
The Mathematica® Journal

Probabilistic Programming
with Stochastic Memoization
Implementing Nonparametric Bayesian
Inference
John Cassel

Probabilistic programming is a programming language paradigm
receiving both government support [1] and the attention of the
popular technology press [2]. Probabilistic programming
concerns writing programs with segments that can be
interpreted as parameter and conditional distributions, yielding
statistical findings through nonstandard execution. Mathematica
not only has great support for statistics, but has another
language feature particular to probabilistic language elements,
namely memoization, which is the ability for functions to retain
their value for particular function calls across parameters,
creating random trials that retain their value. Recent research
has found that reasoning about processes instead of given
parameters has allowed Bayesian inference to undertake more
flexible models that require computational support. This article
explains this nonparametric Bayesian inference, shows how
Mathematicaʼs capacity for memoization supports probabilistic
programming features, and demonstrates this capability through
two examples, learning systems of relations and learning
arithmetic functions based on output.

‡ Nonparametric Bayesian Inference
Bayesian statistics are an orderly way of finding the likelihood of a model from data, us-
ing the likelihood of the data given the model. From spam detection to medical diagnosis,
spelling correction to forecasting economic and demographic trends, Bayesian statistics
have found many applications, and even praise as mental heuristics to avoid overconfi-
dence. However, at first glance Bayesian statistics suffer from an apparent limit: they can
only make inferences about known factors, bounded to conditions seen within the data,
and have nothing to say about the likelihood of new phenomena [3]. In short, Bayesian
statistics are apparently withheld to inferences about the parameters of the model they are
provided.

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Bayesian statistics are an orderly way of finding the likelihood of a model from data, us-
ing the likelihood of the data given the model. From spam detection to medical diagnosis,
spelling correction to forecasting economic and demographic trends, Bayesian statistics
have found many applications, and even praise as mental heuristics to avoid overconfi-
dence. However, at first glance Bayesian statistics suffer from an apparent limit: they can
only make inferences about known factors, bounded to conditions seen within the data,
and have nothing to say about the likelihood of new phenomena [3]. In short, Bayesian
statistics are apparently withheld to inferences about the parameters of the model they are
provided.
Instead of taking priors over factors of the model itself, we can say that we are taking
priors over factors in the process involving how the data was generated. These stochastic
process priors give the modeler a way to talk about factors that have not been directly
observed. These nonobservable factors include the likely rate at which further factors
might be seen, given further observation and underlying categories or structures that
might generate the data being observed. For example, in statistics problems we are often
presented with drawing marbles of different colors from a bag, and given randomly drawn
samples, we might talk about the most likely composition of the bag and the range of
likely compositions. However, suppose we had a number of bags, and we drew two
marbles each from three of them, discovering two red marbles, two green marbles, and
two yellow marbles [4]. If we were to draw marbles from yet another bag, we might
expect two marbles identical in color, of a color we have not previously observed. We do
not know what this color is, and in this sense we have made a nonparametric inference
about the process that arranged the marbles between bags.
The ability to talk about nonobserved parameters is a leap in expressiveness, as instead of
explicitly specifying a model for all parameters, a model utilizing infinite processes ex-
pands to fit the given data. This should be regarded similarly to the advantages afforded
by linked data structures in representing ordinary data. A linked list has a potentially infi-
nite capacity; its advantage is not that we have an infinite memory, but an abstract flexibil-
ity to not worry too much about maintaining its size appropriately. Similarly, an infinite
prior models the growth we expect to discover [5].
Here are two specific processes that are useful for a number of different problems. These
two processes are good for modeling unknown discrete categories and sets of features,
respectively. In both of these processes, suppose that we can take samples so that there are
no dependencies in the order that we took them, or in other words that the samples are
exchangeable. Both of these processes also make use of a concentration parameter, g. As
we look at more samples, we expect the number of new elements we discover to diminish,
but not disappear, as our observations establish a lower frequency of occurrence for unob-
served elements. The concentration parameter establishes the degree to which the propor-
tions are concentrated, with low g indicating a distribution concentrated on a few
elements, and high g indicating a more dispersed concentration.

First, let us look into learning an underlying system of categories. In a fixed set of cate-
gories of particular likelihood, the probability of a given sample in a particular category
corresponds to the multinomial distribution, the multiparameter extension of the Bernoulli
distribution. The conjugate prior, or the distribution that gives a Bayesian estimate of
which multinomial distribution produced a given sample, is the Dirichlet distribution,
itself the multivariable extension of the beta distribution. To create an infinite Dirichlet
distribution, or rather a Dirichlet process, one can simply have a recursive form of the beta
where the likelihood of a given category is Beta H1, gL. To use a Dirichlet process as a
prior, it is easier to manipulate in the form of a Chinese restaurant process (CRP) [6].
Suppose we want to know the likelihood that the ith sample is a member of category k. If
the category is new, then that probability corresponds to the size of the concentration
parameter in ratio to the count of the samples taken:

