
The Mathematica® Journal

Complex System Reliability
A Graph Theory Approach
Todd Silvestri

We demonstrate a method of generating an exact analytical
expression for the reliability of a complex system using a
directed acyclic graph to represent the systemʼs reliability block
diagram. Additionally, we show how statistical information stored
in a reliability block diagram can be used to transform an
analytical expression into a time-dependent function for system
reliability.

‡ Introduction
Among its many interpretations, the term reliability most commonly refers to the ability
of a device or system to perform a task successfully when required. More formally, it is
described as the probability of functioning properly at a given time and under specified
operating conditions [1]. Mathematically, the reliability function is defined by

RHtL = PHT > tL for t ¥ 0,

where T is a nonnegative random variable representing the device or system lifetime.

For a system composed of at least two components, the system reliability is determined by
the reliability of the individual components and the relationships among them. These rela-
tionships can be depicted using a reliability block diagram (RBD).
Simple systems are usually represented by RBDs with components in either a series or
parallel configuration. In a series system, all components must function satisfactorily in
order for the system to operate. For a parallel system to operate, at least one component
must function correctly. Systems can also contain components arranged in both series and
parallel configurations. If an RBD cannot be reduced to a series, parallel, or series-parallel
configuration, then it is considered a complex system.
This article deals with the generation of an exact analytical expression for the reliability of
a complex system. The demonstrated method relies on finding all paths between the
source and target vertices in a directed acyclic graph (i.e., RBD), as well as the inclusion-
exclusion principle for probability.

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

A Note on Timings

The timings reported in this article were measured on a custom workstation PC using the
built-in function Timing. The system consists of an Intel® Core’ i7 CPU 950 @ 4 GHz
and 24 GB of DDR3 memory. It runs Microsoft® Windows’ 7 Professional (64-bit) and
scores 1.32 on the MathematicaMark9 benchmark.

‡ Finding All Hs, tL-Paths in a Directed Acyclic Graph
We begin by considering a directed graph G = HV , EL that consists of a finite set V of ver-
tices together with a finite set E of ordered pairs of vertices called directed edges. The
built-in function Graph can be used to construct a graph from explicit lists of vertices
and edges.

vertices = Range@16D;
edges = 81 ð 2, 1 ð 5, 2 ð 3, 2 ð 6, 3 ð 4, 3 ð 7, 4 ð 8,

5 ð 6, 5 ð 9, 6 ð 7, 6 ð 10, 7 ð 8, 7 ð 11, 8 ð 12,
9 ð 10, 9 ð 13, 10 ð 11, 10 ð 14, 11 ð 12, 11 ð 15,
12 ð 16, 13 ð 14, 14 ð 15, 15 ð 16<;

G@"GridGraph"D = Graph@vertices, edges,
GraphLayout Ø 8"GridEmbedding", "Dimension" Ø 84, 4<<,
ImagePadding Ø 10, ImageSize Ø 200, VertexLabels Ø "Name"D

This two-dimensional grid graph, labeled G4,4, can be constructed much more efficiently
by using the built-in function GridGraph. Throughout this section, we utilize it to illus-
trate our functions.

2 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Now, for a vertex v œ V , we define the set NG
+HvL of out-neighbors as

NG
+HvL = 8w œ V v w œ E<,

where v w is taken to mean a directed edge from v to w. This is implemented in the func-
tion VertexOutNeighbors.

VertexOutNeighbors@g_?DirectedGraphQ, v_D :=
Cases@EdgeList@gD, DirectedEdge@v, w_D ß wD

VertexOutNeighbors@g_?DirectedGraphQD :=
Map@VertexOutNeighbors@g, ÒD &, VertexList@gDD

VertexOutNeighbors behaves similarly to the built-in function VertexOutÖ
Degree. That is, given a graph G and a vertex v, the function returns a list of out-neigh-
bors for the specified vertex.

VertexOutNeighbors@G@"GridGraph"D, 1D

82, 5<

If, however, only the graph G is specified, the function will give a list of vertex out-neigh-
bors for all vertices in the graph.

