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This article introduces the notion of a representation of cellular 
automata rules based on a template. This enhances the standard 
representation based on a rule table, in that it refers to families of 
cellular automata, instead of a rule alone. The key for obtaining 
the templates is the role of the built-in equation-solving capabilities 
of Mathematica. Operations applicable to the templates are 
defined, and examples of their use are given in the context of 
finding representations for rule sets that share the properties of 
maximum internal symmetry or number conservation. The 
perspectives for using templates in further contexts are also 
discussed and current limitations are addressed.

‡ 1. Introduction
A  cellular  automaton  (CA)  is  a  dynamical  system  with  arbitrarily  complex  global
behavior, despite being governed by very simple local rules [1]. In order to better under-
stand how that kind of complex behavior emerges, many explorations have been made in
the context of the power implicit in CA rules. For instance, classical benchmark problems
have  been  used  for  this,  including  the  density  classification  task  [2,  3]  and  the  parity
problem [4].  The density  classification  task  tries  to  discover  the  most  frequent  bit  in  the
initial configuration of the lattice; the parity problem tries to find the parity of the number
of 1s in the initial configuration of the lattice. One of the approaches in these contexts is
to  evaluate  every  possible  CA of  a  given  family  in  terms  of  its  capabilities  to  solve  the
target problem. This approach is possible in small CA families, like the elementary space
(composed  of  256  CAs),  but  is  not  feasible  in  larger  families,  like  the  one-dimensional
binary CA family with radius 3, composed of 2128 rules.
As a strategy to search for CAs in large rule families, evolutionary computation has been
extensively used, relying on measures of properties of the candidate rules, such as their de-
gree of internal symmetry, so as to discard or keep candidates according to these property
values. This was a key aspect, for instance, that led to finding WdO, currently the best one-
dimensional radius-3 rule for the density classification task [5].
An alternative is to constrain the search space to only the CAs that are known to present
specific properties.  The challenge here is  how to constrain the space without the need to
enumerate  the  entire  subspace  of  interest.  Here,  we  introduce  the  concept  of  a  CA
template  as  a  possible  way to  achieve  this  goal.  A CA template  is  a  data  structure  asso-
ciated with the rule  tables  of  the members  of  a  CA family that  relies  on the use of  vari-
ables. The introduction of these variables makes it possible for a CA template to represent
a  set  of  rules,  unlike  the  standard  k-ary  rule  table  representation  that  can  only  represent
one individual CA. By making use of Mathematica’s built-in equation-solving capabilities
and algorithms that allow finding equality relations among CAs with a given property, we
are able to create templates that represent number-conserving CAs (those that, in a sense,
preserve the number of states of the initial configuration; more details below), as well as
those with maximal internal  symmetry (those displaying invariance under some transfor-
mations in their rule tables; also to be explained below). These two cases are given here as
examples  of  the  applicability  of  the  template  idea,  but  other  properties  can  also  be
accounted for.
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An alternative is to constrain the search space to only the CAs that are known to present
specific properties.  The challenge here is  how to constrain the space without the need to
enumerate  the  entire  subspace  of  interest.  Here,  we  introduce  the  concept  of  a  CA
template  as  a  possible  way to  achieve  this  goal.  A CA template  is  a  data  structure  asso-
ciated with the rule  tables  of  the members  of  a  CA family that  relies  on the use of  vari-
ables. The introduction of these variables makes it possible for a CA template to represent
a  set  of  rules,  unlike  the  standard  k-ary  rule  table  representation  that  can  only  represent
one individual CA. By making use of Mathematica’s built-in equation-solving capabilities
and algorithms that allow finding equality relations among CAs with a given property, we
are able to create templates that represent number-conserving CAs (those that, in a sense,
preserve the number of states of the initial configuration; more details below), as well as
those with maximal internal  symmetry (those displaying invariance under some transfor-
mations in their rule tables; also to be explained below). These two cases are given here as
examples  of  the  applicability  of  the  template  idea,  but  other  properties  can  also  be
accounted for.
In the following section, basic notions about CAs are given, followed by a section that pre-
sents details about important properties related to the density classification task. Section 4
explains the notion of  template  and presents  the implemented algorithms.  Section 5 con-
cludes  the  text,  with  a  discussion  on  the  advantages  and  limitations  of  using  templates,
and gives some ideas for future work.

