
The Mathematica® Journal

Using Reduce to Compute
Nash Equilibria
Classroom Tools for Game Theory
Sérgio O. Parreiras

The Karush–Kuhn–Tucker equations (under suitable conditions)
provide necessary and sufficient conditions for the solution of
the problem of maximizing (minimizing) a concave (convex)
function. This article corrects the program in [1], which computes
the solution of Karush–Kuhn–Tucker equations. Our main goal,
however, is to provide a program to compute the set of all Nash
equilibria of a bimatrix game. The program works well for “small”
games (i.e. 4×4 or smaller games); thus, in particular, it is
suitable for constructing classroom examples and as an
additional tool to empower students in classes using game
theory.

‡ Karush–Kuhn–Tucker Equations
The Karush–Kuhn–Tucker equations (under suitable assumptions) provide necessary and
sufficient conditions for the solution of the problem of maximizing (minimizing) a con-
cave (convex) function.
For an excellent reference, see the tutorial in [2]. Here we modify the code of [1] by cor-
recting minor typos, simplifying, and letting the user specify restrictions on the exogenous
parameters of the model.

KT@obj_, cons_, vars_, paramcons_: TrueD :=
Module@8stdcons, eqcons, ineqcons, lambdas, mus,

eqs1, eqs2, eqs3<,
stdcons =
cons ê.8x_ ¥ y_ Ø y - x § 0, x_ > y_ Ø y - x < 0,

x_ == y_ Ø x - y ã 0, x_ § y_ Ø x - y § 0<;
eqcons = Cases@stdcons, x_ ã 0 Ø xD;
ineqcons = Cases@stdcons, x_ § 0 Ø xD;

lambdas = Array@l, Length@ineqconsDD;
mus = Array@m, Length@eqconsDD;

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

mus = Array@m, Length@eqconsDD;

eqs1 = D@H* Lagrangian: *L
obj + mus.eqcons - lambdas.ineqcons ã 0, 8vars<D;

eqs2 = Thread@lambdas ¥ 0D;
eqs3 = Table@lambdas@@iDD ineqcons@@iDD ã 0,

8i, Length@ineqconsD<D;

Assuming@
paramcons,
Refine@Reduce@Join@eqs1, eqs2, eqs3, consD,

Join@vars, lambdas, musD, Reals,
Backsubstitution Ø TrueDD

D
D

· An Example from Consumer Choice

The inputs of KT are the objective function to be maximized, the list of constraints, and
the list of choice variables. Here is an example from consumer choice theory: maximize a
utility function, subject to a budget constraint.

KT@Log@xD + Log@yD, 8px * x + py * y § income<, 8x, y<D

py < 0 && px < 0 && income > 0 &&

x ã
income

2 px
&& y ã

income

2 py
&& l@1D ã

2

income
»»

py < 0 && px > 0 && income > 0 && x ã
income

2 px
&&

y ã
income

2 py
&& l@1D ã

2

income
»»

py > 0 && px < 0 && income > 0 && x ã
income

2 px
&& y ã

income

2 py
&&

l@1D ã
2

income
»» py > 0 && px > 0 && income > 0 &&

x ã
income

2 px
&& y ã

income

2 py
&& l@1D ã

2

income

2 Sérgio O. Parreiras

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Several of the solutions do not make economic sense, because they do not use the fact that
the income, price of good x, and price of good y are all positive. However, KT lets the user
specify restrictions on the exogenous parameters of the model.

KT@Log@xD + Log@yD, 8px x + py y § income<, 8x, y<,
8income > 0, px > 0, py > 0<D

x ã
income

2 px
&& y ã

income

2 py
&& l@1D ã

2

income

An important advantage of KT over other optimization functions (such as Maximize or
Minimize) is that KT returns the value of the Kuhn–Tucker multipliers. These multipli-
ers have an important economic interpretation: they are shadow prices for the constrained
resources. In the above example, for instance, the value of l@1D is the “infinitesimal” incre-
ment in the utility function of the consumer that is generated when the budget constraint is
relaxed by increasing the consumer’s income by an “infinitesimal amount.”

‡ Computing Nash Equilibrium of Bimatrix Games
Nash equilibrium is the main solution concept in game theory. It is a crucial tool for eco-
nomics and political science models. Essentially, a Nash equilibrium is a profile of strate-
gies (one strategy for each player), such that if a player takes the choices of the others as
given (i.e. as parameters), then the player’s strategy must maximize his or her payoff.
The function Nash takes as input the payoff function of player 1, the payoff function of
player 2, and the actions available to players 1 and 2. It returns the entire set of Nash
equilibria.