VertexOutNeighbors@G@"GridGraph"DD

882, 5<, 83, 6<, 84, 7<, 88<, 86, 9<, 87, 10<, 88, 11<, 812<,
810, 13<, 811, 14<, 812, 15<, 816<, 814<, 815<, 816<, 8<<

The order in which the out-neighbors are displayed is determined by the order of vertices
returned by VertexList.

VertexList@G@"GridGraph"DD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16<

We can implement similar functions to obtain the set NG
-HvL of in-neighbors by simply

changing DirectedEdge@v, w_D ß w to DirectedEdge@u_, vD ß u.

The next step toward our goal is to consider a method of traversing a graph. One common
approach of systematically visiting all vertices of a graph is known as depth-first search
(DFS). In its most basic form, a DFS algorithm involves visiting a vertex, marking it as
“visited,” and then recursively visiting all of its neighbors [2]. The function
DepthFirstSearch implements this algorithm for directed graphs.

Complex System Reliability 3

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

DepthFirstSearch@g_?DirectedGraphQ, s_D :=
Block@8$RecursionLimit = 1024, visited = 8<<,
dfs@v_D :=
If@! MemberQ@visited, vD,
AppendTo@visited, vD;
Scan@dfs@ÒD &, VertexOutNeighbors@g, vDD

D;

dfs@sD;

visited
D

Given a graph G and a starting vertex s, DepthFirstSearch returns a list of vertices
in the order in which they are visited.

DepthFirstSearch@G@"GridGraph"D, 1D

81, 2, 3, 4, 8, 12, 16, 7, 11, 15, 6, 10, 14, 5, 9, 13<

We compare this with the result of the built-in function DepthFirstScan.

Reap@DepthFirstScan@G@"GridGraph"D, 1,
8"PrevisitVertex" Ø Sow<DDP2, 1T

81, 2, 3, 4, 8, 12, 16, 7, 11, 15, 6, 10, 14, 5, 9, 13<

Next, let us define the function DirectedAcyclicGraphQ.

DirectedAcyclicGraphQ@g_D :=
DirectedGraphQ@gD && AcyclicGraphQ@gD

If the graph G is both directed and acyclic, DirectedAcyclicGraphQ yields True.
Otherwise, it yields False.

DirectedAcyclicGraphQ@G@"GridGraph"DD

True

Finally, we consider the problem of finding all paths in a directed acyclic graph G be-
tween two arbitrary vertices s, t œ V . Typically, we refer to s as the source and t as the tar-
get. A path in G is defined as a sequence of vertices 8v1, v2, …, vk< such that vi vi+1 œ E
for i = 1, 2, …, k - 1. Since we have constrained ourselves to a directed acyclic graph, all
paths are simple. That is to say, all vertices in a path are distinct.

4 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

By modifying the depth-first search algorithm, we arrive at a solution.

FindPaths@g_?DirectedAcyclicGraphQ, s_, t_D :=
Block@8$RecursionLimit = 1024, paths = 8<<,
fp@path_List, v_D :=
If@v =!= t,
Scan@fp@Append@path, ÒD, ÒD &,
VertexOutNeighbors@g, vDD,

H* else *L
AppendTo@paths, pathD;

D;

fp@8s<, sD;

paths
D

Like the original DFS algorithm, we visit a vertex and then recursively visit all of its
neighbors. However, instead of checking if a vertex has been marked “visited,” we
compare the current vertex to the target. If they do not match, we continue to traverse the
graph. Otherwise, the target has been reached and we store the path for later output.
For a given directed acyclic graph G, a source vertex s, and a target vertex t, FindPaths
returns a list of all paths connecting s to t.

