
The Mathematica® Journal

Representing Families of
Cellular Automata Rules
Pedro P. B. de Oliveira
Maurício Verardo

This article introduces the notion of a representation of cellular
automata rules based on a template. This enhances the standard
representation based on a rule table, in that it refers to families of
cellular automata, instead of a rule alone. The key for obtaining
the templates is the role of the built-in equation-solving capabilities
of Mathematica. Operations applicable to the templates are
defined, and examples of their use are given in the context of
finding representations for rule sets that share the properties of
maximum internal symmetry or number conservation. The
perspectives for using templates in further contexts are also
discussed and current limitations are addressed.

‡ 1. Introduction
A cellular automaton (CA) is a dynamical system with arbitrarily complex global
behavior, despite being governed by very simple local rules [1]. In order to better under-
stand how that kind of complex behavior emerges, many explorations have been made in
the context of the power implicit in CA rules. For instance, classical benchmark problems
have been used for this, including the density classification task [2, 3] and the parity
problem [4]. The density classification task tries to discover the most frequent bit in the
initial configuration of the lattice; the parity problem tries to find the parity of the number
of 1s in the initial configuration of the lattice. One of the approaches in these contexts is
to evaluate every possible CA of a given family in terms of its capabilities to solve the
target problem. This approach is possible in small CA families, like the elementary space
(composed of 256 CAs), but is not feasible in larger families, like the one-dimensional
binary CA family with radius 3, composed of 2128 rules.
As a strategy to search for CAs in large rule families, evolutionary computation has been
extensively used, relying on measures of properties of the candidate rules, such as their de-
gree of internal symmetry, so as to discard or keep candidates according to these property
values. This was a key aspect, for instance, that led to finding WdO, currently the best one-
dimensional radius-3 rule for the density classification task [5].
An alternative is to constrain the search space to only the CAs that are known to present
specific properties. The challenge here is how to constrain the space without the need to
enumerate the entire subspace of interest. Here, we introduce the concept of a CA
template as a possible way to achieve this goal. A CA template is a data structure asso-
ciated with the rule tables of the members of a CA family that relies on the use of vari-
ables. The introduction of these variables makes it possible for a CA template to represent
a set of rules, unlike the standard k-ary rule table representation that can only represent
one individual CA. By making use of Mathematica’s built-in equation-solving capabilities
and algorithms that allow finding equality relations among CAs with a given property, we
are able to create templates that represent number-conserving CAs (those that, in a sense,
preserve the number of states of the initial configuration; more details below), as well as
those with maximal internal symmetry (those displaying invariance under some transfor-
mations in their rule tables; also to be explained below). These two cases are given here as
examples of the applicability of the template idea, but other properties can also be
accounted for.

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

An alternative is to constrain the search space to only the CAs that are known to present
specific properties. The challenge here is how to constrain the space without the need to
enumerate the entire subspace of interest. Here, we introduce the concept of a CA
template as a possible way to achieve this goal. A CA template is a data structure asso-
ciated with the rule tables of the members of a CA family that relies on the use of vari-
ables. The introduction of these variables makes it possible for a CA template to represent
a set of rules, unlike the standard k-ary rule table representation that can only represent
one individual CA. By making use of Mathematica’s built-in equation-solving capabilities
and algorithms that allow finding equality relations among CAs with a given property, we
are able to create templates that represent number-conserving CAs (those that, in a sense,
preserve the number of states of the initial configuration; more details below), as well as
those with maximal internal symmetry (those displaying invariance under some transfor-
mations in their rule tables; also to be explained below). These two cases are given here as
examples of the applicability of the template idea, but other properties can also be
accounted for.
In the following section, basic notions about CAs are given, followed by a section that pre-
sents details about important properties related to the density classification task. Section 4
explains the notion of template and presents the implemented algorithms. Section 5 con-
cludes the text, with a discussion on the advantages and limitations of using templates,
and gives some ideas for future work.

‡ 2. Cellular Automata
Cellular automata constitute a class of decentralized dynamical systems, usually discrete
in space, time, and states [1]. As systems governed by relatively simple rules, CAs repre-
sent a meaningful model for tackling the issue of how interaction among simple compo-
nents can lead to the solution of global problems.
CAs are composed of a regular lattice of cells whose states change through time,
according to a local rule. The lattice can be deployed in any number of dimensions (most
commonly one, two, or three) and may have an infinite or fixed number of cells. Cells’
states are commonly represented by numbers or colors out of k possibilities ranging from
0 to k - 1. The local rule of the CA acts on the neighborhood of every cell, which is the
set of neighboring cells meant to influence its subsequent states. The neighborhood is
usually expressed by its radius (or range) r, meaning the range of cells on each side
affecting the one in question. By defining values for these two parameters, a CA rule
space or family is defined. The values of r = 1 and k = 2 in the one-dimensional case (i.e.
a neighborhood has three cells; a cell has two possible states) give rise to the elementary
rule space, which is the most well-studied family, due to its small size of only 256 rules
but extremely rich phenomenology [1].
For present purposes, whenever we refer to cellular automata, we mean one-dimensional,
binary (k = 2) CAs, with a fixed number of cells in the lattice and periodic boundary con-
ditions (i.e. the lattice is closed at its ends, like a ring).
Every CA is governed by a rule that relates the neighborhood of a cell to the state it takes
on at the next time step. Its most common representation is the rule table, which is an
explicit listing of every possible state configuration of the neighborhoods, lexicograph-
ically ordered, and a corresponding cell state for each. Here we use Wolfram’s lexico-
graphical ordering, where the leftmost neighborhood is formed by the neighborhood
configuration where all cells are in the (k - 1) state, all the way down to the rightmost
neighborhood with all cells in the 0 state.

