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The Quantitation of Non-
classical Buffering
Applying the Formal and General Approach 
to Problems in the Biological Sciences
Jim Karagiannis

A formal, axiomatic conceptualization of buffering action—
generally applicable to any physical, chemical, or biological 
process—was first presented by B. M. Schmitt in 2005 [1, 2]. 
This article provides a series of tools designed to aid in the 
application of these concepts to both classical and non-classical 
buffering phenomena. To illustrate the utility of the approach in 
the biological sciences, an abstract measure of the magnitude of 
“genetic” buffering associated with an allele of the gene 
encoding the heat shock protein Hsp90 is determined.

■ Introduction
Buffering is observed when a parameter changes less than expected in response to a given
disturbance. For example, if a strong acid is added to an aqueous solution, and not all of
the  added  H+  ions  remain  free  (unbound),  then  the  solution  is  said  to  act  as  a  buffer.
While such phenomena have been observed in the physical, chemical, and biological sci-
ences for centuries, a formal and general approach for their quantitation across distinct dis-
ciplines was not presented until recently [1, 2]. 
In [1, 2], B. M. Schmitt presents a comprehensive mathematical framework for evaluating
buffering action—a framework that is applicable to any scenario in which a quantity parti-
tions  between  two  compartments  or  states.  While  suitable  for  the  analysis  of  “classical”
buffering  phenomena  (e.g.  acid-base  chemistry),  the  formalism  also  provides  a  simple
means with which to quantitate and characterize phenomena that,  at first glance, seem to
be outside the buffering paradigm—at least when the term is used in its traditional sense
with  respect  to  the  homeostasis  of  physiological  parameters  (see  [2]  for  several  in-depth
examples  of  the  formal  and  general  approach  applied  to  phenomena  spanning  diverse
disciplines).
This article provides a series of mathematical tools designed to facilitate the application of
Schmitt’s  paradigm  to  both  “classical”  and  “non-classical”  buffering  phenomena.  By
inputting  the  transfer  function  τ(x)  and  the  buffering  function  β(x),  the  provided  code:
(1) defines the four buffering parameters t, b, T, and B; (2) provides a series of graphical
outputs describing the system; and (3) calculates the buffering angle α, thereby classifying
the  system  as  being  moderating/amplifying/inverting/non-inverting.  Thus,  the  burden  of
computation  associated  with  the  approach  is  seamlessly  transferred  from  the  user  to  the
Mathematica kernel.
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Schmitt’s  paradigm  to  both  “classical”  and  “non-classical”  buffering  phenomena.  By
inputting  the  transfer  function  τ(x)  and  the  buffering  function  β(x),  the  provided  code:
(1) defines the four buffering parameters t, b, T, and B; (2) provides a series of graphical
outputs describing the system; and (3) calculates the buffering angle α, thereby classifying
the  system  as  being  moderating/amplifying/inverting/non-inverting.  Thus,  the  burden  of
computation  associated  with  the  approach  is  seamlessly  transferred  from  the  user  to  the
Mathematica kernel.
Lastly, in order to illustrate the utility of the approach outside traditional disciplines, I use
these same tools to calculate the magnitude of “genetic”  buffering associated with an al-
lele of the gene encoding the heat shock protein Hsp90. In this way, the capacity of an al-
lele  to  buffer  phenotypic  variation  is  formally  and quantitatively  determined for  the  first
time.

■ An Intuitive, Linear Example Based on the Partitioning of 
Fluids in Communicating Vessels
To illustrate Schmitt’s “formal and general  approach,”  consider a  system comprised of  a
pair  of  communicating vessels  (i.e.  cylindrical  flasks connected by a  small  tube).  As de-
scribed in [1], the total volume of liquid in the vessels, x, is the sum of the two partial vol-
umes contained in each vessel. In the specific example described below, the rightmost of
the two cylindrical vessels (the “buffering”  vessel) has a radius exactly two times that of
the first. Thus, any fluid added to the leftmost vessel (the “transfer” vessel) will partition
in a ratio of 1:4 between the transfer and buffering vessels. The partial volume present in
the  transfer  vessel  is  thus  one-fifth  the  total  volume  of  fluid  added  to  the  system.  Like-
wise,  the  partial  volume present  in  the  buffering  vessel  is  four-fifths  the  total  volume of
fluid added to the system.