FindPaths@G@"GridGraph"D, 1, 16D

881, 2, 3, 4, 8, 12, 16<, 81, 2, 3, 7, 8, 12, 16<,
81, 2, 3, 7, 11, 12, 16<, 81, 2, 3, 7, 11, 15, 16<,
81, 2, 6, 7, 8, 12, 16<, 81, 2, 6, 7, 11, 12, 16<,
81, 2, 6, 7, 11, 15, 16<, 81, 2, 6, 10, 11, 12, 16<,
81, 2, 6, 10, 11, 15, 16<, 81, 2, 6, 10, 14, 15, 16<,
81, 5, 6, 7, 8, 12, 16<, 81, 5, 6, 7, 11, 12, 16<,
81, 5, 6, 7, 11, 15, 16<, 81, 5, 6, 10, 11, 12, 16<,
81, 5, 6, 10, 11, 15, 16<, 81, 5, 6, 10, 14, 15, 16<,
81, 5, 9, 10, 11, 12, 16<, 81, 5, 9, 10, 11, 15, 16<,
81, 5, 9, 10, 14, 15, 16<, 81, 5, 9, 13, 14, 15, 16<<

In this particular instance, the function takes approximately 0.85 milliseconds to return the
result.
FindPaths works for any pair of vertices.

FindPaths@G@"GridGraph"D, 3, 8D

883, 4, 8<, 83, 7, 8<<

Complex System Reliability 5

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

If no path is found, the function returns an empty list.

FindPaths@G@"GridGraph"D, 8, 3D

8<

‡ Minimal Paths, Inclusion-Exclusion, and System
Reliability
Up to this point, we have been working with graphs in an abstract, mathematical sense.
We now make the transition from directed acyclic graph to reliability block diagram by as-
sociating vertices with components in a system and edges with relationships among them.
Consider a single component in an RBD. Let us imagine a “flow” moving from a source,
through the component, to a target. The component is deemed to be functioning if the
flow can pass through it unimpeded. However, if the component has failed, the flow is pre-
vented from reaching the target.
The “flow” concept can be extended to an entire system. A system is considered to be
functioning if there exists a set of functioning components that permits the flow to move
from source to target. We define a path in an RBD as a set of functioning components that
guarantees a functioning system. Since we have chosen to use a directed acyclic graph to
represent a system’s RBD, all paths are minimal. That is to say, all components in a path
are distinct.
Once the minimal paths of a system’s RBD have been obtained, the principle of inclusion-
exclusion for probability can be employed to generate an exact analytical expression for
reliability. Let 8A1, A2, …, An< be the set of all minimal paths of a system. At least one
minimal path must function in order for the system to function. We can write the relia-
bility of the system RS as the probability of the union of all minimal paths:

RS = P Ê
i=1

n

Ai = ‚
k=1

n

H-1Lk-1 ‚
«¹≠IŒ@nD
†I§=k

P Ë
iœI

Ai .

This is implemented in the function SystemReliability.

P@l_ListD :=
Apply@Times, Map@RÒ &, Apply@Union, lDDD

6 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

SystemReliability@g_?DirectedAcyclicGraphQ, s_, t_D :=
ModuleA8minimalPaths, n, L, k<,
minimalPaths = FindPaths@g, s, tD;

n = Length@minimalPathsD;
L = Range@nD;

SumA

H-1Lk-1 Total@Map@P@minimalPathsPÒTD &, Subsets@L, 8k<DDD,
8k, n<E

E

Given a system’s RBD (represented by a directed acyclic graph G), a source vertex s, and
a target vertex t, SystemReliability returns an exact analytical expression for the
reliability.

· Series Systems

Consider the RBD of a simple system with four components in a series configuration.

edges = 8a ð b, b ð c, c ð d<;

RBD@"Series"D = Graph@edges, ImagePadding Ø 10,
VertexLabels Ø "Name", VertexShapeFunction Ø "Square",
VertexSize Ø 0.15D

The reliability of the system is given in terms of the reliability of its four components.