Nash@obj1_, obj2_, vars1_, vars2_D := Module@
8n1, n2, lambdas1, lambdas2, eqs1, eqs2, eqs3, eqs4,

eqs5, eqcons1, eqcons2<,

n1 = Length@vars1D;
n2 = Length@vars2D;

lambdas1 = Array@l1, n1D;
lambdas2 = Array@l2, n2D;

eqs1 = D@H* Lagrangian 1: *L
obj1 + m1 Sum@vars1@@kDD, 8k, n1<D + lambdas1.vars1 ã 0,
8vars1<D;

eqs2 = D@H* Lagrangian 2: *L
obj2 + m2 Sum@vars2@@kDD, 8k, n2<D + lambdas2.vars2 ã 0,
8vars2<D;

eqs3 = Join@
Thread@lambdas1 ¥ 0D,
Thread@lambdas2 ¥ 0D

D;

Using Reduce to Compute Nash Equilibria 3

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

D;

eqs4 = Table@lambdas1@@iDD vars1@@iDD ã 0, 8i, n1<D;
eqs5 = Table@lambdas2@@iDD vars2@@iDD ã 0, 8i, n2<D;

eqcons1 = 8Sum@vars1@@iDD, 8i, n1<D - 1 ã 0<;
eqcons2 = 8Sum@vars2@@iDD, 8i, n2<D - 1 ã 0<;

Reduce@
Join@eqs1, eqs2, eqs3, eqs4, eqs5, eqcons1, eqcons2,
Thread@-vars1 § 0D, Thread@-vars2 § 0DD,

Join@vars1, vars2, lambdas1, lambdas2, 8m1, m2<D,
Reals, Backsubstitution Ø True

D ê. Join@
8m1 ã x_ Ø True, m2 ã x_ Ø True<,
Inner@Rule, Thread@lambdas1 ã x_D,

8Table@True, 8i, n1<D<¬, ListD@@1DD,
Inner@Rule, Thread@lambdas2 ã x_D,

8Table@True, 8i, n2<D<¬, ListD@@1DD
D

D

· A Colonel Blottoʼs Game

There are many versions of Colonel Blotto’s game; this is a simple one taken from [3].
General A (row player) has three divisions to defend a city; she has to choose how many
divisions to place at the north road and how many divisions at the south road. General B
(column player) has two divisions to try to invade the city; he also has to choose how
many divisions to be assigned to the north road and how many to the south road. If Gen-
eral A has at least as many divisions as General B at a given road, General A wins the bat-
tle there (defense is favored in the case of a tie). To win the game, however, A must defeat
B on both battlefields. Thus, A has four possible strategies and B has three strategies. The
table below summarizes the players’ strategies and payoffs (victory = 1, defeat = 0 for the
whole campaign). For example, in the first row and first column the entry is 1, 0, which
means A won and B lost; A chose three divisions for the north road and none for the south
road; B chose two for the north and none for the south. Because 3 ¥ 2 and 0 ¥ 0, A won
both battles.

4 Sérgio O. Parreiras

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

General B

General A

H2, 0L H1, 1L H0, 2L
H3, 0L 1, 0 0, 1 0, 1
H2, 1L 1, 0 1, 0 0, 1
H1, 2L 0, 1 1, 0 1, 0
H0, 3L 0, 1 0, 1 1, 0

Ú Game 1. Colonel Blotto.

A Nash equilibrium for this game is a probability distribution over strategies; use P for the
probabilities chosen by General A and Q for the probabilities chosen by General B.

Module@
8P, Q, u<,
P = Table@p@iD, 8i, 4<D;
Q = Table@q@iD, 8i, 3<D;
u = P.881, 0, 0<, 81, 1, 0<, 80, 1, 1<, 80, 0, 1<<.Q;
Nash@u, 1 - u, P, QD

D

p@1D ã 0 && p@2D ã
1

2
&& 0 § p@3D §

1

2
&&

p@4D ã
1

2
H1 - 2 p@3DL && q@1D ã

1

2
&& q@2D ã 0 && q@3D ã

1

2
»»

0 < p@1D <
1

2
&& p@2D ã

1

2
H1 - 2 p@1DL && p@1D § p@3D §

1

2
&&

p@4D ã
1

2
H1 - 2 p@3DL && q@1D ã

1

2
&& q@2D ã 0 && q@3D ã

1

2
»»

p@1D ã
1

2
&& p@2D ã 0 && p@3D ã

1

2
&& p@4D ã 0 &&

q@1D ã
1

2
&& q@2D ã 0 && q@3D ã

1

2

Using Reduce to Compute Nash Equilibria 5

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

The game has many Nash equilibria, but we still can make predictions: General B is never
going to spread his forces evenly (the probability of his second strategy is zero in any equi-
librium, q@2D ã 0); with probability 12 , B’s two divisions are placed at the north road

(q@1D ã 1
2

) and with probability 12 , they are placed at the south road (q@3D ã 1
2

). As
for General A, the probability that she places all of her three divisions on one front is less
than half (i.e. p@1D § 1

2
 and p@4D § 1

2
). Also, the probability that General A places two

or more divisions at the north (or south) is always equal to half (i.e. p@1D + p@2D ã 1
2

and p@3D + p@4D ã 1
2

).

