempD;

The chipdimensions and affyindextoMMAindices modules are designed to es-
tablish the number of rows and columns of probe data on the microarray chips, as well as
to convert the probe position coordinates as assigned by Affymetrix to equivalent Mathe-
matica indices.
For  example,  the  chips  used here  (Human Genome U133 Plus  2.0)  happen to  be square,
with 1,164 rows of information and 1,164 columns of information.

chipsize

81164, 1164<

Affymetrix uses a single-number index (present on the Affymetrix CDF file) created from
Hx, yL  coordinates of  the probes present  on their  microarray chips.  The single-number in-
dex  is  derived  from a  formula  used  by  Affymetrix  that  assumes  an  Hx, yL  index  of  H0, 0L
refers  to  the  uppermost-leftmost  position  of  the  chip.  To  successfully  load  the  probeset
data into usable groups in Mathematica, it is necessary to shift the H0, 0L coordinates used
by Affymetrix into @@1, 1DD indexing used by Mathematica. 
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Here is an example of the data contained within the Affymetrix CDF file.

cdffile@@3576DD

8ProbeSetName Ø 203987_at,
CellLabel Ø 8IndexPosition, X, Y, IndexPosition,

SubstitutionBase, TargetBase<,
CellData Ø 880, 993, 202, 236 121, A, A<,

80, 993, 201, 234 957, T, A<, 81, 897, 537, 625 965, C, G<,
81, 897, 538, 627 129, G, G<, 82, 954, 782, 911 202, A, A<,
82, 954, 781, 910 038, T, A<, 83, 221, 821, 955 865, A, T<,
83, 221, 822, 957 029, T, T<, 84, 224, 654, 761 480, A, A<,
84, 224, 653, 760 316, T, A<, 85, 937, 927, 1 079 965, C, G<,
85, 937, 928, 1 081 129, G, G<, 86, 118, 932, 1 084 966, C, C<,
86, 118, 931, 1 083 802, G, C<, 87, 76, 894, 1 040 692, A, A<,
87, 76, 893, 1 039 528, T, A<, 88, 561, 547, 637 269, C, G<,
88, 561, 548, 638 433, G, G<, 89, 548, 715, 832 808, C, G<,
89, 548, 716, 833 972, G, G<, 810, 144, 152, 177 072, A, A<,
810, 144, 151, 175 908, T, A<<, Direction Ø anti-sense<

The  AffyDGED  algorithm  parses  out  the  single-number  indices  for  the  perfect  match
probes  of  each  probeset  and  converts  that  positional  information  into  usable  indices  for
Mathematica.  The  mismatch  probes  are  purposely  ignored  in  the  AffyDGED  algorithm
because they often produce signals higher than the perfect match probes, which is an indi-
cation that  the mismatch probes are not  performing as originally intended by Affymetrix
engineers. 

pmindexes@@3576DD

8234 957, 625 965, 910 038, 955 865, 760 316,
1 079 965, 1 083 802, 1 039 528, 637 269, 832 808, 175 908<

There  are  11  individual  numbers,  referring  to  the  Hx, yL  positions  (in  Affymetrix  coordi-
nates) of 11 perfect match probes of a single probeset used to measure the expression of a
specific gene.
Here  is  the  same  positional  information,  now  expressed  in  Mathematica’s  indexing
system.

mmapmindices@@3576DD

88202, 994<, 8538, 898<, 8782, 955<,
8822, 222<, 8654, 225<, 8928, 938<, 8932, 119<,
8894, 77<, 8548, 562<, 8716, 549<, 8152, 145<<
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There  are  now  11  groups  of  Hx, yL  Mathematica  indices  referring  to  the  same  data  and
accessible by conventional Mathematica indexing.
We can now take a look at the raw data from a single chip used in the pancreatic cancer
study that has been loaded. Notice the extreme range of values typically seen in microar-
ray experiments.

8Min@Flatten@pmsignalraw@"GSM356796"DDD,
Max@Flatten@pmsignalraw@"GSM356796"DDD<

831., 60 050.<

For this reason, we look at a histogram of the data using a logarithmic scale (Figure 2).

