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Using Reduce to Compute 
Nash Equilibria
Classroom Tools for Game Theory
Sérgio O. Parreiras

The Karush–Kuhn–Tucker equations (under suitable conditions) 
provide necessary and sufficient conditions for the solution of 
the problem of maximizing (minimizing) a concave (convex) 
function. This article corrects the program in [1], which computes 
the solution of Karush–Kuhn–Tucker equations. Our main goal, 
however, is to provide a program to compute the set of all Nash 
equilibria of a bimatrix game. The program works well for “small” 
games (i.e. 4×4 or smaller games); thus, in particular, it is 
suitable for constructing classroom examples and as an 
additional tool to empower students in classes using game 
theory.

‡ Karush–Kuhn–Tucker Equations
The Karush–Kuhn–Tucker  equations (under  suitable  assumptions)  provide necessary and
sufficient  conditions  for  the  solution  of  the  problem of  maximizing  (minimizing)  a  con-
cave (convex) function.
For an excellent reference, see the tutorial in [2]. Here we modify the code of [1] by cor-
recting minor typos, simplifying, and letting the user specify restrictions on the exogenous
parameters of the model.

KT@obj_, cons_, vars_, paramcons_: TrueD :=
Module@8stdcons, eqcons, ineqcons, lambdas, mus,

eqs1, eqs2, eqs3<,
stdcons =
cons ê.8x_ ¥ y_ Ø y - x § 0, x_ > y_ Ø y - x < 0,

x_ == y_ Ø x - y ã 0, x_ § y_ Ø x - y § 0<;
eqcons = Cases@stdcons, x_ ã 0 Ø xD;
ineqcons = Cases@stdcons, x_ § 0 Ø xD;

lambdas = Array@l, Length@ineqconsDD;
mus = Array@m, Length@eqconsDD;
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mus = Array@m, Length@eqconsDD;

eqs1 = D@H* Lagrangian: *L
obj + mus.eqcons - lambdas.ineqcons ã 0, 8vars<D;

eqs2 = Thread@lambdas ¥ 0D;
eqs3 = Table@lambdas@@iDD ineqcons@@iDD ã 0,

8i, Length@ineqconsD<D;

Assuming@
paramcons,
Refine@Reduce@Join@eqs1, eqs2, eqs3, consD,

Join@vars, lambdas, musD, Reals,
Backsubstitution Ø TrueDD

D
D

· An Example from Consumer Choice

The inputs  of  KT  are  the  objective  function to  be  maximized,  the  list  of  constraints,  and
the list of choice variables. Here is an example from consumer choice theory: maximize a
utility function, subject to a budget constraint.

KT@Log@xD + Log@yD, 8px * x + py * y § income<, 8x, y<D

py < 0 && px < 0 && income > 0 &&

x ã
income

2 px
&& y ã

income

2 py
&& l@1D ã

2

income
»»

py < 0 && px > 0 && income > 0 && x ã
income

2 px
&&

y ã
income

2 py
&& l@1D ã

2

income
»»

py > 0 && px < 0 && income > 0 && x ã
income

2 px
&& y ã

income

2 py
&&

l@1D ã
2

income
»» py > 0 && px > 0 && income > 0 &&

x ã
income

2 px
&& y ã

income

2 py
&& l@1D ã

2

income
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Several of the solutions do not make economic sense, because they do not use the fact that
the income, price of good x, and price of good y are all positive. However, KT lets the user
specify restrictions on the exogenous parameters of the model.

KT@Log@xD + Log@yD, 8px x + py y § income<, 8x, y<,
8income > 0, px > 0, py > 0<D

x ã
income

2 px
&& y ã

income

2 py
&& l@1D ã

2

income

An important advantage of KT  over other optimization functions (such as Maximize  or
Minimize) is that KT returns the value of the Kuhn–Tucker multipliers. These multipli-
ers have an important economic interpretation: they are shadow prices for the constrained
resources. In the above example, for instance, the value of l@1D is the “infinitesimal” incre-
ment in the utility function of the consumer that is generated when the budget constraint is
relaxed by increasing the consumer’s income by an “infinitesimal amount.”

‡ Computing Nash Equilibrium of Bimatrix Games
Nash equilibrium is the main solution concept in game theory. It is a crucial tool for eco-
nomics and political science models. Essentially, a Nash equilibrium is a profile of strate-
gies (one strategy for each player), such that if a player takes the choices of the others as
given (i.e. as parameters), then the player’s strategy must maximize his or her payoff. 
The function Nash  takes as input the payoff function of player 1, the payoff function of
player  2,  and  the  actions  available  to  players  1  and  2.  It  returns  the  entire  set  of  Nash
equilibria.