Graphics3D[{
Cylinder[{{0, 0, 0}, {0, 0, 5}}, 0.5],
Cylinder[{{3, 0, 0}, {3, 0, 5}}, 1],
Cylinder[{{0.1, 0.1, 0.1}, {3, 0.1, 0.1}}, 0.075]},
Axes → True, ImageSize → {300, 300}]
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□ Formalizing the System

It is possible to formalize the system below by defining three functions: the transfer func-
tion τ1(x), the buffering function β1(x), and the sigma function σ1(x). 
The transfer function defines the amount of fluid present in the transfer vessel.

τ1[x_] := x /∕ 5

Likewise,  the  buffering  function  defines  the  amount  of  fluid  present  in  the  buffering
vessel.

β1[x_] := 4 x /∕ 5

The sigma function defines the sum of the individual functions comprising the system.

σ1[x_] := τ1[x] + β1[x]

Once the functions are defined, it is possible to visualize the system by plotting the lines.

Plot[{σ1[x], β1[x], τ1[x]}, {x, 0, 100},
AxesLabel → {"Total Volume", "Partial Volume"},
PlotLegends → "Expressions"]
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It is also possible to visualize the system (in a more intuitive manner) by creating an area
plot in which the two partial volumes are indicated by the heights of the transfer and buff-
ering areas at any given value of x.

Plot[{τ1[x], σ1[x]}, {x, 0, 100},
AxesLabel → {"Total\nVolume", "Partial\nVolume"},
Filling → Bottom,
Epilog → {

Text[TraditionalForm@HoldForm[β1[x]], {90, 50}],
Text[TraditionalForm@HoldForm[τ1[x]], {90, 10}],
Arrowheads[{-−.03, .03}],
Arrow[{{80, 0}, {80, τ1[80]}}],
Arrow[{{80, τ1[80]}, {80, σ1[80]}}]

}
]

□ Defining the Buffering Parameters

The definition of the respective functions also provides a convenient means with which to
quantitate buffering action. This is accomplished in any one of four ways, using the three
available  differentials.  The buffering coefficient  b1  measures  the  change in  the  buffering
compartment relative to the total change.

b1 = D[β1[x]] /∕ D[σ1[x]]

4

5
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The buffering ratio  B1  measures  the  change in  the  buffering compartment  relative  to  the
change in the transfer compartment.

B1 = D[β1[x]] /∕ D[τ1[x]]

4

Conversely, the transfer coefficient t1 measures the change in the transfer compartment rel-
ative to the total change.

t1 = D[τ1[x]] /∕ D[σ1[x]]

1

5

The transfer ratio T1 measures the change in the transfer compartment relative to the buff-
ering compartment.

T1 = D[τ1[x]] /∕ D[β1[x]]

1

4

In  this  simple  linear  example—where  the  cross-sectional  area  of  the  buffering  vessel  is
constant (i.e. does not vary with fluid level)—the dimensionless values of total volumes b,
B, t, and T are invariant, equal to 0.8, 4, 0.20, and .0.25, respectively.

□ Defining the Buffering Angle

While of great utility, the parameters B and T are undefined in the case of perfect buffer-
ing  or  perfect  transfer,  respectively.  To  address  this  issue,  it  is  possible  to  define  an
alternative  measure,  the  buffering  angle  α,  which  is  capable  of  representing  any  type  of
buffering without the introduction of discontinuities. 
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As described in [1], the buffering angle α  can be defined by first creating a three-dimen-
sional space curve of the system.

ParametricPlot3D[{D[x], D[τ1[x]], D[β1[x]]}, {x, 0, 100},
AxesLabel → {x, y, z}]
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A projection of this curve onto the x-y plane corresponds to the transfer function.

ParametricPlot[{D[x], D[τ1[x]]}, {x, 0, 100},
AxesLabel → {x, y}]
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A projection onto the x-z plane corresponds to the buffering function.

ParametricPlot[{D[x], D[β1[x]]}, {x, 0, 100},
AxesLabel → {x, z}]
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A projection onto the y-z plane, however, generates a third curve that can be used to deter-
mine  the  proportions  between  the  individual  changes  in  the  transfer  and  buffering  func-
tions. This is accomplished by simply measuring the angle α1  between the y axis and the
line formed by joining the origin to any given point on the curve.
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A projection onto the y-z plane, however, generates a third curve that can be used to deter-
mine  the  proportions  between  the  individual  changes  in  the  transfer  and  buffering  func-
tions. This is accomplished by simply measuring the angle α1  between the y axis and the
line formed by joining the origin to any given point on the curve.