Histogram@Flatten@pmsignalraw@"GSM356796"DD, "Log",
ChartStyle Ø Orange, Frame Ø True,
FrameLabel Ø 88"Fluorescence Count", ""<,

8"Fluorescence Bins",
"Fluorescence Intensity Data from Saliva of

Pancreatic Cancer Patient"<<D

Ú Figure 2. A histogram of the raw fluorescence intensity data (log scale) contained in the microar-
ray chip GSM356796, used to measure the expression of genes in the saliva of a pancreatic can-
cer patient.
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The majority of the data has an approximately Gaussian appearance (on a log scale), while
still harboring extreme values on the rightward tail (look carefully along the x axis). This
shape is very characteristic of microarray data.
The next steps in processing include transforming the raw data to a log2  scale, determin-
ing the probeset size specific for the chip in use, and performing quantile normalization.

quantilenorm@alldata_D :=
Module@8datarows, datasort, datasortrows1, datasortrows2,

datasortmean, datasortprime, datanorm1, datanorm2,
finaldata<,

datarows = MapThread@List,
8alldata, Range@Length@alldataDD<D;

datarows =
Table@Thread@datarows@@i, 1DD Ø datarows@@i, 2DDD,
8i, 1, Length@datarowsD<D;

datasort = Table@Sort@datarows@@All, iDDD,
8i, 1, Length@datarows@@1DDD<D;

datasortrows1 = Transpose@datasortD;
datasortrows2 = Table@datasortrows1@@i, All, 1DD,

8i, 1, Length@datasortrows1D<D;
datasortmean = Map@Mean, datasortrows2D êê N;

datasortprime =
Table@ReplacePart@datasortrows1@@iDD,

Thread@List@Range@Length@datasortrows1@@iDDDD, 1DD Ø
datasortmean@@iDDD, 8i, 1 Length@datasortrows1D<D;

datanorm1 = Transpose@datasortprimeD;

quicksort@sortlist_, element_D :=
sortlist@@Ordering@sortlist@@All, elementDDDDD;

datanorm2 = Table@quicksort@datanorm1@@iDD, 2D,
8i, 1, Length@datanorm1D<D;

finaldata =
Flatten@Table@List@datanorm2@@i, All, 1DDD,

8i, 1, Length@datanorm2D<D, 1DD
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Table@pmsignallog@celvarnames@@iDDD =
Log2@pmsignalraw@celvarnames@@iDDDD,

8i, 1, Length@celvarnamesD<D;
commonpssize =
Sort@

Tally@
Map@Length, RandomChoice@pmsignallog@celvarnames@@1DDD,

1000DDD, HÒ1@@2DD < Ò2@@2DDL &D@@-1, 1DD;
oddballs = Position@pmsignallog@celvarnames@@1DDD,

Hx_ ê; Length@xD ¹≠ commonpssizeL, 81<, Heads Ø FalseD;
minicdffile = Delete@cdffile, oddballsD;
miniginfile = Delete@reorderedgin, oddballsD;

If@qnormversion === all,

Hallchipsrectangular =
Transpose@
Table@Flatten@Delete@pmsignallog@celvarnames@@iDDD,

oddballsDD, 8i, 1, Length@celvarnamesD<DD;
quantnormtemp = quantilenorm@allchipsrectangularD;
Table@quantnorm@celvarnames@@iDDD =

Partition@quantnormtemp@@iDD, commonpssizeD,
8i, 1, Length@celvarnamesD<D;

Clear@quantnormtempD;L ,

Hallexprectangular =
Transpose@
Table@
Flatten@Delete@pmsignallog@experimentchips@@iDDD,

oddballsDD, 8i, 1, Length@experimentchipsD<DD;
allcontrectangular =
Transpose@
Table@Flatten@Delete@pmsignallog@controlchips@@iDDD,

oddballsDD, 8i, 1, Length@controlchipsD<DD;

expquantnormtemp = quantilenorm@allexprectangularD;
contquantnormtemp = quantilenorm@allcontrectangularD;

Table@quantnorm@experimentchips@@iDDD =
Partition@expquantnormtemp@@iDD, commonpssizeD,