Nash@obj1_, obj2_, vars1_, vars2_D := Module@
8n1, n2, lambdas1, lambdas2, eqs1, eqs2, eqs3, eqs4,

eqs5, eqcons1, eqcons2<,

n1 = Length@vars1D;
n2 = Length@vars2D;

lambdas1 = Array@l1, n1D;
lambdas2 = Array@l2, n2D;

eqs1 = D@H* Lagrangian 1: *L
obj1 + m1 Sum@vars1@@kDD, 8k, n1<D + lambdas1.vars1 ã 0,
8vars1<D;

eqs2 = D@H* Lagrangian 2: *L
obj2 + m2 Sum@vars2@@kDD, 8k, n2<D + lambdas2.vars2 ã 0,
8vars2<D;

eqs3 = Join@
Thread@lambdas1 ¥ 0D,
Thread@lambdas2 ¥ 0D

D;
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D;

eqs4 = Table@lambdas1@@iDD vars1@@iDD ã 0, 8i, n1<D;
eqs5 = Table@lambdas2@@iDD vars2@@iDD ã 0, 8i, n2<D;

eqcons1 = 8Sum@vars1@@iDD, 8i, n1<D - 1 ã 0<;
eqcons2 = 8Sum@vars2@@iDD, 8i, n2<D - 1 ã 0<;

Reduce@
Join@eqs1, eqs2, eqs3, eqs4, eqs5, eqcons1, eqcons2,
Thread@-vars1 § 0D, Thread@-vars2 § 0DD,

Join@vars1, vars2, lambdas1, lambdas2, 8m1, m2<D,
Reals, Backsubstitution Ø True

D ê. Join@
8m1 ã x_ Ø True, m2 ã x_ Ø True<,
Inner@Rule, Thread@lambdas1 ã x_D,

8Table@True, 8i, n1<D<¬, ListD@@1DD,
Inner@Rule, Thread@lambdas2 ã x_D,

8Table@True, 8i, n2<D<¬, ListD@@1DD
D

D

· A Colonel Blottoʼs Game

There  are  many  versions  of  Colonel  Blotto’s  game;  this  is  a  simple  one  taken  from [3].
General A (row player) has three divisions to defend a city; she has to choose how many
divisions to place at the north road and how many divisions at the south road. General B
(column  player)  has  two  divisions  to  try  to  invade  the  city;  he  also  has  to  choose  how
many divisions to be assigned to the north road and how many to the south road. If Gen-
eral A has at least as many divisions as General B at a given road, General A wins the bat-
tle there (defense is favored in the case of a tie). To win the game, however, A must defeat
B on both battlefields. Thus, A has four possible strategies and B has three strategies. The
table below summarizes the players’ strategies and payoffs (victory = 1, defeat = 0 for the
whole campaign).  For example,  in the first  row and first  column the entry is  1, 0,  which
means A won and B lost; A chose three divisions for the north road and none for the south
road; B chose two for the north and none for the south. Because 3 ¥ 2 and 0 ¥ 0, A won
both battles.
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General B

General A

H2, 0L H1, 1L H0, 2L
H3, 0L 1, 0 0, 1 0, 1
H2, 1L 1, 0 1, 0 0, 1
H1, 2L 0, 1 1, 0 1, 0
H0, 3L 0, 1 0, 1 1, 0

Ú Game 1. Colonel Blotto.

A Nash equilibrium for this game is a probability distribution over strategies; use P for the
probabilities chosen by General A and Q for the probabilities chosen by General B.

Module@
8P, Q, u<,
P = Table@p@iD, 8i, 4<D;
Q = Table@q@iD, 8i, 3<D;
u = P.881, 0, 0<, 81, 1, 0<, 80, 1, 1<, 80, 0, 1<<.Q;
Nash@u, 1 - u, P, QD

D

p@1D ã 0 && p@2D ã
1

2
&& 0 § p@3D §

1

2
&&

p@4D ã
1

2
H1 - 2 p@3DL && q@1D ã

1

2
&& q@2D ã 0 && q@3D ã

1

2
»»

0 < p@1D <
1

2
&& p@2D ã

1

2
H1 - 2 p@1DL && p@1D § p@3D §

1

2
&&

p@4D ã
1

2
H1 - 2 p@3DL && q@1D ã

1

2
&& q@2D ã 0 && q@3D ã

1

2
»»

p@1D ã
1

2
&& p@2D ã 0 && p@3D ã

1

2
&& p@4D ã 0 &&

q@1D ã
1

2
&& q@2D ã 0 && q@3D ã

1

2
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The game has many Nash equilibria, but we still can make predictions: General B is never
going to spread his forces evenly (the probability of his second strategy is zero in any equi-
librium,  q@2D ã 0);  with  probability  12 ,  B’s  two  divisions  are  placed  at  the  north  road

