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Complex System Reliability
A Graph Theory Approach
Todd Silvestri

We demonstrate a method of generating an exact analytical 
expression for the reliability of a complex system using a 
directed acyclic graph to represent the systemʼs reliability block 
diagram. Additionally, we show how statistical information stored 
in a reliability block diagram can be used to transform an 
analytical expression into a time-dependent function for system 
reliability.

‡ Introduction
Among its  many interpretations,  the  term reliability  most  commonly  refers  to  the  ability
of  a  device or  system to perform a task successfully  when required.  More formally,  it  is
described  as  the  probability  of  functioning  properly  at  a  given  time  and  under  specified
operating conditions [1]. Mathematically, the reliability function is defined by

RHtL = PHT > tL for t ¥ 0,

where T is a nonnegative random variable representing the device or system lifetime.

For a system composed of at least two components, the system reliability is determined by
the reliability of the individual components and the relationships among them. These rela-
tionships can be depicted using a reliability block diagram (RBD).
Simple  systems  are  usually  represented  by  RBDs  with  components  in  either  a  series  or
parallel  configuration.  In  a  series  system,  all  components  must  function  satisfactorily  in
order  for  the system to operate.  For  a  parallel  system to operate,  at  least  one component
must function correctly. Systems can also contain components arranged in both series and
parallel configurations. If an RBD cannot be reduced to a series, parallel, or series-parallel
configuration, then it is considered a complex system.
This article deals with the generation of an exact analytical expression for the reliability of
a  complex  system.  The  demonstrated  method  relies  on  finding  all  paths  between  the
source and target vertices in a directed acyclic graph (i.e., RBD), as well as the inclusion-
exclusion principle for probability.
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A Note on Timings

The timings reported in this article were measured on a custom workstation PC using the
built-in function Timing. The system consists of an Intel® Core’ i7 CPU 950 @ 4 GHz
and 24 GB of DDR3 memory. It runs Microsoft® Windows’ 7 Professional (64-bit) and
scores 1.32 on the MathematicaMark9 benchmark.

‡ Finding All Hs, tL-Paths in a Directed Acyclic Graph
We begin by considering a directed graph G = HV , EL that consists of a finite set V  of ver-
tices  together  with  a  finite  set  E  of  ordered  pairs  of  vertices  called  directed  edges.  The
built-in  function  Graph  can  be  used  to  construct  a  graph  from  explicit  lists  of  vertices
and edges.

vertices = Range@16D;
edges = 81 ð 2, 1 ð 5, 2 ð 3, 2 ð 6, 3 ð 4, 3 ð 7, 4 ð 8,

5 ð 6, 5 ð 9, 6 ð 7, 6 ð 10, 7 ð 8, 7 ð 11, 8 ð 12,
9 ð 10, 9 ð 13, 10 ð 11, 10 ð 14, 11 ð 12, 11 ð 15,
12 ð 16, 13 ð 14, 14 ð 15, 15 ð 16<;

G@"GridGraph"D = Graph@vertices, edges,
GraphLayout Ø 8"GridEmbedding", "Dimension" Ø 84, 4<<,
ImagePadding Ø 10, ImageSize Ø 200, VertexLabels Ø "Name"D

This two-dimensional grid graph, labeled G4,4,  can be constructed much more efficiently
by using the built-in function GridGraph. Throughout this section, we utilize it to illus-
trate our functions.
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Now, for a vertex v œ V , we define the set NG
+HvL of out-neighbors as

NG
+HvL = 8w œ V v w œ E<,

where v w is taken to mean a directed edge from v to w. This is implemented in the func-
tion VertexOutNeighbors.

VertexOutNeighbors@g_?DirectedGraphQ, v_D :=
Cases@EdgeList@gD, DirectedEdge@v, w_D ß wD

VertexOutNeighbors@g_?DirectedGraphQD :=
Map@VertexOutNeighbors@g, ÒD &, VertexList@gDD

VertexOutNeighbors  behaves  similarly  to  the  built-in  function  VertexOutÖ
Degree. That is, given a graph G and a vertex v, the function returns a list of out-neigh-
bors for the specified vertex.