8i, 1, Length@experimentchipsD<D;
Table@quantnorm@controlchips@@iDDD =

Partition@contquantnormtemp@@iDD, commonpssizeD,
8i, 1, Length@controlchipsD<D;

Clear@expquantnormtemp, contquantnormtempD;LD;
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The convention of transforming raw microarray data by log2  is almost universally used in
the  microarray  community,  because  it  performs  two  useful  functions.  First,  it  makes  the
distribution  of  raw  data  more  Gaussian  (although  certainly  not  perfectly  so),  and  it  aids
interpretation of gene expression ratios for the end user, because it is easier to appreciate
that  a  ratio  of  +2 and  -2 on  a  log  scale  indicates  the  same degree  of  “up”  and  “down”
regulation for a gene, as opposed to +4 and +0.25 on an absolute scale.
In the example shown here, this is the probeset size (the number of probes making up each
probeset).

commonpssize

11

Quantile normalization is performed to place each dataset of the experiment on a common
scale so the datasets can be appropriately compared to each other.
Using BoxWhiskerChart,  this  shows the difference between the pre-quantile normal-
ized data and the post-quantile normalized data (Figure 3).

preQnorm = Table@Flatten@pmsignallog@celvarnames@@iDDDD,
8i, 1, Length@celvarnamesD<D;

postQnorm = Table@Flatten@quantnorm@celvarnames@@iDDDD,
8i, 1, Length@celvarnamesD<D;

temp1 = BoxWhiskerChart@preQnorm, ChartStyle Ø Orange,
PlotLabel Ø "Pre-Quantile Normalization",
PerformanceGoal Ø "Speed"D;

temp2 = BoxWhiskerChart@postQnorm, ChartStyle Ø Green,
PlotLabel Ø "Post-Quantile Normalization",
PerformanceGoal Ø "Speed"D;

GraphicsColumn@8temp1, temp2<D
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Ú Figure 3. A box-and-whisker comparison of all 24 microarray chips used to compare gene expres-
sion between the saliva of pancreatic cancer and healthy patients, before and after quantile 
normalization.

Following quantile normalization, the probesets are summarized (i.e., a single measure of
gene expression is generated) by first performing median polish and then taking the mean
of  the  polished  values  for  all  probes  within  a  probeset.  After  the  probesets  are  summa-
rized, the differential expression of each gene is obtained by subtracting the expression of
a gene in the control condition from the expression of the gene in the experimental condi-
tion.  For  example,  if  the  expression  of  a  gene  in  the  saliva  of  pancreatic  cancer  patients
(the “experimental” condition) is 2.1 and the expression of the same gene in the saliva of
healthy  patients  (the  “control”  condition)  is  1.4,  then  the  differential  expression  of  the
gene is H2.1- 1.4L = 0.7.
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summarization@data_D :=
Module@8data1, polishresult, summary, fitdata<,

data1 = Transpose@dataD;

polishresult = medianpolish@data1D;
fitdata = data1 - polishresult;

Map@Mean, Partition@Flatten@fitdataD,
HLength@fitdata@@1DDD * commonpssizeLDDD

medianpolish@data_D :=
Module@8data1, startrowmedians, endrowmedians,

startcolmedians, endcolmedians, rowmedians,
overalleffect, columnmedians, medianofcolmedian,
cumroweffects, cumcoleffects, cumgrandeffect<,

data1 = data;
startrowmedians = 810.5<;
endrowmedians = 85.5<;
startcolmedians = 810.5<;
endcolmedians = 85.5<;

cumroweffects = 0.0;
cumcoleffects = 0.0;
cumgrandeffect = 0.0;