Module[{x, a, r},
x = 20;
a = ArcTan[D[τ1[x]], D[β1[x]]];
r = Norm[{D[τ1[x]], D[β1[x]]}];
ParametricPlot[{D[τ1[x]], D[β1[x]]}, {x, 0, 100},
AxesLabel → {y, z}, ImageSize → 80 {1, 3},
Epilog → {

Circle[{0, 0}, r, {0, a}],
Text["α1", r {Cos[1 /∕ 2 a], Sin[1 /∕ 2 a]},
Background → White]

}
]

]
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This calculates the buffering angle in degrees ([1], Supplement 5).

α1 = If[t1 ≤ 1, 1, -−1] NArcCost1  t1^2 + b1^2   Degree

75.9638

Similar to the buffering parameters, α1 is invariant in cases of linear buffering.

Plot[α1, {x, 0, 100}, AxesLabel → {x, "α1"},
PlotRange → {0, 90}]
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It is evident from the above analysis that this methodology creates a system in which per-
fect buffering corresponds to an angle of 90° and perfect transfer to an angle of 0°. In fact,
any  type  of  buffering  behavior  (moderating/amplifying/inverting/non-inverting)  can  be
represented continuously by a finite angle between -−45 ° and 135° ([1], Supplement 7).
Importantly, it is also possible—using the same logic in the reverse direction—to use this
single  value  to  unambiguously  define  all  of  the  buffering  parameters  describing  the  sys-
tem.  This  can  be  demonstrated  by  defining  a  variable  littleb1  (corresponding  to  the
buffering coefficient b) that is calculated using only the buffering angle.

littleb1 =
Sin[α1 °]

Cos[α1 °] + Sin[α1 °]

0.8

This checks that b and littleb are the same.

b1 ⩵ littleb1

True
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Similarly, the values of the remaining three buffering parameters can be calculated using
only the buffering angle and shown to be equal to the corresponding parameters calculated
using the relevant differentials.

bigB1 = Sin[α1 °] /∕ Cos[α1 °]

4.

B1 ⩵ bigB1

True

littlet1 = Cos[α1 °] /∕ (Cos[α1 °] + Sin[α1 °])

0.2

t1 ⩵ littlet1

True

bigT1 = Cos[α1 °] /∕ Sin[α1 °]

0.25

T1 ⩵ bigT1

True

Thus, the buffering angle provides a simple, powerful, single-value measure that is capa-
ble  of  capturing  and  communicating  the  underlying  nature  of  the  buffering  relationships
comprising the system.
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■ A More Complex, Nonlinear Example
While  the  simple  linear  scenario  described  above  made  it  possible  to  lay  the  foundation
for Schmitt’s “formal and general approach,”  the computational effort associated with its
application was minimal. Thus, the utility of applying these methods within Mathematica
was not fully exploited. For this reason, I next consider a more complex, nonlinear exam-
ple (i.e. where the cross-sectional area of the buffering vessel is not constant). This serves
the  purpose  of  highlighting  the  advantages  of  exploiting  Mathematica’s  computational
engine.

□ Defining a Nonlinear Buffering System

Consider a nonlinear system defined by the functions listed below. 

τ2[x_] := 0.00395 x^11.09746 Exp[-−2.30471 x]

σ2[x_] := x

β2[x_] := σ2[x] -− τ2[x]

As  previously  described,  the  buffering  parameters  can  be  determined  using  the  relevant
differentials. However, in contrast to the previous example, the computational burden asso-
ciated with their calculation is no longer trivial (at least in the absence of Mathematica).

b2 = D[β2[x]] /∕ D[σ2[x]]

x -− 0.00395 ⅇ-−2.30471 x x11.0975

x

B2 = D[β2[x]] /∕ D[τ2[x]]

253.165 ⅇ2.30471 x (x -− 0.00395 ⅇ-−2.30471 x x11.0975)

x11.0975

t2 = D[τ2[x]] /∕ D[σ2[x]]

0.00395 ⅇ-−2.30471 x x10.0975

T2 = D[τ2[x]] /∕ D[β2[x]]

0.00395 ⅇ-−2.30471 x x11.0975

x -− 0.00395 ⅇ-−2.30471 x x11.0975
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Once the functions are defined and the system visualized through the creation of the corre-
sponding line and area plots, one can clearly see that the magnitude of buffering action in
this nonlinear scenario varies with fluid level (imagine a buffering vessel in the shape of
an hourglass as opposed to a cylinder).

