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Probabilistic programming is a programming language paradigm 
receiving both government support [1] and the attention of the 
popular technology press [2]. Probabilistic programming 
concerns writing programs with segments that can be 
interpreted as parameter and conditional distributions, yielding 
statistical findings through nonstandard execution. Mathematica 
not only has great support for statistics, but has another 
language feature particular to probabilistic language elements, 
namely memoization, which is the ability for functions to retain 
their value for particular function calls across parameters, 
creating random trials that retain their value. Recent research 
has found that reasoning about processes instead of given 
parameters has allowed Bayesian inference to undertake more 
flexible models that require computational support. This article 
explains this nonparametric Bayesian inference, shows how 
Mathematicaʼs capacity for memoization supports probabilistic 
programming features, and demonstrates this capability through 
two examples, learning systems of relations and learning 
arithmetic functions based on output.

‡ Nonparametric Bayesian Inference
Bayesian statistics are an orderly way of finding the likelihood of a model from data, us-
ing the likelihood of the data given the model. From spam detection to medical diagnosis,
spelling  correction  to  forecasting  economic  and  demographic  trends,  Bayesian  statistics
have  found  many  applications,  and  even  praise  as  mental  heuristics  to  avoid  overconfi-
dence. However, at first glance Bayesian statistics suffer from an apparent limit: they can
only  make  inferences  about  known  factors,  bounded  to  conditions  seen  within  the  data,
and  have  nothing  to  say  about  the  likelihood  of  new  phenomena  [3].  In  short,  Bayesian
statistics are apparently withheld to inferences about the parameters of the model they are
provided.
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statistics are apparently withheld to inferences about the parameters of the model they are
provided.
Instead  of  taking  priors  over  factors  of  the  model  itself,  we  can  say  that  we  are  taking
priors over factors in the process involving how the data was generated. These stochastic
process  priors  give  the  modeler  a  way  to  talk  about  factors  that  have  not  been  directly
observed.  These  nonobservable  factors  include  the  likely  rate  at  which  further  factors
might  be  seen,  given  further  observation  and  underlying  categories  or  structures  that
might generate the data being observed. For example, in statistics problems we are often
presented with drawing marbles of different colors from a bag, and given randomly drawn
samples,  we  might  talk  about  the  most  likely  composition  of  the  bag  and  the  range  of
likely  compositions.  However,  suppose  we  had  a  number  of  bags,  and  we  drew  two
marbles  each  from  three  of  them,  discovering  two  red  marbles,  two  green  marbles,  and
two  yellow  marbles  [4].  If  we  were  to  draw  marbles  from  yet  another  bag,  we  might
expect two marbles identical in color, of a color we have not previously observed. We do
not  know  what  this  color  is,  and  in  this  sense  we  have  made  a  nonparametric  inference
about the process that arranged the marbles between bags. 
The ability to talk about nonobserved parameters is a leap in expressiveness, as instead of
explicitly  specifying  a  model  for  all  parameters,  a  model  utilizing  infinite  processes  ex-
pands to fit  the given data.  This  should be regarded similarly to  the advantages afforded
by linked data structures in representing ordinary data. A linked list has a potentially infi-
nite capacity; its advantage is not that we have an infinite memory, but an abstract flexibil-
ity  to  not  worry  too much about  maintaining its  size  appropriately.  Similarly,  an  infinite
prior models the growth we expect to discover [5].
Here are two specific processes that are useful for a number of different problems. These
two  processes  are  good  for  modeling  unknown  discrete  categories  and  sets  of  features,
respectively. In both of these processes, suppose that we can take samples so that there are
no  dependencies  in  the  order  that  we  took  them,  or  in  other  words  that  the  samples  are
exchangeable. Both of these processes also make use of a concentration parameter, g. As
we look at more samples, we expect the number of new elements we discover to diminish,
but not disappear, as our observations establish a lower frequency of occurrence for unob-
served elements. The concentration parameter establishes the degree to which the propor-
tions  are  concentrated,  with  low  g  indicating  a  distribution  concentrated  on  a  few
elements, and high g indicating a more dispersed concentration.