2 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

First, let us look into learning an underlying system of categories. In a fixed set of cate-
gories of particular likelihood, the probability of a given sample in a particular category
corresponds to the multinomial distribution, the multiparameter extension of the Bernoulli
distribution. The conjugate prior, or the distribution that gives a Bayesian estimate of
which multinomial distribution produced a given sample, is the Dirichlet distribution,
itself the multivariable extension of the beta distribution. To create an infinite Dirichlet
distribution, or rather a Dirichlet process, one can simply have a recursive form of the beta
where the likelihood of a given category is Beta H1, gL. To use a Dirichlet process as a
prior, it is easier to manipulate in the form of a Chinese restaurant process (CRP) [6].
Suppose we want to know the likelihood that the ith sample is a member of category k. If
the category is new, then that probability corresponds to the size of the concentration
parameter in ratio to the count of the samples taken:

PHzi = k z1, …, zi-1L =

nk
i- 1+ g

, nk > 0

g

i- 1+ g
, k is a new cluster

The implementation of this function is straightforward. The use of a parameterized ran-
dom number function allows for the use of the algorithm in common random number com-
parison between simulation scenarios [7], as well as for estimation through Markov chain
Monte Carlo, about which more will be said later.

ParameterizedRandomReal@params___D :=
Module@8val<, val = RandomReal@D; valD

Options@crpD =
8"RandomNumberFunction" -> ParameterizedRandomReal,
"Name" -> None<;

crp@d : 8___Integer<, count_Integer, g_, OptionsPattern@DD :=
Module@8r, pos = 0, sum = 0, dist = d, prob = 0<,

r = OptionValue@"RandomNumberFunction"D@
8OptionValue@"Name"D, count<D;
While@sum < r && pos <= Length@distD,

pos = pos + 1;
If@pos <= Length@distD,

prob = Hdist@@posDD ê Hcount + gLL;
sum = sum + prob

D
D;
If@pos <= Length@distD,

dist@@posDD++,
prob = g ê Hcount + gL;
AppendTo@dist, 1D

D;
8dist, pos, prob<

D

Probabilistic Programming with Stochastic Memoization 3

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

In the second process, suppose we are interested in the sets of features observed in sets of
examples. For example, suppose we go to an Indian food buffet and are unfamiliar with
the dishes, so we observe the selected items that our fellow patrons have chosen.
Supposing one overall taste preference, we might say that the likelihood of a dish’s being
worth selecting is proportional to the number of times it was observed, but if there are not
many examples we should also try some additional dishes that were not tried previously.
This process, called the Indian buffet process [8], turns out to be equivalent to a beta
process prior [9]. Suppose we want to know the likelihood of whether a given feature k is
going to be found in the zth sample. Then, the likelihoods can be calculated directly from
other well-understood distributions:

PHk œ zi z1, …, zi-1L~
BernoulliK

nk
i
O, nk > 0

PoissonK
g

i
O, k is some new feature

Both of these processes are suitable as components in mixture models. Suppose we are
conducting a phone poll of a city and ask the citizens we talk to about their concerns.
Each person will report their various civic travails. We expect for each person to have
their own varying issues, but also for there to be particular groups of concern for different
neighborhoods and professional groups. In other words, we expect to see an unknown set
of features emerge from an unknown set of categories. Then, we might use a CRPØIBP
mixture distribution to help learn those categories from the discovered feature sets.
Nonparametric inference tasks are particularly suited for computational support. What we
would like to do is describe a space of potential mixture models that may describe the
underlying data-generation processes and allow the inference of their likelihood without
explicitly generating the potential structures of that space. Probabilistic programming is
the use of language-specific support to aid in the process of statistical inference. This
article shows that Mathematica has features that readily enable the sort of probabilistic
programming that supports nonparametric inference.

‡ Probabilistic Programming
Probabilistic programming is the use of language-specific support to aid in the process of
statistical inference. Unlike statistical libraries, the structure of the programming language
itself is used in the inference process [10]. Although Mathematica increasingly has the
kinds of structures that support probabilistic programming, we are not going to focus on
those features here. Instead, we will see how Mathematica’s natural capacity for memo-
ization allows it to be very easily extended to write probabilistic programs that use
stochastic memoization as a key abstraction. In particular, we are going to look at Church,
a Lisp-variant with probabilistic query and stochastic memoization constructs [11]. Let us
now explain stochastic memoization and then look at how to implement Metropolis–
Hastings querying, which uses memoization to help implement Markov chain Monte
Carlo-driven inference.

4 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

· Stochastic Memoization

Stochastic memoization simply means remembering probabilistic events that have already
occurred. Suppose we say that coinflip@coin Ø c, flip Ø 1D is the first flip of
coin c. In the first call, it may return Heads or Tails, depending on a likelihood im-
posed to coin c, but in either case it is constrained in later calls to return the same value.
Once undertaken, the value of a particular random event is determined.
In Church, this memoization is undertaken explicitly through its mem operator. Church’s
flip function designates a Bernoulli trial with the given odds, with return values 0 and 1.
Here is an example of a memoized fair coin flip in Church.