2 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Every CA is governed by a rule that relates the neighborhood of a cell to the state it takes
on at the next time step. Its most common representation is the rule table, which is an
explicit listing of every possible state configuration of the neighborhoods, lexicograph-
ically ordered, and a corresponding cell state for each. Here we use Wolfram’s lexico-
graphical ordering, where the leftmost neighborhood is formed by the neighborhood
configuration where all cells are in the (k - 1) state, all the way down to the rightmost
neighborhood with all cells in the 0 state.
As an illustration, this is the rule table of the elementary CA for rule 184.

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<,
881, 0, 0<, 1<, 880, 1, 1<, 1<, 880, 1, 0<, 0<,
880, 0, 1<, 0<, 880, 0, 0<, 0<<;

This is the ordered set of output cell states from that rule table, the k-ary form.

81, 0, 1, 1, 1, 0, 0, 0<;

By converting the binary sequence that defines the k-ary form into a decimal representa-
tion, one obtains the CA rule number, which serves as a unique identifier of a CA in a
given rule space [1].

FromDigits@81, 0, 1, 1, 1, 0, 0, 0<, 2D

184

In order to handle operations concerning rule tables, various Mathematica functions are
defined. So, given a rule table in its k-ary form, the function RuleTableFromkAry
transforms it to its classical representation.

RuleTableFromkAry@kAryRuleTable_, k_Integer: 2, r_: 1D :=
MapThread@List@Ò1, Ò2D &,
8Tuples@Range@k - 1, 0, -1D, d2 r + 1tD, kAryRuleTable<D

RuleTableFromkAry@81, 0, 1, 1, 1, 0, 0, 0<D

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<, 881, 0, 0<, 1<,
880, 1, 1<, 1<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<

The function kAryFromRuleTable reverses the process.

kAryFromRuleTable@ruleTable_D := Last êü ruleTable

Representing Families of Cellular Automata Rules 3

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

kAryFromRuleTable@8881, 1, 1<, 1<, 881, 1, 0<, 0<,
881, 0, 1<, 1<, 881, 0, 0<, 1<, 880, 1, 1<, 1<,
880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<D

81, 0, 1, 1, 1, 0, 0, 0<

Given a CA’s rule number, RuleTableFromRuleNumber determines its rule table.

RuleTableFromRuleNumber@rnum_Integer, k_Integer: 2, r_: 1D :=

RuleTableFromkAryAPadLeftAIntegerDigits@rnum, kD, kH2*r+1LE,

k, rE

RuleTableFromRuleNumber@184D

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<, 881, 0, 0<, 1<,
880, 1, 1<, 1<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<

The inverse function RuleNumberFromRuleTable yields the rule number from the
rule table.

RuleNumberFromRuleTable@ruletable_, k_Integer: 2D :=
FromDigits@kAryFromRuleTable@ruletableD, kD

RuleNumberFromRuleTable@
8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<,
881, 0, 0<, 1<, 880, 1, 1<, 1<, 880, 1, 0<, 0<,
880, 0, 1<, 0<, 880, 0, 0<, 0<<D

184

WellFormedRuleTableQ is a predicate that checks whether a rule table in k-ary form
is valid according to its values of r and k.

WellFormedRuleTableQ@kAryRuleTable_, k_Integer: 2, r_: 1D :=
Fold@And@Ò1, Ò2D &, True,
MemberQ@Range@0, k - 1D, ÒD & êü kAryRuleTableD

WellFormedRuleTableQ@
kAryFromRuleTable@RuleTableFromRuleNumber@ÒDDD & êü

8110, 137, 124, 150, 193<

8True, True, True, True, True<

4 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

WellFormedRuleTableQ@8-1, 0, 1, 0, 1, 0, 1, 2<D

False

RuleOutputFromNeighbourhood is a utility function to get the output correspond-
ing to a particular neighborhood in a rule table.

RuleOutputFromNeighbourhood@neighbourhood_List,
kAryRuleTable_, k_Integer: 2, r_: 1D :=

ExtractAkAryRuleTable,

9kd2 r+1t - FromDigits@neighbourhood, kD=E

RuleOutputFromNeighbourhood@81, 1, 1<,
kAryFromRuleTable@RuleTableFromRuleNumber@110DDD

0

Finally, AllNeighbourhoods is a utility function giving all possible neighborhoods of
a certain rule space.