SystemReliability@RBD@"Series"D, a, dD êê TraditionalForm

Ra Rb Rc Rd

Complex System Reliability 7

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

· Parallel Systems

Consider the RBD of a simple system with four components in a parallel configuration.

edges = 8start ð 1, start ð 2, start ð 3, start ð 4,
1 ð end, 2 ð end, 3 ð end, 4 ð end<;

RBD@"Parallel"D = Graph@edges, ImagePadding Ø 10,
VertexLabels Ø "Name", VertexShapeFunction Ø "Square",
VertexSize Ø 0.15D

The “start” and “end” components are not part of the actual system. They are added to en-
sure the RBD meets the criteria for a directed acyclic graph.

DirectedAcyclicGraphQ@RBD@"Parallel"DD

True

Furthermore, these nonphysical components are taken to have perfect reliability, that is,
R = 1. Since they have no effect on the system’s reliability, they can be safely removed
from the resulting analytical expression. To do so, we simply define a list of replacement
rules and apply it to the result of SystemReliability.

rr = 8Rstart Ø 1, Rend Ø 1<;

8 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

The reliability of the system is given in terms of the reliability of its four components.

HSystemReliability@RBD@"Parallel"D, start, endD ê. rrL êê
TraditionalForm

-R2 R1 + R2 R3 R1 - R3 R1 + R2 R4 R1 - R2 R3 R4 R1 + R3 R4 R1 -
R4 R1 + R1 + R2 - R2 R3 + R3 - R2 R4 + R2 R3 R4 - R3 R4 + R4

· Series-Parallel Systems

Next, we examine the RBDs of two simple systems with components in a series-parallel
configuration.

ü System 1

edges = 8start ð a, start ð b, a ð c, b ð end, c ð end<;

RBD@"SeriesParallel1"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.083, 1<<D,
ImagePadding Ø 10, ImageSize Ø 100, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D

Complex System Reliability 9

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Component c is in series with component a, and both components are in parallel with com-
ponent b.

HSystemReliability@RBD@"SeriesParallel1"D, start, endD ê.
rrL êê TraditionalForm

-Ra Rb Rc + Ra Rc + Rb

ü System 2

edges = 8start ð 1, start ð 2, start ð 3, start ð 4,
1 ð 6, 2 ð 5, 2 ð 8, 3 ð 7, 4 ð 7, 5 ð 9, 6 ð end,
7 ð end, 8 ð end, 9 ð end<;

RBD@"SeriesParallel2"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.038, 1<<D,
ImagePadding Ø 10, ImageSize Ø 200, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D

10 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

As in previous examples, we use SystemReliability to obtain an exact analytical ex-
pression for the reliability.

HSystemReliability@RBD@"SeriesParallel2"D, start, endD ê.
rrL êê Simplify êê TraditionalForm

R4 R7 - R2 R4 R8 R7 - R2 R4 R5 R9 R7 + R2 R4 R5 R8 R9 R7 -
R3 HR4 - 1L HR2 HR8 HR5 R9 - 1L - R5 R9L + 1L R7 + R2 R8 + R2 R5 R9 -
R2 R5 R8 R9 + R1 R6 HR3 HR4 - 1L R7 - R4 R7 + 1L HR2 HR8 HR5 R9 - 1L - R5 R9L + 1L

· Complex Systems

Finally, we examine the RBDs of two complex systems.

ü System 1

edges = 8a ð b, a ð c, a ð d, b ð d, b ð e, c ð d, c ð e,
d ð f, e ð f<;

RBD@"Complex1"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.044, 1<<D,
ImagePadding Ø 10, ImageSize Ø 150, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D

Complex System Reliability 11

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

The reliability of the system is given in terms of the reliability of its six components.

SystemReliability@RBD@"Complex1"D, a, fD êê TraditionalForm

Ra Rb Rc Rd Re R f - Ra Rb Rc Re R f - Ra Rb Rd Re R f +
Ra Rb Re R f - Ra Rc Rd Re R f + Ra Rc Re R f + Ra Rd R f

The result is returned after approximately 0.59 milliseconds.