(define coinflip (mem (lambda (coin flip) (flip 0.5))))

Mathematica allows for a similar memoization by incorporating a Set within a
SetDelayed.

coinflip@coin_, flip_D :=
Hcoinflip@coin, flipD = RandomInteger@DL

Let us now look to a more complicated case. Earlier, we discussed the Dirichlet process.
Church supports a DPmem operator for creating functions that when given a new example
either returns a previously obtained sample according to the CRP or takes a new sample,
depending upon the category assignment, and returns the previously seen argument. Here
is a similar function in Mathematica, called GenerateMemCRP. Given a random func-
tion, we first create a memoized version of that function based on the category index of
the CRP. Then, we create an empty initial CRP result, for which a new sample is created
and memoized every time a new input is provided, potentially also resampling the pro-
vided function if a prediscovered category is provided.

Clear@GenerateMemCRPD;
Options@GenerateMemCRPD =

8"RandomNumberFunction" -> ParameterizedRandomReal,
"Name" -> "CRP",
"Function" Ø Identity<;

GenerateMemCRP@sym_, g_, opts : OptionsPattern@DD :=
Module@8memFun<,
memFun@pos_D :=
HmemFun@posD = OptionValue@"Function"D@posDL;

GenerateMemCRP@sym, 8<, memFun, 0, g, optsD
D

Probabilistic Programming with Stochastic Memoization 5

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

GenerateMemCRP@sym_, dist : 8___Integer<, memFun_,
count_Integer, g_, opts : OptionsPattern@DD := H

sym@params___D := Module@8newDist, pos, prob, res<,
8newDist, pos, prob< =

crp@dist, count, g, FilterRules@8opts<,
First êü Options@crpDDD;
GenerateMemCRP@sym, newDist, memFun, count + 1,

g, optsD;
res = 8memFun@posD, prob<;
sym@paramsD = res;
res

D
L

For example, let us now take a sampling from categories that have a parameter distributed
according to the standard normal distribution. Here we see outputs in a typical range for a
standard normal, but with counts favoring resampling particular results according to the
sampled frequency of the corresponding category.

GenerateMemCRP@memStdNormal, 5, "Name" Ø "memStdNormal",
"Function" Ø HHÒ; RandomVariate@NormalDistribution@DDL &LD;

ListPlot@
Tally@Map@Composition@First, memStdNormalD, Range@50DDD,
Filling Ø AxisD

6 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Memoization implies that if we provide the same inputs, we get the same results.

ListPlot@
Tally@Map@Composition@First, memStdNormalD, Range@50DDD,
Filling Ø AxisD

· Metropolis–Hastings Querying

Inference is the central operation of probabilistic programming. Conditional inference is
implemented in Church through its various query operations. These queries uniformly
take four sets of arguments: query algorithm-specific parameters, a description of the
inference problem, a condition to be satisfied, and the expression we want to know the
distribution of given that condition. Let us motivate the need for a Mathematica equiv-
alent to the Church query operator mh - query by explaining other queries that are
trivial to implement in Mathematica but that are not up to certain inference tasks.
Direct calculation is the most straightforward approach to conditional inference. However,
sometimes we cannot directly compute the conditional likelihood, but instead have to
sample the space. The easiest way to do so is rejection sampling, in which we generate a
random sample for all random parameters to see if it meets the condition to be satisfied. If
it does, its value is worth keeping as a sample of the distribution, and if it does not, we
discard it entirely, proceeding until we are satisfied that we have found the distribution we
intend.
There is a problem with rejection sampling, namely that much of the potential model
space might be highly unlikely and that we are throwing away most of the samples.
Instead of doing that, we can start at a random place but then, at each step, use that sample
to find a good sample for the underlying distribution [12]. So, for a sample x, we are inter-
ested in constructing a transition operator T yielding a new sample x ', and constructing
that operator such that for the underlying distribution P*, the transition operator is
invariant with respect to distribution THP*L = P*, or in other words, that the transition
operator forms a Markov chain. For our transition operator, we first choose to generate a
random proposal, QHx ' : xL, where a simple choice is the normally distributed variation
along all parameters NIx, s2M, and then accept that proposal with likelihood

PHx ' : xL = minJ1, PHx'LQHx':xL
PHxLQHx:x'L N, so that we are incorporating less-likely samples at exactly

the rate the underlying distribution would provide. After some initial samples of random
value, we will have found the region for which the invariance property holds. Due to the
use of applying random numbers to a Markov chain, this algorithm is called Markov chain
Monte Carlo, or MCMC.