AllNeighbourhoods@k_Integer : 2, r_ : 1D :=
Tuples@Range@k - 1, 0, -1D, d2 r + 1tD;

AllNeighbourhoods@2D

881, 1, 1<, 81, 1, 0<, 81, 0, 1<, 81, 0, 0<,
80, 1, 1<, 80, 1, 0<, 80, 0, 1<, 80, 0, 0<<

AllNeighbourhoods@2, 2D

881, 1, 1, 1, 1<, 81, 1, 1, 1, 0<,
81, 1, 1, 0, 1<, 81, 1, 1, 0, 0<, 81, 1, 0, 1, 1<,
81, 1, 0, 1, 0<, 81, 1, 0, 0, 1<, 81, 1, 0, 0, 0<,
81, 0, 1, 1, 1<, 81, 0, 1, 1, 0<, 81, 0, 1, 0, 1<,
81, 0, 1, 0, 0<, 81, 0, 0, 1, 1<, 81, 0, 0, 1, 0<,
81, 0, 0, 0, 1<, 81, 0, 0, 0, 0<, 80, 1, 1, 1, 1<,
80, 1, 1, 1, 0<, 80, 1, 1, 0, 1<, 80, 1, 1, 0, 0<,
80, 1, 0, 1, 1<, 80, 1, 0, 1, 0<, 80, 1, 0, 0, 1<,
80, 1, 0, 0, 0<, 80, 0, 1, 1, 1<, 80, 0, 1, 1, 0<,
80, 0, 1, 0, 1<, 80, 0, 1, 0, 0<, 80, 0, 0, 1, 1<,
80, 0, 0, 1, 0<, 80, 0, 0, 0, 1<, 80, 0, 0, 0, 0<<

Representing Families of Cellular Automata Rules 5

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

AllNeighbourhoods@3D

882, 2, 2<, 82, 2, 1<, 82, 2, 0<, 82, 1, 2<,
82, 1, 1<, 82, 1, 0<, 82, 0, 2<, 82, 0, 1<,
82, 0, 0<, 81, 2, 2<, 81, 2, 1<, 81, 2, 0<,
81, 1, 2<, 81, 1, 1<, 81, 1, 0<, 81, 0, 2<, 81, 0, 1<,
81, 0, 0<, 80, 2, 2<, 80, 2, 1<, 80, 2, 0<, 80, 1, 2<,
80, 1, 1<, 80, 1, 0<, 80, 0, 2<, 80, 0, 1<, 80, 0, 0<<

All these functions are handy to perform rule table manipulation and are used throughout
this article.
In the one-dimensional case, it is possible to visualize the system’s evolution using a
space-time diagram, in which time goes from top to bottom, and cell states are represented
by colors. For binary CAs, white cells are in the 0 state and black cells in the 1 state. In or-
der to obtain and plot the space-time diagram resulting from a rule execution on a given
lattice, one can use Mathematica’s built-in functions CellularAutomaton and
ArrayPlot.

‡ 3. Cellular Automaton Properties
In order to better understand the computational power implicit in a CA rule, benchmark
problems have been defined for it to tackle; among them, the most common is the density
classification task (DCT). In the classical definition of DCT, a one-dimensional binary
CA has to lead an arbitrary initial odd-sized configuration into a fixed-point state of all
blacks, if the initial condition has a larger number of black cells, or into a fixed-point state
of all whites otherwise.
It has been proved that in order to solve the DCT perfectly, a CA would need to be num-
ber conserving, that is, it should not change the number of cells in each state from any
given initial condition [6]. This fact stands as a contradiction against the classical defini-
tion of the DCT, since in order for it to evolve to an all-black or all-white configuration, it
would obviously need to change the number of cells in each state throughout time. This
means that DCT is unsolvable when formulated according to its classical definition [2, 3].
Currently, the best imperfect DCT solver (known as Wd0) was found in [5], by means of
a sophisticated evolutionary algorithm that used, among other important properties, the in-
ternal symmetry of a rule in its fitness function. In tune with the fact that a perfect DCT
solver would need to be number conserving, Wd0 and other good DCT solvers are known
to have a very small Hamming distance from number-conserving rules of the same rule
space [7].
All in all, number conservation and internal symmetry are two important properties when
determining the ability of a CA to solve the DCT, and serve as good examples for the no-
tion of CA templates. Both are described in detail in the following subsections. But notice,
upfront, that these two properties are amenable to being addressed in templates, since they
derive from well-established relations among state transitions.

6 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

· 3.1 Number Conservation

Number conservation is a property presented by some CAs, in which the sum of the states
of the individual cells in any initial configuration does not change during the space-time
evolution; in particular, for binary CAs, this means that the number of 1s always remains
the same. This kind of CA is useful, for instance, to model systems like car traffic, in
which a car cannot appear or disappear as time goes by [7]. Elementary CA 184 is an
example of a number-conserving CA.
In order for a one-dimensional CA rule to be number conserving, it is established in [8]
that the local rule f with neighborhood size n must respect the following necessary and
sufficient conditions for every state transition:

f Hx1, x2, x3, …, xnL =

x1 +‚
i=1

n-1
f H01, …, 0i, x2, …, xn-i+1L- f H01, …, 0i, x1, x2, …, xn-iL,

where 01, 02, …, 0i corresponds to a sequence of 0s of length i.

