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Properties and 
Generalizations of the 
Fibonacci Word Fractal
Exploring Fractal Curves
José L. Ramírez
Gustavo N. Rubiano

This article implements some combinatorial properties of the 
Fibonacci word and generalizations that can be generated from 
the iteration of a morphism between languages. Some graphic 
properties of the fractal curve are associated with these words; 
the curves can be generated from drawing rules similar to those 
used in L-systems. Simple changes to the programs generate 
other interesting curves.

‡ 1. Introduction
The infinite Fibonacci word,

f = 0 100 101 001 001 010 010 100 100 101 ...

is certainly one of the most studied words in the field of combinatorics on words [1–4]. It
is the archetype of a Sturmian word [5]. The word f  can be associated with a fractal curve
with combinatorial properties [6–7].
This  article  implements  Mathematica  programs  to  generate  curves  from  f  and  a  set  of
drawing rules. These rules are similar to those used in L-systems. 
The  outline  of  this  article  is  as  follows.  Section  2  recalls  some  definitions  and  ideas  of
combinatorics on words. Section 3 introduces the Fibonacci word, its fractal curve, and a
family of words whose limit is the Fibonacci word fractal.  Finally,  Section 4 generalizes
the Fibonacci word and its Fibonacci word fractal.
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‡ 2. Definitions and Notation
The terminology and notation are mainly those of [5] and [8]. Let S  be a finite alphabet,
whose elements are called symbols. A word over S is a finite sequence of symbols from S.
The set of all words over S, that is, the free monoid generated by S, is denoted by S*. The
identity  element  e  of  S*  is  called  the  empty  word.  For  any  word  w œ S*,  †w †  denotes  its
length, that is, the number of symbols occurring in w. The length of e is taken to be zero.
If a œ S and w œ S*, then †w †a denotes the number of occurrences of a in w.
For two words u = a1 a2 … ak  and v = b1 b2 … bs in S*, denote by u v the concatenation of
the two words,  that is,  u v = a1 a2 … ak b1 b2 … bs.  If  v = e,  then u e = e u = u;  moreover,
by un denote the word u u … u (n times). A word v is a subword (or factor) of u if there ex-
ist x, y œ S* such that u = x v y. If x = e, then u = v y and v is called a prefix of u; if y = e,
then u = x v and v is called a suffix of u.

The reversal of a word u = a1 a2 … ak  is the word uR = ak ak-1 … a1 and eR = e. A word u
is a palindrome if uR = u.
An infinite word over S is a map u :NöS, written as u = a1 a2 a3 …. The set of all infi-
nite words over S is denoted by Sw.
Example 1

 The word p = HpnL8n¥1< = 0 110 101 000 101 …, where pn = 1 if n is a prime number
and pn = 0 otherwise, is an example of an infinite word. The word p is called the charac-
teristic sequence of the prime numbers. Here are the first 50 terms of p.

Table@If@PrimeQ@nD, 1, 0D, 8n, 50<D

80, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0<

Definition 1

Let  S  and  D  be  alphabets.  A  morphism  is  a  map  h : S* Ø D*  such  that,  for  all
x, yœ S*, hHx yL= hHxL hHyL.

There is a special class of words with many remarkable properties, the so-called Sturmian
words. These words admit several equivalent definitions (see, e.g. [5], [8]).
Definition 2

 Let  w œ Sw.  Let  PHw, nL,  the complexity function of  w,  be the map that counts,  for
all integer n¥ 0,  the number of subwords of length n in w.  An infinite word w  is a Stur-
mian word if PHw, nL= n +1 for all integer n¥ 0.
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For example, PH01 101 010 001 010, 5L = 9.

StringPartition@string_, n_D := Table@StringTake
@string, 8i, i + n - 1<D,

8i, 1, StringLength@stringD - Hn - 1L<D

StringPartition@"01101010001010", 5D

801101, 11010, 10101, 01010,
10100, 01000, 10001, 00010, 00101, 01010<

Subwords@string_, n_D :=
Intersection@StringPartition@string, nDD

Subwords@"01101010001010", 5D

800010, 00101, 01000, 01010,
01101, 10001, 10100, 10101, 11010<

complexity@string_, i_D := Length@Subwords@string, iDD

Table@complexity@"01101010001010", iD, 8i, 0, 20<D

81, 2, 4, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0<

Since for any Sturmian word, PHw, 1L = 2, Sturmian words have to be over two symbols.
The word p in example 1 is not a Sturmian word because PHp, 2L = 4 ¹≠ 3.