ü System 2

edges = 81 ð 2, 1 ð 3, 1 ð 5, 2 ð 7, 2 ð 9, 3 ð 4, 3 ð 8,
4 ð 6, 4 ð 10, 5 ð 6, 5 ð 11, 6 ð 9, 7 ð 8, 8 ð 10,
9 ð 14, 10 ð 11, 10 ð 13, 11 ð 12, 11 ð 13, 12 ð 14,
13 ð 14<;

RBD@"Complex2"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.044, 1<<D,
ImagePadding Ø 10, ImageSize Ø 150, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D

12 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

The reliability of the system is given in terms of the reliability of its fourteen components.

SystemReliability@RBD@"Complex2"D, 1, 14D êê Simplify êê
TraditionalForm

R1 HR5 HR6 R9 HR11 HR12 HR13 - 1L - R13L + 1L + R11 HR13 - R12 HR13 - 1LLL +
R3 HR8 R10 HH1 - R5 R6 R9L R13 + R11 HHR5 - 1L R12 HR13 - 1L + R5 HR6 R9 - 1L R13LL +

R4 H-HR8 - 1L R10 HR13 + R11 HHR5 - 1L R12 HR13 - 1L - R5 R13LL -
R6 R9 HR10 HR13 - R11 R12 HR13 - 1LL +

R5 HR10 HR11 HR12 HR13 - 1L + HR8 - 1L R13L - R8 R13L + 1L - 1LLL +
R2 HR9 H-R5 R6 + R5 R11 R12 R6 + R5 R11 R13 R6 - R5 R11 R12 R13 R6 - R5 R11 R12 +

R5 R7 R8 R10 R11 R12 - R7 R8 R10 R11 R12 - R7 R8 R10 R13 - R5 R11 R13 +
R5 R7 R8 R10 R11 R13 + R5 R11 R12 R13 - R5 R7 R8 R10 R11 R12 R13 +
R7 R8 R10 R11 R12 R13 + R3 HR8 R10 HHR5 R6 + R7 - 1L R13 + R11

HHR5 - 1L HR7 - 1L R12 HR13 - 1L - R5 HR6 + R7 - 1L R13LL +
R4 HHR8 - 1L R10 HR13 + R11 HHR5 - 1L R12 HR13 - 1L - R5 R13LL +

R6 HR10 HR13 - R11 R12 HR13 - 1LL + R5 HR10 HR11 HR12 HR13 -
1L + HR8 - 1L R13L - R8 R13L + 1L - 1LLL + 1L -

HR3 - 1L R7 R8 R10 HR13 + R11 HHR5 - 1L R12 HR13 - 1L - R5 R13LLLL R14

The result is returned after approximately 0.33 seconds.

‡ Time-Dependent Reliability of a Complex System
We now turn our attention to the derivation of a time-dependent expression for the reliabil-
ity of a complex system based on information contained within its reliability block
diagram.
Let us imagine that we have a generic system composed of six subsystems and we know
the reliability relationships among them. In addition, the underlying statistical distribu-
tions and parameters used to model the subsystems’ reliabilities are known.
We begin by creating the system’s RBD.

vertices = :

PropertyBsubsys@1D,

:"Distribution" Ø WeibullDistribution@2.21, 3.44D,

VertexLabels Ø "Subsystem 1", VertexShape Ø >F,

PropertyBsubsys@2D,

:"Distribution" Ø ExponentialDistribution@1.06D,

VertexLabels Ø "Subsystem 2", VertexShape Ø >F,

PropertyB ,

Complex System Reliability 13

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

PropertyBsubsys@3D,

:"Distribution" Ø ExponentialDistribution@1.38D,

VertexLabels Ø "Subsystem 3", VertexShape Ø >F,

PropertyBsubsys@4D,

:"Distribution" Ø WeibullDistribution@2.68, 2.25D,

VertexLabels Ø "Subsystem 4", VertexShape Ø >F,

PropertyBsubsys@5D,

:"Distribution" Ø ExponentialDistribution@0.94D,

VertexLabels Ø "Subsystem 5", VertexShape Ø >F,

PropertyBsubsys@6D,

:"Distribution" Ø WeibullDistribution@3.97, 4.36D,

VertexLabels Ø "Subsystem 6", VertexShape Ø >F

>;