A simplification of the original algorithm from [8] is provided in [9]. Basically, it was
shown that for any given rule, it suffices to analyze the state transitions associated with
the neighborhood made up of only 0s and the neighborhoods not starting with 0. This is a
total, therefore, of kn - kn-1 + 1 neighborhoods instead of kn, as stated in [8]. This is the
condition we employ to obtain templates that represent number-conserving CAs, as will
be shown below.

· 3.2 Internal Symmetry

Apart from number conservation, a rule’s internal symmetry also plays an important role
in solving the DCT. In order to fully understand how this property works, an explanation
about rule transformations and dynamically equivalent rules is required; the presentation
is restricted to binary rules, even though this notion extends to the arbitrary k-ary case.
Given the rule table of a CA, one can apply three types of transformations on it that will
result in dynamically equivalent rules. For the binary case, BlackWhiteTransform is
obtained by switching the state of all cells in a rule table. The second type of transforma-
tion, LeftRightTransform, is obtained by reversing the bits of the neighborhoods in
a rule table and reordering the set of state transitions. The composition in either order of
the latter two transformations (they commute) yields the third type, LeftRightBlackÖ
WhiteTransform or BlackWhiteLeftRightTransform.

BlackWhiteTransform@ruleTable_D :=
Reverse@81 - ÒP1T, 1 - ÒP2T< & êü ruleTableD

LeftRightTransform@ruleTable_D :=
Reverse@SortBy@8Reverse@ÒP1TD, ÒP2T< & êü ruleTable, FirstDD

Representing Families of Cellular Automata Rules 7

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

LeftRightBlackWhiteTransform@ruleTable_D :=
LeftRightTransform@BlackWhiteTransform@ruleTableDD

BlackWhiteLeftRightTransform@ruleTable_D :=
BlackWhiteTransform@LeftRightTransform@ruleTableDD

Here is how they work on rule 110.

RuleTableFromRuleNumber@110D

8881, 1, 1<, 0<, 881, 1, 0<, 1<, 881, 0, 1<, 1<, 881, 0, 0<, 0<,
880, 1, 1<, 1<, 880, 1, 0<, 1<, 880, 0, 1<, 1<, 880, 0, 0<, 0<<

BlackWhiteTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 0<, 881, 0, 0<, 0<,
880, 1, 1<, 1<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 1<<

LeftRightTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 0<, 881, 1, 0<, 1<, 881, 0, 1<, 1<, 881, 0, 0<, 1<,
880, 1, 1<, 1<, 880, 1, 0<, 1<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<

LeftRightBlackWhiteTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 1<, 881, 1, 0<, 1<, 881, 0, 1<, 0<, 881, 0, 0<, 0<,
880, 1, 1<, 0<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 1<<

BlackWhiteLeftRightTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 1<, 881, 1, 0<, 1<, 881, 0, 1<, 0<, 881, 0, 0<, 0<,
880, 1, 1<, 0<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 1<<

This checks the first one, BlackWhiteTransform.

kAryFromRuleTableüRuleTableFromRuleNumber@110D

80, 1, 1, 0, 1, 1, 1, 0<

Reverse@1 - %D

81, 0, 0, 0, 1, 0, 0, 1<

8 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

With these transformations, it becomes straightforward to see which CAs in a given space
have equivalent dynamical behavior. For instance, by applying the three transformations
on a given CA, say elementary rule 110, elementary rules 8137, 124, 193< are obtained.
These four rules are said to be in the same dynamical equivalence class. It is easy to see
why, by looking at their space-time diagrams.

With@8rule110 = RuleTableFromRuleNumber@110D<,
8RuleNumberFromRuleTable@BlackWhiteTransform@rule110DD,
RuleNumberFromRuleTable@LeftRightTransform@rule110DD,
RuleNumberFromRuleTable@
BlackWhiteTransform@LeftRightTransform@rule110DDD<D

8137, 124, 193<

Grid@Partition@Labeled@
ArrayPlot@CellularAutomaton@ÒP2T, 881<, 0<, 20DD,
TextüRow@8ÒP1T, ": ", ÒP2T<D

D & êü 88"Original", 110<, 8"Black-White", 137<,
8"Left-Right", 124<, 8"Composed", 193<<, 2DD

Original: 110 Black-White: 137

Representing Families of Cellular Automata Rules 9

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

Left-Right: 124 Composed: 193

By comparing the rule table of a CA with the one that resulted from its equivalent rule ob-
tained out of a given transform, it is possible to count the number of state transitions they
share. In a sense, this provides a measure of the amount of internal symmetry of a CA
with respect to that transformation, whichever it is. For instance, elementary CA 110 has
an internal symmetry value of 2 with respect to the black-white transformation, since it
shares two state transitions with its black-white symmetrical rule, which is elementary
rule 137.

With@8
rule110 = RuleTableFromRuleNumber@110D,
rule137 = RuleTableFromRuleNumber@137D

<,
TotalüMapThread@If@ÒP2T ã Ò2P2T, 1, 0D &,

8rule110, rule137<DD

2

Repeating this process with rule 150, on the other hand, yields a different result. Rule 150
has an internal symmetry value of 8 according to the black-white transformation. This is
the maximum possible value of this measure with elementary CAs. This is quite pre-
dictable, as the black-white transformation of rule 150 is rule 150 itself. In fact, any of the
three transformations applied to rule 150 yields rule 150 itself, indicating it has the maxi-
mum internal symmetry value according to any of the three transformations.