Given two real  numbers  a,  b œ R  with a  irrational  and 0 < a < 1,  0 § b < 1,  define the
infinite  word  w = w1 w2 w3 …  as  wn = dHn+ 1L a+ bt- dn a+ bt.  The  numbers  a  and  b
are  the  slope  and  the  intercept,  respectively.  This  word  is  called  mechanical.  The
mechanical words are equivalent to Sturmian words [5]. As a special case, b = 0 gives the
characteristic words.
Definition 3

Let  a  be  irrational,  0 < a < 1.  For  n¥ 1,  define  waHnL= dHn +1L at-dn at  and
w HaL=wa H1 L wa H2L wa H3L …; then w HaL is called a characteristic word with slope a.
On  the  other  hand,  note  that  every  irrational  a œ H0, 1L  has  a  unique  continued  fraction
expansion

a = @0, a1, a2, a3, …D = 1

a1+
1

a2+
1

a3+º⋯

,
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where each ai is a positive integer. Let a = @0, 1+ d1, d2, …D be an irrational number with
d1 ¥ 0 and dn > 0 for n > 1. To the directive sequence Hd1, d2, …, dn, …L, associate a se-
quence HsnL8n¥-1< of words defined by s-1 = 1, s0 = 0, sn = sn-1dn sn-2, n ¥ 1.

Such a sequence of words is called a standard sequence. This sequence is related to charac-
teristic  words  in  the  following  way.  Observe  that,  for  any  n ¥ 0,  sn  is  a  prefix  of  sn+1,
which gives meaning to limnØ¶ sn  as an infinite word. In fact, one can prove that each sn
is a prefix of wHaL for all n ¥ 0 and wHaL = limnØ¶ sn [5].

‡ 3. Fibonacci Word and Its Fractal Curve
Definition 4

Fibonacci words are words over 80, 1< defined inductively as follows: f0 = 1, f1 = 0,
and fn = fn-1 fn-2,  for n¥ 2.  The words fn  are referred to as the finite Fibonacci words.
The limit

(1)f = limnØ¶ fn = 0 100 101 001 001 010 010 100 100 101 …

 is called the Fibonacci word.

It  is  clear  that  fn = Fn,  where  Fn  is  the  nth  Fibonacci  number,  recalling  that  the
Fibonacci number Fn  is defined by the recurrence relation Fn = Fn-1 + Fn-2  for all integer
n ¥ 2  and  with  initial  values  F0 = F1 = 1.  The  infinite  Fibonacci  word  f  is  a  Sturmian

word [5]; exactly, f = wJ
1
f2
N, where f =

1+ 5
2  is the golden ratio.

Here are the first 50 terms of f.

TableBIntegerPartBHn + 1L
1

GoldenRatio2
F -

IntegerPartBn
1

GoldenRatio2
F, 8n, 1, 50<F

80, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0<
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Definition 5

The Fibonacci morphism s : 80, 1<*ö80, 1<* is defined by s H0L = 01 and sH1L = 0.
The Fibonacci word f satisfies f = limnØ¶ snH1L and snH1L = fn for all n ¥ 1.

FibonacciWord@n_D :=
Nest@StringReplace@Ò, 8"0" Ø "01", "1" Ø "0"<D &, "1", nD

Here are the first nine finite Fibonacci words.

TableForm@Table@FibonacciWord@iD, 8i, 1, 9<DD

0
01
010
01001
01001010
0100101001001
010010100100101001010
0100101001001010010100100101001001
0100101001001010010100100101001001010010100100101001010

Definition 6

Let F : 80, 1<*ö80, 1<* be the map such that F deletes the last two symbols.
The following proposition summarizes some basic properties about the Fibonacci word.

Proposition 1

The Fibonacci word and the finite Fibonacci words satisfy:

1. The words 11 and 000 are not subwords of the Fibonacci word.

2. Let a b be the last two symbols of fn. For n ¥ 2, a b = 01 if n is even and a b = 10
if n is odd.

3. The concatenation of two successive Fibonacci words is almost commutative; that
is, fn fn-1 and fn-1 fn have a common prefix of length Fn - 2, for all n ¥ 2.