While@
HAbs@Total@Map@Abs, startrowmediansDD -

Total@Map@Abs, endrowmediansDDD >= 0.25L Í

HAbs@Total@Map@Abs, startcolmediansDD -
Total@Map@Abs, endcolmediansDDD >= 0.25L,

rowmedians = Map@Median, data1D;
startrowmedians = rowmedians;
startcolmedians =

Map@Median, MapThread@List, data1DD êê N;

data1 = data1 - rowmedians;
overalleffect = Median@rowmediansD êê N;
cumgrandeffect = cumgrandeffect + overalleffect;
rowmedians = rowmedians - overalleffect;
cumroweffects = cumroweffects + rowmedians;
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columnmedians = Map@Median, MapThread@List, data1DD êê N;
data1 = Transpose@Transpose@data1D - columnmediansD;
medianofcolmedian = Median@columnmediansD;

cumgrandeffect = cumgrandeffect + medianofcolmedian;
columnmedians = columnmedians - medianofcolmedian;
cumcoleffects = cumcoleffects + columnmedians;

endrowmedians = Map@Median, data1D;
endcolmedians = columnmedians;D;

data1D

exparrays = Table@Flatten@quantnorm@experimentchips@@iDDDD,
8i, 1, Length@experimentchipsD<D;

controlarrays = Table@Flatten@quantnorm@controlchips@@iDDDD,
8i, 1, Length@controlchipsD<D;

expsummary = summarization@exparraysD;
contsummary = summarization@controlarraysD;
diffexp = expsummary - contsummary;

Here are the distributions of gene expression in the saliva of pancreatic cancer and healthy
patients,  as  well  as  the  distribution  of  differentially  expressed  genes  between  the  two
states (Figure 4).

temp3 = Histogram@expsummary, ChartStyle Ø Orange,
Frame Ø True,
FrameLabel Ø 88"Fluorescence Count", ""<,

8"Fluorescence Bins",
"Gene Expression in the Saliva of Pancreatic

Patients"<<D;
temp4 = Histogram@contsummary, ChartStyle Ø Green,

Frame -> True,
FrameLabel Ø 88"Fluoresence Count", ""<,

8"Fluorescence Bins",
"Gene Expression in the Saliva of Healthy

Patients"<<D;
temp5 = Histogram@diffexp, ChartStyle Ø Red, Frame Ø True,

FrameLabel Ø 88"Differential Fluorescence Count", ""<,
8"Differential Fluorescence Bins",
"Differential Gene Expression"<<D;

GraphicsColumn@8temp3, temp4, temp5<D
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Ú Figure 4. Histograms of the summarized (post median polish) gene expression values contained 
in the saliva of pancreatic cancer and healthy patients, as well as the difference in gene expres-
sion between those two biological groups.

From these results, simulations are performed to calculate probability p-values, which an-
swer the question, If we were to repeat this experiment many times, under the same experi-
mental  conditions  as  this  study,  how  often  would  we  find  results  as  (or  more)  extreme
than we have observed for each gene in the current study? The simulations performed to
calculate the p-values use the corrected fluorescent signal values contained within the ex-
perimental  and  control  datasets  and  thus  make  the  assumptions  that  the  corrections  are
valid and that the data is now a good representative of the biological “truth” being studied.
If these assumptions are correct, the probability values reported help the end user to gauge
how rare a gene’s measure of differential expression is, but not—as is traditionally used in
the microarray community—to make a decision about statistical or biological significance.
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Following this, the algorithm organizes the output into a more human-readable table.

expdist = FindDistributionParameters@expsummary,
NormalDistribution@mean, stdevDD;

controldist = FindDistributionParameters@contsummary,
NormalDistribution@mean, stdevDD;

simulateddiff =
RandomVariate@NormalDistribution@expdist@@1, 2DD,

expdist@@2, 2DDD, 100 000D -
RandomVariate@NormalDistribution@controldist@@1, 2DD,

controldist@@2, 2DDD, 100 000D;

fastSelect := Compile@88realde, _Real<, 8simde, _Real, 1<<,
If@Negative@realdeD,
HLength@Select@simde, Ò § realde &DD ê Length@simdeDL,
HLength@Select@simde, Ò ¥ realde &DD ê Length@simdeDLDD;

pvalues =
ParallelTable@fastSelect@diffexp@@iDD, simulateddiffD,

8i, 1, Length@diffexpD<D êê N;

transcriptids = minicdffile@@All, 1, 2DD;
ginoutput = miniginfile@@All, 8 ;; 10DD;
alldatafinal =

MapThread@List, 8expsummary, contsummary, diffexp,
pvalues, transcriptids, ginoutput<D;

Here is a random sample of our current results.