First,  let  us look into learning an underlying system of categories.  In a fixed set  of  cate-
gories  of  particular  likelihood,  the  probability  of  a  given sample  in  a  particular  category
corresponds to the multinomial distribution, the multiparameter extension of the Bernoulli
distribution.  The  conjugate  prior,  or  the  distribution  that  gives  a  Bayesian  estimate  of
which  multinomial  distribution  produced  a  given  sample,  is  the  Dirichlet  distribution,
itself  the  multivariable  extension  of  the  beta  distribution.  To  create  an  infinite  Dirichlet
distribution, or rather a Dirichlet process, one can simply have a recursive form of the beta
where  the  likelihood  of  a  given  category  is  Beta H1, gL.  To  use  a  Dirichlet  process  as  a
prior,  it  is  easier  to  manipulate  in  the  form  of  a  Chinese  restaurant  process  (CRP)  [6].
Suppose we want to know the likelihood that the ith  sample is a member of category k. If
the  category  is  new,  then  that  probability  corresponds  to  the  size  of  the  concentration
parameter in ratio to the count of the samples taken:
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PHzi = k z1, …, zi-1L =

nk
i- 1+ g

, nk > 0

g

i- 1+ g
, k is a new cluster

The  implementation  of  this  function  is  straightforward.  The  use  of  a  parameterized  ran-
dom number function allows for the use of the algorithm in common random number com-
parison between simulation scenarios [7], as well as for estimation through Markov chain
Monte Carlo, about which more will be said later. 

ParameterizedRandomReal@params___D :=
Module@8val<, val = RandomReal@D; valD

Options@crpD =
8"RandomNumberFunction" -> ParameterizedRandomReal,
"Name" -> None<;

crp@d : 8___Integer<, count_Integer, g_, OptionsPattern@DD :=
Module@8r, pos = 0, sum = 0, dist = d, prob = 0<,

r = OptionValue@"RandomNumberFunction"D@
8OptionValue@"Name"D, count<D;
While@sum < r && pos <= Length@distD,

pos = pos + 1;
If@pos <= Length@distD,

prob = Hdist@@posDD ê Hcount + gLL;
sum = sum + prob

D
D;
If@pos <= Length@distD,

dist@@posDD++,
prob = g ê Hcount + gL;
AppendTo@dist, 1D

D;
8dist, pos, prob<

D
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In the second process, suppose we are interested in the sets of features observed in sets of
examples.  For  example,  suppose we go to  an Indian food buffet  and are  unfamiliar  with
the  dishes,  so  we  observe  the  selected  items  that  our  fellow  patrons  have  chosen.
Supposing one overall taste preference, we might say that the likelihood of a dish’s being
worth selecting is proportional to the number of times it was observed, but if there are not
many examples we should also try some additional dishes that were not tried previously.
This  process,  called  the  Indian  buffet  process  [8],  turns  out  to  be  equivalent  to  a  beta
process prior [9]. Suppose we want to know the likelihood of whether a given feature k is
going to be found in the zth  sample. Then, the likelihoods can be calculated directly from
other well-understood distributions:

PHk œ zi z1, …, zi-1L~
BernoulliK

nk
i
O, nk > 0

PoissonK
g

i
O, k is some new feature

Both  of  these  processes  are  suitable  as  components  in  mixture  models.  Suppose  we  are
conducting  a  phone  poll  of  a  city  and  ask  the  citizens  we  talk  to  about  their  concerns.
Each  person  will  report  their  various  civic  travails.  We  expect  for  each  person  to  have
their own varying issues, but also for there to be particular groups of concern for different
neighborhoods and professional groups. In other words, we expect to see an unknown set
of  features emerge from an unknown set  of  categories.  Then,  we might  use a  CRPØIBP
mixture distribution to help learn those categories from the discovered feature sets.
Nonparametric inference tasks are particularly suited for computational support. What we
would  like  to  do  is  describe  a  space  of  potential  mixture  models  that  may  describe  the
underlying  data-generation  processes  and  allow  the  inference  of  their  likelihood  without
explicitly  generating  the  potential  structures  of  that  space.  Probabilistic  programming  is
the  use  of  language-specific  support  to  aid  in  the  process  of  statistical  inference.  This
article  shows  that  Mathematica  has  features  that  readily  enable  the  sort  of  probabilistic
programming that supports nonparametric inference.

‡ Probabilistic Programming
Probabilistic programming is the use of language-specific support to aid in the process of
statistical inference. Unlike statistical libraries, the structure of the programming language
itself  is  used  in  the  inference  process  [10].  Although  Mathematica  increasingly  has  the
kinds of  structures  that  support  probabilistic  programming,  we are  not  going to focus on
those  features  here.  Instead,  we will  see  how Mathematica’s  natural  capacity  for  memo-
ization  allows  it  to  be  very  easily  extended  to  write  probabilistic  programs  that  use
stochastic memoization as a key abstraction. In particular, we are going to look at Church,
a Lisp-variant with probabilistic query and stochastic memoization constructs [11]. Let us
now  explain  stochastic  memoization  and  then  look  at  how  to  implement  Metropolis–
Hastings  querying,  which  uses  memoization  to  help  implement  Markov  chain  Monte
Carlo-driven inference.
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· Stochastic Memoization