RuleNumberFromRuleTable@
BlackWhiteTransform@RuleTableFromRuleNumber@150DDD

150

10 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

RuleNumberFromRuleTable@
LeftRightTransform@RuleTableFromRuleNumber@150DDD

150

With@8rule150 = RuleTableFromRuleNumber@150D<,
TotalüMapThread@If@ÒP2T ã Ò2P2T, 1, 0D &,

8rule150, rule150<DD

8

The degree of internal symmetry of a rule can be a relevant measure in any context where
a property is shared among all members of a class of dynamical equivalence. In [5] and
[7], for instance, rules with maximal internal symmetry with the composite transformation
were key for their findings related to DCT.

‡ 4. Cellular Automata Templates
A CA template is an enhancement over the rule table representation, obtained by allowing
it to have variables in the place of simple cell states as its results. As a consequence, a CA
template has the power to represent whole subsets of CA rule spaces, instead of only a sin-
gle rule.
As a simple example, consider the template 80, 1- x1, 0, 1, x2, 1, x1, 0<. It represents the
subset of the elementary CAs with fixed bits at positions 1, 3, 5, 6, and 8 in the list, free
variables at positions 2 and 4, and complement bits at positions 2 and 7.
Using Mathematica’s built-in transformation rules, one can obtain the four CAs repre-
sented by this template, as well as their corresponding rule numbers.

With@
8
transformationRules =
88x1 Ø 0, x2 Ø 0<, 8x1 Ø 0, x2 Ø 1<, 8x1 Ø 1, x2 Ø 0<,
8x1 Ø 1, x2 Ø 1<<,

template = 80, 1 - x1, 0, 1, x2, 1, x1, 0<
<,
template ê. transformationRules

D

FromDigits@Ò, 2D & êü %

880, 1, 0, 1, 0, 1, 0, 0<, 80, 1, 0, 1, 1, 1, 0, 0<,
80, 0, 0, 1, 0, 1, 1, 0<, 80, 0, 0, 1, 1, 1, 1, 0<<

884, 92, 22, 30<

Representing Families of Cellular Automata Rules 11

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

The function RuleTemplateVars lists the variables in a template.

RuleTemplateVars@template_ListD :=
Union@Select@template, HeadüÒ === Symbol &DD

H*RuleTemplateVars@template_ListD:=
Union@If@Length@ÒD===0,Ò,ÒP2TD&êü

Select@
Flatten@
If@Length@ÒD===0,Ò,Table@ÒPiT,8i,1,Length@ÒD<DD&êü
templateD,ŸNumericQ@ÒD&DD*L

RuleTemplateVars@80, 1 - x1, 0, 1, x2, 1, x1, 0<D

8x1, x2<

Extracting the variables from a template and applying a value to each, the template is
transformed into one of its represented rule tables. Every template has a number of
possible substitutions equal to kLength@RuleTemplateVars@templateDD; however, as will be
seen later, some of those may not be valid.
The function ExpandTemplate performs this operation by applying values to each vari-
able of a given template. It may receive as an optional argument an integer called
ithSubstitution in the range 0 to kLength@RuleTemplateVars@templateDD, represent-
ing which substitution should be made. If omitted, it performs all the possible substitu-
tions for a given template.

ExpandTemplate@template_List, k_Integer: 2D := WithA

9substitutionRange =

RangeA1, kLength@RuleTemplateVars@templateDDE=,
ExpandTemplate@template, k, ÒD & êü substitutionRange

E

ExpandTemplate@template_List, k_Integer: 2,
ithSubstitution_IntegerD := Module@
8templateVariables, substitutions, transformationRules<,
templateVariables = RuleTemplateVars@templateD;
substitutions = IntegerDigits@ithSubstitution, k,

Length@templateVariablesDD;
transformationRules =
MapThread@HÒ1 Ø Ò2L &,
8templateVariables, substitutions<D;

template ê. transformationRules
D

12 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

ExpandTemplate@80, 1 - x1, 0, 1, x2, 1, x1, 0<D

880, 1, 0, 1, 1, 1, 0, 0<, 80, 0, 0, 1, 0, 1, 1, 0<,
80, 0, 0, 1, 1, 1, 1, 0<, 80, 1, 0, 1, 0, 1, 0, 0<<

After the expansion, one can obtain the list of valid rules represented by the template by us-
ing the function RuleNumbersFromTemplate.

RuleNumbersFromTemplate@expandedTemplate_List,
k_Integer: 2, r_Integer: 1D :=

FromDigits@Ò, kD & êü Select@
expandedTemplate,
WellFormedRuleTableQ@Ò, k, rD &

D

RuleNumbersFromTemplate@
ExpandTemplate@80, 1 - x1, 0, 1, x2, 1, x1, 0<D, 2, 1D

892, 22, 30, 84<

With Mathematica’s built-in symbolic computation features, it is easy to create templates
that represent a whole space. The space of elementary CAs would be represented by the
following template.