Plot[{τ2[x], β2[x], σ2[x]}, {x, 0, 12},
AxesLabel → {"Total\nVolume", "Partial\nVolume"},
PlotLegends → "Expressions"]
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Plot[{τ2[x], σ2[x]}, {x, 0, 12}, Filling → Bottom,
AxesLabel → {"Total\nVolume", "Partial\nVolume"},
Epilog → {

Text[HoldForm[β2[x]], {10, 5}],
Text[HoldForm[τ2[x]], {5, 1}]

}
]
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Furthermore, unlike the linear case, it is also clear that the buffering parameters vary as a
function of x.

Plot[b2, {x, 0, 12}, PlotRange → {0, 2}, AxesLabel → {x, "b2"}]
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Plot[B2, {x, 0, 12}, PlotRange → {0, 20}, AxesLabel → {x, "B2"}]

0 2 4 6 8 10 12
x

5

10

15

20
B2

Plot[t2, {x, 0, 12}, PlotRange → {0, 0.5},
AxesLabel → {x, "t2"}]
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Plot[T2, {x, 0, 12}, PlotRange → {0, 1}, AxesLabel → {x, "T2"}]
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□ Defining the Buffering Angle of a Nonlinear System

As previously described, it is also possible to calculate the buffering angle α2 by first creat-
ing a three-dimensional space curve of the system and then projecting this curve onto the
y-z plane. 

ParametricPlot3D[{D[x], D[τ2[x]], D[β2[x]]}, {x, 0, 12},
AxesLabel → {x, y, z}]
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Module[{x, p, a, r},
x = 4;
p = {D[τ2[x]], D[β2[x]]};
a = ArcTan[D[τ2[x]], D[β2[x]]];
r = Norm[{D[τ2[x]], D[β2[x]]}];
ParametricPlot[{D[τ2[x]], D[β2[x]]}, {x, 0, 12},
AxesLabel → {y, z}, ImageSize → 100 {1.25, 5.5},
Epilog → {

{Orange, Circle[{0, 0}, .5 r, {0, a}]},
Text[Row[{"α2", "(", Style["x", Italic], ")"}],
.5 r {Cos[1 /∕ 2 a], Sin[1 /∕ 2 a]}, Background → White],

Thickness[.02], Orange, Line[{{0, 0}, p}],
PointSize[.07], Point[p]

}
]

]
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In  this  instance  the  buffering  angle  α2  varies  as  a  function  of  x,  with  near-perfect  buff-
ering being observed at  both high and low fluid levels,  and minimal  buffering being ob-
served when x attains a value of approximately 4.38.
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In  this  instance  the  buffering  angle  α2  varies  as  a  function  of  x,  with  near-perfect  buff-
ering being observed at  both high and low fluid levels,  and minimal  buffering being ob-
served when x attains a value of approximately 4.38.

α2 = If[t2 ≤ 1, 1, -−1] NArcCost2  t2^2 + b2^2   Degree

1

°
ArcCos0.00395 × 2.71828-−2.30471 x x10.0975 

 0.0000156025 × 2.71828-−4.60942 x x20.1949 +

x -− 0.00395 × 2.71828-−2.30471 x x11.09752

x2


If0.00395 ⅇ-−2.30471 x x10.0975 ≤ 1, 1, -−1

Plot[α2, {x, 0, 12}, AxesLabel → {x, "α2"}, PlotRange → {0, 90}]
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As described previously,  the buffering parameters  can be determined using the buffering
angle  and  are  equivalent  to  the  values  calculated  using  the  originally  defined  functions
(compare the plots below to the plots for b1, B1, t1, and T1 above).

littleb2 = Sin[α2 °] /∕ (Cos[α2 °] + Sin[α2 °]);
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Plot[littleb2, {x, 0, 12}, PlotRange → {0, 2},
AxesLabel → {x, "littleb2"}]
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bigB2 = (Sin[α2 °] /∕ Cos[α2 °]);