Stochastic memoization simply means remembering probabilistic events that have already
occurred.  Suppose  we  say  that  coinflip@coin Ø c, flip Ø 1D  is  the  first  flip  of
coin  c.  In  the  first  call,  it  may return  Heads  or  Tails,  depending  on  a  likelihood im-
posed to coin c, but in either case it is constrained in later calls to return the same value.
Once undertaken, the value of a particular random event is determined. 
In Church,  this  memoization is  undertaken explicitly through its  mem  operator.  Church’s
flip function designates a Bernoulli  trial with the given odds, with return values 0 and 1.
Here is an example of a memoized fair coin flip in Church.

(define coinflip (mem (lambda (coin flip) (flip 0.5))))

Mathematica  allows  for  a  similar  memoization  by  incorporating  a  Set  within  a
SetDelayed.

coinflip@coin_, flip_D :=
Hcoinflip@coin, flipD = RandomInteger@DL

Let us now look to a more complicated case. Earlier, we discussed the Dirichlet process.
Church supports a DPmem operator for creating functions that when given a new example
either returns a previously obtained sample according to the CRP or takes a new sample,
depending upon the category assignment, and returns the previously seen argument. Here
is  a  similar  function in  Mathematica,  called  GenerateMemCRP.  Given a  random func-
tion,  we first  create  a  memoized version of  that  function based on the  category index of
the CRP. Then, we create an empty initial CRP result, for which a new sample is created
and  memoized  every  time  a  new  input  is  provided,  potentially  also  resampling  the  pro-
vided function if a prediscovered category is provided. 

Clear@GenerateMemCRPD;
Options@GenerateMemCRPD =

8"RandomNumberFunction" -> ParameterizedRandomReal,
"Name" -> "CRP",
"Function" Ø Identity<;

GenerateMemCRP@sym_, g_, opts : OptionsPattern@DD :=
Module@8memFun<,
memFun@pos_D :=
HmemFun@posD = OptionValue@"Function"D@posDL;

GenerateMemCRP@sym, 8<, memFun, 0, g, optsD
D
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GenerateMemCRP@sym_, dist : 8___Integer<, memFun_,
count_Integer, g_, opts : OptionsPattern@DD := H

sym@params___D := Module@8newDist, pos, prob, res<,
8newDist, pos, prob< =

crp@dist, count, g, FilterRules@8opts<,
First êü Options@crpDDD;
GenerateMemCRP@sym, newDist, memFun, count + 1,

g, optsD;
res = 8memFun@posD, prob<;
sym@paramsD = res;
res

D
L

For example, let us now take a sampling from categories that have a parameter distributed
according to the standard normal distribution. Here we see outputs in a typical range for a
standard  normal,  but  with  counts  favoring  resampling  particular  results  according  to  the
sampled frequency of the corresponding category.

GenerateMemCRP@memStdNormal, 5, "Name" Ø "memStdNormal",
"Function" Ø HHÒ; RandomVariate@NormalDistribution@DDL &LD;

ListPlot@
Tally@Map@Composition@First, memStdNormalD, Range@50DDD,
Filling Ø AxisD
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Memoization implies that if we provide the same inputs, we get the same results.

ListPlot@
Tally@Map@Composition@First, memStdNormalD, Range@50DDD,
Filling Ø AxisD

· Metropolis–Hastings Querying

Inference  is  the  central  operation  of  probabilistic  programming.  Conditional  inference  is
implemented  in  Church  through  its  various  query  operations.  These  queries  uniformly
take  four  sets  of  arguments:  query  algorithm-specific  parameters,  a  description  of  the
inference  problem,  a  condition  to  be  satisfied,  and  the  expression  we  want  to  know  the
distribution  of  given  that  condition.  Let  us  motivate  the  need  for  a  Mathematica  equiv-
alent  to  the  Church  query  operator  mh - query  by  explaining  other  queries  that  are
trivial to implement in Mathematica but that are not up to certain inference tasks.
Direct calculation is the most straightforward approach to conditional inference. However,
sometimes  we  cannot  directly  compute  the  conditional  likelihood,  but  instead  have  to
sample the space. The easiest way to do so is rejection sampling, in which we generate a
random sample for all random parameters to see if it meets the condition to be satisfied. If
it  does,  its  value  is  worth  keeping as  a  sample  of  the  distribution,  and if  it  does  not,  we
discard it entirely, proceeding until we are satisfied that we have found the distribution we
intend.
There  is  a  problem  with  rejection  sampling,  namely  that  much  of  the  potential  model
space  might  be  highly  unlikely  and  that  we  are  throwing  away  most  of  the  samples.
Instead of doing that, we can start at a random place but then, at each step, use that sample
to find a good sample for the underlying distribution [12]. So, for a sample x, we are inter-
ested  in  constructing  a  transition  operator  T  yielding  a  new  sample  x ',  and  constructing
that  operator  such  that  for  the  underlying  distribution  P*,  the  transition  operator  is
invariant  with  respect  to  distribution  THP*L = P*,  or  in  other  words,  that  the  transition
operator forms a Markov chain. For our transition operator, we first choose to generate a
random  proposal,  QHx ' : xL,  where  a  simple  choice  is  the  normally  distributed  variation
along  all  parameters  NIx, s2M,  and  then  accept  that  proposal  with  likelihood