BaseTemplate@k_Integer: 2, r_: 1D :=

Symbol@"x" <> ToString@ÒDD & êü RangeAk2 r+1, 1, -1E

BaseTemplate@2, 1D

8x8, x7, x6, x5, x4, x3, x2, x1<

In [4], the authors analytically found which transitions needed to be fixed, variable, or
dependent on other transitions in a CA rule table, in order to have a chance to solve the
parity problem perfectly. By fixing those transitions, they restrained the rule space of one-
dimensional, binary, radius-2 CAs, composed of 4,294,967,296 rules, to only 16 candi-
dates for perfect parity solvers. Although they used the de Bruijn graph as the primary
structure to represent this rule space subset, it could have been easily represented with CA
templates.
Empowered by Mathematica’s built-in equation-solving capabilities, algorithms can be de-
veloped that find the fixed, variable, and dependent state transitions on a rule table, thus
leading to templates that are representatives of CAs that share the properties of number
conservation and maximal internal symmetry; these are shown below.

Representing Families of Cellular Automata Rules 13

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

· 4.1 Templates for Number-Conserving Rules

In [8], Boccara and Fukś established necessary and sufficient conditions that a CA rule
table must meet in order to be conservative (which is another way to say number conserv-
ing). These conditions can be translated into an algorithm BFConservationÖ
Template that finds a set of equations that, when solved by Mathematica, yields the
equivalent of a template that represents all conservative CAs of a determined space.

BFConservationTemplate@k_Integer: 2, r_: 1,

intemplate_List: 8<D := ModuleB

8basetemplate, vars, relevantNeighbourhoods, equations<,
basetemplate = If@intemplate ¹≠ 8<, intemplate,

BaseTemplate@k, rDD;
vars = RuleTemplateVars@BaseTemplate@k, rDD;
relevantNeighbourhoods =
Join@8Table@0, 82 r + 1<D<,
Cases@AllNeighbourhoods@k, rD, 8x_ ê; x ¹≠ 0, ___<DD;

equations = HEqual üü ÒL & êü

:RuleOutputFromNeighbourhood@Ò, basetemplate, k, rD,

First@ÒD +

‚
i=1

2 r

HRuleOutputFromNeighbourhood@

Join@Table@0, 8i<D, Take@Ò, 82, 2 r - i + 2<DD,
basetemplate, k, rD -

RuleOutputFromNeighbourhood@
Join@Table@0, 8i<D, Take@Ò, 81, 2 r - i + 1<DD,

basetemplate, k, rDL> & êü

relevantNeighbourhoods ;

First@basetemplate ê. Quiet@Solve@equations, varsDDD

F

By running this function for the elementary space, the following template is obtained.

BFConservationTemplate@2, 1D

81, 1 + x3 - x4, 1 - x3, 1 - x2 - x3, x4, x3, x2, 0<

When expanded, the latter yields the following representations.

14 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

ExpandTemplate@%D

8881, 0, 1, 1, 1, 0, 0, 0<, 81, 2, 0, 0, 0, 1, 0, 0<,
81, 1, 0, 0, 1, 1, 0, 0<, 81, 1, 1, 0, 0, 0, 1, 0<,
81, 0, 1, 0, 1, 0, 1, 0<, 81, 2, 0, -1, 0, 1, 1, 0<,
81, 1, 0, -1, 1, 1, 1, 0<, 81, 1, 1, 1, 0, 0, 0, 0<<<

However, it is clear that not all k-ary representations above are valid, since some of them
rely on state values outside the range 80, k - 1<, namely, the states 2 and -1. Hence, by
discarding those three, we get the complete set of five number-conserving rules of the ele-
mentary space.

RuleNumbersFromTemplate@
ExpandTemplate@BFConservationTemplate@2, 1DDD

8184, 204, 226, 170, 240<

It is important to notice that this kind of strategy can only be employed on properties that
derive directly from the CA rule table.

· 4.2 Templates for Rules with Maximal Internal Symmetry

As the internal symmetry of a CA is also a property that derives directly from its rule
table, it is a valid candidate to be generalized into a template. By listing a CA rule table
along with its respective transformations, it is possible to establish equality relations be-
tween them that, when solved by Mathematica, yield a template that represents all CAs
that have the maximal possible value of internal symmetry, according to any subset of the
three transformations.
By establishing that all of the results of the rule tables have to be the same in both the CA
and its transformed counterpart, the following function MaxSymmTemplate achieves
the goal of finding a template that represents all CAs of a given space that present the
maximum value of internal symmetry, according to a list of transformations received as
arguments.