4. FH fnL is a palindrome for all n ¥ 2.

5. For  all  n ¥ 6,  fn = fn-3 fn-3 fn-6 ln-3 ln-3,  where  ln = FH fnL b a;  that  is,  ln  ex-
changes the two last symbols of fn.
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· The Fibonacci Word Fractal

The Fibonacci word can be associated with a curve using a drawing rule. A particular ac-
tion follows on the  symbol  read (this  is  the  same idea  as  that  used in  L-systems [9]).  In
this case, the drawing rule is called “the odd-even drawing rule” [7].

symbol position of symbol Draw a line forward, then
1 any stay straight
0 even turn left
0 odd turn right

Ú Table 1.  The odd-even drawing rule.

Definition 7

The nth  Fibonacci curve, denoted by Fn, is the result of applying the odd-even draw-
ing rule to the word fn. The Fibonacci word fractal is defined as

F = limnØ¶ Fn.

The program LShow is adapted from [10] to generate L-systems.

LShow@lstring_String, Ldelta_: 90. Degree, size_: 400D :=
Module@
8Lpos = 80., 0.<, Ltheta = 0.<,

Graphics@
Line@DeleteCases@Map@Switch@Ò, "+", Ltheta += Ldelta;,

"-", Ltheta -= Ldelta;, "F",
Lpos += 8Cos@LthetaD, Sin@LthetaD<,

"B", Lpos -= 8Cos@LthetaD, Sin@LthetaD<, _, Lpos += 0.D &,
Characters@lstringDD, NullDD, AspectRatio Ø Automatic,

ImageSize Ø 8size, size<D
D

Figure 1 shows an L-system interpretation of the odd-even drawing rule.

Ú Figure 1. Interpretation of the odd-even drawing rule.
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FibonacciLOGOword@n_D := StringReplace@
FibonacciWord@nD,
8"10" Ø "FF+", "01" Ø "F-F", "00" Ø "F-F+"<

D

Here are the curves Fn for n = 9, …, 21.

Manipulate@
LShow@FibonacciLOGOword@nD, 90. Degree, 400D,
88n, 11<, 7, 21, 1, Appearance Ø "Labeled"<,
SaveDefinitions Ø True

D

n 11
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The  next  proposition  about  properties  of  the  curves  Fn  and  F  comes  directly  from  the
properties of the Fibonacci word from Proposition 1. More properties can be found in [7].
Proposition 2

The Fibonacci word fractal F  and the curve Fn have the following properties:

1.  F  is composed only of segments of length 1 or 2.

2. The number of turns in the Fn curve is the Fibonacci number Fn-1.

3.  The Fn curve is similar to the curve Fn-3.

4. The curve Fn is symmetric.

5. The Fn  curve is composed of five curves: Fn = Fn-3 Fn-3 Fn-6 F 'n-3 F 'n-3, where
F 'n is the result of applying the odd-even drawing rule to the word ln.

The next figure shows the curve F17 and the five curves; here F17 = F14 F14 F11 F '14 F '14.

LMove2@z_String, d_, pos_ListD := Block@
8x, y, q, moves<,
8x, y< = pos@@1DD;
q = pos@@2DD;
moves = 88x, y<<;
Map@
Switch@Ò, "+", q += d;, "-", q -= d;, "F",

8x, y< += 8Cos@qD, Sin@qD<;
AppendTo@moves, 8x, y<D;D &,

Characters@zD
D;
moves

D

ColorFibonacci@n_, size_: 400D := Module@
8c<,
c = LMove2@FibonacciLOGOword@nD, 90. Degree,

880, 0<, N@90 DegreeD<D êê Chop;
f3 = Fibonacci@n - 3D;
f6 = Fibonacci@n - 6D;
Graphics@8

Blue, Line@Take@c, 81, f3<DD,
Red, Line@Take@c, 8f3, 2 f3<DD,
Black, Line@Take@c, 82 f3, 2 f3 + f6<DD,
Red, Line@Take@c, 82 f3 + f6, 3 f3 + f6<DD,
Blue, Line@Take@c, 83 f3 + f6, 4 f3 + f6<DD<,

ImageSize Ø 8size, size<D
D
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Manipulate@ColorFibonacci@nD,
88n, 11<, 7, 21, 1, Appearance Ø "Labeled"<,
SaveDefinitions Ø TrueD

n 11
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· Some Variations

The  Fibonacci  word  and  other  words  can  be  derived  from  the  dense  Fibonacci  word,
which was introduced in [7].
Definition 8

The  dense  Fibonacci  word  f
`

 comes  from  the  Fibonacci  word  f  by  applying  the
morphism

(2)hH00L = 0, hH01L = 1, hH10L = 2,

so that f
`
= 102 210 221 102 110 211 022 102 211 021 º⋯.