Plot[bigB2, {x, 0, 12}, PlotRange → {0, 20},
AxesLabel → {x, "bigB2"}]
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littlet2 = Cos[α2 °] /∕ (Cos[α2 °] + Sin[α2 °]);
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Plot[littlet2, {x, 0, 12}, PlotRange → {0, 0.5},
AxesLabel → {x, "littlet2"}]
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bigT2 = (Cos[α2 °] /∕ Sin[α2 °]);

Plot[bigT2, {x, 0, 12}, PlotRange → {0, 1},
AxesLabel → {x, "bigT2"}]

0 2 4 6 8 10 12
x

0.2

0.4

0.6

0.8

1.0
bigT2

Thus, just as in the case of a linear system, plotting α2  over the range of the disturbance
(i.e. the addition of fluid) provides a simple, single-value measure with which to grasp the
inherent buffering properties of the system under consideration.
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□ Differentials versus Derivatives

At this point it is important to note that, up to now, only the overall changes in the buffer-
ing  and  transfer  compartments  have  been  considered  (by  comparing  differentials).  How-
ever, in the case of nonlinear systems, it is also informative to consider the rate at which
these  values  change  relative  to  one  another  (by  comparing  derivatives).  For  example,  in
the same way that it would be important for an investor to be aware of the current price of
gold, and how it has changed in previous years, months, or weeks, it would also be impor-
tant for that same investor to be cognizant of the rate at which the price is changing at any
given  instant  in  time  (i.e.  increasing,  decreasing,  or  stable).  This  is  to  say,  the  choice  to
sell  at  a  given  price  at  a  given  moment  would  be  greatly  influenced  by  knowing  if  the
price was stable or on either an upward or a downward trend. In other words, it is not only
of interest to know how a quantity has changed, but how that quantity is changing.
To determine the instantaneous rates of change in a buffered system, simply calculate and
plot the first derivatives of the functions describing the system.

D[β2'[x]]

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975

D[τ2'[x]]

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975

D[σ2'[x]]

1

Plot[{τ2'[x], β2'[x], σ2'[x]}, {x, 0, 12},
AxesLabel → {"Total\nVolume", "Rate of\nChange" },
PlotLegends → "Expressions"]
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Once  the  functions  are  defined,  the  instantaneous  buffering  parameters  (denoted  by
adding an “i” to the respective variable names) can also be calculated.

b2i = D[β2'[x]] /∕ D[σ2'[x]]

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975

B2i = D[β2'[x]] /∕ D[τ2'[x]]

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975 

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975

t2i = D[τ2'[x]] /∕ D[σ2'[x]]

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975

T2i = D[τ2'[x]] /∕ D[β2'[x]]

0.043835 ⅇ-−2.30471 x x10.0975 -− 0.0091036 ⅇ-−2.30471 x x11.0975 

1 -− 0.043835 ⅇ-−2.30471 x x10.0975 + 0.0091036 ⅇ-−2.30471 x x11.0975

As is evident from viewing the respective plots of these functions, this analysis allows one
to clearly identify the points of maximum and minimum buffering/transfer rate, as well as
the points at which the buffering/transfer rates are zero.

Plot[b2i, {x, 0, 12}, PlotRange → {-−1, 2},
AxesLabel → {"Total\nVolume", HoldForm[β2'[x] /∕ σ2'[x]] }]

2 4 6 8 10 12
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Volume

-−1.0

-−0.5

0.5

1.0

1.5

2.0

β2
′(x)

σ2′(x)
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Plot[t2i, {x, 0, 12}, PlotRange → {-−1.5, 1.5},
AxesLabel → {"Total\nVolume", HoldForm[τ2'[x] /∕ σ2'[x]]}]

2 4 6 8 10 12
Total

Volume

-−1.5

-−1.0

-−0.5

0.5

1.0
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τ2′(x)

σ2′(x)

Plot[T2i, {x, 0, 12}, PlotRange → {-−20, 20},
AxesLabel → {"Total\nVolume", HoldForm[τ2'[x] /∕ β2'[x]]}]

2 4 6 8 10 12
Total

Volume

-−20

-−10

10

20

τ2′(x)
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′(x)

In this way, the most critical junctures in the development of the system (over the range of
the disturbance) can be quickly and easily identified.
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■ From the Abstract to the Practical
The analysis presented in the previous sections concludes my efforts to establish the theo-
retical  foundation  of  the  formal  and  general  approach,  as  well  as  its  application  within
Mathematica. Next, in order to illustrate how these abstractions can be directly applied to
the  real  world,  I  consider  an  example  of  non-classical  buffering—namely,  that  of  the
“genetic  buffering”  of  phenotypic  variation.  In  this  way,  the  ability  to  exactly  and  for-
mally quantitate  phenomena that  at  first  glance might  be thought  of  as  being outside the
buffering paradigm is practically demonstrated. 