‡ 2. Cellular Automata
Cellular  automata  constitute  a  class  of  decentralized  dynamical  systems,  usually  discrete
in space, time, and states [1]. As systems governed by relatively simple rules, CAs repre-
sent  a  meaningful  model  for  tackling the issue of  how interaction among simple compo-
nents can lead to the solution of global problems.
CAs  are  composed  of  a  regular  lattice  of  cells  whose  states  change  through  time,
according to a local rule. The lattice can be deployed in any number of dimensions (most
commonly  one,  two,  or  three)  and  may  have  an  infinite  or  fixed  number  of  cells.  Cells’
states are commonly represented by numbers or colors out of k  possibilities ranging from
0 to k - 1. The local rule of the CA acts on the neighborhood of every cell,  which is the
set  of  neighboring  cells  meant  to  influence  its  subsequent  states.  The  neighborhood  is
usually  expressed  by  its  radius  (or  range)  r,  meaning  the  range  of  cells  on  each  side
affecting  the  one  in  question.  By  defining  values  for  these  two  parameters,  a  CA  rule
space or family is defined. The values of r = 1 and k = 2 in the one-dimensional case (i.e.
a neighborhood has three cells; a cell has two possible states) give rise to the elementary
rule space,  which is  the most well-studied family,  due to its  small  size of only 256 rules
but extremely rich phenomenology [1].
For present purposes, whenever we refer to cellular automata, we mean one-dimensional,
binary (k = 2) CAs, with a fixed number of cells in the lattice and periodic boundary con-
ditions (i.e. the lattice is closed at its ends, like a ring).
Every CA is governed by a rule that relates the neighborhood of a cell to the state it takes
on  at  the  next  time  step.  Its  most  common  representation  is  the  rule  table,  which  is  an
explicit  listing  of  every  possible  state  configuration  of  the  neighborhoods,  lexicograph-
ically  ordered,  and  a  corresponding  cell  state  for  each.  Here  we  use  Wolfram’s  lexico-
graphical  ordering,  where  the  leftmost  neighborhood  is  formed  by  the  neighborhood
configuration  where  all  cells  are  in  the  (k - 1)  state,  all  the  way  down  to  the  rightmost
neighborhood with all cells in the 0 state.
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Every CA is governed by a rule that relates the neighborhood of a cell to the state it takes
on  at  the  next  time  step.  Its  most  common  representation  is  the  rule  table,  which  is  an
explicit  listing  of  every  possible  state  configuration  of  the  neighborhoods,  lexicograph-
ically  ordered,  and  a  corresponding  cell  state  for  each.  Here  we  use  Wolfram’s  lexico-
graphical  ordering,  where  the  leftmost  neighborhood  is  formed  by  the  neighborhood
configuration  where  all  cells  are  in  the  (k - 1)  state,  all  the  way  down  to  the  rightmost
neighborhood with all cells in the 0 state.
As an illustration, this is the rule table of the elementary CA for rule 184.

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<,
881, 0, 0<, 1<, 880, 1, 1<, 1<, 880, 1, 0<, 0<,
880, 0, 1<, 0<, 880, 0, 0<, 0<<;

This is the ordered set of output cell states from that rule table, the k-ary form.

81, 0, 1, 1, 1, 0, 0, 0<;

By converting the binary sequence that defines the k-ary form into a decimal representa-
tion,  one  obtains  the  CA  rule  number,  which  serves  as  a  unique  identifier  of  a  CA  in  a
given rule space [1].

FromDigits@81, 0, 1, 1, 1, 0, 0, 0<, 2D

184

In  order  to  handle  operations  concerning  rule  tables,  various  Mathematica  functions  are
defined.  So,  given  a  rule  table  in  its  k-ary  form,  the  function  RuleTableFromkAry
transforms it to its classical representation.

RuleTableFromkAry@kAryRuleTable_, k_Integer: 2, r_: 1D :=
MapThread@List@Ò1, Ò2D &,
8Tuples@Range@k - 1, 0, -1D, d2 r + 1tD, kAryRuleTable<D

RuleTableFromkAry@81, 0, 1, 1, 1, 0, 0, 0<D

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<, 881, 0, 0<, 1<,
880, 1, 1<, 1<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<

The function kAryFromRuleTable reverses the process.

kAryFromRuleTable@ruleTable_D := Last êü ruleTable
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kAryFromRuleTable@8881, 1, 1<, 1<, 881, 1, 0<, 0<,
881, 0, 1<, 1<, 881, 0, 0<, 1<, 880, 1, 1<, 1<,
880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<D

81, 0, 1, 1, 1, 0, 0, 0<

Given a CA’s rule number, RuleTableFromRuleNumber determines its rule table.

RuleTableFromRuleNumber@rnum_Integer, k_Integer: 2, r_: 1D :=

RuleTableFromkAryAPadLeftAIntegerDigits@rnum, kD, kH2*r+1LE,

k, rE

RuleTableFromRuleNumber@184D

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<, 881, 0, 0<, 1<,
880, 1, 1<, 1<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<

The  inverse  function  RuleNumberFromRuleTable  yields  the  rule  number  from  the
rule table.

RuleNumberFromRuleTable@ruletable_, k_Integer: 2D :=
FromDigits@kAryFromRuleTable@ruletableD, kD

RuleNumberFromRuleTable@
8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 1<,
881, 0, 0<, 1<, 880, 1, 1<, 1<, 880, 1, 0<, 0<,
880, 0, 1<, 0<, 880, 0, 0<, 0<<D

184

WellFormedRuleTableQ is a predicate that checks whether a rule table in k-ary form
is valid according to its values of r and k.