edges = 8subsys@1D ð subsys@2D, subsys@1D ð subsys@3D,
subsys@1D ð subsys@4D, subsys@2D ð subsys@4D,
subsys@2D ð subsys@5D, subsys@3D ð subsys@4D,
subsys@3D ð subsys@5D, subsys@3D ð subsys@6D,
subsys@4D ð subsys@6D, subsys@5D ð subsys@6D<;

RBD@"Generic"D = Graph@vertices, edges,
EdgeStyle Ø Arrowheads@880.044, 0.999<<D,
ImagePadding Ø 8812, 66<, 812, 24<<, ImageSize Ø 250,
VertexSize Ø MediumD

14 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

In defining the RBD, we have made use of the Property function to store information
associated with each subsystem. For instance, the custom property "Distribution" is
used to store a parametric statistical distribution. Labels, images, and other properties can
also be specified.
Next, we use SystemReliability to generate an exact analytical expression for the
reliability.

(RS = SystemReliability[RBD["Generic"], subsys[1],
subsys[6]]) /∕/∕ Simplify /∕/∕ TraditionalForm

Rsubsys(1) Rsubsys(2) Rsubsys(5) + Rsubsys(4) 1 -− Rsubsys(2) Rsubsys(5) +

Rsubsys(3) Rsubsys(4) -− 1 Rsubsys(2) Rsubsys(5) -− 1 Rsubsys(6)

Now, the reliability function of the ith subsystem is given by
Ri(t) = 1-− Fi(t),

where Fi(t) is the corresponding cumulative distribution function (CDF). For each subsys-
tem, we use PropertyValue to extract the symbolic distribution stored in the RBD,
and then use the built-in function CDF to construct its reliability function.

reliabilityFunctions =
Map[
(1 -− CDF[PropertyValue[{RBD["Generic"], #},

"Distribution"], t]) &, VertexList[RBD["Generic"]]];

We extract additional information, for example, subsystem labels, from the RBD and com-
bine it with the reliability functions to create plots for comparison.

Complex System Reliability 15

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

We extract additional information, for example, subsystem labels, from the RBD and com-
bine it with the reliability functions to create plots for comparison.

colors =
Flatten@
Map@
DominantColors@PropertyValue@8RBD@"Generic"D, Ò<,

VertexShapeD, 1D &, VertexList@RBD@"Generic"DDDD;
labels =

Map@PropertyValue@8RBD@"Generic"D, Ò<, VertexLabelsD &,
VertexList@RBD@"Generic"DDD;

GraphicsGrid@
Partition@
Table@Plot@reliabilityFunctionsPiT, 8t, 0, 7<,

Filling Ø Axis,
FillingStyle Ø Directive@Opacity@0.5D, colorsPiTD,
PlotLabel Ø labelsPiT, PlotRange Ø AllD,

8i, Length@VertexList@RBD@"Generic"DDD<D, 2D,
Frame Ø TrueD

16 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

In order to transform our static analytical expression into a time-dependent function, we
first define a list of replacement rules.

symbols = Map@RÒ &, VertexList@RBD@"Generic"DDD;
rules = MapThread@Rule, 8symbols, reliabilityFunctions<D

:Rsubsys@1D Ø 1 -
1 - ‰-0.0651937 t2.21 t > 0
0 True

,

Rsubsys@2D Ø 1 -
1 - ‰-1.06 t t ¥ 0
0 True

,

Rsubsys@3D Ø 1 -
1 - ‰-1.38 t t ¥ 0
0 True

,

Rsubsys@4D Ø 1 -
1 - ‰-0.113802 t2.68 t > 0
0 True

,

Rsubsys@5D Ø 1 -
1 - ‰-0.94 t t ¥ 0
0 True

,

Rsubsys@6D Ø 1 -
1 - ‰-0.00289227 t3.97 t > 0
0 True

>

Next, we apply the list of rules to the expression for system reliability.