VertexOutNeighbors@G@"GridGraph"D, 1D

82, 5<

If, however, only the graph G is specified, the function will give a list of vertex out-neigh-
bors for all vertices in the graph.

VertexOutNeighbors@G@"GridGraph"DD

882, 5<, 83, 6<, 84, 7<, 88<, 86, 9<, 87, 10<, 88, 11<, 812<,
810, 13<, 811, 14<, 812, 15<, 816<, 814<, 815<, 816<, 8<<

The order in which the out-neighbors are displayed is determined by the order of vertices
returned by VertexList.

VertexList@G@"GridGraph"DD

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16<

We  can  implement  similar  functions  to  obtain  the  set  NG
-HvL  of  in-neighbors  by  simply

changing DirectedEdge@v, w_D ß w to DirectedEdge@u_, vD ß u.

The next step toward our goal is to consider a method of traversing a graph. One common
approach  of  systematically  visiting  all  vertices  of  a  graph  is  known as  depth-first  search
(DFS).  In  its  most  basic  form,  a  DFS algorithm involves  visiting a  vertex,  marking it  as
“visited,”  and  then  recursively  visiting  all  of  its  neighbors  [2].  The  function
DepthFirstSearch implements this algorithm for directed graphs.
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DepthFirstSearch@g_?DirectedGraphQ, s_D :=
Block@8$RecursionLimit = 1024, visited = 8<<,
dfs@v_D :=
If@! MemberQ@visited, vD,
AppendTo@visited, vD;
Scan@dfs@ÒD &, VertexOutNeighbors@g, vDD

D;

dfs@sD;

visited
D

Given a graph G  and a starting vertex s,  DepthFirstSearch  returns a list of vertices
in the order in which they are visited.

DepthFirstSearch@G@"GridGraph"D, 1D

81, 2, 3, 4, 8, 12, 16, 7, 11, 15, 6, 10, 14, 5, 9, 13<

We compare this with the result of the built-in function DepthFirstScan.

Reap@DepthFirstScan@G@"GridGraph"D, 1,
8"PrevisitVertex" Ø Sow<DDP2, 1T

81, 2, 3, 4, 8, 12, 16, 7, 11, 15, 6, 10, 14, 5, 9, 13<

Next, let us define the function DirectedAcyclicGraphQ.

DirectedAcyclicGraphQ@g_D :=
DirectedGraphQ@gD && AcyclicGraphQ@gD

If  the graph G  is  both directed and acyclic,  DirectedAcyclicGraphQ  yields True.
Otherwise, it yields False.

DirectedAcyclicGraphQ@G@"GridGraph"DD

True

Finally,  we  consider  the  problem  of  finding  all  paths  in  a  directed  acyclic  graph  G  be-
tween two arbitrary vertices s, t œ V . Typically, we refer to s as the source and t as the tar-
get.  A path in  G  is  defined as  a  sequence of  vertices  8v1, v2, …, vk<  such that  vi vi+1 œ E
for i = 1, 2, …, k - 1. Since we have constrained ourselves to a directed acyclic graph, all
paths are simple. That is to say, all vertices in a path are distinct.
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By modifying the depth-first search algorithm, we arrive at a solution.

FindPaths@g_?DirectedAcyclicGraphQ, s_, t_D :=
Block@8$RecursionLimit = 1024, paths = 8<<,
fp@path_List, v_D :=
If@v =!= t,
Scan@fp@Append@path, ÒD, ÒD &,
VertexOutNeighbors@g, vDD,

H* else *L
AppendTo@paths, pathD;

D;

fp@8s<, sD;

paths
D

Like  the  original  DFS  algorithm,  we  visit  a  vertex  and  then  recursively  visit  all  of  its
neighbors.  However,  instead  of  checking  if  a  vertex  has  been  marked  “visited,”  we
compare the current vertex to the target. If they do not match, we continue to traverse the
graph. Otherwise, the target has been reached and we store the path for later output.
For a given directed acyclic graph G, a source vertex s, and a target vertex t, FindPaths
returns a list of all paths connecting s to t.