DenseFibonacciWord@n_D :=
StringReplace@FibonacciWord@nD,
8"00" Ø "0", "01" Ø "1", "10" Ø "2"<D

DenseFibonacciWord@10D

102210221102110211022102211021102110221022101

Given a  drawing rule,  the  global  angle  is  the  sum of  the  successive  angles  generated  by
the  word  through  the  rule.  With  the  natural  drawing  rule,  DH1L = -p ê 2,  DH0L = 0,
DH2L = p ê 2, then DH120L = D H1L+D H2L+DH0L = 0.
For a drawing rule, the resulting angle of a word d  is the function D that gives the global
angle.  A  morphism  q  preserves  the  resulting  angle  if  for  any  word  w,  DHqHwLL = DHwL;
moreover, a morphism q inverts the resulting angle if for any word w, DHqHwLL = -DHwL.

The dense Fibonacci word is strongly linked to the Fibonacci word fractal  because f
`
 can

generate a whole family of curves whose limit is the Fibonacci word fractal [7]. All that is
needed is to apply a morphism to f

`
 that preserves or inverts the resulting angle.
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Here are some examples.

NewFibonacci@n_, string0_, string1_, string2_, angle_D :=
LShow@
"+" <> StringReplace@

StringReplace@DenseFibonacciWord@nD,
8"0" Ø string0, "1" Ø string1, "2" Ø string2<D,

8"0" Ø "F", "1" Ø "F-", "2" Ø "F+"<D, N@angle DegreeD,
150D

Grid@8
Text êü 8

"0 Ø e, 1 Ø 1, 2 Ø 2",
"0 Ø 12, 1 Ø 1, 2 Ø 2",
"0 Ø 0, 1 Ø 1, 2 Ø 2"

<,
8
NewFibonacci@16, "", "1", "2", 90D,
NewFibonacci@16, "12", "1", "2", 90D,
NewFibonacci@16, "0", "1", "2", 90D

<,
Text êü 8

"0 Ø 21, 1 Ø 02, 2 Ø 10,",
"0 Ø 210, 1 Ø 020, 2 Ø 10",
"0 Ø 102, 1 Ø 2, 2 Ø 1"

<,
8
NewFibonacci@16, "21", "02", "10", 90D,
NewFibonacci@16, "210", "020", "10", 90D,
NewFibonacci@16, "102", "2", "1", 90D

<
<, Frame Ø AllD

0 Ø e, 1 Ø 1, 2 Ø 2 0 Ø 12, 1 Ø 1, 2 Ø 2 0 Ø 0, 1 Ø 1, 2 Ø 2

0 Ø 21, 1 Ø 02, 2 Ø 10, 0 Ø 210, 1 Ø 020, 2 Ø 10 0 Ø 102, 1 Ø 2, 2 Ø 1
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Here are some examples with other angles.

Grid@8
Text êü 8

"0 Ø 210, 1 Ø 020, 2 Ø 10",
"0 Ø 2102, 1 Ø 020, 2 Ø 10",
"0 Ø 210, 1 Ø 020, 2 Ø 10"

<,
8
NewFibonacci@16, "210", "020", "10", 100D,
NewFibonacci@16, "2102", "020", "10", 60D,
NewFibonacci@17, "210", "020", "10", 120D

<,
Text êü 8

"0 Ø 01, 1 Ø 2, 2 Ø 10",
"0 Ø 01, 1 Ø 2, 2 Ø 10",
"0 Ø 12, 1 Ø 1, 2 Ø 2"

<,
8
NewFibonacci@16, "01", "2", "10", 150D,
NewFibonacci@21, "01", "2", "10", 60D,
NewFibonacci@16, "12", "1", "2", 70D

