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On Bürmann’s Theorem and 
Its Application to Problems 
of Linear and Nonlinear 
Heat Transfer and Diffusion
Expanding a Function in Powers of Its 
Derivative
H. M. Schöpf
P. H. Supancic

This article presents a compact analytic approximation to the 
solution of a nonlinear partial differential equation of the diffusion 
type by using Bürmannʼs theorem. Expanding an analytic 
function in powers of its derivative is shown to be a useful 
approach for solutions satisfying an integral relation, such as the 
error function and the heat integral for nonlinear heat transfer. 
Based on this approach, series expansions for solutions of 
nonlinear equations are constructed. The convergence of a 
Bürmann series can be enhanced by introducing basis functions 
depending on an additional parameter, which is determined by 
the boundary conditions. A nonlinear example, illustrating this 
enhancement, is embedded into a comprehensive presentation 
of Bürmannʼs theorem. Besides a recursive scheme for 
elementary cases, a fast algorithm for multivalued Bürmann 
expansions and inverse functions is developed using integer 
partitions. The present approach facilitates the search for 
expansions of analytic functions superior to commonly used 
Taylor series and shows how to apply these expansions to 
nonlinear PDEs of the diffusion type.
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‡ Introduction
For most nonlinear problems in physics, analytic closed-form solutions are not available.
Thus the investigator initially searches for an approximate analytic solution. This approxi-
mation must be reliable enough to correctly describe the dependence of the solution on all
essential parameters of the system. This article aims to show that Bürmann’s theorem can
serve  as  a  powerful  tool  for  gaining  approximations  fulfilling  such  demands.  We  have
chosen canonical examples [1, 2, 3] from the field of linear and nonlinear heat transfer to
illustrate this technique.
A Bürmann series may be regarded as a generalized form of a Taylor series: instead of a
series of powers of the independent variable z - z0, we have a series of powers of an ana-
lytic function fHzL - fHz0L:

f HzL = f Hz0L + ‚
n=1

¶

CnHfHzL - fHz0LLn.

Starting at  an elementary level,  we present a recursive calculation scheme for the coeffi-
cients of a Bürmann series. Such a recursive formulation is easily implemented in Mathe-
matica and can find the Bürmann expansion for all elementary cases. For instances where
we have to deal with series expansions of f HzL in terms of powers of functions of the form

fHzL = fHz0L + ‚
n=n+1>1

¶

anHz - z0Ln,

that  is,  functions fHzL  for  which the first  n  derivatives vanish at  some point  z = z0  of  the
complex plane, we approach the limits of the recursive account. To calculate such expan-
sions using Mathematica efficiently, we give a generalized formulation of the coefficients
of the Bürmann series, using the expansion coefficients Âℜk  of the mth  reciprocal power of
an analytic function f* HzL:

1

f*HzLm
=

1

f*Hz0Lm
‚
k=0

¶

Âℜk Hf
*, mL Hz - z0Lk, f*HzL =

fHzL - fHz0L

z - z0
.

This  formulation  avoids  the  time-consuming  process  of  symbolic  differentiation  usually
used. The calculation of the coefficients Âℜk  is based on finding all  partitions p  of the in-
dex k in terms of the frequencies ps of the part s of p,

1 p1 + 2 p2 + 3 p3 + … + k ÿ pk = k, with 0 § ps § k.

These  sets  of  frequencies  for  the  partitions  are  tabulated  by  using  the  function
FrobeniusSolve. Once the coefficients Âℜk  are determined by using the tabulated solu-
tions for p, the calculation of the coefficients of a generalized Bürmann series is a simple
task. A special case of a Bürmann series, representing a function as a series of powers of
its own derivative, is of particular importance:

f HzL = ‚
n=0

¶

anH f £HzL - f £Hz0LLn.

Expansions  of  this  type  will  be  applied  to  functions  defined  by  integrals.  For  linear  and
also for nonlinear processes of heat transfer, these series expansions will serve us to find
valuable approximations. This is due to the fact that the integral representation for the er-
ror function leads to an expansion in fractional powers of the integrand. It turns out that a
similar  strategy  can  be  applied  to  find  approximate  solutions  for  nonlinear  cases,  since
these  solutions  obey  integral  equations  closely  related  to  the  integral  defining  the  error
function. Finally, by introducing a free parameter, the convergence of a Bürmann expan-
sion can be improved.  The free  parameter  is  determined by the boundary conditions.  By
this procedure, we find reliable analytical approximations for the heat transfer in ZnO [3],
comprising only a few terms.
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Expansions  of  this  type  will  be  applied  to  functions  defined  by  integrals.  For  linear  and
also for nonlinear processes of heat transfer, these series expansions will serve us to find
valuable approximations. This is due to the fact that the integral representation for the er-
ror function leads to an expansion in fractional powers of the integrand. It turns out that a
similar  strategy  can  be  applied  to  find  approximate  solutions  for  nonlinear  cases,  since
these  solutions  obey  integral  equations  closely  related  to  the  integral  defining  the  error
function. Finally, by introducing a free parameter, the convergence of a Bürmann expan-
sion can be improved.  The free  parameter  is  determined by the boundary conditions.  By
this procedure, we find reliable analytical approximations for the heat transfer in ZnO [3],
comprising only a few terms.
The common analytic solutions to these problems use Taylor series or numerical evalua-
tions,  which do not  exploit  the  structure  revealed by the  integral  relation fulfilled by the
exact solutions. We mention here that a similar procedure can also be applied successfully
to the diffusion of metal cations in a solid solvent [4].
The article is organized in such a way as to offer the formulas to the reader, together with
brief remarks concerning their  origin.  Necessary details  of deriving the formulas are dis-
played in the corresponding appendices.

‡ The Elementary Approach to Bürmannʼs Theorem
Bürmann’s theorem [5] states that it is possible to find a convergent expansion of an ana-
lytic function f HzL as a sum of powers of another analytic function fHzL. The simplest form
of  such  an  expansion,  supposed  to  be  valid  around  some  point  z = z0  in  the  complex
plane, is given by

(1)f HzL = f Hz0L + ‚
n=1

¶

CnH f ; f, z0L FHf, z0, zLn, FHf, z0, zL = fHzL - fHz0L,

or transferred to another notation, for some purposes more convenient,

(2)f HzL = f Hz0L + ‚
n=1

¶

BnH f ; f, z0L YHf, z0, zLn, YHf, z0, zL =
fHzL - fHz0L

f£Hz0L
,

where the functions F and Y are called the basis functions of the Bürmann series. The func-
tions f HzL and fHzL have to fulfill certain conditions in order to guarantee the convergence
of the series in (1) and (2). These conditions will be discussed later in this article. In their
classic work A Course of Modern Analysis [5], Whittaker and Watson give a formula for
the coefficient CnH f ; f, z0L (Bürmann coefficient) of a Bürmann series. Transferred to the
notation used in (1), their formula is

(3)CnH f ; f, z0L =
1

n!

dn-1

dzn-1
H f £HzL HHz - z0L ê HfHzL - fHz0LLLnLzØz0 .
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This  formula  is  widely  cited  by  numerous  authors  [6,  7].  Actually  determining  the  limit
value of a higher-order derivative is a cumbersome procedure, which is shown in an exam-
ple. Expanding the function f HzL = z5  in powers of fHzD = sinhHzL  around z0 = 0 gives the
following coefficients Ci, for which CPU time increases dramatically for i r 10.

whittakerwatsonlimit@n_, z0_D :=

LimitB
1

n!
DB5 z4

z - z0

Sinh@zD - Sinh@z0D

n

, 8z, n - 1<F, z Ø z0F

timecoeff = Table@Timing@whittakerwatsonlimit@i, 0DD,
8i, 10<D;

TextüTableForm@timecoeff,
TableHeadings Ø
8Automatic, 8"timeCPU @sD", Style@"Ci", ItalicD<<D

timeCPU @sD Ci
1 0.021622 0
2 0.109501 0
3 0.158089 0
4 0.493947 0
5 0.937498 1
6 2.103218 0

7 3.268312 - 5
6

8 5.041583 0

9 6.447540 47
72

10 122.879467 0

· The Recursive Formula for Bürmann Coefficients CnH f ; f, z0L

This  section  shows  how  to  calculate  the  coefficients  of  the  Bürmann  series  recursively,
which  is  easier  to  handle  than  (3)  and  more  efficient  when  translated  to  symbolic  pro-
grams. If we use (1) and (2) to find convergent series representations of solutions to differ-
ential  equations,  it  is  important  to  simplify  the  algorithms  necessary  to  determine  the
expansion coefficients.
For basis functions FHf, z0, zL of the general form

(4)FHf, z0, zL = fHzL - fHz0L = ‚
n=1

¶ fHnLHz0L

n!
Hz - z0Ln, fH1LHz0L =

df

dz z=z0

¹≠ 0,

we get the recursion in terms of the representation used in (1),
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(5)CnH f ; f, z0L =
1

n

1

f£Hz0L

dCn-1H f ; f, z0L

dz0
,

with the initial coefficient given by

(6)C1H f ; f, z0L =
f £Hz0L

f£Hz0L
.

Hence, the nested expression for CnH f ; f, z0L is

(7)CnH f ; f, z0L =
1

n!

1

f£Hz0L

d

dz0

1

f£Hz0L

d

dz0
…

1

f£Hz0L

d

dz0

f £Hz0L

f£Hz0L
… .

The  recursion  (5)  is  more  efficient  to  calculate  than  the  expression  in  (3)  and  is  easily
implemented.

c@f_, f_, 1, y_D :=
f£@yD

f£@yD

c@f_, f_, n_, y_D :=
1

n
TogetherB

1

f£@yD
D@c@f, f, n - 1, yD, yDF

The  Bürmann  series  for  f HzL  up  to  order  m  in  FHf, z, z0L  is  calculated  with
Bürmann@z, z0, m, f, fD.

Bürmann@f_, f_, 8z_, z0_, m_<D :=

ModuleB8n, y<, f@z0D +‚
n=1

m

c@f, f, n, yD Hf@zD - f@yDLn ê. y Ø z0F

We now show the expansion for the same problem shown in the previous section (i.e. ex-
panding f HzL = z5  around z0 = 0 into powers of fHzL = sinhHzL). It  can be easily expanded
to order 25 in a reasonable amount of time. This is the explicit truncated Bürmann series.