FindPaths@G@"GridGraph"D, 1, 16D

881, 2, 3, 4, 8, 12, 16<, 81, 2, 3, 7, 8, 12, 16<,
81, 2, 3, 7, 11, 12, 16<, 81, 2, 3, 7, 11, 15, 16<,
81, 2, 6, 7, 8, 12, 16<, 81, 2, 6, 7, 11, 12, 16<,
81, 2, 6, 7, 11, 15, 16<, 81, 2, 6, 10, 11, 12, 16<,
81, 2, 6, 10, 11, 15, 16<, 81, 2, 6, 10, 14, 15, 16<,
81, 5, 6, 7, 8, 12, 16<, 81, 5, 6, 7, 11, 12, 16<,
81, 5, 6, 7, 11, 15, 16<, 81, 5, 6, 10, 11, 12, 16<,
81, 5, 6, 10, 11, 15, 16<, 81, 5, 6, 10, 14, 15, 16<,
81, 5, 9, 10, 11, 12, 16<, 81, 5, 9, 10, 11, 15, 16<,
81, 5, 9, 10, 14, 15, 16<, 81, 5, 9, 13, 14, 15, 16<<

In this particular instance, the function takes approximately 0.85 milliseconds to return the
result.
FindPaths works for any pair of vertices.

FindPaths@G@"GridGraph"D, 3, 8D

883, 4, 8<, 83, 7, 8<<
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If no path is found, the function returns an empty list.

FindPaths@G@"GridGraph"D, 8, 3D

8<

‡ Minimal Paths, Inclusion-Exclusion, and System 
Reliability
Up to  this  point,  we  have  been  working  with  graphs  in  an  abstract,  mathematical  sense.
We now make the transition from directed acyclic graph to reliability block diagram by as-
sociating vertices with components in a system and edges with relationships among them.
Consider a single component in an RBD. Let us imagine a “flow” moving from a source,
through  the  component,  to  a  target.  The  component  is  deemed  to  be  functioning  if  the
flow can pass through it unimpeded. However, if the component has failed, the flow is pre-
vented from reaching the target.
The  “flow”  concept  can  be  extended  to  an  entire  system.  A  system  is  considered  to  be
functioning if there exists a set of functioning components that permits the flow to move
from source to target. We define a path in an RBD as a set of functioning components that
guarantees a functioning system. Since we have chosen to use a directed acyclic graph to
represent a system’s RBD, all paths are minimal. That is to say, all components in a path
are distinct.
Once the minimal paths of a system’s RBD have been obtained, the principle of inclusion-
exclusion  for  probability  can  be  employed to  generate  an  exact  analytical  expression  for
reliability.  Let  8A1, A2, …, An<  be  the  set  of  all  minimal  paths  of  a  system.  At  least  one
minimal  path  must  function  in  order  for  the  system to  function.  We  can  write  the  relia-
bility of the system RS as the probability of the union of all minimal paths:

RS = P Ê
i=1

n

Ai = ‚
k=1

n

H-1Lk-1 ‚
«¹≠IŒ@nD
†I§=k

P Ë
iœI

Ai .

This is implemented in the function SystemReliability.

P@l_ListD :=
Apply@Times, Map@RÒ &, Apply@Union, lDDD
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SystemReliability@g_?DirectedAcyclicGraphQ, s_, t_D :=
ModuleA8minimalPaths, n, L, k<,
minimalPaths = FindPaths@g, s, tD;

n = Length@minimalPathsD;
L = Range@nD;

SumA

H-1Lk-1 Total@Map@P@minimalPathsPÒTD &, Subsets@L, 8k<DDD,
8k, n<E

E

Given a system’s RBD (represented by a directed acyclic graph G), a source vertex s, and
a  target  vertex  t,  SystemReliability  returns  an  exact  analytical  expression  for  the
reliability.