<
<, Frame Ø AllD

0 Ø 210, 1 Ø 020, 2 Ø 10 0 Ø 2102, 1 Ø 020, 2 Ø 10 0 Ø 210, 1 Ø 020, 2 Ø 10

0 Ø 01, 1 Ø 2, 2 Ø 10 0 Ø 01, 1 Ø 2, 2 Ø 10 0 Ø 12, 1 Ø 1, 2 Ø 2
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‡ 4. Generalized Fibonacci Words and Fibonacci Word 
Fractals
This  section  introduces  a  generalization  of  the  Fibonacci  word  and  the  Fibonacci  word
fractal [11].
Definition 9

The  Hn, iL-Fibonacci  words  are  words  over  80, 1<  defined  inductively  by  f0@iD = 0,
f1@iD = 0i-1 1, and fn@iD = fn-1@iD fn-2@iD, for n¥ 2 and i¥ 1. The infinite word

f@iD = limnØ¶ fn@iD

is called the i-Fibonacci word.

The  2-Fibonacci  word  is  the  classical  Fibonacci  word.  Here  are  the  first  six  i-Fibonacci
words.

PowerWord@n_, w_StringD := Nest@Ò <> w &, w, n - 1D

iFibonacciWord@i_, 0D = "0";
iFibonacciWord@i_, 1D :=
If@i > 1, PowerWord@i - 1, "0"D <> "1", "1"D

iFibonacciWord@i_, n_D :=
iFibonacciWord@i, n - 1D <> iFibonacciWord@i, n - 2D

Textü
Columnü
TableARowA9Style@"f", BoldDRow@8"@",i,"D"<D, " = ",

iFibonacciWord@i, 6D, "…"=E, 8i, 1, 6<E

f@1D = 1011010110110…
f@2D = 010010100100101001010…
f@3D = 00100010010001000100100010010…
f@4D = 0001000010001000010000100010000100010…
f@5D = 000010000010000100000100000100001000001000010…
f@6D = 00000100000010000010000001000000100000100000010000010…
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The following proposition relates the Fibonacci word f to f@iD.
Proposition 3

Let ji : 80, 1<*ö80, 1<* be the morphism defined by jiH0L = 0 and jiH1L = 0i 1, i¥ 0;
then

(3)f@i+2D = jiHfL

for all i¥ 0.

Definition 10

The  Hn, iL-Fibonacci  number  Fn
@iD  is  defined  recursively  by  F0@iD = 1,  F1@iD = i,  and

Fn
@iD = Fn-1

@iD +Fn-2
@iD, for all n¥ 2 and i¥ 1. 

The  Hn, 1L-Fibonacci  numbers  are  the  Fibonacci  numbers  and  the  Hn, 2L-Fibonacci  num-
bers are the Fibonacci numbers shifted by one. The following table shows the first terms
in  the  sequences  Fn

@iD  and  their  reference  numbers  in  the  On-Line  Encyclopedia  of  Se-
quences (OIES) [12].

text@i_D := Style@"F", ItalicDStyle@"n",ItalicD
Row@8"@",i,"D"<D;

Textü
TableForm@
Table@Table@LinearRecurrence@81, 1<, 81, i<, nD@@nDD,

8n, 1, 10<D, 8i, 1, 6<D, TableHeadings -> 88
Row@8text@1D, "\tA000045"<D,
Row@8text@2D, "\tA000045"<D,
Row@8text@3D, "\tA000204"<D,
Row@8text@4D, "\tA000085"<D,
Row@8text@5D, "\tA022095"<D,
Row@8text@6D, "\tA022096"<D

<, Automatic<D

1 2 3 4 5 6 7 8 9 10
Fn@1D A000045 1 1 2 3 5 8 13 21 34 55
Fn@2D A000045 1 2 3 5 8 13 21 34 55 89
Fn@3D A000204 1 3 4 7 11 18 29 47 76 123
Fn@4D A000085 1 4 5 9 14 23 37 60 97 157
Fn@5D A022095 1 5 6 11 17 28 45 73 118 191
Fn@6D A022096 1 6 7 13 20 33 53 86 139 225
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Proposition 4

The i-Fibonacci word and the Hn, iL-Fibonacci word satisfy the following:

1. The word 11 is not a subword of the i-Fibonacci word, i ¥ 2.

2. Let  a b  be  the  last  two  symbols  of  fn@iD.  For  n ¥ 1,  a b = 10  if  n  is  even  and
a b = 01 if n is odd, i ¥ 2.