Bürmann@Ò^5 &, Sinh, 8z, 0, 25<D

Sinh@zD5 -
5 Sinh@zD7

6
+
47 Sinh@zD9

72
-
1571 Sinh@zD11

3024
+

153 617 Sinh@zD13

362 880
-
1206 053 Sinh@zD15

3421 440
+
1447 983 367 Sinh@zD17

4843 238 400
-

22 449 497 227 Sinh@zD19

87 178 291 200
+
79 923 511 502 753 Sinh@zD21

355 687 428 096 000
-

694 675 031 171 089 Sinh@zD23

3504 179 847 168 000
+
2041 637 377 789 356 133 Sinh@zD25

11 563 793 495 654 400 000

The result is validated in terms of a Taylor series. This shows that the error is at least of or-
der 26.
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The result is validated in terms of a Taylor series. This shows that the error is at least of or-
der 26.

Series@Bürmann@Ò^5 &, Sinh, 8z, 0, 25<D, 8z, 0, 25<D

z5 + O@zD26

Plot@Evaluateü8z^5, Bürmann@Ò^5 &, Sinh, 8z, 0, 25<D <,
8z, -1, 1<, PlotStyle Ø 88Thick<,

8Thick, Red, Dotted<<, FrameLabel -> 8z, f<,
PlotLabel Ø

Row@8"Bürmann expansion at ", z0, " = 0, ", m, " = ",
25<D, Frame Ø True,
PlotLegends Ø
Placed@8TraditionalForm@z^5D, "truncated series"<,
8.8, .2<DD

z5

truncated series

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

z

f

Bürmann expansion at z0 = 0, m = 25

Here are the coefficients Bk as they are calculated with this procedure in their explicit ana-
lytic form, according to the definition given in (2).

B@f_, f_, n_, z0_D := ModuleA8y<, f£@z0Dn c@f, f, n, yD ê. y Ø z0E

TraditionalFormü
TableForm@
Table@Row@8Bi, " = ", B@Ò^5 &, Sinh, i, z0D êê FactorTerms<D,
8i, 1, 3<DD

B1 = 5 z04

B2 = - 5
2
Iz04 tanhHz0L - 4 z03M

B3 = - 5
6
I-12 z02 - 2 z04 tanh2Hz0L + 12 z03 tanhHz0L + z04 sech2Hz0LM
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· The Recursive Formula for the Inversion Theorem

A useful  application  of  the  recursion  (5)–(7)  to  the  case  of  the  expansion  of  the  inverse
function  jHzL  of  f HzL  around  z = z0  follows  immediately:  we  have  jH f HzLL = z  and  it  fol-
lows  that  the  inverse  function  is  the  Bürmann  series  of  z  in  powers  of  f HzL - f Hz0L  (see
[8]). By writing

(8)

jHzL - jHz0L = ‚
n=1

¶

InHz0L Hz - z0L
n,

jH f HzLL - jH f Hz0LL =

z - z0 = ‚
n=1

¶

InHz0L H f HzL - f Hz0LLn = ‚
n=1

¶

CnHz; f , z0L H f HzL - f Hz0LLn,

we obtain

(9)

I1Hz0L =
1

f £Hz0L
,

InHz0L =
1

n

1

f £Hz0L

dIn-1Hz0L

dz0
,

InHz0L =
1

n!

1

f £Hz0L

d

dz0

1

f £Hz0L

d

dz0
…

1

f £Hz0L

d

dz0

1

f £Hz0L 1
…

n-2 n-1
.

The following program calculates the first  three coefficients for the inverse function f HzL
in general, which corresponds to the expression shown in [8]. 

TraditionalFormüTableFormATableA

RowA9
Ij, " = ", FactorTerms@
c@InverseFunction@fD, Ò &, j, xD ê.
InverseFunction@fD@xD Ø yD

=E,

8j, 1, 3<EE

I1 = 1
f £HyL

I2 = -
f ££HyL
2 f £HyL3

I3 = 1
6
J
3 f ££HyL2

f £HyL5
-

f H3LHyL
f £HyL4

N
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As an example, the inverse of the sine function is expanded, and the result is displayed for
order 11.

Bürmann@InverseFunction@SinD, Ò &, 8z, 0, 11<D

z +
z3

6
+
3 z5

40
+
5 z7

112
+
35 z9

1152
+
63 z11

2816

Compare it to the result of the Mathematica built-in function InverseSeries (see [9]).

InverseSeries@Series@Sin@xD, 8x, 0, 11<DD

x +
x3

6
+
3 x5

40
+
5 x7

112
+
35 x9

1152
+
63 x11

2816
+ O@xD12

· Expanding a Function in Powers of Its First Derivative

If  we  choose  the  basis  function  fHzL  to  be  equal  to  the  first  derivative  f £HzL  of  f HzL,  we
find, by using formula (5), the recursive expression and the first three coefficients:

(10)

CnH f ; f £, z0L =
1

n

1

f ²″Hz0L

d

dz0
Cn-1H f ; f £, z0L,

B1H f ; f £, z0L = f £Hz0L,

B2H f ; f £, z0L =
1

2
I f ££Hz0L2 - f £Hz0L f £££Hz0L ê f ££Hz0LM,

B3H f ; f £, z0L =

1

6

1

f ££Hz0L2
I3 f £Hz0L f £££Hz0L2 - 2 f ££Hz0L2 f £££Hz0L - f £Hz0L f ££Hz0L f IVHz0LM .

The  idea  of  expanding  an  analytic  function  using  its  derivative  as  a  basis  function  is
fruitful  for  cases  where  the  function f HzL  is  defined by an integral.  It  will  be  shown that
solutions to linear and nonlinear problems of diffusion or heat transfer can be expressed as
integrals. We get

f HzL = ‡
z0

z
f £HzL dz ö f HzL = ‚

n=0

¶

BnH f ; f £, z0L
f £HzL - f £Hz0L

f ²″Hz0L

n

.

To illustrate the advantage of this technique, we choose the expansion of the transcenden-
tal function f HzL = lnH1 + zL. The function is defined by the integral

f HzL = lnH1 + zL = ‡
0

z 1

1 + z
dz öfHzL = f £HzL =

1

1 + z
,

f£HzL = f ²″HzL = -
1

1 + z

2

.
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Using the results listed in (10) for the Bürmann coefficients, we arrive at once at the expan-
sion around z0:

f HzL = lnH1 + z0L - H1 + z0L
1

1 + z
-

1

1 + z0
+

1

2
H1 + z0L2

1

1 + z
-

1

1 + z0

2

-
1

3
H1 + z0L3

1

1 + z
-

1

1 + z0

3

+ …

= lnH1 + z0L + ‚
n=1

¶ 1

n

z - z0
1 + z

n
.

Here is the series to order 11.

w@z_D := Bürmann@Log@1 + ÒD &, 1 ê H1 + ÒL &, 8z, 0, 11<D

w@zD

1 -
1

1 + z
+
1

2
-1 +

1

1 + z

2

-
1

3
-1 +

1

1 + z

3

+
1

4
-1 +

1

1 + z

4

-

1

5
-1 +

1

1 + z

5

+
1

6
-1 +

1

1 + z

6

-
1

7
-1 +

1

1 + z

7

+
1

8
-1 +

1

1 + z

8

-

1

9
-1 +

1

1 + z

9

+
1

10
-1 +

1

1 + z

10

-
1

11
-1 +

1

1 + z

11

It can be simplified.

w@zD ê. 1 -
1

1 + z
Ø TogetherB1 -

1

1 + z
F ê.

-1 +
1

1 + z
Ø TogetherB-1 +

1

1 + z
F

z11

11 H1 + zL11
+

z10

10 H1 + zL10
+

z9

9 H1 + zL9
+

z8

8 H1 + zL8
+

z7

7 H1 + zL7
+

z6

6 H1 + zL6
+

z5

5 H1 + zL5
+

z4

4 H1 + zL4
+

z3

3 H1 + zL3
+

z2

2 H1 + zL2
+

z

1 + z
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Plot@Evaluateü8Log@1 + zD, w@zD<, 8z, -0.7, 10<,
PlotStyle Ø 88Thick<, 8Thick, Red, Dotted<<,
FrameLabel Ø 8z, None<, PlotLabel Ø
Row@8"Bürmann expansion at ", Style@"z", ItalicD0,

" = 0, ", Style@"m", ItalicD, " = ", 25<D,
Frame Ø True,
PlotLegends Ø
Placed@8TraditionalFormüLog@1 + zD, "expansion"<, 8.8, .2<DD

logHz + 1L

expansion

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

z

Bürmann expansion at z0 = 0, m = 25

‡ The Generalized Form of Bürmann Series Based on a 
Combinatorial Approach
Although  the  representation  given  by  the  recursive  formula  in  (5)  is  more  efficient  in
terms  of  CPU  time  compared  to  formula  (3),  there  is  still  the  restriction  of  using  basis
functions  with  nonvanishing  first  derivative  at  the  expansion  position  z0,  since  f£Hz0L
appears in the denominator of the coefficients in (5)–(7). To overcome this limitation, we
introduce  an  alternative  representation  of  the  Bürmann coefficients  based  on  a  combina-
torial approach [10] that can be generalized.
Actually, the Bürmann expansions are related to Taylor series of reciprocal powers of ana-
lytic functions f*HzL represented by

(11)
1

f*HzLm
=

1

f*Hz0Lm
‚
k=0

¶

ÂℜkHf
*, mL Hz - z0Lk.
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The function  f*HzL  is  uniquely  determined  by  the  basis  function  fHzL.  We will  show that
explicit expressions for the expansion of f HzL and the corresponding Bürmann coefficients
BnH f ; f, z0L  as  defined  in  (2)  can  be  derived  using  the  coefficients  ÂℜkHf*, mL.  The
Bürmann expansion in this representation reads as

(12)

f HzL = f Hz0L + ‚
n=1

¶

‚
r=0

n-1 f Hr+1LHz0L

r!