WellFormedRuleTableQ@kAryRuleTable_, k_Integer: 2, r_: 1D :=
Fold@And@Ò1, Ò2D &, True,
MemberQ@Range@0, k - 1D, ÒD & êü kAryRuleTableD

WellFormedRuleTableQ@
kAryFromRuleTable@RuleTableFromRuleNumber@ÒDDD & êü

8110, 137, 124, 150, 193<

8True, True, True, True, True<
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WellFormedRuleTableQ@8-1, 0, 1, 0, 1, 0, 1, 2<D

False

RuleOutputFromNeighbourhood  is  a utility function to get the output correspond-
ing to a particular neighborhood in a rule table.

RuleOutputFromNeighbourhood@neighbourhood_List,
kAryRuleTable_, k_Integer: 2, r_: 1D :=

ExtractAkAryRuleTable,

9kd2 r+1t - FromDigits@neighbourhood, kD=E

RuleOutputFromNeighbourhood@81, 1, 1<,
kAryFromRuleTable@RuleTableFromRuleNumber@110DDD

0

Finally, AllNeighbourhoods is a utility function giving all possible neighborhoods of
a certain rule space.

AllNeighbourhoods@k_Integer : 2, r_ : 1D :=
Tuples@Range@k - 1, 0, -1D, d2 r + 1tD;

AllNeighbourhoods@2D

881, 1, 1<, 81, 1, 0<, 81, 0, 1<, 81, 0, 0<,
80, 1, 1<, 80, 1, 0<, 80, 0, 1<, 80, 0, 0<<

AllNeighbourhoods@2, 2D

881, 1, 1, 1, 1<, 81, 1, 1, 1, 0<,
81, 1, 1, 0, 1<, 81, 1, 1, 0, 0<, 81, 1, 0, 1, 1<,
81, 1, 0, 1, 0<, 81, 1, 0, 0, 1<, 81, 1, 0, 0, 0<,
81, 0, 1, 1, 1<, 81, 0, 1, 1, 0<, 81, 0, 1, 0, 1<,
81, 0, 1, 0, 0<, 81, 0, 0, 1, 1<, 81, 0, 0, 1, 0<,
81, 0, 0, 0, 1<, 81, 0, 0, 0, 0<, 80, 1, 1, 1, 1<,
80, 1, 1, 1, 0<, 80, 1, 1, 0, 1<, 80, 1, 1, 0, 0<,
80, 1, 0, 1, 1<, 80, 1, 0, 1, 0<, 80, 1, 0, 0, 1<,
80, 1, 0, 0, 0<, 80, 0, 1, 1, 1<, 80, 0, 1, 1, 0<,
80, 0, 1, 0, 1<, 80, 0, 1, 0, 0<, 80, 0, 0, 1, 1<,
80, 0, 0, 1, 0<, 80, 0, 0, 0, 1<, 80, 0, 0, 0, 0<<
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AllNeighbourhoods@3D

882, 2, 2<, 82, 2, 1<, 82, 2, 0<, 82, 1, 2<,
82, 1, 1<, 82, 1, 0<, 82, 0, 2<, 82, 0, 1<,
82, 0, 0<, 81, 2, 2<, 81, 2, 1<, 81, 2, 0<,
81, 1, 2<, 81, 1, 1<, 81, 1, 0<, 81, 0, 2<, 81, 0, 1<,
81, 0, 0<, 80, 2, 2<, 80, 2, 1<, 80, 2, 0<, 80, 1, 2<,
80, 1, 1<, 80, 1, 0<, 80, 0, 2<, 80, 0, 1<, 80, 0, 0<<

All these functions are handy to perform rule table manipulation and are used throughout
this article.
In  the  one-dimensional  case,  it  is  possible  to  visualize  the  system’s  evolution  using  a
space-time diagram, in which time goes from top to bottom, and cell states are represented
by colors. For binary CAs, white cells are in the 0 state and black cells in the 1 state. In or-
der to obtain and plot  the space-time diagram resulting from a rule execution on a given
lattice,  one  can  use  Mathematica’s  built-in  functions  CellularAutomaton  and
ArrayPlot.

‡ 3. Cellular Automaton Properties
In  order  to  better  understand  the  computational  power  implicit  in  a  CA rule,  benchmark
problems have been defined for it to tackle; among them, the most common is the density
classification  task  (DCT).  In  the  classical  definition  of  DCT,  a  one-dimensional  binary
CA has  to  lead  an  arbitrary  initial  odd-sized  configuration  into  a  fixed-point  state  of  all
blacks, if the initial condition has a larger number of black cells, or into a fixed-point state
of all whites otherwise.
It has been proved that in order to solve the DCT perfectly, a CA would need to be num-
ber  conserving,  that  is,  it  should  not  change  the  number  of  cells  in  each  state  from  any
given initial condition [6]. This fact stands as a contradiction against the classical defini-
tion of the DCT, since in order for it to evolve to an all-black or all-white configuration, it
would  obviously  need to  change the  number  of  cells  in  each state  throughout  time.  This
means that DCT is unsolvable when formulated according to its classical definition [2, 3].
Currently, the best imperfect DCT solver (known as Wd0) was found in [5], by means of
a sophisticated evolutionary algorithm that used, among other important properties, the in-
ternal symmetry of a rule in its fitness function. In tune with the fact that a perfect DCT
solver would need to be number conserving, Wd0 and other good DCT solvers are known
to  have  a  very  small  Hamming  distance  from number-conserving  rules  of  the  same  rule
space [7]. 
All in all, number conservation and internal symmetry are two important properties when
determining the ability of a CA to solve the DCT, and serve as good examples for the no-
tion of CA templates. Both are described in detail in the following subsections. But notice,
upfront, that these two properties are amenable to being addressed in templates, since they
derive from well-established relations among state transitions.
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· 3.1 Number Conservation