The output columns are as follows:

Column 1:  the  signal-corrected  log2  fluorescence  intensity  of  gene  expression  in  the  ex-
perimental condition
Column 2: the signal-corrected log2  fluorescence intensity of gene expression in the con-
trol condition
Column 3: the measure of differential expression, obtained by subtracting column 2 from
column 1
Column 4: the p-value obtained through simulation

Column 5: the probeset name as assigned by Affymetrix

Column 6: descriptive information for the probeset including the genbank accession num-
ber, gene name, and gene product information
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Due to the length of descriptive data in column 6, the output here has been purposefully re-
arranged to print column 6 underneath each data point’s first five column entries.

sample1 = alldatafinal@@500 ;; 505DD@@All, 1 ;; 5DD;
sample2 = alldatafinal@@500 ;; 505DD@@All, 6DD;
sample2@@1, 3DD =

"stress-associated endoplasmic reticulum protein
1\nribosome-associated membrane protein 4";

sample2@@5, 3DD =
"palmitoyl-protein thioesterase 1

\nHceroid-lipofuscinosis, neuronal 1, infantileL";
sample2@@6, 3DD =

"Tax 1 Hhuman T-cell leukemia virus type IL \nbinding
protein 1";

Text@Grid@Riffle@sample1, sample2DDD

5.8704 5.87253 -0.00213572 0.49547 200971_s_at
gb:NM_014445.1 SERP1 stress-associated endoplasmic

reticulum protein 1
ribosome-associated

membrane protein 4
5.8283 5.79987 0.0284325 0.46083 200972_at

gb:BC000704.1 None tetraspan 3
5.76611 5.78402 -0.017911 0.47338 200973_s_at

gb:NM_005724.1 TSPAN-3 tetraspan 3
5.77746 5.8305 -0.0530355 0.42262 200974_at

gb:NM_001613.1 ACTA2 alpha 2 actin
6.45964 6.43239 0.0272519 0.46244 200975_at

gb:NM_000310.1 PPT1 palmitoyl-protein
thioesterase 1

Hceroid-lipofuscinosis,
neuronal 1, infantileL

5.90178 5.91914 -0.0173576 0.47419 200976_s_at
gb:NM_006024.2 TAX1BP1 Tax 1 Hhuman T-cell

leukemia virus type IL
binding protein 1

The final steps in processing the data include establishing the upper and lower thresholds
for determining when a gene is considered up-regulated (turned “on”) in the experimental
condition  versus  the  control  condition,  and  when  a  gene  is  considered  down-regulated
(turned  “off”).  Further,  the  algorithm saves  the  final  results  and  provides  a  summary  re-
port of the completed analysis.
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uplowiter = 0.0;
upmiditer = 0.005;
uphighiter = 0.01;
upbottomface = Select@diffexp, uplowiter § Ò < upmiditer &D;
uptopface = Select@diffexp, upmiditer § Ò < uphighiter &D;

While@HLength@uptopfaceD ê Length@upbottomfaceD > 0.50L,

uplowiter = upmiditer; upmiditer = uphighiter;
uphighiter = Huphighiter + 0.005L;
upbottomface = Select@diffexp, uplowiter § Ò < upmiditer &D;
uptopface = Select@diffexp, upmiditer § Ò < uphighiter &D;D

downlowiter = 0.0; downmiditer = -0.005; downhighiter = -0.01;
downbottomface =
Select@diffexp, downlowiter ¥ Ò > downmiditer &D;

downtopface =
Select@diffexp, downmiditer ¥ Ò > downhighiter &D;

While@HLength@downtopfaceD ê Length@downbottomfaceD > 0.5L,
downlowiter = downmiditer; downmiditer = downhighiter;
downhighiter = Hdownhighiter - 0.005L;
downbottomface =
Select@diffexp, downlowiter ¥ Ò > downmiditer &D;

downtopface =
Select@diffexp, downmiditer ¥ Ò > downhighiter &D;D

dedatafinal = Select@alldatafinal,
Ò@@3DD ¥ upmiditerÍ Ò@@3DD § downmiditer &D;
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date = DateString@D;
date = DateString@date,