1

n
Âℜn-r-1Hf

*, nL
fHzL - fHz0L

f£Hz0L

n

,

f*HzL = ‚
n=0

¶ fHn+1LHz0L

Hn + 1L!
Hz - z0Ln.

The  formula  for  the  Bürmann  coefficient  BnH f ; f, z0L  in  terms  of  the  coefficients
ÂℜkHf*, mL is thus given by

(13)BnH f ; f, z0L = ‚
r=0

n-1 f Hr+1LHz0L

r!

1

n
Âℜn-r-1Hf

*, nL.

The  explicit  formulation  of  generalized  Bürmann  series  using  powers  of  functions  with
derivatives, vanishing up to the order n at z = z0, is given by

(14)

f HzL =

f Hz0L + ‚
n=1

¶

‚
r=0

n-1 f Hr+1LHz0L

r!

1

n
Âℜn-r-1Kf*,

n

n + 1
O

Hn + 1L! HfHzL - fHz0LL

fHn+1LHz0L
n+1

n

,

and the expression for the Bürmann coefficient is

(15)BnH f ; f, z0L = ‚
r=0

n-1 f Hr+1LHz0L

r!

1

n
Âℜn-r-1Kf*,

n

n + 1
O.

Also, the special case of expanding the inverse function jHzL of f HzL can be derived in this
general way, and one gets

(16)

jHzL =

z0 + ‚
n=1

¶ 1

n
Âℜn-1K f *,

n

n + 1
O HHn + 1L! Hz - f Hz0LLL ì f Hn+1LHz0L^

1

n + 1

n

,

f *HzL = ‚
k=0

¶ f Hn+1+kLHz0L

Hn + 1 + kL!
Hz - z0Lk.

The standard case (i.e. f£Hz0L ¹≠ 0 and f £Hz0L ¹≠ 0) is obtained by setting n = 0 in (14)–(16).
By using the combinatorial approach as shown in the next subsection, one can also evalu-
ate  the  coefficients  in  expansions  resulting  from the  theorem of  Teixeira  [5],  which  is  a
generalization of Bürmann’s theorem to singular functions.
The approach is explained in more detail and demonstrated with examples coded in Mathe-
matica in the following.
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· Explicit Expressions for the Coefficients of the Taylor Expansion 
of f HzL-m and f HzL-mên Using Partitions

A partition of the positive integer k  is a sequence of positive integers H j1, j2, …, jnL  with
j1 ¥ j2 ¥ … ¥ jn  such that j1 + j2 + … + jn = k,  for example, H4, 3, 2, 1, 1, 1L,  a partition
of  10  that  is  usually  written  as  4 + 3 + 2 + 1 + 1 + 1.  The  number  of  times  a  part
s œ 81, 2, …, k<  occurs  in  a  partition  p  is  its  frequency  ps.  In  the  example,  the  parts
1, 2, 3, 4  occur  with  frequencies  3, 1, 1, 1;  the  example  partition  can  be  written  as
13 21 31 41.

Last êü Sort@Tally@84, 3, 2, 1, 1, 1<DD

83, 1, 1, 1<

 For a partition p of k, define the vector of frequencies, freqHpL = Hp1, p2, …, pkL. Then

(17)‚
s=1

k

s ps = k;

for convenience, define

(18)p0 = k - ‚
s=1

k

ps.

In  the  example,  freqH4, 3, 2, 1, 1, 1L = H3, 1, 1, 1, 0, 0, 0, 0, 0, 0L  and  p0 = 10 - H3 + 1 +
1 + 1L = 4.
In Mathematica, IntegerPartitions@kD gives all possible partitions of k.

IntegerPartitions@4D

884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<

The  frequencies  of  the  parts,  ps,  can  be  found  with  FrobeniusSolveÖ
@Range@kD, kD.

FrobeniusSolve@Range@4D, 4D

880, 0, 0, 1<, 80, 2, 0, 0<,
81, 0, 1, 0<, 82, 1, 0, 0<, 84, 0, 0, 0<<

However, FrobeniusSolve is slow for integers larger than about 30. 

Timing@FrobeniusSolve@Range@30D, 30D;D

82.437500, Null<
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The function PartitionsM, based on IntegerPartitions,  is significantly faster.

MultiplicitiesFromParts@p_D :=
Count@p, ÒD & êü Range@TotalüpD;

PartitionsM@p_IntegerD :=
MultiplicitiesFromParts êü IntegerPartitions@pD;

PartitionsM@4D

880, 0, 0, 1<, 81, 0, 1, 0<,
80, 2, 0, 0<, 82, 1, 0, 0<, 84, 0, 0, 0<<

Timing@PartitionsM@30D;D

80.314763, Null<

The  function  PartitionsJ,  based  on  an  undocumented  but  highly  efficient  function
[11], is even faster.

PartitionsJ@p_D :=
Reduce`NaturalLinearSolve@8Range@pD<, 8p<, TrueD@@1DD

PartitionsJ@4D

884, 0, 0, 0<, 82, 1, 0, 0<,
80, 2, 0, 0<, 80, 0, 0, 1<, 81, 0, 1, 0<<

Timing@PartitionsJ@30D;D

80.023015, Null<

According to

(19)
1

f HzLm
=

1

f Hz0Lm
‚
k=0

¶

ÂℜkH f , mL Hz - z0Lk,

the coefficients ÂℜkH f , mL of reciprocal powers of analytic functions f HzL can be derived ex-
plicitly on the basis of combinatorics and analysis,  recapitulated in appendix A. When m
is an integer, the coefficients are
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(20)

ÂℜkH f , mL =

‚
all partitions p of k,
freqHpL=Hp1,…,pkL

H-1LHk-p0L Hm + k - p0 - 1L! ê Hm - 1L! ‰
s=1

k

:
1

ps !

f HsLHz0L

s! f Hz0L

ps

>.

The case when m is rational, m = m ê n, is relevant for Bürmann expansion with basis func-
tions with vanishing derivatives fH1,2,..,nLHz0L. In that case,

(21)ÂℜkK f ,
m

n
O = ‚

all partitions p of k,
freqHpL=Hp1,…,pkL

H-1LHk-p0L ‰
r=0

k-p0-1

K
m

n
+ rO‰

s=1

k 1

ps !

f HsLHz0L

s! f Hz0L

ps

.

Now  we  show  how  to  calculate  (21)  symbolically.  For  example,  choosing  the  function
f HzL = 1 + 7 z + 8 z2 + 11 z3, let us calculate 1

f HzL3ê5
.

We  use  the  fact  that  the  Mathematica  functions  Times,  Plus,  and  Total  work  with
empty lists.

8Times üü 8<, Plus üü 8<, Total@8<D<

81, 0, 0<

To avoid the undefined expression 0^0, the differentiation is performed analytically first
on  the  symbolic  function  g.  Then raising  to  the  power  of  ps  (which  can  be  zero)  is  per-
formed, and finally the symbolic function g is substituted out by the function f .

Âℜr@f_, z0_, m_, n_, k_D := ModuleB

8g<,

TotalB

MapBH-1LTotal@ÒD ‰
r=0

Total@ÒD-1

Hm ê n + rL
1

Times üü HÒ!L

Times üü MapIndexedB

Derivative@First@Ò2DD@gD@z0D

First@Ò2D! * g@z0D

Ò1

&, ÒF &,

PartitionsJ@kDFF ê. g Ø f

F
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Here are the ÂℜkH f , 3 ê 5L for the symbolic function FHzL3ê5 expanded at z0.

TraditionalFormü
TableForm@Table@Row@8Âℜk, " = ", Âℜr@F, z0, 3, 5, kD<D,

8k, 0, 3<DD

Âℜ0 = 1

Âℜ1 = -
3 F£Hz0L

5 FHz0L

Âℜ2 =
12 F£Hz0L2

25 FHz0L2
-
3 F££Hz0L

10 FHz0L

Âℜ3 = -
FH3LHz0L

10 FHz0L
-

52 F£Hz0L3

125 FHz0L3
+
12 F£Hz0L F££Hz0L

25 FHz0L2

Now we expand f HzL3ê5 at z0 = 0.2. For convenience, define auxf.

auxf@f_, z_, z0_, m_, n_, n_D :=
1 ê f@z0D^Hm ê nL Sum@Âℜr@f, z0, m, n, kD Hz - z0L^k, 8k, 0, n<D

ModuleA8f, m, n, z0<,

f@z_D := 1 + 7 z + 8 z2 + 11 z3;
m = 3;
n = 5;
z0 = 0.2;
PlotA
Evaluate@81 ê f@zD^Hm ê nL, auxf@f, z, z0, m, n, 2D,

auxf@f, z, z0, m, n, 6D, auxf@f, z, z0, m, n, 10D<D,
8z, z0 - 0.25, z0 + 0.25<,
Frame Ø True,
FrameLabel Ø 8z, Style@"f", ItalicD<,
PlotLabel Ø "Expansion of 1êf3ê5 at z0 = 0.2",
PlotStyle Ø 8Black, Dashed, Dashed, Dashed<,
PlotLegends Ø PlacedA9

RowA9"1ê", Style@"f", ItalicD3ê5=E,
Row@8"series H", Style@"n", ItalicD, " = 2L"<D,
Row@8"series H", Style@"n", ItalicD, " = 6L"<D,
Row@8"series H", Style@"n", ItalicD, " = 10L"<D

=, 8.8, .7<E,
PlotRange Ø All

E

E
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1ê f 3ê5

series Hn = 2L

series Hn = 6L

series Hn = 10L

0.0 0.1 0.2 0.3 0.4

0.4

0.6

0.8

1.0

1.2

z

f

Expansion of 1ê f 3ê5 at z0 = 0.2

While  the  expansion  is  valid  for  complex-valued  functions,  the  plot  shows  only  the  real
part of f .