Number conservation is a property presented by some CAs, in which the sum of the states
of  the individual  cells  in  any initial  configuration does not  change during the space-time
evolution; in particular, for binary CAs, this means that the number of 1s always remains
the  same.  This  kind  of  CA  is  useful,  for  instance,  to  model  systems  like  car  traffic,  in
which  a  car  cannot  appear  or  disappear  as  time  goes  by  [7].  Elementary  CA  184  is  an
example of a number-conserving CA.
In  order  for  a  one-dimensional  CA rule  to  be  number  conserving,  it  is  established in  [8]
that  the  local  rule  f  with  neighborhood  size  n  must  respect  the  following  necessary  and
sufficient conditions for every state transition:

f Hx1, x2, x3, …, xnL =

x1 +‚
i=1

n-1
f H01, …, 0i, x2, …, xn-i+1L- f H01, …, 0i, x1, x2, …, xn-iL,

where 01, 02, …, 0i corresponds to a sequence of 0s of length i.

A  simplification  of  the  original  algorithm  from  [8]  is  provided  in  [9].  Basically,  it  was
shown that  for  any  given  rule,  it  suffices  to  analyze  the  state  transitions  associated  with
the neighborhood made up of only 0s and the neighborhoods not starting with 0. This is a
total,  therefore,  of  kn - kn-1 + 1 neighborhoods  instead of  kn,  as  stated  in  [8].  This  is  the
condition  we  employ  to  obtain  templates  that  represent  number-conserving  CAs,  as  will
be shown below.

· 3.2 Internal Symmetry

Apart from number conservation, a rule’s internal symmetry also plays an important role
in solving the DCT. In order to fully understand how this property works, an explanation
about  rule  transformations  and dynamically  equivalent  rules  is  required;  the  presentation
is restricted to binary rules, even though this notion extends to the arbitrary k-ary case.
Given the rule table of a CA, one can apply three types of transformations on it that will
result in dynamically equivalent rules. For the binary case, BlackWhiteTransform is
obtained by switching the state of all cells in a rule table. The second type of transforma-
tion, LeftRightTransform, is obtained by reversing the bits of the neighborhoods in
a rule table and reordering the set of state transitions. The composition in either order of
the latter two transformations (they commute) yields the third type, LeftRightBlackÖ
WhiteTransform or BlackWhiteLeftRightTransform.

BlackWhiteTransform@ruleTable_D :=
Reverse@81 - ÒP1T, 1 - ÒP2T< & êü ruleTableD

LeftRightTransform@ruleTable_D :=
Reverse@SortBy@8Reverse@ÒP1TD, ÒP2T< & êü ruleTable, FirstDD
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LeftRightBlackWhiteTransform@ruleTable_D :=
LeftRightTransform@BlackWhiteTransform@ruleTableDD

BlackWhiteLeftRightTransform@ruleTable_D :=
BlackWhiteTransform@LeftRightTransform@ruleTableDD

Here is how they work on rule 110.

RuleTableFromRuleNumber@110D

8881, 1, 1<, 0<, 881, 1, 0<, 1<, 881, 0, 1<, 1<, 881, 0, 0<, 0<,
880, 1, 1<, 1<, 880, 1, 0<, 1<, 880, 0, 1<, 1<, 880, 0, 0<, 0<<

BlackWhiteTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 1<, 881, 1, 0<, 0<, 881, 0, 1<, 0<, 881, 0, 0<, 0<,
880, 1, 1<, 1<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 1<<

LeftRightTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 0<, 881, 1, 0<, 1<, 881, 0, 1<, 1<, 881, 0, 0<, 1<,
880, 1, 1<, 1<, 880, 1, 0<, 1<, 880, 0, 1<, 0<, 880, 0, 0<, 0<<

LeftRightBlackWhiteTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 1<, 881, 1, 0<, 1<, 881, 0, 1<, 0<, 881, 0, 0<, 0<,
880, 1, 1<, 0<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 1<<

BlackWhiteLeftRightTransform@RuleTableFromRuleNumber@110DD

8881, 1, 1<, 1<, 881, 1, 0<, 1<, 881, 0, 1<, 0<, 881, 0, 0<, 0<,
880, 1, 1<, 0<, 880, 1, 0<, 0<, 880, 0, 1<, 0<, 880, 0, 0<, 1<<

This checks the first one, BlackWhiteTransform.

kAryFromRuleTableüRuleTableFromRuleNumber@110D

80, 1, 1, 0, 1, 1, 1, 0<

Reverse@1 - %D

81, 0, 0, 0, 1, 0, 0, 1<
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With these transformations, it becomes straightforward to see which CAs in a given space
have  equivalent  dynamical  behavior.  For  instance,  by  applying  the  three  transformations
on  a  given  CA,  say  elementary  rule  110,  elementary  rules  8137, 124, 193<  are  obtained.
These four rules are said to be in the same dynamical equivalence class. It  is easy to see
why, by looking at their space-time diagrams.