Probabilistic Programming with Stochastic Memoization 7

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

There is a problem with rejection sampling, namely that much of the potential model
space might be highly unlikely and that we are throwing away most of the samples.
Instead of doing that, we can start at a random place but then, at each step, use that sample
to find a good sample for the underlying distribution [12]. So, for a sample x, we are inter-
ested in constructing a transition operator T yielding a new sample x ', and constructing
that operator such that for the underlying distribution P*, the transition operator is
invariant with respect to distribution THP*L = P*, or in other words, that the transition
operator forms a Markov chain. For our transition operator, we first choose to generate a
random proposal, QHx ' : xL, where a simple choice is the normally distributed variation
along all parameters NIx, s2M, and then accept that proposal with likelihood

PHx ' : xL = minJ1, PHx'LQHx':xL
PHxLQHx:x'L N, so that we are incorporating less-likely samples at exactly

the rate the underlying distribution would provide. After some initial samples of random
value, we will have found the region for which the invariance property holds. Due to the
use of applying random numbers to a Markov chain, this algorithm is called Markov chain
Monte Carlo, or MCMC.
The following procedure is intended to be the simplest possible implementation of
MCMC using memoization (for further considerations see [13, 14]). There is a trade-off in
the selection of s2, such that if it is too large, we rarely accept anything and would effec-
tively be undertaking rejection sampling, but if it is too small, we tend to stay in a very lo-
cal area of the algorithm. One way to manage this trade-off is to control s2 by aiming for
a given rejection rate, which is undertaken here.

Options@MCMCRunD = 8MaxIterations -> 50000,
"TargetSamples" -> 200<;

MCMCRun@evaluationFunction_, burnInSteps_,
stepsBetweenSamples_, targetAcceptRate_,
OptionsPattern@DD :=

Module@8accepted, trial, successes, tests, sigma,
lastAcceptedLikelihood, acceptedTrialCount,
trialLikelihood, reportedTrialTag, reportedTrials,
results, sampleCount, candidateValues, acceptRate,
saturate, movingAve<,

saturate@n_D := If@n < 0, 0, If@n > 1, 1, nD, nD;
movingAve@value_, input_, a_D :=
HHa inputL + HH1 - aL valueLL;

acceptedTrialCount = 0;
lastAcceptedLikelihood@D := 0;
acceptRate = targetAcceptRate;
accepted@params___D := Haccepted@paramsD = RandomReal@DL;
trial@D = 1;
sampleCount = 0;

8 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

 reportedTrials = Reap@
While@trial@D < OptionValue@MaxIterationsD &&

sampleCount < OptionValue@"TargetSamples"D,
Module@8candidate<,

candidate@params___D :=
Hcandidate@paramsD =

saturate@accepted@paramsD +
RandomReal@NormalDistribution@0,

0.05 HacceptRate ê targetAcceptRateLDDDL;
8results, trialLikelihood< =
evaluationFunction@candidateD;

If@And@trialLikelihood > 0,
Or@trialLikelihood >

lastAcceptedLikelihood@D,
HtrialLikelihoodL ê

lastAcceptedLikelihood@D > RandomReal@D
D

D,
lastAcceptedLikelihood@D = trialLikelihood;
acceptedTrialCount = acceptedTrialCount + 1;
accepted = candidate;
accepted@params___D :=
Haccepted@paramsD = RandomReal@DL;

If@And@acceptedTrialCount > burnInSteps,
Mod@acceptedTrialCount - burnInSteps,

stepsBetweenSamplesD === 0
D,

sampleCount = sampleCount + 1;
candidateValues =

8Ò@@1, 1, 1DD, Ò@@2DD< & êü DownValues@candidateD;
Sow@trialLikelihood -> 8results, candidateValues<,

reportedTrialTag
D
D;
acceptRate = movingAve@acceptRate, 1, 0.1D,
acceptRate = movingAve@acceptRate, 0, 0.1D

D
D;
trial@D = Htrial@D + 1L
D,
reportedTrialTag

D@@2, 1DD;
Clear@acceptedD;
reportedTrialsD

We now see why we constructed the CRP functions to accept random number functions: it
lets us create evaluation functions suitable for MCMC.

Probabilistic Programming with Stochastic Memoization 9

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

‡ Examples
Let us look to see how we might apply these examples. First, we are going to look at the
infinite relational model, which demonstrates how to use the CRP to learn underlying cate-
gories from relations. Then, we will look at learning arithmetic expressions based upon
particular inputs and outputs, which demonstrates using probabilistic programming in a
recursive setting.

· The Infinite Relational Model

Suppose we are given some set of relations in the form of predicates, and we want to infer
category memberships based on those relations. The infinite relational model (IRM) can
construct infinite category models for processing arbitrary systems of relational data [15].
Suppose now we have some specific instances of objects, i, j, … œ O, and a few specific
statements about whether a given n-ary relation, R : OµOµ… Ø 80, 1<, holds between
them or not. Given a prior of how concentrated categories are, g, and a prior for the sharp-
ness of a relation to holding between members of various types, b, we would like to learn
categories z œ Z and relational likelihoods h, such that we can infer category member-
ships for objects and the likelihood of unobserved relationships holding between them,
which corresponds to the following model structure.

z g ~ CRPHgL
hIzi, z j, …M b ~ BetaHb, bL

RHi, j, …L z, h ~ BernoulliIhIzi, z j, …MM

Below we provide a sampler to calculate this, which first sets up memoization for cate-
gory assignment, next memoization for relational likelihood, and then a function for first
evaluating the object to category sampling and then the predicate/category sampling.
Then, the function merely calculates the likelihood sampling along the way, returning the
object to category memberships and the likelihood.