· The Explicit Expression for the Coefficients BnH f ; f, z0L in Terms 
of the Coefficients ¬kHf*, mL

Explicit  expressions  for  the  Bürmann  coefficients  BnH f ; f, z0L  as  they  are  defined  in  (2)
can be defined with respect to the coefficients ÂℜkHf*, mL.
Again  using  FrobeniusSolve@Range@kD, kD  (see  appendix  A),  we  can  formulate
the  general  expressions  for  Bürmann  series  using  functions  fHzL  with  vanishing  deriva-
tives fH1,2,..,nLHz0L. For instance, series of powers of functions of this type can give conver-
gent expansions for functions that are defined by integrals, like the error function

(22)erfHzL =
2

p
‡
0

z
e-z2 dz,

which plays a key role in the theory of linear and nonlinear heat transfer [1]. Defining the
integrand as  the  basis  function of  a  Bürmann series,  as  explained in  (10),  we will  find a
rapidly converging series representation of erfHzL.

16 H. M. Schöpf and P. H. Supancic 

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



· Expressions for the Bürmann Coefficients B nH f ; f, z0L

All the results of the previous section can be applied to get a formula for the Bürmann co-
efficients  that  is  efficiently  implemented  in  a  simple  function.  The  starting  point  of  the
derivation  of  this  expression  is  a  formulation  of  the  Bürmann  expansion  in  terms  of  a
complex contour integral, as it is given in [5]. This approach can be found in various pre-
sentations [6, 7].  The evaluation of the integral representation of the Bürmann expansion
results in

(23)

f HzL = f Hz0L + ‚
n=1

¶

‚
r=0

n-1 f Hr+1LHz0L

r!

1

n
Âℜn-r-1Hf

*, nL
fHzL - fHz0L

f£Hz0L

n

,

f*HzL = ‚
n=0

¶ fHn+1LHz0L

Hn + 1L!
Hz - z0Ln.

The  formula  for  the  Bürmann  coefficient  BnH f ; f, z0L  in  terms  of  the  coefficients
ÂℜkHf*, mL is thus given by

(24)BnH f ; f, z0L = ‚
r=0

n-1 f Hr+1LHz0L

r!

1

n
Âℜn-r-1Hf

*, nL.

The  function  fbür  shows  how  to  apply  (23)  and  (24)  to  the  expansion  of  f HzL = z5  in
powers of fHzL = sinhHzL, the same example as presented in the first section. The series is
expanded up to order 15, so that the error is at least of order 16.

Rbür@fun_, z0_, m_, n_D :=

TotalBMapBH-1LPlusüüÒ *
Hm - 1 + HPlus üü ÒLL!

Hm - 1L! Times üü HÒ!L
*

Times üü MapIndexedB
Derivative@First@Ò2D + 1D@gD@z0D

HFirst@Ò2D + 1L! * g'@z0D

Ò1

&,

ÒF &,

PartitionsJ@nDFF ê. g Ø fun

B@fun_, bfun_, n_, z0_D :=

‚
r=0

n-1 Derivative@r + 1D@funD@zD

r!

Rbür@bfun, z0, n, n - r - 1D

n
ê.

z Ø z0

fbür@fun_, bfun_, z_, z0_, n_D :=

fun@z0D +‚
j=1

n

B@fun, bfun, j, z0D
bfun@zD - bfun@z0D

bfun'@z0D

j
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ModuleA8f, f, mexp<,

f@z_D := z5; H* function to expand *L
f@z_D := Sinh@zD; H* basis function for expansion *L
mexp = 15; H* order of expansion *L
z0 = 0; H* center of series expansion *L
Column@8

TextüTraditionalFormü
Row@8"Function to expand: ", f@zD<D,

TextüTraditionalFormü
Row@8"Basis function fH", Style@"z", ItalicD,

"L for expansion: ", f@zD<D,
TextüTraditionalFormü

Row@8"The order of expansion is chosen by: ",
Style@"m", ItalicD, " = ", mexp<D,

TextüTraditionalFormü
Row@8"Bürmann expansion of ", f@zD, " at ",

Style@"z", ItalicD0, " = ", z0, ":"<D,
TextüTraditionalFormüfbür@f, f, z, z0, mexpD,
H* explicit expression of the Bürmann series *L
TextüTraditionalFormü

Row@
8"The error of the expansion is at least in

the order of ",
Series@fbür@f, f, z, z0, mexpD, 8z, 0, 15<D - f@zD<D

<D
H* showing that the error is at least in the order of mexp+

1 *L

E

Function to expand: z5

Basis function fHzL for expansion: sinhHzL
The order of expansion is chosen by: m = 15

Bürmann expansion of z5 at z0 = 0:

- 1206053 sinh15HzL
3421440

+ 153617 sinh13HzL
362880

- 1571 sinh11HzL
3024

+ 47 sinh9HzL
72

- 5 sinh7HzL
6

+ sinh5HzL

The error of the expansion is at least in the order of OIz16M
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· Application to the Inversion Theorem

For the special case of the inverse function jHzL of f HzL given by (12), in using the transfor-
mations indicated in (8),

(25)InH f , z0L = CnHz; f , z0L =
Âℜn-1H f *, nL

n f £Hz0Ln
, f *HzL = ‚

n=0

¶ f Hn+1LHz0L

Hn + 1L!
Hz - z0Ln.

So the expansion of the inverse function can be expressed as 

(26)jHzL = z0 + ‚
n=0

¶ Âℜn-1H f *, nL

n

z - f Hz0L

f £Hz0L

n

.

Equation (26) is  the compact formulation of a result  given by Morse and Feshbach [12].
As a result of our approach, we have developed formulas for Bürmann coefficients and for
the  expansion coefficients  of  inverse  functions  that  reveal  the  close  relationship  of  these
coefficients  to  the  coefficients  for  reciprocal  powers  of  an  analytic  function  defined  in
(20).  In  the  following  section,  we  present  a  generalization  of  Bürmann’s  theorem,  using
the solutions of equation (17).

‡  Bürmann Series with Functions for Which the First n 
Derivatives Vanish
Inspecting formulas (23) and (26), we notice that they cannot be evaluated for cases where
f£Hz0L or f £Hz0L vanishes. This shortcoming must be overcome, for in some cases of inter-
est  we  will  be  forced  to  find  Bürmann series  using  basis  functions  whose  first  n  deriva-
tives at z0 vanish:

(27)fHzL = fHz0L + ‚
n=n+1

¶ fHnLHz0L

n!
Hz - z0Ln, fHn+1LHz0L ¹≠ 0, n ¥ 1.

· Change to a Multivalued Function

To this end, define the multivalued function

(28)QHf, z0, zL = fHzL - fHz0L
n+1 ,

which is cast into the form

(29)QHf, z0, zL = Hz - z0L f*HzLn+1 , f*HzL = ‚
k=0

¶ fHn+1+kLHz0L

Hn + 1 + kL!
Hz - z0Lk.

The function f*HzL1êHn+1L  in (29) can be expanded into a Taylor series with f*£Hz0L ¹≠ 0, and
hence  (28)  fulfills  the  condition  violated  by  fHzL.  Thus,  instead  of  expanding  f HzL  in
powers of FHf, z0, zL, we expand in powers of QHf, z0, zL. A reformulation of the contour
integral [5] results in the generalized form of Bürmann’s theorem given in (14). Actually,
the  introduction  of  the  root  function  (28)  in  (14)  leads  to  several  solution  branches.  For
real-valued functions f HzL,  the use of the Sign  and Abs  functions in the following code
extracts the correct branch of the root function for numerical purposes. For a formal proof
of  the  equivalence  of  the  Bürmann  series  and  the  Taylor  series  for  f HzL,  the  Sign  and
Abs functions can be omitted.
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The function f*HzL1êHn+1L  in (29) can be expanded into a Taylor series with f*£Hz0L ¹≠ 0, and
hence  (28)  fulfills  the  condition  violated  by  fHzL.  Thus,  instead  of  expanding  f HzL  in
powers of FHf, z0, zL, we expand in powers of QHf, z0, zL. A reformulation of the contour
integral [5] results in the generalized form of Bürmann’s theorem given in (14). Actually,
the  introduction  of  the  root  function  (28)  in  (14)  leads  to  several  solution  branches.  For
real-valued functions f HzL,  the use of the Sign  and Abs  functions in the following code
extracts the correct branch of the root function for numerical purposes. For a formal proof
of  the  equivalence  of  the  Bürmann  series  and  the  Taylor  series  for  f HzL,  the  Sign  and
Abs functions can be omitted.

ü The Generalized Form of Bürmann Series

As an example, we calculate an expansion of arcsin@zD up to order 15 according to (14) in

powers  of  1 - z2
-1

,  a  basis  function  with  a  vanishing  first  derivative  at  z = 0  (i.e.

n = 2):

Rnbür@bfun_, z0_, m_, n_, n_D :=

TotalBMapBH-1LPlusüüÒ ‰
r=0

PlusüüÒ-1

K
m

n
+ rO

1

Times üü HÒ!L

Times üü MapIndexedB

n! * Derivative@First@Ò2D + nD@gD@z0D

HFirst@Ò2D + nL! * Derivative@nD@gD@z0D

Ò1

&, ÒF &,

PartitionsJ@nDFF ê. g Ø bfun

Bn@fun_, bfun_, n_, z0_, n_D :=

‚
r=0

n-1 Derivative@r + 1D@funD@zD

r!