With@8rule110 = RuleTableFromRuleNumber@110D<,
8RuleNumberFromRuleTable@BlackWhiteTransform@rule110DD,
RuleNumberFromRuleTable@LeftRightTransform@rule110DD,
RuleNumberFromRuleTable@
BlackWhiteTransform@LeftRightTransform@rule110DDD<D

8137, 124, 193<

Grid@Partition@Labeled@
ArrayPlot@CellularAutomaton@ÒP2T, 881<, 0<, 20DD,
TextüRow@8ÒP1T, ": ", ÒP2T<D

D & êü 88"Original", 110<, 8"Black-White", 137<,
8"Left-Right", 124<, 8"Composed", 193<<, 2DD

Original: 110 Black-White: 137
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Left-Right: 124 Composed: 193

By comparing the rule table of a CA with the one that resulted from its equivalent rule ob-
tained out of a given transform, it is possible to count the number of state transitions they
share.  In  a  sense,  this  provides  a  measure  of  the  amount  of  internal  symmetry  of  a  CA
with respect to that transformation, whichever it is. For instance, elementary CA 110 has
an  internal  symmetry  value  of  2  with  respect  to  the  black-white  transformation,  since  it
shares  two  state  transitions  with  its  black-white  symmetrical  rule,  which  is  elementary
rule 137.

With@8
rule110 = RuleTableFromRuleNumber@110D,
rule137 = RuleTableFromRuleNumber@137D

<,
TotalüMapThread@If@ÒP2T ã Ò2P2T, 1, 0D &,

8rule110, rule137<DD

2

Repeating this process with rule 150, on the other hand, yields a different result. Rule 150
has an internal symmetry value of 8 according to the black-white transformation. This is
the  maximum  possible  value  of  this  measure  with  elementary  CAs.  This  is  quite  pre-
dictable, as the black-white transformation of rule 150 is rule 150 itself. In fact, any of the
three transformations applied to rule 150 yields rule 150 itself, indicating it has the maxi-
mum internal symmetry value according to any of the three transformations.

RuleNumberFromRuleTable@
BlackWhiteTransform@RuleTableFromRuleNumber@150DDD

150
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RuleNumberFromRuleTable@
LeftRightTransform@RuleTableFromRuleNumber@150DDD

150

With@8rule150 = RuleTableFromRuleNumber@150D<,
TotalüMapThread@If@ÒP2T ã Ò2P2T, 1, 0D &,

8rule150, rule150<DD

8

The degree of internal symmetry of a rule can be a relevant measure in any context where
a  property  is  shared among all  members  of  a  class  of  dynamical  equivalence.  In  [5]  and
[7], for instance, rules with maximal internal symmetry with the composite transformation
were key for their findings related to DCT.

‡ 4. Cellular Automata Templates
A CA template is an enhancement over the rule table representation, obtained by allowing
it to have variables in the place of simple cell states as its results. As a consequence, a CA
template has the power to represent whole subsets of CA rule spaces, instead of only a sin-
gle rule.
As a  simple example,  consider  the template 80, 1- x1, 0, 1, x2, 1, x1, 0<.  It  represents  the
subset of the elementary CAs with fixed bits at positions 1, 3, 5, 6, and 8 in the list, free
variables at positions 2 and 4, and complement bits at positions 2 and 7.
Using  Mathematica’s  built-in  transformation  rules,  one  can  obtain  the  four  CAs  repre-
sented by this template, as well as their corresponding rule numbers.

With@
8
transformationRules =
88x1 Ø 0, x2 Ø 0<, 8x1 Ø 0, x2 Ø 1<, 8x1 Ø 1, x2 Ø 0<,
8x1 Ø 1, x2 Ø 1<<,

template = 80, 1 - x1, 0, 1, x2, 1, x1, 0<
<,
template ê. transformationRules

D

FromDigits@Ò, 2D & êü %

880, 1, 0, 1, 0, 1, 0, 0<, 80, 1, 0, 1, 1, 1, 0, 0<,
80, 0, 0, 1, 0, 1, 1, 0<, 80, 0, 0, 1, 1, 1, 1, 0<<

884, 92, 22, 30<
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The function RuleTemplateVars lists the variables in a template.