Options@SampleIRMD =
8"RandomNumberFunction" Ø ParameterizedRandomReal<;

10 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

SampleIRM@truePredicates_, falsePredicates_, crpg_,
opts : OptionsPattern@DD :=

Module@8classDistribution, objectToClass,
classesToParameters, objects, predEval, likelihood<,

objects = Union@Flatten@truePredicates@@All, 2 ;; -1DDD,
Flatten@falsePredicates@@All, 2 ;; -1DDDD;

GenerateMemCRP@classDistribution, crpg, opts,
"Name" Ø "ClassDistribution"D;

objectToClass@object_D := classDistribution@objectD@@1DD;
classesToParameters@classes__D := H

classesToParameters@classesD =
InverseCDF@BetaDistribution@0.5, 0.5D,
OptionValue@"RandomNumberFunction"D@
8"classesToParameters", 8classes<<DD

L;
predEval@pred_, objectOne_, objectTwo_D :=
Apply@classesToParameters,
8pred, objectToClass êü 8objectOne, objectTwo<<D;

likelihood = HTimes üü HpredEval üüü truePredicatesLL
HTimes üü HH1 - predEval@ÒÒDL & üüü falsePredicatesLL;

8Ò -> objectToClass@ÒD & êü objects, likelihood<
D

To understand how this works, let us look at an example. Suppose that there are two ele-
mentary schools, one for girls and one for boys, and that they both join together for high
school. However, there is a new teacher who does not know this about the composition of
incoming classes. This teacher finds another teacher and asks if they know who knows
whom. This more experienced teacher says yes, but not why, and the younger teacher asks
a series of questions about who knows whom, to the confusion of the older teacher, who
does not understand why the younger teacher does not know (we have all had conversa-
tions like this). One potential set of such questions might yield the following answers. No-
tice that there is a deficiency in these questions; namely, the new teacher never asks if a
boy knows a girl.

truePredicates = 8
8"knows", "tom", "fred"<,
8"knows", "tom", "jim"<,
8"knows", "jim", "fred"<,
8"knows", "jim", "fred"<,
8"knows", "mary", "sue"<,
8"knows", "mary", "ann"<,
8"knows", "ann", "sue"<

<;

Probabilistic Programming with Stochastic Memoization 11

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

falsePredicates = 8
8"knows", "mary", "fred"<,
8"knows", "mary", "jim"<,
8"knows", "sue", "fred"<,
8"knows", "sue", "tom"<,
8"knows", "ann", "jim"<,
8"knows", "ann", "tom"<

<;

Given these samples, let us now perform a Metropolis–Hastings query to see if we can re-
cover these categories. The result of a particular sample is a list of rules, where the left
side of each rule is the likelihood of the given predicates to hold given the sampled model,
and the right side is the sampled model in a two-element list. In this two-element list char-
acterizing the sampled model, the first element is the result as provided by the evaluation
method, and the second element contains the random values parameterizing the model.

results =
MCMCRun@Function@8randomNumberGenerator<,

SampleIRM@truePredicates, falsePredicates, 0.5,
"RandomNumberFunction" Ø randomNumberGeneratorDD,

200, 10, 0.01, "TargetSamples" Ø 200D;
results@@1 ;; 2DD

80.588056 Ø
88ann Ø 0, fred Ø 1, jim Ø 1, mary Ø 0, sue Ø 0, tom Ø 1<,
888ClassDistribution, 0<, 0.221614<,
88ClassDistribution, 1<, 0.640286<,
88ClassDistribution, 2<, 0.333355<,
88ClassDistribution, 3<, 0<,
88classesToParameters, 80, 0<<, 0.792729<,
88classesToParameters, 80, 1<<, 0<,
88classesToParameters, 81, 1<<, 0.855753<,
8params$___, 0.534733<<<, 0.0141464 Ø

88ann Ø 0, fred Ø 2, jim Ø 1, mary Ø 2, sue Ø 0, tom Ø 1<,
888ClassDistribution, 0<, 0.786788<,
88ClassDistribution, 1<, 1<, 88ClassDistribution, 2<,
0.364803<, 88ClassDistribution, 3<, 0.668717<,

88ClassDistribution, 4<, 0<,
88classesToParameters, 80, 0<<, 0.581683<,
88classesToParameters, 80, 1<<, 0.348745<,
88classesToParameters, 80, 2<<, 0.352798<,
88classesToParameters, 81, 1<<, 0.608145<,
88classesToParameters, 81, 2<<, 0.524839<,
88classesToParameters, 82, 0<<, 0.7783<,
88classesToParameters, 82, 1<<, 0<,
88classesToParameters, 82, 2<<, 0.0649261<,
8params$___, 0.195722<<<<

Given these samples, let us now find a list of categories that fit them. Normalize the
weight of each example by its likelihood, filter out the sampling information, and gather
the common results together.