· Series Systems

Consider the RBD of a simple system with four components in a series configuration.

edges = 8a ð b, b ð c, c ð d<;

RBD@"Series"D = Graph@edges, ImagePadding Ø 10,
VertexLabels Ø "Name", VertexShapeFunction Ø "Square",
VertexSize Ø 0.15D

The reliability of the system is given in terms of the reliability of its four components.

SystemReliability@RBD@"Series"D, a, dD êê TraditionalForm

Ra Rb Rc Rd
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· Parallel Systems

Consider the RBD of a simple system with four components in a parallel configuration.

edges = 8start ð 1, start ð 2, start ð 3, start ð 4,
1 ð end, 2 ð end, 3 ð end, 4 ð end<;

RBD@"Parallel"D = Graph@edges, ImagePadding Ø 10,
VertexLabels Ø "Name", VertexShapeFunction Ø "Square",
VertexSize Ø 0.15D

The “start” and “end” components are not part of the actual system. They are added to en-
sure the RBD meets the criteria for a directed acyclic graph.

DirectedAcyclicGraphQ@RBD@"Parallel"DD

True

Furthermore,  these  nonphysical  components  are  taken  to  have  perfect  reliability,  that  is,
R = 1.  Since  they  have  no  effect  on  the  system’s  reliability,  they  can  be  safely  removed
from the resulting analytical expression. To do so, we simply define a list of replacement
rules and apply it to the result of SystemReliability.

rr = 8Rstart Ø 1, Rend Ø 1<;
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The reliability of the system is given in terms of the reliability of its four components.

HSystemReliability@RBD@"Parallel"D, start, endD ê. rrL êê
TraditionalForm

-R2 R1 + R2 R3 R1 - R3 R1 + R2 R4 R1 - R2 R3 R4 R1 + R3 R4 R1 -
R4 R1 + R1 + R2 - R2 R3 + R3 - R2 R4 + R2 R3 R4 - R3 R4 + R4

· Series-Parallel Systems

Next,  we examine the RBDs of two simple systems with components in a series-parallel
configuration.

ü System 1

edges = 8start ð a, start ð b, a ð c, b ð end, c ð end<;

RBD@"SeriesParallel1"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.083, 1<<D,
ImagePadding Ø 10, ImageSize Ø 100, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D
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Component c is in series with component a, and both components are in parallel with com-
ponent b.

HSystemReliability@RBD@"SeriesParallel1"D, start, endD ê.
rrL êê TraditionalForm

-Ra Rb Rc + Ra Rc + Rb

ü System 2

edges = 8start ð 1, start ð 2, start ð 3, start ð 4,
1 ð 6, 2 ð 5, 2 ð 8, 3 ð 7, 4 ð 7, 5 ð 9, 6 ð end,
7 ð end, 8 ð end, 9 ð end<;

RBD@"SeriesParallel2"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.038, 1<<D,
ImagePadding Ø 10, ImageSize Ø 200, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D
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As in previous examples, we use SystemReliability to obtain an exact analytical ex-
pression for the reliability.

HSystemReliability@RBD@"SeriesParallel2"D, start, endD ê.
rrL êê Simplify êê TraditionalForm

R4 R7 - R2 R4 R8 R7 - R2 R4 R5 R9 R7 + R2 R4 R5 R8 R9 R7 -
R3 HR4 - 1L HR2 HR8 HR5 R9 - 1L - R5 R9L + 1L R7 + R2 R8 + R2 R5 R9 -
R2 R5 R8 R9 + R1 R6 HR3 HR4 - 1L R7 - R4 R7 + 1L HR2 HR8 HR5 R9 - 1L - R5 R9L + 1L

· Complex Systems

Finally, we examine the RBDs of two complex systems.