Rnbür@bfun, z0, n, n, n - r - 1D

n
ê. z Ø z0

Use this definition for the formal proof of equivalence.

fnbürtest@fun_, bfun_, z_, z0_, n_, n_D := fun@z0D +

‚
j=1

n

Bn@fun, bfun, j, z0, nD
n! * Hbfun@zD - bfun@z0DL

Derivative@nD@bfunD@z0D

jên

Use this definition for numerical purposes, such as for plotting.
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fnbür@fun_, bfun_, z_, z0_, n_, n_D := fun@z0D +

‚
j=1

n

Bn@fun, bfun, j, z0, nD Sign@z - z0Dj

AbsB
n! Hbfun@zD - bfun@z0DL

Derivative@nD@bfunD@z0D
F

jên

ModuleB8f, f, mexp, z0, n0<,

f@z_D := ArcSin@zD; H* function to expand *L

f@z_D :=
1

1 - z2
; H* basis function for expansion *L

mexp = 15; H* order of expansion *L
z0 = 0; H* center of series expansion *L
n0 = 1;
While@Derivative@n0D@fD@z0D ã 0, n0++D;
H* automatic detection of
order of first nonvanishing derivative of f at z=z0 *L

Column@8
TextüTraditionalFormü

Row@8"Function to expand: ", f@zD<D,
TextüTraditionalFormü

Row@8"Basis function fH", Style@"z", ItalicD,
"L for expansion: ", f@zD<D,

TextüTraditionalFormü
Row@
8"The order n+1 of first nonvanishing derivative

of fH", Style@"z", ItalicD, "L at z0 is ",
n0<D,

TextüTraditionalFormü
Row@8"The order of expansion is chosen by: ",

Style@"m", ItalicD, " = ", mexp<D,
TextüTraditionalFormü

Row@8"Bürmann expansion of ", f@zD, " at ",
Style@"z", ItalicD0, " = ", z0, ":"<D,

TextüTraditionalFormüfnbür@f, f, z, z0, mexp, n0D,
H* explicit expression of the Bürmann series *L
TextüTraditionalFormü

Row@
8"The error of the expansion is at least in

the order of ",
Series@fnbürtest@f, f, z, z0, mexp, n0D, 8z, 0, 15<D -
f@zD<D,

H* showing that the error is at least in the
order of mexp+1 *L
,
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order of mexp+1 *L
"",
Plot@
Prepend@Table@fnbür@f, f, z, z0, i, n0D,

8i, 82, 5, 10, 15<<D,
f@zDD êê Evaluate, 8z, -1, 1<,

PlotRange Ø 8-p ê 2, p ê 2<,
Frame Ø True, FrameLabel Ø 8z, Style@"f", ItalicD<,
PlotLegends Ø Placed@8

Style@"f", ItalicD,
Row@8Style@"f", ItalicD"Bür", " H",

Style@"n", ItalicD, " = 2L"<D,
Row@8Style@"f", ItalicD"Bür", " H", Style@"n", ItalicD,

" = 5L"<D,
Row@8Style@"f", ItalicD"Bür", " H", Style@"n", ItalicD,

" = 10L"<D,
Row@8Style@"f", ItalicD"Bür", " H", Style@"n", ItalicD,

" = 15L"<D
<, 8.7, .25<D,

PlotStyle Ø 8Black, Dashed, Dashed, Dashed, Dashed<,
PlotLabel Ø
Row@8"Expansion of ", ArcSin@zD, " at ", z0,

" = ", z0<D,
ImageSize Ø 400

D
<D

F

Function to expand: sin-1HzL

Basis function fHzL for expansion: 1

1-z2

The order n+1 of first nonvanishing derivative of fHzL at z0 is 2
The order of expansion is chosen by: m = 15

Bürmann expansion of sin-1HzL at z0 = 0:

-
74069 1

1-z2
-1

15ê2

sgnHzL15

393216 2
+
92479 1

1-z2
-1

13ê2

sgnHzL13

425984 2
-

11531 1

1-z2
-1

11ê2

sgnHzL11

45056 2
+
2867 1

1-z2
-1

9ê2

sgnHzL9

9216 2
-
177 1

1-z2
-1

7ê2

sgnHzL7

448 2
+

43 1

1-z2
-1

5ê2

sgnHzL5

80 2
-
5 1

1-z2
-1

3ê2

sgnHzL3

6 2
+ 2 1

1-z2
- 1 sgnHzL

The error of the expansion is at least in the order of OIz16M
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f

f Bür Hn = 2L

f Bür Hn = 5L

f Bür Hn = 10L

f Bür Hn = 15L
-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

z

f

Expansion of sin-1HzL at z0 = 0

A  faster  convergence  can  be  achieved  by  using  a  basis  function  of  the  form

fHzL = z3 ì 1 - z2 , for which the first and second derivatives vanish at the point z0 = 0

(i.e. n + 1 = 3).

ü Generalization of the Inversion Theorem

Using formula (14),  it  is easy to deduce the expansion of the inverse function of an ana-
lytic function of the form

(30)f HzL = f Hz0L + ‚
n=n>1

¶ f HnLHz0L

n!
Hz - z0Ln.

The inverse function jHzL of f HzL comes from (14) by setting f HzL Ø z and fHz0L Ø f Hz0L:

(31)

jHzL = z0 + ‚
n=1

¶ 1

n
Âℜn-1K f *,

n

n + 1
O

Hn + 1L! Hz - f Hz0LL

f Hn+1LHz0L
n+1

n

,

f *HzL = ‚
k=0

¶ f Hn+1+kLHz0L

Hn + 1 + kL!
Hz - z0Lk.

On Bürmann's Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion 23

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



‡ Expanding the Error Function erfHzL
The error function 

erfHzL =
2

p
‡
0

z
e-z2 dz

is the first example demonstrating the efficiency of Bürmann series using the first deriva-
tive as a basis function. We define the function f HzL and the basis function fHzL by

f HzL =
p

2
erfHzL = ‡

0

z
e-z2 dz öfHzL = f £HzL = e-z2 ,

f£HzL = f ²″HzL = -2 z e-z2 .

The  error  function  will  be  expanded  around  the  origin  z0 = 0,  where  we  find  that
f£Hz0L = 0. This expansion thus calls for the application of the generalized form of the Bür-
mann expansion given in (14). Hence we have to set, according to (28),

QHf, 0, zL = 1 - e-z2 .
To evaluate (14), we use the following relations for the derivatives of the integrand:

fH2 nLH0L = 2 H-1Ln
H2 n - 1L!

Hn - 1L!
,

fH2 n+1LH0L = 0.

The result of this calculation performed up to order nine in Q Hf, 0, zL is

(32)

erfHzL =

2

p
QHf, 0, zL -

1

12
QHf, 0, zL3 -

7

480
QHf, 0, zL5 -

5

896
QHf, 0, zL7 -

787

276 480
QHf, 0, zL9 - … .

A function  calculating  the  expansion  (32)  is  given  below.  To show that  this  approach  is
superior to a common Taylor expansion in a plot, we calculate the power series in z up to
order 10.

ModuleB8f, f, mexp, z0, n0, erfB, erfT<,

f@z_D := Erf@zD; H* function to expand *L

f@z_D =
p

2
D@f@zD, zD;

H* basis function for expansion *L
mexp = 10; H* order of expansion *L
z0 = 0; H* center of series expansion *L
n0 = 1; While@Derivative@n0D@fD@z0D ã 0, n0++D;
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n0 = 1; While@Derivative@n0D@fD@z0D ã 0, n0++D;
H* automatic detection of order of 1st nonvanishing

derivative n0 of f at z=z0 *L
erfB@z_D = fnbür@f, f, z, z0, mexp, n0D;
H* explicit expression of the Bürmann series *L
erfT@z_D = Series@Erf@zD, 8z, z0, mexp<D êê Normal;
H* Taylor series *L

ColumnA

9TextüTraditionalFormü
Row@8"Function to expand: ", f@zD<D,

TextüTraditionalFormü
Row@8"Basis function fH", Style@"z", ItalicD,

"L for expansion: ", f@zD<D,
TextüTraditionalFormü

Row@
8"The order n+1 of first nonvanishing derivative

of fH", Style@"z", ItalicD, "L at ",
Style@"z", ItalicD0, " is ", n0<D,

TextüTraditionalFormü
Row@8"The order of expansion is chosen by: ",

Style@"m", ItalicD, " = ", mexp<D,
TextüTraditionalFormü

Row@8"Bürmann expansion of ", f@zD, " at ",
Style@"z", ItalicD0, " is:"<D,

TextüTraditionalFormüerfB@zD,
"",
PlotA8f@zD, erfB@zD, erfT@zD<, 8z, -1, 5<,
PlotRange Ø 8-1, p ê 2<,
Frame Ø True, FrameLabel Ø 8z, Style@"f", ItalicD<,
PlotLegends Ø PlacedA9

Row@8"erfH", Style@"z", ItalicD, "L"<D,
Row@8Style@"f", ItalicD"Bür", " H", Style@"n", ItalicD,

" = 10L"<D,
RowA9Style@"f", ItalicD"Taylor", " H",

Style@"n", ItalicD, " = 10L"=E

=, 8.8, .2<E,
PlotStyle Ø 8Black, 8Red, Dashed<, 8Dashed, Blue<<,
PlotLabel Ø
Row@8"Expansion of ", Erf@zD, " at ", z0, " = ", z0<D,

ImageSize Ø 400E

=E

F
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Function to expand: erfHzL

Basis function fHzL for expansion: ‰-z2

The order n+1 of first nonvanishing derivative of fHzL at z0 is 2
The order of expansion is chosen by: m = 10
Bürmann expansion of erfHzL at z0 is:

-
787 °1-‰-z2 •9ê2 sgnHzL9

138240 p
-
5 °1-‰-z2 •7ê2 sgnHzL7

448 p
-
7 °1-‰-z2 •5ê2 sgnHzL5

240 p
-

°1-‰-z2 •3ê2 sgnHzL3

6 p
+
2 °1-‰-z2 • sgnHzL

p

erfHzL

f Bür Hn = 10L

f Taylor Hn = 10L

-1 0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

1.5

z

f

Expansion of erfHzL at z0 = 0

The  plot  shows  that  the  series  in  (32)  has  only  a  small  constant  offset  error  for  larger
values  of  z,  whereas  the  Taylor  expansion  dramatically  deviates  for  smaller  values  of  z,
although it converges uniformly for all values of z. The series in (32) converges uniformly
for  all  z  and  gives  the  exact  value  for  the  error  function.  The  rearrangement  of  terms,
leading  to  erfBHzL,  is  thus  justified.  Even  for  the  lowest  order,  we  will  find  a  result  that
shows no unbounded error, unlike the Taylor series.