12 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Given these samples, let us now find a list of categories that fit them. Normalize the
weight of each example by its likelihood, filter out the sampling information, and gather
the common results together.

totalMass = Total@First êü resultsD;
processedResults =
Rule@Ò@@1DD ê totalMass,

8Ò@@2, 1DD, Select@Ò@@2, 2DD,
HÒ@@1, 1DD === "classesToParameters"L &D<D & êü results;

processedResults =
SortBy@HÒ@@1, 1DD Ø Total@Last êü ÒDL & êü

GatherBy@HÒ@@2, 1DD Ø Ò@@1DDL & êü processedResults, FirstD,
LastD

98ann Ø 0, fred Ø 0, jim Ø 0, mary Ø 0, sue Ø 0, tom Ø 1< Ø

9.36083 µ 10-6,
8ann Ø 3, fred Ø 1, jim Ø 1, mary Ø 2, sue Ø 3, tom Ø 1< Ø
0.000052536, 8ann Ø 0, fred Ø 2, jim Ø 1,
mary Ø 2, sue Ø 0, tom Ø 1< Ø 0.000155936,

8ann Ø 0, fred Ø 1, jim Ø 1, mary Ø 1, sue Ø 0, tom Ø 1< Ø
0.000158211, 8ann Ø 0, fred Ø 1, jim Ø 2,
mary Ø 3, sue Ø 0, tom Ø 1< Ø 0.000759474,

8ann Ø 0, fred Ø 2, jim Ø 2, mary Ø 3, sue Ø 0, tom Ø 1< Ø
0.00760257, 8ann Ø 0, fred Ø 2, jim Ø 1,
mary Ø 3, sue Ø 0, tom Ø 1< Ø 0.0104894,

8ann Ø 0, fred Ø 2, jim Ø 3, mary Ø 0, sue Ø 0, tom Ø 1< Ø
0.015568, 8ann Ø 0, fred Ø 2, jim Ø 1,
mary Ø 0, sue Ø 0, tom Ø 1< Ø 0.0178066,

8ann Ø 0, fred Ø 2, jim Ø 2, mary Ø 0, sue Ø 0, tom Ø 1< Ø
0.0385941, 8ann Ø 0, fred Ø 1, jim Ø 2,
mary Ø 0, sue Ø 0, tom Ø 1< Ø 0.04046,

8ann Ø 0, fred Ø 1, jim Ø 1, mary Ø 2, sue Ø 0, tom Ø 1< Ø
0.111167, 8ann Ø 0, fred Ø 1, jim Ø 1,
mary Ø 0, sue Ø 0, tom Ø 1< Ø 0.757177=

Removing the specific category assignments and determining for each person whether
they are in the same category as each other, we see that we have a complete and accurate
estimate for who knows whom.

Probabilistic Programming with Stochastic Memoization 13

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

res = 8processedResults@@1, 1, All, 1DD,
Plus üü HFunction@8row<, row@@2DD Map@Function@8outer<,

Map@Boole@Ò@@2DD === outer@@2DDD &,
row@@1DDD

D,
row@@1DDD

D êü processedResultsL<;
ticks = Transpose@8RangeüLength@res@@1DDD, res@@1DD<D;
ArrayPlot@res@@2DD, FrameTicks Ø 8ticks, ticks<D

ann fred jim mary sue tom

ann

fred

jim

mary

sue

tom

· Learning Simple Arithmetic Expressions

There is no more idiomatic example of probabilistic programming than probabilistically
generated programs. Here, we show how to implement learning simple arithmetic expres-
sions. A Church program for undertaking this is as follows [16]. First, it defines a function
for equality that is slightly noisy, creating a gradient that is easier to learn than strict satis-
faction. Next, it creates a random arithmetic expression of nested addition and subtraction
with a single variable and integers from 0 to 10 as terminals. Then, it provides a utility for
evaluating symbolically constructed expressions. Finally, it demonstrates sampling a pro-
gram with two results that are consistent with adding 2 to the input.

14 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

There is no more idiomatic example of probabilistic programming than probabilistically
generated programs. Here, we show how to implement learning simple arithmetic expres-
sions. A Church program for undertaking this is as follows [16]. First, it defines a function
for equality that is slightly noisy, creating a gradient that is easier to learn than strict satis-
faction. Next, it creates a random arithmetic expression of nested addition and subtraction
with a single variable and integers from 0 to 10 as terminals. Then, it provides a utility for
evaluating symbolically constructed expressions. Finally, it demonstrates sampling a pro-

(define (noisy= x y)
 (log-flip (* -3 (abs (- x y)))))

(define (random-arithmetic-expression)
 (if (flip 0.6)
 (if (flip) 'x (sample-integer 10))
 (list (uniform-draw '(+ -))
 (random-arithmetic-expression)
 (random-arithmetic-expression))))

(define (procedure-from-expression expr)
 (eval (list 'lambda '(x) expr) (get-current-
environment)))