ü System 1

edges = 8a ð b, a ð c, a ð d, b ð d, b ð e, c ð d, c ð e,
d ð f, e ð f<;

RBD@"Complex1"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.044, 1<<D,
ImagePadding Ø 10, ImageSize Ø 150, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D
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The reliability of the system is given in terms of the reliability of its six components.

SystemReliability@RBD@"Complex1"D, a, fD êê TraditionalForm

Ra Rb Rc Rd Re R f - Ra Rb Rc Re R f - Ra Rb Rd Re R f +
Ra Rb Re R f - Ra Rc Rd Re R f + Ra Rc Re R f + Ra Rd R f

The result is returned after approximately 0.59 milliseconds.

ü System 2

edges = 81 ð 2, 1 ð 3, 1 ð 5, 2 ð 7, 2 ð 9, 3 ð 4, 3 ð 8,
4 ð 6, 4 ð 10, 5 ð 6, 5 ð 11, 6 ð 9, 7 ð 8, 8 ð 10,
9 ð 14, 10 ð 11, 10 ð 13, 11 ð 12, 11 ð 13, 12 ð 14,
13 ð 14<;

RBD@"Complex2"D =
Graph@edges, EdgeStyle Ø Arrowheads@880.044, 1<<D,
ImagePadding Ø 10, ImageSize Ø 150, VertexLabels Ø "Name",
VertexShapeFunction Ø "Square", VertexSize Ø 0.15D
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The reliability of the system is given in terms of the reliability of its fourteen components.

SystemReliability@RBD@"Complex2"D, 1, 14D êê Simplify êê
TraditionalForm

R1 HR5 HR6 R9 HR11 HR12 HR13 - 1L - R13L + 1L + R11 HR13 - R12 HR13 - 1LLL +
R3 HR8 R10 HH1 - R5 R6 R9L R13 + R11 HHR5 - 1L R12 HR13 - 1L + R5 HR6 R9 - 1L R13LL +

R4 H-HR8 - 1L R10 HR13 + R11 HHR5 - 1L R12 HR13 - 1L - R5 R13LL -
R6 R9 HR10 HR13 - R11 R12 HR13 - 1LL +

R5 HR10 HR11 HR12 HR13 - 1L + HR8 - 1L R13L - R8 R13L + 1L - 1LLL +
R2 HR9 H-R5 R6 + R5 R11 R12 R6 + R5 R11 R13 R6 - R5 R11 R12 R13 R6 - R5 R11 R12 +

R5 R7 R8 R10 R11 R12 - R7 R8 R10 R11 R12 - R7 R8 R10 R13 - R5 R11 R13 +
R5 R7 R8 R10 R11 R13 + R5 R11 R12 R13 - R5 R7 R8 R10 R11 R12 R13 +
R7 R8 R10 R11 R12 R13 + R3 HR8 R10 HHR5 R6 + R7 - 1L R13 + R11

HHR5 - 1L HR7 - 1L R12 HR13 - 1L - R5 HR6 + R7 - 1L R13LL +
R4 HHR8 - 1L R10 HR13 + R11 HHR5 - 1L R12 HR13 - 1L - R5 R13LL +

R6 HR10 HR13 - R11 R12 HR13 - 1LL + R5 HR10 HR11 HR12 HR13 -
1L + HR8 - 1L R13L - R8 R13L + 1L - 1LLL + 1L -

HR3 - 1L R7 R8 R10 HR13 + R11 HHR5 - 1L R12 HR13 - 1L - R5 R13LLLL R14

The result is returned after approximately 0.33 seconds.