ModuleB8f, f, mexp, z0, n0, erfB, erfT<,

f@z_D := Erf@zD;

f@z_D =
p

2
D@f@zD, zD;

H* basis function for expansion *L
mexp = 10; H* order of expansion *L
z0 = 0; H* center of series expansion *L
n0 = 1; While@Derivative@n0D@fD@z0D ã 0, n0++D;
erfB@z_D = fnbür@f, f, z, z0, mexp, n0D;
H* explicit expression of the Bürmann series *L
erfT@z_D = Series@Erf@zD, 8z, z0, mexp<D êê Normal;
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erfT@z_D = Series@Erf@zD, 8z, z0, mexp<D êê Normal;
LogPlotA8f@zD - erfB@zD, f@zD - erfT@zD< êê Abs êê Evaluate,
8z, 0.2, 5<, PlotRange Ø 81*^-8, 1*^4<,

Frame Ø True, FrameLabel Ø 8"z", "error"<,
PlotLegends Ø PlacedA9

Row@8Style@"f", ItalicD"Bür", " H", Style@"n", ItalicD,
" = 10L"<D,

RowA9Style@"f", ItalicD"Taylor", " H", Style@"n", ItalicD,

" = 10L"=E

=, 8.8, .2<E,
PlotStyle Ø 88Red, Dashed<, 8Dashed, Blue<<,

PlotLabel Ø
Row@8"Error of expansion of ", Erf@zD, " at ", z0,

" = ", 0<D,
ImageSize Ø 400E

F

f Bür Hn = 10L

f Taylor Hn = 10L

1 2 3 4 5
10-8

10-6

10-4

0.01

1

100

104

z

er
ro
r

Error of expansion of erfHzL at z0 = 0

Due to the uniform convergence of (32), we can write: 

(33)erfHzL =
2 signHzL

p
1 - e-z2 Ic0 + c1 e-z2 + c2 e-2 z2 + …M.

Using  limzØ¶ erfHzL = 1  and  limzØ¶ e-k z2 = 0  in  (33),  we  find  c0 = p ë 2.  So  by
reordering the sums, we automatically get rid of the offset error at infinity. In fact, we can
furthermore achieve a practical application of (33) by keeping only a few coefficients ci.
For example, using only c1  and requesting the correct slope at z = 0, one gets an approxi-
mation  of  the  error  function  with  a  relative  error  smaller  than  1.2%.  Taking  additional
terms  of  (33)  with  meaningful  conditions  further  improves  the  approximating  series  in
(33), as also shown in the following plot (choosing c1 = 31

200  and c2 = 11
40 c1).
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Using  limzØ¶ erfHzL = 1  and  limzØ¶ e-k z2 = 0  in  (33),  we  find  c0 = p ë 2.  So  by
reordering the sums, we automatically get rid of the offset error at infinity. In fact, we can
furthermore achieve a practical application of (33) by keeping only a few coefficients ci.
For example, using only c1  and requesting the correct slope at z = 0, one gets an approxi-
mation  of  the  error  function  with  a  relative  error  smaller  than  1.2%.  Taking  additional
terms  of  (33)  with  meaningful  conditions  further  improves  the  approximating  series  in
(33), as also shown in the following plot (choosing c1 = 31

200  and c2 = 11
40 c1).

ModuleB

8erfc1, sol1, erfc1c2, c1, c2<,

erfc1@c1_, z_D = Sign@zD
2

p
1 - ExpA-z2E *

p

2
+ c1 ExpA-z2E ;

H* series according to H33L with a0 and a1 *L
sol1 =
Solve@HD@Erf@zD, zD ê. z Ø 0L ==

Limit@D@erfc1@c1, zD, zD, z Ø 0D, c1D@@1DD;
H* calculation of a1 by requesting correct slope at z=
0 *L

erfc1c2@c1_, c2_, z_D =

Sign@zD
2

p
1 - ExpA-z2E

p

2
+ c1 ExpA-z2E + c2 ExpA-2 z2E ;

H* series according to H33L with a0, a1, and a2 *L

PlotB8HErf@zD - erfc1@c1 ê. sol1, zDL ê Erf@zD,

HErf@zD - erfc1c2@31 ê 200, -11 ê 40 * 31 ê 200, zDL ê Erf@zD<,
8z, -3, 3<, Frame Ø True,
FrameLabel Ø 8z, "relative error"<,

PlotLegends Ø PlacedB

:

Row@8Style@"c", ItalicD1, " = ", c1 ê. sol1, " º ",
N@c1 ê. sol1D<D,

RowB:Style@"c", ItalicD1, " = ",
31

200
, ", ",

Style@"c", ItalicD2, " = ", -
11

40
,

Style@"c", ItalicD1>F

>, BelowF

F

F
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‡ Application of Bürmann Series to Problems of Nonlinear 
Heat Transfer
This section applies the concept of Bürmann series to get solutions of nonlinear differen-
tial equations. After a short introduction, an example from the field of the diffusion type is
presented.

· Application to Ordinary Differential Equations

In studying nonlinear ordinary differential equations, we cannot, in general, expect to find
an exact solution expressible in terms of commonly used algebraic or transcendental func-
tions.  This  difficulty  is  illustrated  by  the  equations  studied  by  Fujita,  Lee,  and  Crank,
which  we will  encounter  later  [13–17].  For  the  case  of  a  general  nonlinear  second-order
equation

(34)f ²″HzL = hHz, f £, f L, f Hz0L = f0, f £Hz0L = g0 ¹≠ 0,

where hHz, f £, f L  denotes an analytic function of  its  arguments,  one approach is  to cast  a
solution into the form of a series of powers of the independent variable z.  Depending on
the complexity of the expression hHz, f £, f L on the right-hand side of the equation (34), de-
termining the coefficients of this expansion by collecting the powers of z and solving the
resulting system of equations is a cumbersome procedure. Equations of the form (34) are
often encountered in physics, and either their solutions can be determined numerically or
their  behavior  is  known qualitatively  from experiments.  Guided  by  this  prior  knowledge
about  the  nature  of  f HzL,  we  can  eventually  construct  or  guess  a  function  fgHzL = fHg, zL
that is a more favorable base for a power series than the independent variable z itself. We
have to cast the representation of the solution of equation (34) into the form
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where hHz, f £, f L  denotes an analytic function of  its  arguments,  one approach is  to cast  a
solution into the form of a series of powers of the independent variable z.  Depending on
the complexity of the expression hHz, f £, f L on the right-hand side of the equation (34), de-
termining the coefficients of this expansion by collecting the powers of z and solving the
resulting system of equations is a cumbersome procedure. Equations of the form (34) are
often encountered in physics, and either their solutions can be determined numerically or
their  behavior  is  known qualitatively  from experiments.  Guided  by  this  prior  knowledge
about  the  nature  of  f HzL,  we  can  eventually  construct  or  guess  a  function  fgHzL = fHg, zL
that is a more favorable base for a power series than the independent variable z itself. We
have to cast the representation of the solution of equation (34) into the form

f HzL = f0 + ‚
n=1

¶

CnI f ; fg, z0M IfgHzL - fgHz0LM
n,

and so we expand the solution f HzL using the recursive formula (5). The code below gives
an expansion of the first four terms.

BlockA8f, z, z0, f, y, h, g<,
TextüTraditionalFormü

RowA9f@zD, " = ",

RowA

PrependATableAc@f, f, n, yD Hf@zD - f@yDLn, 8n, 3<E,

f@z0DE ê. f££@yD Ø h@y, f£@yD, f@yDD ê. y Ø z0 ê.
h@z0, f£@z0D, f@z0DD Ø h0 ê. f£@z0D Ø g0 ê.

f@z0D Ø f0 ê. z0 Ø z0 ê. f Ø fg, "+"E

=E

E

f HzL = f0 +
g0 HfgHzL-fgHz0LL

fg£Hz0L
+

HfgHzL-fgHz0LL2 Hh0 fg£Hz0L-g0 fg££Hz0LL
2 fg£Hz0L3

+

HfgHzL-fgHz0LL3 I f H3LHz0L fg£Hz0L2-g0 fg H3LHz0L fg£Hz0L+3 g0 fg££Hz0L2-3 h0 fg£Hz0L fg££Hz0LM

6 fg£Hz0L5

The free parameter g  occurring in fg  will then be determined by the boundary conditions
for f HzL. In the following, this kind of expansion with suitable basis functions will be ap-
plied to the solution of a problem of nonlinear heat  transfer,  and its  convergence will  be
treated as far as relevant for this special case. For all the cases investigated in this article,
we apply the recursive approach (7), since the structure of the chosen basis functions is rel-
atively  simple.  For  more  sophisticated  basis  functions,  the  combinatorial  formulas  (12)
and (14) have to be implemented in order to reduce CPU time. This may be done in future
investigations.

· Heat Transfer in ZnO

As a  canonical  example,  we  study  the  partial  differential  equation  of  transient  nonlinear
heat transfer with temperature-dependent thermal conductivity KHTL.  We demonstrate the
application of  Bürmann series to the practical  problem of heat  transfer  in ZnO ceramics.
The half  space z ¥ 0 is  filled by this  material,  which has  initial  constant  temperature  T0,
and the temperature T1 Ø T0  as z Ø ¶. At t = 0 the surface temperature at z = 0 is instan-
taneously  raised  to  a  constant  temperature  TS.  Using  the  results  of  measurements  of  the
thermal conductivity in ZnO [3], we can formulate the problem by writing
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As a  canonical  example,  we  study  the  partial  differential  equation  of  transient  nonlinear
heat transfer with temperature-dependent thermal conductivity KHTL.  We demonstrate the
application of  Bürmann series to the practical  problem of heat  transfer  in ZnO ceramics.
The half  space z ¥ 0 is  filled by this  material,  which has  initial  constant  temperature  T0,
and the temperature T1 Ø T0  as z Ø ¶. At t = 0 the surface temperature at z = 0 is instan-
taneously  raised  to  a  constant  temperature  TS.  Using  the  results  of  measurements  of  the
thermal conductivity in ZnO [3], we can formulate the problem by writing

(35)

1

k0

¶∂T

¶∂t
=

¶∂

¶∂z
KHTL

¶∂T

¶∂z
,

KHTL =
1

T
T1

- B
,

k0 = 5.38 ÿ 10-6 Im2 ë sM, T1 = 300 HKL, B = 0.3133,
TH0, tL = TS = 1200 HKL, THz, 0L = T0 = 300 HKL.