· A Card Game

This game is also borrowed from [3]. A deck has two cards, one high and one low. Each
player places one dollar into the pot. Player 1 gets one card from the deck. Player 2 does
not see Player 1’s card. Player 1 decides whether to raise (by placing another dollar in the
pot) or not raise. Player 2 observes 1’s action and then has to decide whether to match the
bet or fold. If Player 2 folds, then Player 1 wins the contents of the pot. However, if
Player 2 matches, Player 2 places another dollar into the pot if Player 1 had previously
raised. Player 1 reveals her card. If it is the high card, Player 1 wins the pot; otherwise,
Player 2 wins it.
See Figure 1 for the corresponding game tree. We introduce a fictitious player, Nature,
who randomly decides if the card is high or low. We depict the bimatrix representation of
the game. Player 1 has four strategies: always raise (RR), always not raise (NN), raise if
the card is high and not otherwise (RN), and not raise if the card is high and raise
otherwise (NR). Player 2 also has four strategies: always match (MM), always fold (FF),
match only if Player 1 raised (MF), and fold only if Player 1 raised (FM). For simplicity,
in the bimatrix representation, we write the expected payoffs of Player 1 and omit Player
2’s payoffs (this is without loss of generality in zero-sum games).

6 Sérgio O. Parreiras

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

MM MF FM FF
RR 0 0 1 1
RN 1 ê 2 3 ê 2 0 1
NR -1 ê 2 -1 ê 2 1 1
NN 0 1 0 1

Ú Figure 1. Game tree of the card game.

Using Reduce to Compute Nash Equilibria 7

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Module@
8P, Q, u<,
P = Table@p@iD, 8i, 4<D;
Q = Table@q@iD, 8i, 4<D;
u = P.880, 0, 1, 1<, 81 ê 2, 3 ê 2, 0, 1<, 8-1 ê 2, -1 ê 2, 1, 1<,

80, 1, 0, 1<<.Q ; H* Player 1's expected payoff;
Player 2's is 1-u. *L
Nash@u, 1 - u, P, QD

D

p@1D ã
1

3
&& p@2D ã

2

3
&& p@3D ã 0 && p@4D ã 0 &&

q@1D ã
2

3
&& q@2D ã 0 && q@3D ã

1

3
&& q@4D ã 0

In this case, the Nash equilibrium delivers a sharp prediction. When Player 1 has the high
card, she always raises (p@1D + p@2D ã 1), but when she has the low card, she bluffs
with probability 13 (the probability of RR is p@1D ã 1

3
). When Player 1 does not raise,

Player 2 always matches (q@1D + q@3D ã 1). If Player 1 raises, Player 2 still may
match, but with probability 23 (the probability of always matching MM is q@1D ã 2

3
).

‡ Summary
We extended the code of [1] to solve for Kuhn–Tucker conditions with additional assump-
tions on parameters and, more importantly, using the Kuhn–Tucker equations we provide
a program to compute all the Nash equilibria of finite bimatrix games.

‡ Conclusion
We presented a program to compute the set of all Nash equilibria in finite bimatrix games.
Its intended goal is as a classroom tool for students and instructors. Needless to say, the
code is not efficient. For larger inputs (say bimatrix games with five or more actions per
player), Reduce often fails to solve the system of Kuhn–Tucker equations. For optimiz-
ing algorithms, we suggest [4]. Nevertheless, with continuous improvement of hardware
and algorithms for solving semialgebraic systems (see [5]), these methods may become
useful for research applications sooner than we think. Finally, as algorithmic game theory
courses become more popular in computer science departments, it seems that the time to
bring computational methods and algorithms to economics departments is already overdue.

8 Sérgio O. Parreiras

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

‡ References
[1] F. J. Kampas, “Tricks of Using Reduce to Solve Khun–Tucker Equations,” The Mathematica

Journal, 9(4), 2005 pp. 686–689.
www.mathematica-journal.com/issue/v9i4/contents/Tricks9-4/Tricks9-4_2.html.

[2] M. J. Osborne. “Optimization: The Kuhn–Tucker Conditions for Problems with Inequality Con-
straints,” from Mathematical Methods for Economic Theory: A Tutorial. (Jan 8, 2014)
www.economics.utoronto.ca/osborne/MathTutorial/MOIF.HTM.

[3] M. Osborne, “An Introduction to Game Theory,” New York: Oxford University Press, 2004.

[4] R. D. McKelvey, A. M. McLennan, and T. L. Turocy. “Gambit: Software Tools for Game The-
ory.” (Jan 8, 2014) www.gambit-project.org.

[5] Wolfram Research, “Real Polynomial Systems” from Wolfram Mathematica Documentation
Center—A Wolfram Web Resource.
reference.wolfram.com/mathematica/tutorial/RealPolynomialSystems.html.

S. O. Parreiras, “Using Reduce to Compute Nash Equilibria,” The Mathematica Journal, 2014.
dx.doi.org/doi:10.3888/tmj.16-3.

About the Author

Sérgio O. Parreiras is an associate professor at the UNC-Chapel Hill Department of Eco-
nomics. His research focus is on game theory and its applications to auctions, mechanism
design, and contests. He is also interested in computational economics, general equilib-
rium theory, algorithmic game theory, and evolutionary anthropology.
Sérgio O. Parreiras
UNC, Department of Economics
Gardner Hall, 200B
Chapel Hill, N.C. 27599-3305
sergiop@unc.edu

Using Reduce to Compute Nash Equilibria 9

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