‡ Time-Dependent Reliability of a Complex System
We now turn our attention to the derivation of a time-dependent expression for the reliabil-
ity  of  a  complex  system  based  on  information  contained  within  its  reliability  block
diagram.
Let us imagine that we have a generic system composed of six subsystems and we know
the  reliability  relationships  among  them.  In  addition,  the  underlying  statistical  distribu-
tions and parameters used to model the subsystems’ reliabilities are known.
We begin by creating the system’s RBD.

vertices = :

PropertyBsubsys@1D,

:"Distribution" Ø WeibullDistribution@2.21, 3.44D,

VertexLabels Ø "Subsystem 1", VertexShape Ø >F,

PropertyBsubsys@2D,

:"Distribution" Ø ExponentialDistribution@1.06D,

VertexLabels Ø "Subsystem 2", VertexShape Ø >F,

PropertyB ,
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PropertyBsubsys@3D,

:"Distribution" Ø ExponentialDistribution@1.38D,

VertexLabels Ø "Subsystem 3", VertexShape Ø >F,

PropertyBsubsys@4D,

:"Distribution" Ø WeibullDistribution@2.68, 2.25D,

VertexLabels Ø "Subsystem 4", VertexShape Ø >F,

PropertyBsubsys@5D,

:"Distribution" Ø ExponentialDistribution@0.94D,

VertexLabels Ø "Subsystem 5", VertexShape Ø >F,

PropertyBsubsys@6D,

:"Distribution" Ø WeibullDistribution@3.97, 4.36D,

VertexLabels Ø "Subsystem 6", VertexShape Ø >F

>;

edges = 8subsys@1D ð subsys@2D, subsys@1D ð subsys@3D,
subsys@1D ð subsys@4D, subsys@2D ð subsys@4D,
subsys@2D ð subsys@5D, subsys@3D ð subsys@4D,
subsys@3D ð subsys@5D, subsys@3D ð subsys@6D,
subsys@4D ð subsys@6D, subsys@5D ð subsys@6D<;

RBD@"Generic"D = Graph@vertices, edges,
EdgeStyle Ø Arrowheads@880.044, 0.999<<D,
ImagePadding Ø 8812, 66<, 812, 24<<, ImageSize Ø 250,
VertexSize Ø MediumD
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In defining the RBD, we have made use of the Property  function to store information
associated with each subsystem. For instance, the custom property "Distribution" is
used to store a parametric statistical distribution. Labels, images, and other properties can
also be specified.
Next,  we use SystemReliability  to  generate  an exact  analytical  expression for  the
reliability.

(RS = SystemReliability[RBD["Generic"], subsys[1],
subsys[6]]) /∕/∕ Simplify /∕/∕ TraditionalForm

Rsubsys(1) Rsubsys(2) Rsubsys(5) + Rsubsys(4) 1 -− Rsubsys(2) Rsubsys(5) +

Rsubsys(3) Rsubsys(4) -− 1 Rsubsys(2) Rsubsys(5) -− 1 Rsubsys(6)

Now, the reliability function of the ith subsystem is given by
Ri(t) = 1-− Fi(t),

where Fi(t) is the corresponding cumulative distribution function (CDF). For each subsys-
tem,  we  use  PropertyValue  to  extract  the  symbolic  distribution  stored  in  the  RBD,
and then use the built-in function CDF to construct its reliability function.

reliabilityFunctions =
Map[
(1 -− CDF[PropertyValue[{RBD["Generic"], #},

"Distribution"], t]) &, VertexList[RBD["Generic"]]];

We extract additional information, for example, subsystem labels, from the RBD and com-
bine it with the reliability functions to create plots for comparison.
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We extract additional information, for example, subsystem labels, from the RBD and com-
bine it with the reliability functions to create plots for comparison.

colors =
Flatten@
Map@
DominantColors@PropertyValue@8RBD@"Generic"D, Ò<,

VertexShapeD, 1D &, VertexList@RBD@"Generic"DDDD;
labels =

Map@PropertyValue@8RBD@"Generic"D, Ò<, VertexLabelsD &,
VertexList@RBD@"Generic"DDD;