(define samples
 (mh-query 100 100
 (define my-expr (random-arithmetic-expression))
 (define my-proc (procedure-from-expression my-expr))

 my-expr

 (and (noisy= (my-proc 1) 3)
 (noisy= (my-proc 3) 5))))

Let us now construct an equivalent Mathematica program. First, we will construct an
equivalent noisy equality operator.

noisyEquals@x_, y_D := 2 ê H1 + HExp@3 Abs@x - yDDLL;
Plot@noisyEquals@0, xD, 8x, -2, 2<D

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

Next, here is an equivalent program for generating random programs. By recursively index-
ing each potential branch of the program, we can assure that common random number and
MCMC algorithms will correctly assign a random number corresponding to that exact part
of the potential program. We also explicitly limit the size of the tree.

Probabilistic Programming with Stochastic Memoization 15

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Next, here is an equivalent program for generating random programs. By recursively index-
ing each potential branch of the program, we can assure that common random number and
MCMC algorithms will correctly assign a random number corresponding to that exact part
of the potential program. We also explicitly limit the size of the tree.

Options@randomArithmeticExpressionD =
8"RandomNumberFunction" Ø ParameterizedRandomReal<;

randomArithmeticExpression@opts : OptionsPattern@DD :=
Block@8var, $RecursionLimit = 20 000<,
Module@8rnd, memIndex, index, fn, args<,
rnd = OptionValue@"RandomNumberFunction"D;
fn@tree_ListD :=
If@rnd@8tree, 1<D < 0.6 »» Length@treeD > 20,
If@rnd@8tree, 2<D < 0.5,
var,
Floor@11 rnd@8tree, 3<DD

D,
If@rnd@8tree, 4<D < 0.5,

Plus,
SubtractD@fn@Flatten@8tree, 5<DD,

fn@Flatten@8tree, 6<DDD
D;

Function@var, ÒD &@fn@8<DD
DD

Now we make a Metropolis–Hastings query and process the results down to the found ex-
pression and its calculated likelihood.

GetMostLikelyExpressions@
inputOutputPairs : 88_Integer, _Integer< ...<D :=

Module@8samples, totalMass, processedSamples<,
samples = MCMCRun@Function@8randomNumberGenerator<,

Module@8expr<,
expr = randomArithmeticExpression@

"RandomNumberFunction" Ø randomNumberGeneratorD;
8expr,
N@Apply@Times,

HnoisyEquals@expr@Ò@@1DDD, Ò@@2DDD & êü
inputOutputPairsLDD<

D
D, 200, 10, 0.01, "TargetSamples" Ø 100D;

totalMass = Total@First êü samplesD;
processedSamples =
Reverse@SortBy@8Ò@@1, 1DD, Total@Ò@@All, 2DD D< & êü

GatherBy@8Ò@@2, 1DD, Ò@@1DD ê totalMass< & êü samples,
FirstD, LastDD

D

Given only one example, we cannot tell very much, but are pleased that the simplest, yet
correct, function is the one rated most likely. Interestingly, the first six expressions are
valid despite the noisy success condition.

16 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Given only one example, we cannot tell very much, but are pleased that the simplest, yet
correct, function is the one rated most likely. Interestingly, the first six expressions are
valid despite the noisy success condition.

GetMostLikelyExpressions@883, 5<<D

88Function@var, 5D, 0.522537<,
8Function@var, 11 - 2 varD, 0.124414<,
8Function@var, 2 + varD, 0.0995308<,
8Function@var, -1 + 2 varD, 0.0746481<,
8Function@var, 8 - varD, 0.0497654<,
8Function@var, -34 + 13 varD, 0.0248827<,
8Function@var, 14 - 3 varD, 0.0248827<,
8Function@var, 2 varD, 0.0212415<,
8Function@var, 6D, 0.0188813<, 8Function@var, 4D, 0.014161<,
8Function@var, -3 + 3 varD, 0.00472034<,
8Function@var, 3 + varD, 0.00472034<,
8Function@var, 1 + varD, 0.00472034<,
8Function@var, varD, 0.00332238<,
8Function@var, 9 - varD, 0.00236017<,
8Function@var, 15 - 3 varD, 0.00236017<,
8Function@var, 33 - 9 varD, 0.00236017<,
8Function@var, 7D, 0.000369153<,
8Function@var, -3 + 2 varD, 0.000123051<<

With two inputs, the only viable expression is the one found.

GetMostLikelyExpressions@883, 5<, 85, 7<<D

98Function@var, 2 + varD, 0.997307<,
8Function@var, 6D, 0.000780229<,
8Function@var, 3 + varD, 0.000520152<,
8Function@var, 7D, 0.000500341<,
8Function@var, 5D, 0.000500341<,
8Function@var, 1 + varD, 0.000390114<,
9Function@var, varD, 1.41389 µ 10-6==

Probabilistic Programming with Stochastic Memoization 17

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

‡ Summary
We have now seen how to implement nonparametric Bayesian inference with Mathemati-
ca’s memoization features. Nonparametric Bayesian inference extends Bayesian inference
to processes, allowing for the consideration of factors that are not directly observable, cre-
ating flexible mixture models with similar advantages to flexible data structures. We see
that Mathematica’s capacity for memoization allows for the implementation of nonpara-
metric sample generation and for Markov chain sampling. This capacity was then demon-
strated with two examples, one for discovering the categories underlying particular ob-
served relations and the other for generating functions that matched given results.