PHx ' : xL = minJ1, PHx'LQHx':xL
PHxLQHx:x'L N,  so  that  we  are  incorporating  less-likely  samples  at  exactly

the rate the underlying distribution would provide.  After  some initial  samples of  random
value, we will have found the region for which the invariance property holds. Due to the
use of applying random numbers to a Markov chain, this algorithm is called Markov chain
Monte Carlo, or MCMC.

Probabilistic Programming with Stochastic Memoization 7

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



There  is  a  problem  with  rejection  sampling,  namely  that  much  of  the  potential  model
space  might  be  highly  unlikely  and  that  we  are  throwing  away  most  of  the  samples.
Instead of doing that, we can start at a random place but then, at each step, use that sample
to find a good sample for the underlying distribution [12]. So, for a sample x, we are inter-
ested  in  constructing  a  transition  operator  T  yielding  a  new  sample  x ',  and  constructing
that  operator  such  that  for  the  underlying  distribution  P*,  the  transition  operator  is
invariant  with  respect  to  distribution  THP*L = P*,  or  in  other  words,  that  the  transition
operator forms a Markov chain. For our transition operator, we first choose to generate a
random  proposal,  QHx ' : xL,  where  a  simple  choice  is  the  normally  distributed  variation
along  all  parameters  NIx, s2M,  and  then  accept  that  proposal  with  likelihood

PHx ' : xL = minJ1, PHx'LQHx':xL
PHxLQHx:x'L N,  so  that  we  are  incorporating  less-likely  samples  at  exactly

the rate the underlying distribution would provide.  After  some initial  samples of  random
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The  following  procedure  is  intended  to  be  the  simplest  possible  implementation  of
MCMC using memoization (for further considerations see [13, 14]). There is a trade-off in
the selection of s2, such that if it is too large, we rarely accept anything and would effec-
tively be undertaking rejection sampling, but if it is too small, we tend to stay in a very lo-
cal area of the algorithm. One way to manage this trade-off is to control s2  by aiming for
a given rejection rate, which is undertaken here.

Options@MCMCRunD = 8MaxIterations -> 50000,
"TargetSamples" -> 200<;

MCMCRun@evaluationFunction_, burnInSteps_,
stepsBetweenSamples_, targetAcceptRate_,
OptionsPattern@DD :=

Module@8accepted, trial, successes, tests, sigma,
lastAcceptedLikelihood, acceptedTrialCount,
trialLikelihood, reportedTrialTag, reportedTrials,
results, sampleCount, candidateValues, acceptRate,
saturate, movingAve<,

saturate@n_D := If@n < 0, 0, If@n > 1, 1, nD, nD;
movingAve@value_, input_, a_D :=
HHa inputL + HH1 - aL valueLL;

acceptedTrialCount = 0;
lastAcceptedLikelihood@D := 0;
acceptRate = targetAcceptRate;
accepted@params___D := Haccepted@paramsD = RandomReal@DL;
trial@D = 1;
sampleCount = 0;

8 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



     reportedTrials = Reap@
While@trial@D < OptionValue@MaxIterationsD &&

sampleCount < OptionValue@"TargetSamples"D,
Module@8candidate<,

candidate@params___D :=
Hcandidate@paramsD =

saturate@accepted@paramsD +
RandomReal@NormalDistribution@0,

0.05 HacceptRate ê targetAcceptRateLDDDL;
8results, trialLikelihood< =
evaluationFunction@candidateD;

If@And@trialLikelihood > 0,
Or@trialLikelihood >

lastAcceptedLikelihood@D,
HtrialLikelihoodL ê

lastAcceptedLikelihood@D > RandomReal@D
D

D,
lastAcceptedLikelihood@D = trialLikelihood;
acceptedTrialCount = acceptedTrialCount + 1;
accepted = candidate;
accepted@params___D :=
Haccepted@paramsD = RandomReal@DL;