MaxSymmTemplate@transformation_, k_Integer: 2, r_: 1,
intemplate_List: 8<D :=

MaxSymmTemplate@8transformation<, k, r, intemplateD

Representing Families of Cellular Automata Rules 15

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

MaxSymmTemplate@transformations_List, k_Integer: 2,
r_: 1, intemplate_List: 8<D := Module@
8basetemplate, vars, ruleVariations, organisedmapping,
eqrelations, equations, substitutions<,

basetemplate = If@intemplate ¹≠ 8<, intemplate,
BaseTemplate@k, rDD;

vars = RuleTemplateVars@basetemplateD;
ruleVariations =
Ò@RuleTableFromkAry@basetemplate, k, rDD & êü
Join@8Ò &<, transformationsD;

organisedmapping =
Reverseü
SortBy@Union@ÒD & êü GatherBy@Flatten@ruleVariations, 1D,

ÒP1T &D, ÒP1, 1T &D;
eqrelations = HÒP2T & êü ÒL & êü organisedmapping;
equations = Apply@Equal, ÒD & êü eqrelations;
substitutions = Quiet@Solve@equations, varsDD;
Map@ÒP2T &, Flatten@Union@ÒD, 1D & êü

Flatten@organisedmapping ê. substitutions, 1DD
D

In order to find a template that represents all elementary CAs with maximum symmetry
according to the black-white transformation, it suffices to run MaxSymmTemplate, then
expand the template to generate the rule numbers.

MaxSymmTemplate@BlackWhiteTransform, 2, 1D

81 - x1, 1 - x2, 1 - x3, 1 - x4, x4, x3, x2, x1<

RuleNumbersFromTemplate@
ExpandTemplate@81 - x1, 1 - x2, 1 - x3, 1 - x4, x4, x3, x2, x1<DD

8232, 212, 204, 178, 170, 150,
142, 113, 105, 85, 77, 51, 43, 23, 15, 240<

The verification of this result can be achieved by guaranteeing that all these rule numbers
yield the same rule tables when transformed.

RuleTableFromRuleNumber@ÒD ã
BlackWhiteTransform@RuleTableFromRuleNumber@ÒDD & êü

8232, 212, 204, 178, 170, 150, 142, 113, 105, 85, 77,
51, 43, 23, 15, 240<

8True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True<

16 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

We can analogously obtain a template representing all CAs with maximum symmetry
according to all transformations, from which their expansions also lead to the correspond-
ing rule numbers.

MaxSymmTemplate@8BlackWhiteTransform, LeftRightTransform,
BlackWhiteTransform@LeftRightTransform@ÒDD &<, 2,

1D

81 - x1, 1 - x2, 1 - x3, x2, 1 - x2, x3, x2, x1<

RuleNumbersFromTemplate@
ExpandTemplate@81 - x1, 1 - x2, 1 - x3, x2, 1 - x2, x3, x2, x1<DD

8204, 178, 150, 105, 77, 51, 23, 232<

And again, their validity can be checked.

RuleTableFromRuleNumber@ÒD ã
BlackWhiteTransform@RuleTableFromRuleNumber@ÒDD ã
LeftRightTransform@RuleTableFromRuleNumber@ÒDD ã
BlackWhiteTransform@
LeftRightTransform@RuleTableFromRuleNumber@ÒDDD & êü

8204, 178, 150, 105, 77, 51, 23, 232<

8True, True, True, True, True, True, True, True<

· 4.3 Composition of Templates

Both the BFConservationTemplate and the MaxSymmTemplate functions can
take another template as an optional argument, which is meant to be used as the starting
point of the algorithms. This is the current way to compose the intersection of templates
that share a common structure. For instance, in order to generate all the elementary con-
servative CAs with maximum internal symmetry values according to the black-white
transformation, it becomes straightforward to use the template for number-conserving
rules of the elementary space as the starting point of MaxSymmTemplate. This leads to a
template that, once again, can be expanded so as to yield the target rule numbers.

MSBFTemplate = MaxSymmTemplate@BlackWhiteTransform,
2, 1, BFConservationTemplate@2, 1DD

81, 1 - x2, 1 - x3, 1 - x2 - x3, x2 + x3, x3, x2, 0<

Representing Families of Cellular Automata Rules 17

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

RuleNumbersFromTemplate@ExpandTemplate@MSBFTemplateDD

8204, 170, 240<

Alternatively, the template with maximal internal symmetry could be used as the starting
point of the BFConservationTemplate algorithm to obtain the same result.

BFMSTemplate = BFConservationTemplate@2, 1,
MaxSymmTemplate@BlackWhiteTransform, 2, 1DD

81, 1 - x2, 1 - x3, 1 - x2 - x3, x2 + x3, x3, x2, 0<

RuleNumbersFromTemplate@ExpandTemplate@BFMSTemplateDD

8204, 170, 240<

‡ 5. Concluding Remarks
The concept of CA templates was introduced, a rule table enhancement capable of repre-
senting a subset of a CA rule space, where the rules in the set can share a common prop-
erty. Although the examples used for illustration only referred to one-dimensional, binary
rules (the elementary space), the idea seems readily applicable to larger CAs with a larger
number of states and more dimensions.
We have shown some of the operations applicable to CA templates, as well as some cases
of use, in the form of Mathematica functions that yield templates representing subsets of
the elementary space of CAs with properties related to number conservation and maxi-
mum internal symmetry. With respect to the latter, templates can be derived for any sub-
set of the three symmetry-related transformations.
Templates for the rules in the same dynamical class in the elementary space have ap-
peared previously in the CA literature, such as in [10]. But in these cases, the notion was
not at all couched in the conceptual framework we have put forward, which allows tem-
plates to be effectively defined for rules having maximal internal symmetry value, let
alone the possibility of representing further CA properties.
The properties used as examples here can be couched in terms of well-established rela-
tions among the state transitions of the CA, which are a necessary condition for a property
to be addressed in the form of templates. As a counterpoint, the notion of reversibility of
one-dimensional rules does not seem to be, at least in principle, amenable to template
representation, since it is currently not known how to characterize reversibility in terms of
the rule table of a CA.
It stands as future work to find new algorithms that would allow template representations
of other properties, as well as the enhancement of the current algorithm related to internal
symmetry templates, so as to extend the current constraint of only generating maximal in-
ternal symmetry toward also allowing the generation of templates with specific values of
internal symmetry, not necessarily maximal.