□ Genetic Buffering

The axiomatic foundation and abstract nature of the “formal and general approach” allows
it to be readily applied to any scenario in which an arbitrary quantity partitions itself be-
tween two compartments or states. While suitable for the analysis of “classical” buffering
phenomena  (the  homeostasis  of  physiological  parameters),  the  approach  is  also  germane
to a variety of “non-classical” buffering phenomena. One such phenomenon, which up to
now  has  been  considered  in  only  a  qualitative  manner,  is  that  of  “genetic”  buffering.
While many instances of genetic buffering have been described and characterized, a well-
known and classic example of the phenomenon—revolving around the gene encoding the
heat  shock  protein  Hsp90—will  be  used  to  illustrate  the  real-world  application  of
Schmitt’s paradigm.

◼ The Heat Shock Protein Hsp90

The  Hsp90  protein  is  an  ATP-dependent  molecular  “chaperone”  that  is  extensively  ex-
pressed in organisms ranging from bacteria to humans. It functions to promote the proper
folding of a specific subset of molecular targets referred to as its “client” proteins. Interest-
ingly,  many of Hsp90’s client  proteins are involved in the process of  signal  transduction
and  modulate  developmental  processes  [3].  For  example,  in  the  fruit  fly,  Drosophila
melanogaster,  mutations in the gene encoding Hsp90 result  in  morphological  abnormali-
ties affecting the development of the eye, legs, wings, thorax, and bristles [4].
Interestingly, the proportion of Hsp90 mutant flies exhibiting eye defects (in a line prone
to such abnormalities) increases dramatically as the temperature rises. In contrast, the pro-
portion  of  control  flies  (expressing  the  normal  or  “wild-type”  version  of  the  Hsp90  pro-
tein) also increases in response to increased temperature, but not nearly to the same degree
as in the mutant flies [4]. The gene encoding the wild-type version of the Hsp90 protein is
thus said to “buffer” the appearance of the defective eye trait.
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◼ Formally Quantitating Hsp90-Mediated Buffering of Phenotypic Variation

It  is  possible  to  analyze  these  experimental  results  in  more  detail  by  importing  the  raw
data  (see  Figure  8  in  [4])  from the  original  publication  in  the  form of  two arrays.  These
two arrays, corresponding to the wild-type and mutant fly lines, relate temperature to the
penetrance of the mutant phenotype (i.e. the percentage of flies in the line displaying the
eye defect).

wildtypeHsp90 = {{18, 0}, {21, 0}, {25, 0}, {26, 1},
{27, 3}, {30, 19}, {32, 16}}

{{18, 0}, {21, 0}, {25, 0},
{26, 1}, {27, 3}, {30, 19}, {32, 16}}

mutantHsp90 = {{18, 2}, {21, 10}, {25, 10}, {26, 25},
{27, 45}, {30, 70}, {32, 82}}

{{18, 2}, {21, 10}, {25, 10},
{26, 25}, {27, 45}, {30, 70}, {32, 82}}

Plotting the data illustrates that the mutant line is indeed more sensitive to increasing tem-
perature than the wild-type line.

Show[ListPlot[mutantHsp90, PlotStyle → Red,
PlotMarkers → Automatic,
AxesLabel → {"Temperature (°C)", "Affected (%)"},
PlotRange → {-−1, 100}],

ListPlot[wildtypeHsp90, PlotStyle → Darker@Green,
PlotMarkers → Automatic]]
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To proceed with  the  application of  the  formal  and general  approach,  we now create  two
curves that fit the data using the FindFit function.