RuleTemplateVars@template_ListD :=
Union@Select@template, HeadüÒ === Symbol &DD

H*RuleTemplateVars@template_ListD:=
Union@If@Length@ÒD===0,Ò,ÒP2TD&êü

Select@
Flatten@
If@Length@ÒD===0,Ò,Table@ÒPiT,8i,1,Length@ÒD<DD&êü
templateD,ŸNumericQ@ÒD&DD*L

RuleTemplateVars@80, 1 - x1, 0, 1, x2, 1, x1, 0<D

8x1, x2<

Extracting  the  variables  from  a  template  and  applying  a  value  to  each,  the  template  is
transformed  into  one  of  its  represented  rule  tables.  Every  template  has  a  number  of
possible  substitutions equal  to  kLength@RuleTemplateVars@templateDD;  however,  as  will  be
seen later, some of those may not be valid.
The function ExpandTemplate performs this operation by applying values to each vari-
able  of  a  given  template.  It  may  receive  as  an  optional  argument  an  integer  called
ithSubstitution  in  the  range  0  to  kLength@RuleTemplateVars@templateDD,  represent-
ing  which  substitution  should  be  made.  If  omitted,  it  performs  all  the  possible  substitu-
tions for a given template.

ExpandTemplate@template_List, k_Integer: 2D := WithA

9substitutionRange =

RangeA1, kLength@RuleTemplateVars@templateDDE=,
ExpandTemplate@template, k, ÒD & êü substitutionRange

E

ExpandTemplate@template_List, k_Integer: 2,
ithSubstitution_IntegerD := Module@
8templateVariables, substitutions, transformationRules<,
templateVariables = RuleTemplateVars@templateD;
substitutions = IntegerDigits@ithSubstitution, k,

Length@templateVariablesDD;
transformationRules =
MapThread@HÒ1 Ø Ò2L &,
8templateVariables, substitutions<D;

template ê. transformationRules
D
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ExpandTemplate@80, 1 - x1, 0, 1, x2, 1, x1, 0<D

880, 1, 0, 1, 1, 1, 0, 0<, 80, 0, 0, 1, 0, 1, 1, 0<,
80, 0, 0, 1, 1, 1, 1, 0<, 80, 1, 0, 1, 0, 1, 0, 0<<

After the expansion, one can obtain the list of valid rules represented by the template by us-
ing the function RuleNumbersFromTemplate.

RuleNumbersFromTemplate@expandedTemplate_List,
k_Integer: 2, r_Integer: 1D :=

FromDigits@Ò, kD & êü Select@
expandedTemplate,
WellFormedRuleTableQ@Ò, k, rD &

D

RuleNumbersFromTemplate@
ExpandTemplate@80, 1 - x1, 0, 1, x2, 1, x1, 0<D, 2, 1D

892, 22, 30, 84<

With Mathematica’s built-in symbolic computation features, it is easy to create templates
that  represent  a  whole space.  The space of  elementary CAs would be represented by the
following template.

BaseTemplate@k_Integer: 2, r_: 1D :=

Symbol@"x" <> ToString@ÒDD & êü RangeAk2 r+1, 1, -1E

BaseTemplate@2, 1D

8x8, x7, x6, x5, x4, x3, x2, x1<

In  [4],  the  authors  analytically  found  which  transitions  needed  to  be  fixed,  variable,  or
dependent  on other  transitions in  a  CA rule  table,  in  order  to  have a  chance to  solve the
parity problem perfectly. By fixing those transitions, they restrained the rule space of one-
dimensional,  binary,  radius-2  CAs,  composed  of  4,294,967,296  rules,  to  only  16  candi-
dates  for  perfect  parity  solvers.  Although  they  used  the  de  Bruijn  graph  as  the  primary
structure to represent this rule space subset, it could have been easily represented with CA
templates. 
Empowered by Mathematica’s built-in equation-solving capabilities, algorithms can be de-
veloped that  find the fixed,  variable,  and dependent state transitions on a rule table,  thus
leading  to  templates  that  are  representatives  of  CAs  that  share  the  properties  of  number
conservation and maximal internal symmetry; these are shown below.
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· 4.1 Templates for Number-Conserving Rules

In  [8],  Boccara  and  Fukś  established  necessary  and  sufficient  conditions  that  a  CA  rule
table must meet in order to be conservative (which is another way to say number conserv-
ing).  These  conditions  can  be  translated  into  an  algorithm  BFConservationÖ
Template  that  finds  a  set  of  equations  that,  when  solved  by  Mathematica,  yields  the
equivalent of a template that represents all conservative CAs of a determined space.