18 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

It stands as future work to find new algorithms that would allow template representations
of other properties, as well as the enhancement of the current algorithm related to internal
symmetry templates, so as to extend the current constraint of only generating maximal in-
ternal symmetry toward also allowing the generation of templates with specific values of
internal symmetry, not necessarily maximal.
Currently, because of computational demands, template expansion does not scale up well
to very big templates; this should also be addressed in a follow-up. In particular, it might
be worth defining operations of union and intersection of templates, which might be used
to preprocess a template before the operation of template expansion.

‡ Acknowledgments
Pedro de Oliveira thanks FAPESP (Fundação de Amparo à Pesquisa do Estado de São
Paulo). Maurício Verardo is thankful for a fellowship provided by CAPES, the Brazilian
agency of its Ministry of Education.

‡ References
[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media Inc., 2002.

[2] P. P. B. de Oliveira, “Conceptual Connections around Density Determination in Cellular Au-
tomata,” Cellular Automata and Discrete Complex Systems (Lecture Notes in Computer Sci-
ence), 8155, 2013 pp. 1–14. doi:10.1007/978-3-642-40867-0_ 1.

[3] P. P. B. de Oliveira, “On Density Determination with Cellular Automata: Results, Construc-
tions and Directions,” Journal of Cellular Automata, forthcoming.

[4] H. Betel, P. P. B. de Oliveira, and P. Flocchini, “Solving the Parity Problem in One-Dimen-
sional Cellular Automata,” Natural Computing, 12(3), 2013 pp. 323–337.
doi:10.1007/s11047-013-9374-9.

[5] D. Wolz and P. P. B. de Oliveira, “Very Effective Evolutionary Techniques for Searching Cellu-
lar Automata Rule Spaces,” Journal of Cellular Automata, 3(4), 2008 pp. 289–312.

[6] H. Fukś, “A Class of Cellular Automata Equivalent to Deterministic Particle Systems,” in Hy-
drodynamic Limits and Related Topics, (S. Feng, A. T. Lawniczak, and S. R. S. Varadhan,
eds.), Providence, RI: American Mathematical Society, 2000 pp. 57–69.

[7] J. Kari and B. Le Gloannec, “Modified Traffic Cellular Automaton for the Density Classifica-
tion Task,” Fundamenta Informaticae, 116 (1–4), 2012 pp. 141–156.
doi:10.3233/FI-2012-675.

[8] N. Boccara and H. Fukś, “Number-Conserving Cellular Automaton Rules,” Fundamenta Infor-
maticae, 52(1–3), 2002 pp. 1–13.

[9] A. Schranko and P. P. B. de Oliveira, “Towards the Definition of Conservation Degree for
One-Dimensional Cellular Automata Rules,” Journal of Cellular Automata, 5(4–5), 2010
pp. 383-401.

[10] W. Li and N. Packard, “The Structure of the Elementary Cellular Automata Rule Space,” Com-
plex Systems, 4(3), 1990 pp. 281–297. www.complex-systems.com/pdf/04-3-3.pdf.

P. P. B. de Oliveira and M. Verardo, “Representing Families of Cellular Automata Rules,” The Mathematica
Journal, 2014. dx.doi.org/doi:10.3888/tmj.16-8.

Representing Families of Cellular Automata Rules 19

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

About the Authors

Pedro de Oliveira has been a faculty member since 2001 of the School of Computing and
Informatics and of the Postgraduate Program in Electrical Engineering at Mackenzie Pres-
byterian University, São Paulo, Brazil. His research interests are cellular automata, evolu-
tionary computation, and cellular multi-agent systems. Pedro is an alumnus of the 2003
NKS Summer School.
Maurício Verardo is a post-graduate student in Electrical Engineering at Mackenzie Pres-
byterian University, working with cellular automata ever since his undergraduate senior
project for his computer science degree from Mackenzie. Maurício is an alumnus of the
2011 NKS Summer School.

Pedro P. B. de Oliveira
Faculdade de Computação e Informática & Pós-Graduação em Engenharia Elétrica
Universidade Presbiteriana Mackenzie
Rua da Consolação, 930
São Paulo, 01302-907 - Brazil
pedrob@mackenzie.br
Maurício Verardo
Pós-Graduação em Engenharia Elétrica
Universidade Presbiteriana Mackenzie
Rua da Consolação, 930
São Paulo, 01302-907 - Brazil
mauricio.verardo@gmail.com

20 Pedro P. B. de Oliveira and Maurício Verardo

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.