‡ Conclusion
Probabilistic programming is a great way to undertake nonparametric Bayesian inference,
but one should not confuse language-specific constructs with the language features that al-
low one to undertake it profitably. Through Mathematica’s memoization capabilities, it is
readily possible to make inferences over flexible probabilistic models.

‡ References
[1] DARPA. “Probabilistic Programming for Advancing Machine Learning (PPAML).” Solicitation

Number: DARPA-BAA-13-31. (Aug 8, 2013)
www.fbo.gov/utils/view?id=a7bdf07d124ac2b1dda079de6de2eb78.

[2] B. Cronin. “What Is Probabilistic Programming?” OʼReilly Radar (blog). (Aug 8, 2013)
radar.oreilly.com/2013/04/probabilistic-programming.html.

[3] D. Fidler, “Foresight Defined as a Component of Strategic Management,” Futures, 43(5),
2011 pp. 540–544. doi:10.1016/j.futures.2011.02.005.

[4] C. Kemp, A. Perfors, and J. B. Tenenbaum, “Learning Overhypotheses with Hierarchical
Bayesian Models,” Developmental Science, 10(3), 2007 pp. 307–321.
doi:10.1111/j.1467-7687.2007.00585.x.

[5] M. I. Jordan, “Bayesian Nonparametric Learning: Expressive Priors for Intelligent Systems,”
in Heuristics, Probability, and Causality: A Tribute to Judea Pearl, (R. Dechter, H. Geffner,
and J. Y. Halpern, eds.) London: College Publications, 2010.

[6] J. Pitman, Combinatorial Stochastic Processes (Lecture Notes in Mathematics 1875), Berlin:
Springer-Verlag, 2006.

[7] A. Law and D. Kelton, Simulation Modeling and Analysis, 3rd ed., Boston: McGraw-Hill, 2000.

[8] T. Griffiths and Z. Ghahramani, “Infinite Latent Feature Models and the Indian Buffet Pro-
cess,” in Proceedings of the Eighteenth Annual Conference on Neural Information Process-
ing Systems (NIPS 18), Whistler, Canada, 2004.
books.nips.cc/papers/files/nips18/NIPS2005_0130.pdf.

[9] R. Thibaux and M. I. Jordan, “Hierarchical Beta Processes and the Indian Buffet Process,” in
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
(AISTATS 2007), San Juan, Puerto Rico, 2007.
jmlr.org/proceedings/papers/v2/thibaux07a/thibaux07a.pdf.

18 John Cassel

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

[10] N. D. Goodman. “The Principles and Practice of Probabilistic Programming,” in Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, (POPL 2013) Rome, Italy, 2013 pp. 399–402. doi:10.1145/2429069.2429117.

[11] N. D. Goodman, V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B. Tenenbaum, “Church: A
Language for Generative Models,” in Proceedings of the Twenty-Fourth Conference on Uncer-
tainty in Artificial Intelligence (UAI2008), Helsinki, Finland, 2008.
www.auai.org/uai2008/UAI_camera_ready/goodman.pdf.

[12] I. Murray. Markov Chain Monte Carlo [video]. (Aug 8, 2013)
videolectures.net/mlss09uk_murray_mcmc.

[13] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge, UK:
Cambridge University Press, 2003. www.inference.phy.cam.ac.uk/itila/book.html.

[14] C. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed, New York: Springer,
2004.

[15] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda, “Learning Systems of
Concepts with an Infinite Relational Model,” in Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI-06), Boston, MA, 2006.
www.aaai.org/Papers/AAAI/2006/AAAI06-061.pdf.

[16] N. D. Goodman, J. B. Tenenbaum, T. J. OʼDonnell, and the Church Working Group.
“Probabilistic Models of Cognition.” (Aug 8, 2013)
projects.csail.mit.edu/church/wiki/Probabilistic_Models_of _Cognition.

J. Cassel, “Probabilistic Programming with Stochastic Memoization,” The Mathematica Journal, 2014.
dx.doi.org/doi:10.3888/tmj.16-1.

About the Author

John Cassel works with Wolfram|Alpha, where his primary focus is knowledge representa-
tion problems. He maintains interests in real-time discovery, planning, and knowledge-rep-
resentation problems in risk governance and engineering design. Cassel holds a Master of
Design in Strategic Foresight and Innovation from OCADU, where he developed a novel
research methodology for the risk governance of emerging technologies.
John Cassel
Wolfram|Alpha LLC
100 Trade Center Drive
Champaign, IL 61820-7237
jcassel@wolfram.com

Probabilistic Programming with Stochastic Memoization 19

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