GraphicsGrid@
Partition@
Table@Plot@reliabilityFunctionsPiT, 8t, 0, 7<,

Filling Ø Axis,
FillingStyle Ø Directive@Opacity@0.5D, colorsPiTD,
PlotLabel Ø labelsPiT, PlotRange Ø AllD,

8i, Length@VertexList@RBD@"Generic"DDD<D, 2D,
Frame Ø TrueD
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In  order  to  transform our  static  analytical  expression  into  a  time-dependent  function,  we
first define a list of replacement rules.

symbols = Map@RÒ &, VertexList@RBD@"Generic"DDD;
rules = MapThread@Rule, 8symbols, reliabilityFunctions<D

:Rsubsys@1D Ø 1 -
1 - ‰-0.0651937 t2.21 t > 0
0 True

,

Rsubsys@2D Ø 1 -
1 - ‰-1.06 t t ¥ 0
0 True

,

Rsubsys@3D Ø 1 -
1 - ‰-1.38 t t ¥ 0
0 True

,

Rsubsys@4D Ø 1 -
1 - ‰-0.113802 t2.68 t > 0
0 True

,

Rsubsys@5D Ø 1 -
1 - ‰-0.94 t t ¥ 0
0 True

,

Rsubsys@6D Ø 1 -
1 - ‰-0.00289227 t3.97 t > 0
0 True

>

Next, we apply the list of rules to the expression for system reliability.

RS@t_D := RS ê. rules

The result is a time-dependent reliability function for the complex system described by the
RBD.

RS@tD êê FullSimplify

1 t § 0

‰-3.38 t-0.0651937 t2.21-0.113802 t2.68-0.00289227 t3.97

I‰3.38 t + I-1 + ‰1.38 t + ‰2. tM I-1 + ‰0.113802 t
2.68

MM

True
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Finally, we generate a plot of the system’s reliability over time.

Plot@RS@tD, 8t, 0, 4<, Filling Ø Axis, Frame Ø True,
FrameLabel Ø 88"RS", None<, 8"t", None<<,
FrameTicks Ø 88True, False<, 8True, False<<,
PlotLabel Ø "Complex System Reliability", PlotRange Ø AllD

‡ Discussion and Conclusion
We have demonstrated a method of generating an exact analytical expression for the relia-
bility of a complex system using a directed acyclic graph to represent the system’s reliabil-
ity block diagram. In addition, we have shown how to convert an analytical expression for
system reliability into a time-dependent function based on statistical information stored in
an  RBD.  While  our  focus  has  been  on  the  analysis  of  complex  systems,  we  have  also
shown  that  the  combination  of  path  finding  and  the  inclusion-exclusion  principle  is
equally applicable to simple systems in series, parallel, or series-parallel configurations.
Knowing the static analytical expression or time-dependent solution of a system allows us
to perform a more advanced reliability analysis. For instance, we can easily calculate the
Birnbaum importance

IiB =
¶∂RS

¶∂Ri

of  the  ith  component  using  the  result  of  SystemReliability.  Similarly,  we  can  de-
rive  the  hazard  function,  or  failure  rate,  from  the  system’s  time-dependent  reliability
function.
There  are  several  ways  in  which  the  functionality  demonstrated  in  this  article  can  be
improved and expanded:
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There  are  several  ways  in  which  the  functionality  demonstrated  in  this  article  can  be
improved and expanded:

Ë Increase  the  efficiency  of  SystemReliability  by  implementing  improve-
ments to the classical inclusion-exclusion principle [3].

Ë Add functions related to common tasks in reliability analysis, for example, reliabil-
ity importance, failure rate, and so on.

Ë Add support for k-out-of-n structures, that is, redundancy.

Ë Add the ability to export and import complete RBDs.

Ë Add a mechanism, for  example,  a  graphical  user interface (GUI),  to facilitate the
construction and modification of RBDs.

Finally, the code can be combined into a user-friendly package with full documentation.
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