3. The  concatenation  of  two  successive  i-Fibonacci  words  is  almost  commutative;
that is, fn-1@iD fn-2@iD  and fn-2@iD fn-1@iD  have a common prefix of length Fn

@iD - 2 for
all n ¥ 2 and i ¥ 2.

4. FI fn@iDM is a palindrome for all n ¥ 1.

5. For all n ¥ 6, fn@iD = fn-3@iD fn-3@iD fn-6@iD ln-3@iD ln-3@iD, where ln@iD = FI fn@iDM b a.

Theorem 1

Let a= A0, i, 1 E be an irrational number, with i a positive integer; then wHaL= f@iD.

For the proof, see [11]. This theorem implies that i-Fibonacci words are Sturmian words.

Note that

A0, i, 1E = 1

i+ 1

1+
1

1+º⋯

=
i-f

i2-i-1
,

where f is the golden ratio.

· The i-Fibonacci Word Fractal

Definition 11

The Hn, iLth  Fibonacci curve,  denoted by Fn
@iD,  is the result of applying the odd-even

drawing rule to the word fn@iD. The i-Fibonacci word fractal F @iD is defined as 

F @iD = limnØ¶ Fn
@iD.
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Here are the curves Fn
@iD for i = 2, 3, 4, 5, 6, 7. 

d@i_, n_D :=
StringJoin@
Table@IntegerString@

Floor@Hj + 1L * FromContinuedFraction@80, i, 81<<DD -
Floor@HjL * FromContinuedFraction@80, i, 81<<DDD,

8j, 1, n<DD

iFibonacciFractal@i_, n_D :=
LShow@
"+" <> StringReplace@d@i, nD,

8"00" Ø "F-F+", "01" Ø "F-F", "10" Ø "FF+"<D,
90. Degree, 150D

Grid@
Partition@
Table@iFibonacciFractal@i,

LinearRecurrence@81, 1<, 81, i<, 12D@@12DDD, 8i, 2, 7<D,
3D, Frame Ø AllD
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Proposition 5

The i-Fibonacci word fractal and the curve Fn
@iD have the following properties:

1. The Fibonacci fractal F @iD is composed only of segments of length 1 or 2.

2. The Fn
@iD curve is similar to the curve Fn-3

@iD.

3. The Fn
@iD curve is composed of five curves:

Fn
@iD = Fn-3

@iD Fn-3
@iD Fn-6

@iD Fn-3
£ @iD Fn-3

£ @iD.

4. The Fn
@iD curve is symmetric.

5. The scale factor between Fn
@iD and Fn-3

@iD is 1+ 2 .

ü Other Characteristic Words

This section applies the above ideas to generate new curves from characteristic words (see
Definition 3).
Conjecture 1

If a= A0, a1, …, an, 1E, then the curve displays the Fibonacci word fractal pattern.

CharacteristicFibonacciFractal@b_, n_D :=
LShow@
"+" <> StringReplace@

StringJoin@
Table@IntegerString@Floor@Hj + 1L bD - Floor@j bDD,
8j, n<DD, 8"00" Ø "F-F+", "01" Ø "F-F",

"10" Ø "FF+"<D, 90. Degree, 400D
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Here are seven examples.

CharacteristicFibonacciFractal@
FromContinuedFraction@80, 2, 2, 1, 2, 1, 2, 81<<D,
33 000D
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CharacteristicFibonacciFractal@
FromContinuedFraction@80, 9, 1, 3, 81<<D, 44 000D
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CharacteristicFibonacciFractal@
FromContinuedFraction@80, 7, 7, 7, 7, 81<<D, 35 500D
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CharacteristicFibonacciFractal@
FromContinuedFraction@80, 5, 10, 5, 81<<D, 9900D
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CharacteristicFibonacciFractal@
FromContinuedFraction@80, 3, 85<<D, 10 000D
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CharacteristicFibonacciFractal@
FromContinuedFraction@80, 5, 82<<D, 5000D
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CharacteristicFibonacciFractal@
FromContinuedFraction@80, 9, 3, 2, 1, 82, 3<<D, 172 000D
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