FindFit[wildtypeHsp90, j Exp[-−k X], {j, k}, X,
Method → NMinimize]

{j → 0.0031044, k → -−0.272652}

FindFit[mutantHsp90, j Exp[-−k X], {j, k}, X,
Method → NMinimize]

{j → 0.193965, k → -−0.191242}

With the above constants, the curves describing the behavior of the wild-type and mutant
lines can be generated.

wildtypecurve[x_] :=
j Exp[-−k x] /∕. FindFit[wildtypeHsp90, j Exp[-−k X],

{j, k}, X, Method → NMinimize]

mutantcurve[x_] :=
j Exp[-−k x] /∕. FindFit[mutantHsp90, j Exp[-−k X], {j, k},

X, Method → NMinimize]

wildtypecurve[x]

0.0031044 ⅇ0.272652 x

mutantcurve[x]

0.193965 ⅇ0.191242 x
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The appropriateness  of  the fit  can then be inspected by plotting the curves together  with
the raw data.

Show[
ListPlot[mutantHsp90, PlotStyle → Red,
PlotMarkers → Automatic,
AxesLabel → {"Temperature (°C)", "Affected (%)"}],

ListPlot[wildtypeHsp90, PlotStyle → Darker@Green,
PlotMarkers → Automatic],

Plot[Evaluate[{mutantcurve[x], wildtypecurve[x]}],
{x, 18, 32}, PlotStyle → {Red, Darker@Green}]

]
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With these results in hand, it is now possible to define both the buffering and transfer func-
tions and then to visualize the system using an area plot.

τ3[x_] := Evaluate[wildtypecurve[x]]

β3[x_] := Evaluate[mutantcurve[x]]

σ3[x_] := τ3[x] + β3[x]
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Plot[{τ3[x], σ3[x]}, {x, 18, 32}, Filling → Bottom,
AxesLabel → {"Temperature (°C)", "Affected (%)"},
Epilog → {

Text[HoldForm[β3[x]], {31, 40}],
Text[HoldForm[τ3[x]], {31, 7}]

}
]

As is  evident  from inspecting  this  plot,  an  increase  in  temperature  translates  into  only  a
small increase in the proportion of flies with eye defects in the wild-type line. However, in
the mutant line, a much more pronounced increase is observed. We can thus infer that the
expression of  the wild-type Hsp90 protein buffers  the effect  of  temperature on the pene-
trance of the eye defect. In other words, since the “transfer” of the eye defect phenotype is
greater in the mutant line, the wild-type Hsp90 protein must possess the abstract capacity
of diverting or “soaking up”  this disturbance (into an equally abstract buffering compart-
ment) so that the “transfer” of the eye defect is diminished. Importantly, using the formal
and general approach, we can now provide an exact quantitative measure of the buffering
capacity of  the wild-type allele  by calculating and plotting the four  buffering parameters
together with the buffering angle (below).

b3 = D[β3[x]] /∕ D[σ3[x]]

0.193965 ⅇ0.191242 x

0.193965 ⅇ0.191242 x + 0.0031044 ⅇ0.272652 x
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Plot[b3, {x, 18, 32}, PlotRange → {.8, 1},
AxesLabel → {"Temperature (°C)", "b3"}]
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B3 = D[β3[x]] /∕ D[τ3[x]]

62.4808 ⅇ-−0.0814101 x

Plot[B3, {x, 18, 32}, PlotRange → {4, 16},
AxesLabel → {"Temperature (°C)", "B3"}]
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t3 = D[τ3[x]] /∕ D[σ3[x]]

0.0031044 ⅇ0.272652 x

0.193965 ⅇ0.191242 x + 0.0031044 ⅇ0.272652 x

26 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



Plot[t3, {x, 18, 32}, AxesLabel → {"Temperature (°C)", "t3"}]

20 22 24 26 28 30 32
Temperature (°C)

0.08

0.10

0.12

0.14

0.16

0.18
t3

T3 = D[τ3[x]] /∕ D[β3[x]]