If@And@acceptedTrialCount > burnInSteps,
Mod@acceptedTrialCount - burnInSteps,

stepsBetweenSamplesD === 0
D,

sampleCount = sampleCount + 1;
candidateValues =

8Ò@@1, 1, 1DD, Ò@@2DD< & êü DownValues@candidateD;
Sow@trialLikelihood -> 8results, candidateValues<,

reportedTrialTag
D
D;
acceptRate = movingAve@acceptRate, 1, 0.1D,
acceptRate = movingAve@acceptRate, 0, 0.1D

D
D;
trial@D = Htrial@D + 1L
D,
reportedTrialTag

D@@2, 1DD;
Clear@acceptedD;
reportedTrialsD

We now see why we constructed the CRP functions to accept random number functions: it
lets us create evaluation functions suitable for MCMC.
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‡ Examples
Let us look to see how we might apply these examples. First, we are going to look at the
infinite relational model, which demonstrates how to use the CRP to learn underlying cate-
gories  from  relations.  Then,  we  will  look  at  learning  arithmetic  expressions  based  upon
particular  inputs  and  outputs,  which  demonstrates  using  probabilistic  programming  in  a
recursive setting.

· The Infinite Relational Model

Suppose we are given some set of relations in the form of predicates, and we want to infer
category  memberships  based  on  those  relations.  The  infinite  relational  model  (IRM) can
construct infinite category models for processing arbitrary systems of relational data [15].
Suppose now we have some specific instances of objects, i, j, … œ O, and a few specific
statements  about  whether  a  given  n-ary  relation,  R : OµOµ… Ø 80, 1<,  holds  between
them or not. Given a prior of how concentrated categories are, g, and a prior for the sharp-
ness of a relation to holding between members of various types, b, we would like to learn
categories  z œ Z  and  relational  likelihoods  h,  such  that  we  can  infer  category  member-
ships  for  objects  and  the  likelihood  of  unobserved  relationships  holding  between  them,
which corresponds to the following model structure.

z g ~ CRPHgL
hIzi, z j, …M b ~ BetaHb, bL

RHi, j, …L z, h ~ BernoulliIhIzi, z j, …MM

Below we  provide  a  sampler  to  calculate  this,  which  first  sets  up  memoization  for  cate-
gory assignment, next memoization for relational likelihood, and then a function for first
evaluating  the  object  to  category  sampling  and  then  the  predicate/category  sampling.
Then, the function merely calculates the likelihood sampling along the way, returning the
object to category memberships and the likelihood.

Options@SampleIRMD =
8"RandomNumberFunction" Ø ParameterizedRandomReal<;
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SampleIRM@truePredicates_, falsePredicates_, crpg_,
opts : OptionsPattern@DD :=

Module@8classDistribution, objectToClass,
classesToParameters, objects, predEval, likelihood<,

objects = Union@Flatten@truePredicates@@All, 2 ;; -1DDD,
Flatten@falsePredicates@@All, 2 ;; -1DDDD;

GenerateMemCRP@classDistribution, crpg, opts,
"Name" Ø "ClassDistribution"D;

objectToClass@object_D := classDistribution@objectD@@1DD;
classesToParameters@classes__D := H

classesToParameters@classesD =
InverseCDF@BetaDistribution@0.5, 0.5D,
OptionValue@"RandomNumberFunction"D@
8"classesToParameters", 8classes<<DD

L;
predEval@pred_, objectOne_, objectTwo_D :=
Apply@classesToParameters,
8pred, objectToClass êü 8objectOne, objectTwo<<D;

likelihood = HTimes üü HpredEval üüü truePredicatesLL
HTimes üü HH1 - predEval@ÒÒDL & üüü falsePredicatesLL;

8Ò -> objectToClass@ÒD & êü objects, likelihood<
D

To understand how this works, let us look at an example. Suppose that there are two ele-
mentary schools, one for girls and one for boys, and that they both join together for high
school. However, there is a new teacher who does not know this about the composition of
incoming  classes.  This  teacher  finds  another  teacher  and  asks  if  they  know  who  knows
whom. This more experienced teacher says yes, but not why, and the younger teacher asks
a series of questions about who knows whom, to the confusion of the older teacher, who
does not  understand why the younger teacher does not  know (we have all  had conversa-
tions like this). One potential set of such questions might yield the following answers. No-
tice that there is  a deficiency in these questions; namely, the new teacher never asks if  a
boy knows a girl.