(q@1D ã 1
2

)  and  with  probability  12 ,  they  are  placed  at  the  south  road  (q@3D ã 1
2

).  As
for General A, the probability that she places all of her three divisions on one front is less
than half (i.e. p@1D § 1

2
 and p@4D § 1

2
). Also, the probability that General A places two

or more divisions at the north (or south) is always equal to half (i.e.  p@1D + p@2D ã 1
2

and p@3D + p@4D ã 1
2

).

· A Card Game

This game is also borrowed from [3]. A deck has two cards, one high and one low. Each
player places one dollar into the pot. Player 1 gets one card from the deck. Player 2 does
not see Player 1’s card. Player 1 decides whether to raise (by placing another dollar in the
pot) or not raise. Player 2 observes 1’s action and then has to decide whether to match the
bet  or  fold.  If  Player  2  folds,  then  Player  1  wins  the  contents  of  the  pot.  However,  if
Player  2  matches,  Player  2  places  another  dollar  into  the  pot  if  Player  1  had  previously
raised.  Player  1  reveals  her  card.  If  it  is  the  high card,  Player  1  wins  the  pot;  otherwise,
Player 2 wins it. 
See  Figure  1  for  the  corresponding  game  tree.  We  introduce  a  fictitious  player,  Nature,
who randomly decides if the card is high or low. We depict the bimatrix representation of
the game. Player 1 has four strategies: always raise (RR), always not raise (NN), raise if
the  card  is  high  and  not  otherwise  (RN),  and  not  raise  if  the  card  is  high  and  raise
otherwise (NR). Player 2 also has four strategies: always match (MM), always fold (FF),
match only if Player 1 raised (MF), and fold only if Player 1 raised (FM). For simplicity,
in the bimatrix representation, we write the expected payoffs of Player 1 and omit Player
2’s payoffs (this is without loss of generality in zero-sum games).
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MM MF FM FF
RR 0 0 1 1
RN 1 ê 2 3 ê 2 0 1
NR -1 ê 2 -1 ê 2 1 1
NN 0 1 0 1

Ú Figure 1. Game tree of the card game.
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Module@
8P, Q, u<,
P = Table@p@iD, 8i, 4<D;
Q = Table@q@iD, 8i, 4<D;
u = P.880, 0, 1, 1<, 81 ê 2, 3 ê 2, 0, 1<, 8-1 ê 2, -1 ê 2, 1, 1<,

80, 1, 0, 1<<.Q ; H* Player 1's expected payoff;
Player 2's is 1-u. *L
Nash@u, 1 - u, P, QD

D

p@1D ã
1

3
&& p@2D ã

2

3
&& p@3D ã 0 && p@4D ã 0 &&

q@1D ã
2

3
&& q@2D ã 0 && q@3D ã

1

3
&& q@4D ã 0

In this case, the Nash equilibrium delivers a sharp prediction. When Player 1 has the high
card,  she  always  raises  (p@1D + p@2D ã 1),  but  when  she  has  the  low  card,  she  bluffs
with  probability  13  (the  probability  of  RR is  p@1D ã 1

3
).  When  Player  1  does  not  raise,

Player  2  always  matches  (q@1D + q@3D ã 1).  If  Player  1  raises,  Player  2  still  may
match, but with probability 23  (the probability of always matching MM is q@1D ã 2

3
).

‡ Summary
We extended the code of [1] to solve for Kuhn–Tucker conditions with additional assump-
tions on parameters and, more importantly, using the Kuhn–Tucker equations we provide
a program to compute all the Nash equilibria of finite bimatrix games.

‡ Conclusion
We presented a program to compute the set of all Nash equilibria in finite bimatrix games.
Its  intended goal  is  as  a  classroom tool  for  students  and instructors.  Needless  to  say,  the
code is not efficient. For larger inputs (say bimatrix games with five or more actions per
player), Reduce  often fails to solve the system of Kuhn–Tucker equations. For optimiz-
ing  algorithms,  we  suggest  [4].  Nevertheless,  with  continuous  improvement  of  hardware
and  algorithms  for  solving  semialgebraic  systems  (see  [5]),  these  methods  may  become
useful for research applications sooner than we think. Finally, as algorithmic game theory
courses become more popular in computer science departments,  it  seems that the time to
bring computational methods and algorithms to economics departments is already overdue.
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