8"Month", "Day", "Year", "Hour", "Minute", "Second"<D;
foldername = StringJoin@ToString@studynameD, " - ", dateD;
SetDirectory@savelocationrootD;
savelocationfinal = CreateDirectory@foldernameD;
SetDirectory@savelocationfinalD;

Put@alldatafinal, StringJoin@ToString@studynameD,
" - allgenes"DD;

Put@dedatafinal, StringJoin@ToString@studynameD,
" - degenes"DD;

Export@StringJoin@ToString@studynameD, " - allgenes.csv"D,
alldatafinalD;

Export@StringJoin@ToString@studynameD, " - degenes.csv"D,
dedatafinalD;

dethresh1 = ListPlot@diffexp,
FrameLabel Ø 88"Differential Expression", ""<,

8"", "DE Threshold Detection"<<, PlotRange Ø Full,
Frame Ø True, ImageSize Ø MediumD;

dethresh2 = Plot@upmiditer, 8x, 0, Length@diffexpD<,
PlotStyle Ø Directive@RedDD;

dethresh3 = Plot@downmiditer, 8x, 0, Length@diffexpD<,
PlotStyle Ø Directive@RedDD;

dethresh4 = Show@dethresh1, dethresh2, dethresh3D;

Print@D;
Print@D;
Print@
Style@"Differential gene expression threshold plot for: ",
BoldD, Style@studyname, BoldDD

Print@D;
dethresh4
Print@D;
Print@D;
Print@Style@"Report summary for study: ", BoldD,
Style@studyname, BoldDD

Print@D;
Print@"1. All data saved to: ", savelocationfinalD;
Print@D;
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Print@
"2. Number of transcripts interrogated by algorithm: ",
Length@alldatafinalDD

If@qnormversion === all,
Print@
" A: Quantile normalization: all chips at once"D,

Print@
" A: Quantile normalization: by condition"DD;

Print@
" B. Median polish: rows contain probe data;

columns contain chip data"D;

Print@D;
Print@
"3. Number of differentially expressed transcripts

detected: ", Length@dedatafinalDD
Print@
" A. Cutoff threshold for UP regulated

transcripts: ", upmiditerD
Print@
" B. Cutoff threshold for DOWN regulated

transcripts: ", downmiditerD
Print@D;
endtime = AbsoluteTime@D - starttime;
Print@"4: Computational time: ", endtime, " seconds"D;

Differential gene expression threshold plot for: salivadataset
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Report summary for study: salivadataset

1. All data saved to:
C:\Users\Wookie\Desktop\salivadataset - 10262013183835

2. Number of transcripts interrogated by algorithm: 54 130

A: Quantile normalization: all chips at once

B. Median polish: rows
contain probe data; columns contain chip data
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3. Number of differentially expressed transcripts detected: 136

A. Cutoff threshold for UP regulated transcripts: 0.18

B. Cutoff threshold for DOWN regulated transcripts:
-0.155

4: Computational time: 567.8564795 seconds

AffyDGED saves all the data and a list of differentially expressed genes to the location de-
fined  by  the  user  in  the  template  above.  Further,  both  lists  of  data  are  saved  in  two for-
mats,  one  convenient  for  users  to  continue  to  explore  the  data  in  Mathematica  and  the
other conveniently readable in Microsoft Excel.

‡ Support Files for AffyDGED
Affymetrix  gene  expression  array  technology  utilizes  a  suite  of  library  files  containing
important annotation information about the layout and content of its microarray products.
AffyDGED  can  analyze  any  Affymetrix  gene  expression  experiment  as  long  as  the  .cdf
(chip description file) and .gin (gene information) library files associated with the specific
type  of  microarray  chip  being  used  are  provided.  These  files  are  freely  available  to  the
public  at  www.affymetrix.com/support/technical/libraryfilesmain.affx.  The  variable
“affycdflocation”,  defined in the user  template,  holds the directory location of  where the
user has stored the .cdf file,  and AffyDGED expects the .gin file to also be stored in the
same  location.  Having  the  .cdf  and  .gin  files  together  happens  naturally,  as  they  are
packaged together by Affymetrix and unzip to the same location upon download.