truePredicates = 8
8"knows", "tom", "fred"<,
8"knows", "tom", "jim"<,
8"knows", "jim", "fred"<,
8"knows", "jim", "fred"<,
8"knows", "mary", "sue"<,
8"knows", "mary", "ann"<,
8"knows", "ann", "sue"<

<;
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falsePredicates = 8
8"knows", "mary", "fred"<,
8"knows", "mary", "jim"<,
8"knows", "sue", "fred"<,
8"knows", "sue", "tom"<,
8"knows", "ann", "jim"<,
8"knows", "ann", "tom"<

<;

Given these samples, let us now perform a Metropolis–Hastings query to see if we can re-
cover  these  categories.  The  result  of  a  particular  sample  is  a  list  of  rules,  where  the  left
side of each rule is the likelihood of the given predicates to hold given the sampled model,
and the right side is the sampled model in a two-element list. In this two-element list char-
acterizing the sampled model, the first element is the result as provided by the evaluation
method, and the second element contains the random values parameterizing the model.

results =
MCMCRun@Function@8randomNumberGenerator<,

SampleIRM@truePredicates, falsePredicates, 0.5,
"RandomNumberFunction" Ø randomNumberGeneratorDD,

200, 10, 0.01, "TargetSamples" Ø 200D;
results@@1 ;; 2DD

80.588056 Ø
88ann Ø 0, fred Ø 1, jim Ø 1, mary Ø 0, sue Ø 0, tom Ø 1<,
888ClassDistribution, 0<, 0.221614<,
88ClassDistribution, 1<, 0.640286<,
88ClassDistribution, 2<, 0.333355<,
88ClassDistribution, 3<, 0<,
88classesToParameters, 80, 0<<, 0.792729<,
88classesToParameters, 80, 1<<, 0<,
88classesToParameters, 81, 1<<, 0.855753<,
8params$___, 0.534733<<<, 0.0141464 Ø

88ann Ø 0, fred Ø 2, jim Ø 1, mary Ø 2, sue Ø 0, tom Ø 1<,
888ClassDistribution, 0<, 0.786788<,
88ClassDistribution, 1<, 1<, 88ClassDistribution, 2<,
0.364803<, 88ClassDistribution, 3<, 0.668717<,

88ClassDistribution, 4<, 0<,
88classesToParameters, 80, 0<<, 0.581683<,
88classesToParameters, 80, 1<<, 0.348745<,
88classesToParameters, 80, 2<<, 0.352798<,
88classesToParameters, 81, 1<<, 0.608145<,
88classesToParameters, 81, 2<<, 0.524839<,
88classesToParameters, 82, 0<<, 0.7783<,
88classesToParameters, 82, 1<<, 0<,
88classesToParameters, 82, 2<<, 0.0649261<,
8params$___, 0.195722<<<<

Given  these  samples,  let  us  now  find  a  list  of  categories  that  fit  them.  Normalize  the
weight of each example by its  likelihood, filter  out  the sampling information,  and gather
the common results together.

12 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



Given  these  samples,  let  us  now  find  a  list  of  categories  that  fit  them.  Normalize  the
weight of each example by its  likelihood, filter  out  the sampling information,  and gather
the common results together.

totalMass = Total@First êü resultsD;
processedResults =
Rule@Ò@@1DD ê totalMass,

8Ò@@2, 1DD, Select@Ò@@2, 2DD,
HÒ@@1, 1DD === "classesToParameters"L &D<D & êü results;

processedResults =
SortBy@HÒ@@1, 1DD Ø Total@Last êü ÒDL & êü

GatherBy@HÒ@@2, 1DD Ø Ò@@1DDL & êü processedResults, FirstD,
LastD

98ann Ø 0, fred Ø 0, jim Ø 0, mary Ø 0, sue Ø 0, tom Ø 1< Ø

9.36083 µ 10-6,
8ann Ø 3, fred Ø 1, jim Ø 1, mary Ø 2, sue Ø 3, tom Ø 1< Ø
0.000052536, 8ann Ø 0, fred Ø 2, jim Ø 1,
mary Ø 2, sue Ø 0, tom Ø 1< Ø 0.000155936,

8ann Ø 0, fred Ø 1, jim Ø 1, mary Ø 1, sue Ø 0, tom Ø 1< Ø
0.000158211, 8ann Ø 0, fred Ø 1, jim Ø 2,
mary Ø 3, sue Ø 0, tom Ø 1< Ø 0.000759474,

8ann Ø 0, fred Ø 2, jim Ø 2, mary Ø 3, sue Ø 0, tom Ø 1< Ø
0.00760257, 8ann Ø 0, fred Ø 2, jim Ø 1,
mary Ø 3, sue Ø 0, tom Ø 1< Ø 0.0104894,