Using the transformation

THz, tL ê T1 = qHz, tL,

Kirchhoff's transformation

QHz, tL = lnHqHz, tL - BL,

and Boltzmann's transformation

h =
z

2 k0 t
,

we find a nonlinear ordinary differential equation that has been extensively studied by Fu-
jita [13–15], Lee [16, 17], and Crank [2]:

(36)

1.
d2 Q

dh2
= -2 h eQ

dQ

dh
,

2. QH0L = a = ln
Ts
T1

- B , Q£H0L = -s, s > 0,

3. QHhLhØ¶ = w = ln
T0
T1

- B .

While  the  first  boundary condition in  (35)  is  regular  (i.e.  T H0, tL = TS  and qH0L = a),  the
second one is given in terms of the asymptotic expression limzØ¶ THz, tL = T1. The equiv-
alent  value  s  of  the  derivative  Hd Q ê d hLh=0  has  to  be  estimated,  which  is  performed  by
calculating  the  time  evolution  of  the  total  thermal  energy  of  the  semi-infinite  half  space
[18]. The approximate value of this energy integral (in terms of an algebraic expression) is
determined  in  appendix  B,  where  we  use  the  Bürmann  series  (10)  to  approximate  the
energy integral. The explicit expression is displayed in appendix B, equation (56), which
describes the dependence of s on the parameters with a relative accuracy of 0.37%.
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ü Iterative Solution of Equation (36.1)

To apply the methods developed in the preceding sections, we establish a convergent itera-
tion scheme for equation 1 of (36). To this end, we transform this equation into an integral
equation:

(37)QHhL = a - s ‡
0

h

dx exp -2 ‡
0

x

dq q eQHqL .

The solutions for 1 of equation (36) are strictly decreasing functions of h,  which implies
that for all positive values of h we have

QHhL § a.

From this relation, we conclude that we can define a system of functions Y0, Y1, Y2, … of
the form

(38)
Y0HhL = a - s ‡

0

h

dx exp -2 ‡
0

x

dq q ea = a -
s

2

p

ea
erfK ea hO,

YkHhL = a - s ‡
0

h

dx exp -2 ‡
0

x

dq q eYk-1HqL .

Taking the first term of the expansion (32) of the error function, we have

(39)

QHhL § YkHhL § Yk-1HhL § … § a -
s

2

p

ea
erfK ea hO § jHhL,

jHhL = a -
s

2

p

ea
1 - e-ea h2 .

· Enhancing the Convergence of the Bürmann Series

Since  the  system  (39)  converges  toward  the  solution  QHhL,  a  possible  choice  for  a  basis
function would be jHhL. Instead of jHhL, we prefer to introduce a less complicated function
fgHhL that simplifies the calculations. According to (39), this function has to fulfill the fol-
lowing conditions:

QHhL § fgHhL, 0 § h < hw, hwö¶,

fgH0L = QH0L = a.

The  function  fgHhL  can  be  constructed  in  such  a  way  as  to  guarantee  that  all  essential
boundary conditions are fulfilled by QHhL:

fgHhL = a -
s

g
ygHhL,

fgH0L = a, fg
£H0L = -s.

The  parameter  g  is  as  yet  undetermined.  A  useful  basis  for  an  expansion  is  obtained  by
taking

32 H. M. Schöpf and P. H. Supancic 

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



The  parameter  g  is  as  yet  undetermined.  A  useful  basis  for  an  expansion  is  obtained  by
taking

(40)ygHhL = 1 - e-g h,

which will lead, according to (6) and (7), to the Bürmann series calculated as follows.

ModuleB8d<,

kend = 5; H* maximum order of expansion *L

d@1D@z_D =
Q£@zD

j£@zD
;

f@g_, s_, z_D = a -
s

g
H1 - Exp@-g zDL;

DoB

d@kD@z_D =

SimplifyB

1

k j£@zD
D@d@k - 1D@xD, xD ê. Q²″@xD Ø -2 x EQ@xD Q£@xD ê.

x Ø z F, 8k, 2, kend<

F;

DoA
a@kD = Limit@D@f@g, s, zD, 8z, k<D, z Ø 0D;
c1@kD =
SimplifyAHd@kD@zD ê. z Ø 0L ê.

JoinA8Q@0D Ø a, Q£@0D Ø -s<,
TableAjHiL@0D Ø a@iD, 8i, 1, kend<EEE,

8k, 1, kend<
E;
Q@1, a_, g_, s_, h_D := f@g, s, hD;
Q@k_, a_, g_, s_, h_D :=
Q@k - 1, a, g, s, hD + c1@kD Hf@g, s, hD - aLk;

F

Q@5, a, g, s, hD

a -
H1 - ‰-g hL s

g
-
H1 - ‰-g hL2 s

2 g
-

H1 - ‰-g hL3 I-‰a + g2M s

3 g3
+
H1 - ‰-g hL4 I-3 g3 + ‰a H6 g - 2 sLM s

12 g4
-

H1 - ‰-g hL5 s I6 ‰2 a + 12 g4 + ‰a I-35 g2 + 20 g s - 3 s2MM

60 g5
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Expressed in terms of fgHhL, this is

(41)

QHhL = fgHhL -
g

2 s
IfgHhL - aM

2
+

1

3

g2 - ea

s2
IfgHhL - aM

3
+

I2 eaH3 g - sL - 3 g3M ë I12 s3M IfgHhL - aM
4

+
1

60 s4
I6 e2 a + 12 g4 + ea I20 gs - 3 s2 - 35 g2MM IfgHhL - aM

5
+ … .

· Convergence of the Enhanced Bürmann Series

If  we  consider  g  in  (40)  and  (41)  as  a  free  parameter,  we  have  to  investigate  how  its
choice influences the convergence of the corresponding Bürmann series. We write, using
(37) and omitting the index g for y,

F1HhL = a -
s

g
‡
0

gh

dz exp -2
b

g

2

‡
0

z

dq q e-l yHqL

= a - l ‡
0

yHhL dy

1 - y
exp -2

b

g

2

‡
0

y

dy* ln
1

1 - y*

1

1 - y*
e- l y* ,

l =
s

g
, b = ea .

All  integrands are  representable  by uniformly convergent  series  expansions in  powers  of
y < 1, and thus the argument is similar to the one used in proving the convergence of the
system  (39).  Furthermore,  we  observe  that  the  expansion  of  the  exponential  function
expI-2 Hb ê gL2 Ÿ dq…M converges more quickly for higher values of g. Thus, as long as g
can be chosen to guarantee the condition 

QHhL § a -
s

g
ygHhL

for some value g, an iterative system of functions can be constructed that converges to the
solution of equation 1 of (36). This fact can be exploited by determining g  in such a way
as to assure that the approximation

QkHhL = a - s ‚
n=1

k

Cn -
s

g
ygHhL

n

assumes the correct value w at infinity. So we have

(42)limhØ¶ QkHhL = limhØ¶ a - s ‚
n=1

k

Cn -
s

g
ygHhL

n

= w,
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resulting in an algebraic equation of the kth order in g with roots gk,

(43)a - s ‚
n=1

k

Cn -
s

g

n

= w,

where gk satisfies the condition

(44)QHhL § a -
s

gk
ygkHhL, 0 § h < ¶.

· The Cubic Approximation

If there is a solution gk to equation (43) simultaneously fulfilling condition (44), we get an
approximation Qk  that converges to the correct value w of Q as h Ø ¶. For the third-order
approximation Q3, we get from (41) and (43) the cubic equation

(45)g3 -
11 s

6 Ha - wL
g2 +

s ea

3 Ha - wL
= 0.

The relevant real solution to this equation is

(46)g3 =
11

18

s

Ha - wL
1 + 2 sin

J

3
,

with

(47)

J = 2 p + sin-1
27

2
w ,

w =
4

27

972

1331
K

a - w

s
O
2

ea - 1 .

We display the explicit expression for the third-order approximation below:

(48)

THz, tL º

HTS - B T1L exp -l3 yg3 1 +
1

2
yg3 +

1

3
1 -

TS - B T1
g32 T1

yg3
2 + B T1,

yg3Hz, tL = 1 - e
-

g3 z

4 k0 t , l3 =
s

g3
=

18

11
ln

TS - B T1
T0 - B T1

ì 1 + 2 sin
J

3
.

In the next two plots, we show a comparison between the approximation (48) and the ex-
act solution found by applying NDSolve to 1 of (36). The value for s is calculated by us-
ing the approximation s0  given by equation 2 of (57). Note that (48) can also be inverted
exactly by using common algebraic and transcendent functions. The corresponding proce-
dure is listed below for the same parameters as given in the previous section.
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In the next two plots, we show a comparison between the approximation (48) and the ex-
act solution found by applying NDSolve to 1 of (36). The value for s is calculated by us-
ing the approximation s0  given by equation 2 of (57). Note that (48) can also be inverted
exactly by using common algebraic and transcendent functions. The corresponding proce-
dure is listed below for the same parameters as given in the previous section.
This defines the cubic approximation according to (45)–(48).

TcubicAz_, t_,

k0_, H* thermal diffusivity Am2ësecE H35L *L

TS_, H* Surface temperature @KelvinD*L
T0_, H* Initial temperature @KelvinD of the half
space *L

T1_, H* Temperature @KelvinD of the half space
at infinity *L

b_, H* parameter B in H35L *L
s_ H* parameter as def. in H36.2L calculated by
equ. H57.2L *L

E := ModuleB8a, w, w, J, g3, l3<,

a = Log@TS ê T1 - bD; H* definition of a according
equ. 36.2 *L

w = Log@T0 ê T1 - bD; H* parameter as def. in H36.3L *L

w =
4

27

972

1331
K
a - w

s
O
2
‰a - 1 ;

J = 2 p + ArcSinB
27

2
wF;

g3 =
11

9

s

Ha - wL
SinB

J

3
F +

1

2
;

l3 =
s

g3
;

HTS - b T1L

ExpB -l3 1 - ‰
-

g3 z

4 k0 t

1 +
1

2
1 - ‰

-
g3 z

4 k0 t +
1

3
1 -

‰a

g32
1 - ‰

-
g3 z

4 k0 t

2

F + b T1

F

For  the  numerically  exact  solution,  calculated  by  using  NDSolve,  we  impose  the
condition  QH¶L = 0  (i.e.  TH¶, tL = T0).  This  condition  is  equivalent  to  selecting  a  slope
s = Q ' H0L  at  the  surface  z = 0.  Bürmann’s  theorem is  used a  second time to  find an  ap-
proximation s0 º 2.23136 for the slope s  by calculating the Bürmann expansion (56) of
the energy integral (see appendix B).
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Texact@z_, t_, k0_, TS_, T1_, b_, s_D :=
H* solution in real space in SI-units *L

T1 ExpBQB
z

2 t k0
FF + b ê.