‡ How Accurate Are AffyDGED Results?
As mentioned previously, there is no universally correct algorithm for processing microar-
ray data in all experimental circumstances. AffyDGED was developed under the guidance
of  [2]  because  the  exact  expression  of  genes  in  this  study  was  precisely  controlled  and
therefore  is  a  useful  gauge  of  how  effectively  a  microarray  analysis  algorithm  is  per-
forming.
Supplemental  file  5  in  [2]  describes  the  1,944  differentially  expressed  genes  and  3,426
non-differentially  expressed  genes  that  were  purposefully  “spiked-in”  to  the  microarray
experiment.  When  this  dataset  is  analyzed  by  the  AffyDGED  algorithm  described  here,
the  thresholds  for  determining  “up”  and  “down”  gene  expression  are  calculated  to  be
0.225 and -0.19,  respectively  (the  red lines  in  Figure  5).  Establishing the  thresholds  for
determining differential expression relies on the observation illustrated in Figure 5, that a
plot of the processed data always reveals a tight clustering of data about the line y = 0. As
the reader scans above and below that axis, note how the density of data noticeably sepa-
rates  from  the  cluster  along  that  line.  This  observation  was  used  to  develop  code  that
scans  vertically  up  and  down  in  small  increments  and  establishes  a  breakpoint  in  each
direction any time the density of data at a vertical position is 50% less than it was at the
previous  increment.  These  breakpoints  become  the  thresholds  for  determining  differen-
tially expressed up and down genes.
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Ú Figure 5. The resulting differential expression threshold determination plot by AffyDGED when pro-
cessing the data in [2] (accession number GSE21344).

The  AffyDGED  algorithm  identifies  1,832  genes  as  differentially  expressed  in  [2].  Of
these,  1,591  genes  overlap  with  the  true  1,944  differentially  expressed  genes  for  a  true
positive  rate  of  H1591 ê 1944L = 0.818.  This  means  AffyDGED  was  unable  to  correctly
identify 18% of the true list of differentially expressed genes. While perhaps surprising to
readers unfamiliar with microarray analysis, this places AffyDGED’s performance among
the top performers of leading algorithms identified by [2].  State of the art  at  this  time in
microarray analysis means accepting a 1 out of 5 “miscall” rate in differential expression
detection.  Because  of  the  complexity  of  microarray  technology  and  of  all  the  steps  that
occur prior to the actual algorithmic analysis of the data, it  is important to realize that at
least  some of  the  miscalls  by  any microarray  algorithm are  really  due  to  factors  that  are
poorly controlled for by the underlying technology, and do not indicate a weakness in the
algorithm itself [8].
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‡ Performance Timings on Different Datasets
To gauge the performance of  AffyDGED, several  publicly available datasets  of  different
sizes  and  complexity  were  profiled.  The  first  row of  Table  1  shows  the  series  accession
number for each dataset available at NCBI’s Gene Expression Omnibus. All timings were
obtained using quantile normalization with all chips (i.e. qnormversion set to “all”). Tim-
ings  were  acquired  running  Mathematica  9.0  under  Windows  7  (64  bit)  using  an  Intel
Core i5-2500K processor overclocked to 4.48 Ghz.

Series accession Ò GSE14245 GSE21344 GSE40693 GSE11899 GSE31660
Chip Type Human Drosophila E. coli Mouse Grape
Ò of chips 24 18 8 10 7
Ò of genes

processed per chip
53 130 18 890 10 119 45 032 16 294

Timing HsecondsL 437.7 126.2 49.3 213.4 103.5

Ú Table 1. Performance timings of AffyDGED using five different publicly available datasets.

AffyDGED performs very well, in all cases completing its analysis in less than seven and
a half minutes. The largest chip in this comparison is the Human chip, where each of the
processed  files  contains  13.2  Mb  of  data.  AffyDGED  is  able  to  process  the  combined
H24 chipsµ 13.2 Mb per chipL = 316.8 Mb worth of data in a practically usable time frame.

‡ Conclusion
Microarray technology continues to be heavily used by the biomedical  and basic science
research communities throughout the world. AffyDGED brings a contemporary algorithm
useful in the real world to the Mathematica user community interested in exploring funda-
mental biology questions with their favorite computational tool chest.
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