RS@t_D := RS ê. rules

The result is a time-dependent reliability function for the complex system described by the
RBD.

RS@tD êê FullSimplify

1 t § 0

‰-3.38 t-0.0651937 t2.21-0.113802 t2.68-0.00289227 t3.97

I‰3.38 t + I-1 + ‰1.38 t + ‰2. tM I-1 + ‰0.113802 t
2.68

MM

True

Complex System Reliability 17

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Finally, we generate a plot of the system’s reliability over time.

Plot@RS@tD, 8t, 0, 4<, Filling Ø Axis, Frame Ø True,
FrameLabel Ø 88"RS", None<, 8"t", None<<,
FrameTicks Ø 88True, False<, 8True, False<<,
PlotLabel Ø "Complex System Reliability", PlotRange Ø AllD

‡ Discussion and Conclusion
We have demonstrated a method of generating an exact analytical expression for the relia-
bility of a complex system using a directed acyclic graph to represent the system’s reliabil-
ity block diagram. In addition, we have shown how to convert an analytical expression for
system reliability into a time-dependent function based on statistical information stored in
an RBD. While our focus has been on the analysis of complex systems, we have also
shown that the combination of path finding and the inclusion-exclusion principle is
equally applicable to simple systems in series, parallel, or series-parallel configurations.
Knowing the static analytical expression or time-dependent solution of a system allows us
to perform a more advanced reliability analysis. For instance, we can easily calculate the
Birnbaum importance

IiB =
¶∂RS

¶∂Ri

of the ith component using the result of SystemReliability. Similarly, we can de-
rive the hazard function, or failure rate, from the system’s time-dependent reliability
function.
There are several ways in which the functionality demonstrated in this article can be
improved and expanded:

18 Todd Silvestri

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

There are several ways in which the functionality demonstrated in this article can be
improved and expanded:

Ë Increase the efficiency of SystemReliability by implementing improve-
ments to the classical inclusion-exclusion principle [3].

Ë Add functions related to common tasks in reliability analysis, for example, reliabil-
ity importance, failure rate, and so on.

Ë Add support for k-out-of-n structures, that is, redundancy.

Ë Add the ability to export and import complete RBDs.

Ë Add a mechanism, for example, a graphical user interface (GUI), to facilitate the
construction and modification of RBDs.

Finally, the code can be combined into a user-friendly package with full documentation.

‡ References
[1] W. Kuo and M. Zuo, Optimal Reliability Modeling: Principles and Applications, Hoboken, NJ:

John Wiley & Sons, 2003.

[2] S. Skiena, The Algorithm Design Manual, 2nd ed., London, UK: Springer-Verlag, 2008.

[3] K. Dohmen, “Improved Inclusion-Exclusion Identities and Inequalities Based on a Particular
Class of Abstract Tubes,” Electronic Journal of Probability, 4, 1999 pp. 1–12.
doi:10.1214/EJP.v4-42.

T. Silvestri, “Complex System Reliability,” The Mathematica Journal, 2014. dx.doi.org/doi:10.3888/tmj.16-7.

About the Author

Todd Silvestri received his undergraduate degrees in physics and mathematics from the
University of Chicago in 2001. As a graduate student, he worked briefly at the Thomas
Jefferson National Accelerator Facility (TJNAF) where he helped to construct and test a
neutron detector used in experiments to measure the neutron electric form factor at high
momentum transfer. From 2006 to 2011, he worked as a physicist at the US Army
Armament Research, Development and Engineering Center (ARDEC). During his time
there, he cofounded and served as principal investigator of a small laboratory focused on
improving the reliability of military systems. He is currently working on several personal
projects.
Todd Silvestri
New Jersey, United States
todd.silvestri@optimum.net

Complex System Reliability 19

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