NDSolve@8Q''@hD ã -2 h Q'@hD Exp@Q@hDD,
Q@0D ã Log@TS ê T1 - bD, Q'@0D ã -s<, Q, 8h, 0, 10<

H* numerical solution of transformed equation,
slope s at h=0 replacing TH¶,tL=T0*LD

The  plot  shows  the  numerically  exact  temperature  profiles  (the  colored  curves)  and  the
exact solution’s third-order approximation according to equation (48) (the dotted lines), in
the range z = 0 - 0.25 m at t = 10, 30, 100, 300, 1000, 3000, 10 000 s. 

ModuleA9k0 = .38 µ 10-6 , TS = 1200, T0 = 300 , T1 = 300,
b = 0.3133, s = 2.23136
H* approximation s=s0H º 2.23136L equ. H57.2L *L,
tarray, m=,

tarray = 810, 30, 100, 300, 1000, 3000, 10 000<;
H* time steps for evaluation *L
m = Map@Row@8Style@"t", ItalicD, " = ", Ò, " s"<D &,

tarrayD;
Show@
Plot@
MapThread@Tooltip, 8

Map@Tcubic@z, Ò, k0, TS, T0, T1, b, sD &, tarrayD,
Map@Row@8Style@"t", ItalicD, " = ", Ò, " s"<D &,

tarrayD êê Evaluate
<D êê Evaluate,

8z, 0, 0.25<,
PlotStyle Ø 88Black, Thickness@0.005D, Dotted<<,
PlotRange Ø All

D,
Plot@
MapThread@Tooltip, 8

Map@Texact@z, Ò, k0, TS, T1, b, sD &, tarrayD,
Map@Row@8Style@"t", ItalicD, " = ", Ò, " s"<D &,

tarrayD êê Evaluate
<D êê Evaluate,

8z, 0, 0.25<, PlotRange Ø All
D,
Frame Ø True,
FrameLabel Ø 8Row@8z , " @mD"<D, "temperature @KelvinD"<,
PlotLabel ->
"Compare exact solution and cubic approximation",

ImageSize Ø 400
D

E
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 Additionally the relative error  of  the third-order  approximation (48) is  displayed for  the
same profiles as shown before.

ModuleA9k0 = .38 µ 10-6 , TS = 1200, T0 = 300 , T1 = 300,

b = 0.3133, s = 2.23136, tarray, m=,
tarray = 810, 30, 100, 300, 1000, 3000, 10 000<;
H* time steps for evaluation *L
m = Map@Row@8Style@"t", ItalicD, " = ", Ò, " s"<D &,

tarrayD;
Plot@
MapThread@Tooltip,

8Map@
HTexact@z, Ò, k0, TS, T1, b, sD -

Tcubic@z, Ò, k0, TS, T0, T1, b, sDL ê
Texact@z, Ò, k0, TS, T1, b, sD &, tarrayD,

Map@TextüRow@8Style@"t", ItalicD, " = ", Ò, " s"<D &,
tarrayD<D êê Evaluate, 8z, 0, 0.25<,

PlotRange Ø All, Frame Ø True,
FrameLabel -> 8Row@8Style@"z", ItalicD, " @mD"<D,

"relative error"<,
PlotLabel -> "Relative error of the cubic approximation",
ImageSize Ø 400D

E

38 H. M. Schöpf and P. H. Supancic 

The Mathematica Journal 16 © 2014 Wolfram Media, Inc.



0.00 0.05 0.10 0.15 0.20 0.25

-0.020

-0.015

-0.010

-0.005

0.000

z @mD

re
la
tiv
e
er
ro
r

Relative error of the cubic approximation

‡ Summary and Conclusion
The goal of this work is to give a comprehensive presentation of Bürmann’s theorem and
its application to linear and nonlinear DEs and PDEs of heat transfer, using single-valued
and multivalued basis functions.
To  this  end,  a  reformulation  of  the  formulas  of  the  expansion  coefficients  of  Bürmann
series, based on a combinatorial viewpoint, is developed. As a result of this reformulation,
an  algorithm  is  presented,  which  accelerates  the  calculation  of  expansion  coefficients,
compared to standard methods. Using this approach, the expansion of transcendental func-
tions  in  powers  of  their  derivative  is  applied  to  the  error  integral,  to  the  solution  of
nonlinear differential  equations,  and to the evaluation of the heat  integral.  By combining
these methods, it is possible to show that the approximate solution of nonlinear problems
of heat transfer can be given in terms of Bürmann expansions. Finally, it is shown that the
introduction of an additional parameter in the basis function can significantly enhance the
convergence  of  a  Bürmann  series.  The  value  of  this  parameter  can  be  found  by  solving
algebraic equations that result from the boundary conditions of the problems.
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‡ Appendix A

· Expansion Coefficients of f HzL-m

The coefficients ÂℜkH f , mL, defined by

1

f HzLm
=

1

f Hz0Lm
‚
k=0

¶

ÂℜkH f , mL Hz - z0Lk,

result from elementary considerations. We write

(49)

1.
1

f HzLm
=

1

f Hz0Lm
1

1 + S

m

=
1

f Hz0Lm
‚
n=0

¶

H-1Ln Hm + n - 1L! ê HHm - 1L! n!L Sn,

2. S = ‚
k=1

¶ f HkLHz0L

k ! f Hz0L
zk, z = Hz - z0L.

The nth power of S is given by

(50)

1. Sn =

n! ‚
all sets of qHnL

1

qu1HnL!

f Hu1LHz0L

u1 ! f Hz0L

qu1 HnL 1

qHnLui !

f Hu2LHz0L

u2 ! f Hz0L

qu2 HnL

…
1

qunHnL!

f HunLHz0L

un ! f Hz0L

qun HnL

zu1 qu1 HnL+u2 qu2 HnL+…un qun HnL,

2. ‚
i=1

n

quiHnL =

n.

Rearranging equation 1 of (50) in increasing powers zkHnL, we have two conditions

(51)

1. ‚
i=1

n

quiHnL = n,

2. ‚
i=1

n

ui quiHnL = kHnL.
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Thus,  collecting all  kHnLth  powers  of  z  over  all  the  contributions  arising from all  Sn  with
1 § n § k is equivalent to imposing one single condition, replacing the conditions 1 and 2
of (51):

‚
s=1

k

s psk = k.

Since k ¥ ⁄s=1
k psk, we define p0k ¥ 0:

(52)k - ‚
s=1

k

psk = p0
k .

Using equations 1 of (49), 1 of (50), and (52) we finally arrive at the expansion

1

f HzLm
=

1

f Hz0Lm
‚
k=0

¶

‚
all partitions p of k,
freqHpL=Hp1,…,pkL

H-1LHk-p0L
Hm + k - p0 - 1L!

Hm - 1L!
‰
s=1

k 1

ps !

f HsLHz0L

s! f Hz0L

ps

Hz - z0Lk.

A similar result, displayed in (21), is obtained for m = m ê n.

‡ Appendix B

· Bürmann Series (10) for the Heat Integral

We define the temperature difference DT and the differential equation it obeys:

(53)
1. DT = T - T0,

2.
1

k0

¶∂DT

¶∂ t
=

¶∂

¶∂z
KHTL

¶∂DT

¶∂z
.

By integrating equation 2 of (53) over z, we find

(54)
1

k0

d

dt ‡0

¶

DT dz =
1

k0

dXHtL

dt
= -KHTSL

¶∂T

¶∂z z=0
.

Performing the transformations of Kirchhoff and Boltzmann, we arrive at the solution for
XHtL:

(55)
dXHtL

dt
=

s T1 k0

2

1

t
öXHtL = s T1 k0 t .
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On the other hand, using the definition given in (54), we expand XHtL in a Bürmann series
in powers of DT according to (10). This leads to

(56)

XHtL = ‡
0

¶

DT dz

= 2 k0 t ‡
0

¶

DT dh

= 2 k0 t ‚
k=1

¶

H-1Lk CkHX; DT, 0L DT0k, DT0 = TS - T0, DT¶ = 0.

Combining (55) and (56) up to order three gives

-
DT0
DT0£

DT0 +
1

2

DT0£2 - DT0 DT0££

DT0£3
DT02 -

1

6

1

DT0£5
I3 DT0 DT0££2 - 2 DT0£2 DT0££ - DT0 DT0£ DT0H3LM DT03 =

s

2
T1.

According to the transformations in (36), we have 

Q²″ = -2 h Q£ eQ,

DT0£ =
dT

dh h=0
= T1 eQ0 Q0

£ = -T1 ea s,

DT0²″ =
d2 T

dh2 h=0

= T1 eQ0 Q0
£2 + T1 eQ0 Q0

££ = T1 ea s2,

DT0H3L =
d3 T

dh3 h=0

= -T1 ea s3 + 2 T1 e2 a s,

which leads, after some manipulations, to a quartic algebraic equation for s  and its solu-
tion s0, given by

(57)

1. s4 + As2 - B = 0,

2. s0 =
1

2
A2 + 4 B - A ,

3. A = IHTS - T0L2 IT0H5 TS - BT1L + 7 BT1 TS - 6 TS2 - 2 T0
2 - 3 B2 T1

2MM ë

I3 T1HTS - BT1L3M,

4. B =
2 HTS - T0L4

3 T1
2HTS - BT1L

2
.
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An approximation of (56) up to order six would lead to a sextic equation that is reducible
to  a  cubic  equation,  and  hence  to  an  algebraic  expression  for  s.  The  approximation
obtained from the first equation of (57) for s  is s0 = 2.23136, which shows a maximum
relative error of 0.37% compared to the exact value sexact = 2.22313 found by numerical
methods (i.e. NDSolve) using the parameters listed in (35).
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