8ann Ø 0, fred Ø 2, jim Ø 3, mary Ø 0, sue Ø 0, tom Ø 1< Ø
0.015568, 8ann Ø 0, fred Ø 2, jim Ø 1,
mary Ø 0, sue Ø 0, tom Ø 1< Ø 0.0178066,

8ann Ø 0, fred Ø 2, jim Ø 2, mary Ø 0, sue Ø 0, tom Ø 1< Ø
0.0385941, 8ann Ø 0, fred Ø 1, jim Ø 2,
mary Ø 0, sue Ø 0, tom Ø 1< Ø 0.04046,

8ann Ø 0, fred Ø 1, jim Ø 1, mary Ø 2, sue Ø 0, tom Ø 1< Ø
0.111167, 8ann Ø 0, fred Ø 1, jim Ø 1,
mary Ø 0, sue Ø 0, tom Ø 1< Ø 0.757177=

Removing  the  specific  category  assignments  and  determining  for  each  person  whether
they are in the same category as each other, we see that we have a complete and accurate
estimate for who knows whom.

Probabilistic Programming with Stochastic Memoization 13
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res = 8processedResults@@1, 1, All, 1DD,
Plus üü HFunction@8row<, row@@2DD Map@Function@8outer<,

Map@Boole@Ò@@2DD === outer@@2DDD &,
row@@1DDD

D,
row@@1DDD

D êü processedResultsL<;
ticks = Transpose@8RangeüLength@res@@1DDD, res@@1DD<D;
ArrayPlot@res@@2DD, FrameTicks Ø 8ticks, ticks<D

ann fred jim mary sue tom

ann

fred

jim

mary

sue

tom

· Learning Simple Arithmetic Expressions

There  is  no  more  idiomatic  example  of  probabilistic  programming  than  probabilistically
generated programs. Here, we show how to implement learning simple arithmetic expres-
sions. A Church program for undertaking this is as follows [16]. First, it defines a function
for equality that is slightly noisy, creating a gradient that is easier to learn than strict satis-
faction. Next, it creates a random arithmetic expression of nested addition and subtraction
with a single variable and integers from 0 to 10 as terminals. Then, it provides a utility for
evaluating symbolically constructed expressions. Finally, it demonstrates sampling a pro-
gram with two results that are consistent with adding 2 to the input.
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There  is  no  more  idiomatic  example  of  probabilistic  programming  than  probabilistically
generated programs. Here, we show how to implement learning simple arithmetic expres-
sions. A Church program for undertaking this is as follows [16]. First, it defines a function
for equality that is slightly noisy, creating a gradient that is easier to learn than strict satis-
faction. Next, it creates a random arithmetic expression of nested addition and subtraction
with a single variable and integers from 0 to 10 as terminals. Then, it provides a utility for
evaluating symbolically constructed expressions. Finally, it demonstrates sampling a pro-

(define (noisy= x y) 
    (log-flip (* -3 (abs (- x y)))))
     
(define (random-arithmetic-expression)
    (if (flip 0.6)
        (if (flip) 'x (sample-integer 10))
        (list (uniform-draw '(+ -)) 
              (random-arithmetic-expression) 
              (random-arithmetic-expression))))
     
(define (procedure-from-expression expr)
    (eval (list 'lambda '(x) expr) (get-current-
environment)))
     
(define samples
    (mh-query 100 100
        (define my-expr (random-arithmetic-expression))
        (define my-proc (procedure-from-expression my-expr))
           
        my-expr
           
        (and (noisy= (my-proc 1) 3)
             (noisy= (my-proc 3) 5))))

Let  us  now  construct  an  equivalent  Mathematica  program.  First,  we  will  construct  an
equivalent noisy equality operator.

noisyEquals@x_, y_D := 2 ê H1 + HExp@3 Abs@x - yDDLL;
Plot@noisyEquals@0, xD, 8x, -2, 2<D

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

Next, here is an equivalent program for generating random programs. By recursively index-
ing each potential branch of the program, we can assure that common random number and
MCMC algorithms will correctly assign a random number corresponding to that exact part
of the potential program. We also explicitly limit the size of the tree. 
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Next, here is an equivalent program for generating random programs. By recursively index-
ing each potential branch of the program, we can assure that common random number and
MCMC algorithms will correctly assign a random number corresponding to that exact part
of the potential program. We also explicitly limit the size of the tree. 