BFConservationTemplate@k_Integer: 2, r_: 1,

intemplate_List: 8<D := ModuleB

8basetemplate, vars, relevantNeighbourhoods, equations<,
basetemplate = If@intemplate ¹≠ 8<, intemplate,

BaseTemplate@k, rDD;
vars = RuleTemplateVars@BaseTemplate@k, rDD;
relevantNeighbourhoods =
Join@8Table@0, 82 r + 1<D<,
Cases@AllNeighbourhoods@k, rD, 8x_ ê; x ¹≠ 0, ___<DD;

equations = HEqual üü ÒL & êü

:RuleOutputFromNeighbourhood@Ò, basetemplate, k, rD,

First@ÒD +

‚
i=1

2 r

HRuleOutputFromNeighbourhood@

Join@Table@0, 8i<D, Take@Ò, 82, 2 r - i + 2<DD,
basetemplate, k, rD -

RuleOutputFromNeighbourhood@
Join@Table@0, 8i<D, Take@Ò, 81, 2 r - i + 1<DD,

basetemplate, k, rDL> & êü

relevantNeighbourhoods ;

First@basetemplate ê. Quiet@Solve@equations, varsDDD

F

By running this function for the elementary space, the following template is obtained.

BFConservationTemplate@2, 1D

81, 1 + x3 - x4, 1 - x3, 1 - x2 - x3, x4, x3, x2, 0<

When expanded, the latter yields the following representations.
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ExpandTemplate@%D

8881, 0, 1, 1, 1, 0, 0, 0<, 81, 2, 0, 0, 0, 1, 0, 0<,
81, 1, 0, 0, 1, 1, 0, 0<, 81, 1, 1, 0, 0, 0, 1, 0<,
81, 0, 1, 0, 1, 0, 1, 0<, 81, 2, 0, -1, 0, 1, 1, 0<,
81, 1, 0, -1, 1, 1, 1, 0<, 81, 1, 1, 1, 0, 0, 0, 0<<<

However, it is clear that not all k-ary representations above are valid, since some of them
rely  on  state  values  outside  the  range  80, k - 1<,  namely,  the  states  2  and  -1.  Hence,  by
discarding those three, we get the complete set of five number-conserving rules of the ele-
mentary space.

RuleNumbersFromTemplate@
ExpandTemplate@BFConservationTemplate@2, 1DDD

8184, 204, 226, 170, 240<

It is important to notice that this kind of strategy can only be employed on properties that
derive directly from the CA rule table.

· 4.2 Templates for Rules with Maximal Internal Symmetry

As  the  internal  symmetry  of  a  CA  is  also  a  property  that  derives  directly  from  its  rule
table,  it  is  a valid candidate to be generalized into a template.  By listing a CA rule table
along with  its  respective  transformations,  it  is  possible  to  establish  equality  relations  be-
tween  them that,  when  solved  by  Mathematica,  yield  a  template  that  represents  all  CAs
that have the maximal possible value of internal symmetry, according to any subset of the
three transformations.
By establishing that all of the results of the rule tables have to be the same in both the CA
and  its  transformed  counterpart,  the  following  function  MaxSymmTemplate  achieves
the  goal  of  finding  a  template  that  represents  all  CAs  of  a  given  space  that  present  the
maximum  value  of  internal  symmetry,  according  to  a  list  of  transformations  received  as
arguments.

MaxSymmTemplate@transformation_, k_Integer: 2, r_: 1,
intemplate_List: 8<D :=

MaxSymmTemplate@8transformation<, k, r, intemplateD
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MaxSymmTemplate@transformations_List, k_Integer: 2,
r_: 1, intemplate_List: 8<D := Module@
8basetemplate, vars, ruleVariations, organisedmapping,
eqrelations, equations, substitutions<,

basetemplate = If@intemplate ¹≠ 8<, intemplate,
BaseTemplate@k, rDD;

vars = RuleTemplateVars@basetemplateD;
ruleVariations =
Ò@RuleTableFromkAry@basetemplate, k, rDD & êü
Join@8Ò &<, transformationsD;

organisedmapping =
Reverseü
SortBy@Union@ÒD & êü GatherBy@Flatten@ruleVariations, 1D,

ÒP1T &D, ÒP1, 1T &D;
eqrelations = HÒP2T & êü ÒL & êü organisedmapping;
equations = Apply@Equal, ÒD & êü eqrelations;
substitutions = Quiet@Solve@equations, varsDD;
Map@ÒP2T &, Flatten@Union@ÒD, 1D & êü

Flatten@organisedmapping ê. substitutions, 1DD
D

In  order  to  find  a  template  that  represents  all  elementary  CAs with  maximum symmetry
according to the black-white transformation, it suffices to run MaxSymmTemplate, then
expand the template to generate the rule numbers.

MaxSymmTemplate@BlackWhiteTransform, 2, 1D

81 - x1, 1 - x2, 1 - x3, 1 - x4, x4, x3, x2, x1<

RuleNumbersFromTemplate@
ExpandTemplate@81 - x1, 1 - x2, 1 - x3, 1 - x4, x4, x3, x2, x1<DD

8232, 212, 204, 178, 170, 150,
142, 113, 105, 85, 77, 51, 43, 23, 15, 240<

The verification of this result can be achieved by guaranteeing that all these rule numbers
yield the same rule tables when transformed.