Options@randomArithmeticExpressionD =
8"RandomNumberFunction" Ø ParameterizedRandomReal<;

randomArithmeticExpression@opts : OptionsPattern@DD :=
Block@8var, $RecursionLimit = 20 000<,
Module@8rnd, memIndex, index, fn, args<,
rnd = OptionValue@"RandomNumberFunction"D;
fn@tree_ListD :=
If@rnd@8tree, 1<D < 0.6 »» Length@treeD > 20,
If@rnd@8tree, 2<D < 0.5,
var,
Floor@11 rnd@8tree, 3<DD

D,
If@rnd@8tree, 4<D < 0.5,

Plus,
SubtractD@fn@Flatten@8tree, 5<DD,

fn@Flatten@8tree, 6<DDD
D;

Function@var, ÒD &@fn@8<DD
DD

Now we make a Metropolis–Hastings query and process the results down to the found ex-
pression and its calculated likelihood.

GetMostLikelyExpressions@
inputOutputPairs : 88_Integer, _Integer< ...<D :=

Module@8samples, totalMass, processedSamples<,
samples = MCMCRun@Function@8randomNumberGenerator<,

Module@8expr<,
expr = randomArithmeticExpression@

"RandomNumberFunction" Ø randomNumberGeneratorD;
8expr,
N@Apply@Times,

HnoisyEquals@expr@Ò@@1DDD, Ò@@2DDD & êü
inputOutputPairsLDD<

D
D, 200, 10, 0.01, "TargetSamples" Ø 100D;

totalMass = Total@First êü samplesD;
processedSamples =
Reverse@SortBy@8Ò@@1, 1DD, Total@Ò@@All, 2DD D< & êü

GatherBy@8Ò@@2, 1DD, Ò@@1DD ê totalMass< & êü samples,
FirstD, LastDD

D

Given only one example, we cannot tell very much, but are pleased that the simplest, yet
correct,  function  is  the  one  rated  most  likely.  Interestingly,  the  first  six  expressions  are
valid despite the noisy success condition.
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Given only one example, we cannot tell very much, but are pleased that the simplest, yet
correct,  function  is  the  one  rated  most  likely.  Interestingly,  the  first  six  expressions  are
valid despite the noisy success condition.

GetMostLikelyExpressions@883, 5<<D

88Function@var, 5D, 0.522537<,
8Function@var, 11 - 2 varD, 0.124414<,
8Function@var, 2 + varD, 0.0995308<,
8Function@var, -1 + 2 varD, 0.0746481<,
8Function@var, 8 - varD, 0.0497654<,
8Function@var, -34 + 13 varD, 0.0248827<,
8Function@var, 14 - 3 varD, 0.0248827<,
8Function@var, 2 varD, 0.0212415<,
8Function@var, 6D, 0.0188813<, 8Function@var, 4D, 0.014161<,
8Function@var, -3 + 3 varD, 0.00472034<,
8Function@var, 3 + varD, 0.00472034<,
8Function@var, 1 + varD, 0.00472034<,
8Function@var, varD, 0.00332238<,
8Function@var, 9 - varD, 0.00236017<,
8Function@var, 15 - 3 varD, 0.00236017<,
8Function@var, 33 - 9 varD, 0.00236017<,
8Function@var, 7D, 0.000369153<,
8Function@var, -3 + 2 varD, 0.000123051<<

With two inputs, the only viable expression is the one found.

GetMostLikelyExpressions@883, 5<, 85, 7<<D

98Function@var, 2 + varD, 0.997307<,
8Function@var, 6D, 0.000780229<,
8Function@var, 3 + varD, 0.000520152<,
8Function@var, 7D, 0.000500341<,
8Function@var, 5D, 0.000500341<,
8Function@var, 1 + varD, 0.000390114<,
9Function@var, varD, 1.41389 µ 10-6==
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‡ Summary
We have now seen how to implement nonparametric Bayesian inference with Mathemati-
ca’s memoization features. Nonparametric Bayesian inference extends Bayesian inference
to processes, allowing for the consideration of factors that are not directly observable, cre-
ating flexible mixture models  with similar  advantages to flexible data structures.  We see
that  Mathematica’s  capacity  for  memoization  allows  for  the  implementation  of  nonpara-
metric sample generation and for Markov chain sampling. This capacity was then demon-
strated  with  two  examples,  one  for  discovering  the  categories  underlying  particular  ob-
served relations and the other for generating functions that matched given results.

‡ Conclusion
Probabilistic programming is a great way to undertake nonparametric Bayesian inference,
but one should not confuse language-specific constructs with the language features that al-
low one to undertake it profitably. Through Mathematica’s memoization capabilities, it is
readily possible to make inferences over flexible probabilistic models.
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