RuleTableFromRuleNumber@ÒD ã
BlackWhiteTransform@RuleTableFromRuleNumber@ÒDD & êü

8232, 212, 204, 178, 170, 150, 142, 113, 105, 85, 77,
51, 43, 23, 15, 240<

8True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True<
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We  can  analogously  obtain  a  template  representing  all  CAs  with  maximum  symmetry
according to all transformations, from which their expansions also lead to the correspond-
ing rule numbers.

MaxSymmTemplate@8BlackWhiteTransform, LeftRightTransform,
BlackWhiteTransform@LeftRightTransform@ÒDD &<, 2,

1D

81 - x1, 1 - x2, 1 - x3, x2, 1 - x2, x3, x2, x1<

RuleNumbersFromTemplate@
ExpandTemplate@81 - x1, 1 - x2, 1 - x3, x2, 1 - x2, x3, x2, x1<DD

8204, 178, 150, 105, 77, 51, 23, 232<

And again, their validity can be checked.

RuleTableFromRuleNumber@ÒD ã
BlackWhiteTransform@RuleTableFromRuleNumber@ÒDD ã
LeftRightTransform@RuleTableFromRuleNumber@ÒDD ã
BlackWhiteTransform@
LeftRightTransform@RuleTableFromRuleNumber@ÒDDD & êü

8204, 178, 150, 105, 77, 51, 23, 232<

8True, True, True, True, True, True, True, True<

· 4.3 Composition of Templates

Both  the  BFConservationTemplate  and  the  MaxSymmTemplate  functions  can
take another template as an optional  argument,  which is  meant to be used as the starting
point  of  the algorithms.  This is  the current  way to compose the intersection of templates
that  share a common structure.  For instance,  in order to generate all  the elementary con-
servative  CAs  with  maximum  internal  symmetry  values  according  to  the  black-white
transformation,  it  becomes  straightforward  to  use  the  template  for  number-conserving
rules of the elementary space as the starting point of MaxSymmTemplate. This leads to a
template that, once again, can be expanded so as to yield the target rule numbers.

MSBFTemplate = MaxSymmTemplate@BlackWhiteTransform,
2, 1, BFConservationTemplate@2, 1DD

81, 1 - x2, 1 - x3, 1 - x2 - x3, x2 + x3, x3, x2, 0<
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RuleNumbersFromTemplate@ExpandTemplate@MSBFTemplateDD

8204, 170, 240<

Alternatively, the template with maximal internal symmetry could be used as the starting
point of the BFConservationTemplate algorithm to obtain the same result.

BFMSTemplate = BFConservationTemplate@2, 1,
MaxSymmTemplate@BlackWhiteTransform, 2, 1DD

81, 1 - x2, 1 - x3, 1 - x2 - x3, x2 + x3, x3, x2, 0<

RuleNumbersFromTemplate@ExpandTemplate@BFMSTemplateDD

8204, 170, 240<

‡ 5. Concluding Remarks
The concept of CA templates was introduced, a rule table enhancement capable of repre-
senting a subset of a CA rule space, where the rules in the set can share a common prop-
erty. Although the examples used for illustration only referred to one-dimensional, binary
rules (the elementary space), the idea seems readily applicable to larger CAs with a larger
number of states and more dimensions.
We have shown some of the operations applicable to CA templates, as well as some cases
of use, in the form of Mathematica  functions that yield templates representing subsets of
the  elementary  space  of  CAs  with  properties  related  to  number  conservation  and  maxi-
mum internal symmetry. With respect to the latter, templates can be derived for any sub-
set of the three symmetry-related transformations.
Templates  for  the  rules  in  the  same  dynamical  class  in  the  elementary  space  have  ap-
peared previously in the CA literature, such as in [10]. But in these cases, the notion was
not at  all  couched in the conceptual  framework we have put  forward,  which allows tem-
plates  to  be  effectively  defined  for  rules  having  maximal  internal  symmetry  value,  let
alone the possibility of representing further CA properties.
The  properties  used  as  examples  here  can  be  couched  in  terms  of  well-established  rela-
tions among the state transitions of the CA, which are a necessary condition for a property
to be addressed in the form of templates. As a counterpoint, the notion of reversibility of
one-dimensional  rules  does  not  seem  to  be,  at  least  in  principle,  amenable  to  template
representation, since it is currently not known how to characterize reversibility in terms of
the rule table of a CA.
It stands as future work to find new algorithms that would allow template representations
of other properties, as well as the enhancement of the current algorithm related to internal
symmetry templates, so as to extend the current constraint of only generating maximal in-
ternal symmetry toward also allowing the generation of templates with specific values of
internal symmetry, not necessarily maximal.
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It stands as future work to find new algorithms that would allow template representations
of other properties, as well as the enhancement of the current algorithm related to internal
symmetry templates, so as to extend the current constraint of only generating maximal in-
ternal symmetry toward also allowing the generation of templates with specific values of
internal symmetry, not necessarily maximal.
Currently, because of computational demands, template expansion does not scale up well
to very big templates; this should also be addressed in a follow-up. In particular, it might
be worth defining operations of union and intersection of templates, which might be used
to preprocess a template before the operation of template expansion.
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