0.0160049 ⅇ0.0814101 x

Plot[T3, {x, 18, 32}, AxesLabel → {"Temperature (°C)", "T3"}]
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α3 = If[t3 ≤ 1, 1, -−1] NArcCost3  t3^2 + b3^2   Degree;
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Plot[α3, {x, 18, 32}, AxesLabel → {"Temperature (°C)", "α3"}]
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As shown above, the buffering coefficient b3 can be calculated to range from ~0.935 at 18
°C to ~0.822 at 32 °C. While these calculations are now trivial, the critical biological ques-
tion  of  how to  interpret  these  calculations  is  more  challenging.  As  discussed  by  Schmitt
([1], Supplements 6 and 7), one way to proceed is to consider the conceptual overlap be-
tween  the  formal  and  general  approach  and  probability  theory.  In  essence,  the  buffering
coefficient  b3  is  analogous to  a  probability.  In  the  same way that  a  probability  measures
the proportion of a part to a whole (i.e. the number of successful events to the total num-
ber of events), so does the buffering coefficient (by measuring the fractional change in the
buffering compartment relative to the whole compartment). The critical realization is that
both  quantities  are  measured  on  a  relative  scale  that  is  normalized  to  1.  Interpreting  the
graph in this way, one can say that the “probability” of buffering decreases from ~0.935 to
~0.822 from 18 °C to 32 °C. 
Using similar logic, one can say that, in essence, the buffering ratio B3 is analogous to the
“odds” of buffering. In the same way that odds measure the proportion between two parts
of a whole (by comparing events to non-events), so does B3  (by comparing the fractional
change  in  the  buffering  compartment  to  the  fractional  change  in  the  transfer  compart-
ment).  Again  the  critical  realization  is  that  both  quantities  are  measured  on  a  scale  with
equal intervals and an absolute zero. Interpreting the data in this way, one can say that the
“odds” of buffering decrease from ~14.4 to ~4.6 from 18 °C to 32 °C. Similarly, one can
consider t3 and T3 to be analogous to the “probability” of transfer and the “odds” of trans-
fer, respectively.
Lastly,  the  buffering  angle  provides  information  regarding  not  only  the  magnitude  of
buffering but  also the class  of  buffering behavior.  As discussed by Schmitt  ([1],  Supple-
ment 7),  angles between 90°  and 0°  correspond to non-inverting moderation, with angles
of 90° corresponding to perfect buffering and 0° to zero buffering. Thus, the simple inspec-
tion of the plot of α3 reveals that the buffering capacity of wild-type Hsp90 is very strong
(near  perfect  at  ~86°)  but  decreases  slightly  with  increasing  temperature  (to  a  value  of
~78°).  In  any  event—and  however  the  data  is  interpreted—the  analysis  presented  above
clearly demonstrates the ease with which the buffering capacity of  a genetic determinant
can be formally and exactly quantified.
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■ Conclusion
A formal conceptualization of genetic buffering was first put forward by famed geneticist
and Nobel  laureate  Leland Hartwell  [5,  6].  In  these  publications,  Hartwell  highlights  the
importance  of  buffering  relationships  in  determining  phenotype  in  outbred  organisms.
Subsequent  research  both  in  yeast  and  in  the  roundworm,  Caenorhabditis  elegans,  has
strongly supported his assumptions [7, 8]. Thus, in addition to increasing our basic under-
standing of genetic networks, these results also raised the theoretical question of whether
or not it might be possible to provide an exact quantitative measure of a genetic determi-
nant’s buffering activity.
As described for the first time above, Schmitt’s “formal and general approach” provides a
powerful  means  with  which to  accomplish  this  goal.  Through the  calculation of  the  four
buffering  parameters  b,  B,  t,  and  T  and  the  buffering  angle  α,  it  is  indeed  possible  to
provide an exact quantitative measure of the buffering activity or “power” of any genetic
determinant in response to an environmental disturbance. Furthermore, the activity can be
measured using either a relative scale normalized to one (b and t) or an absolute scale with
equal  intervals  (B  and T),  or  distilled  to  a  single  value  measure  α,  capable  of  describing
the system in its entirety.
In conclusion, it must be noted that the application of the formal and general approach be-
comes practical only when used in conjunction with a sophisticated computational engine
that is capable of readily analyzing the relevant data. As demonstrated in this article, Math-
ematica  provides  such  an  engine.  The  application  of  the  formal  and  general  approach
using  the  Wolfram Language  thus  provides  a  powerful  tool  with  which  to  quantitatively
analyze both classical and non-classical buffering phenomena, irrespective of discipline.

■ References
[1] B. M. Schmitt, “The Quantitation of Buffering Action I. A Formal & General Approach,” Theo-

retical Biology and Medical Modelling, 2(8), 2005. doi:10.1186/1742-4682-2-8.
[2] B. M. Schmitt, “The Quantitation of Buffering Action II. Applications of the Formal & General

Approach,” Theoretical Biology and Medical Modelling, 2(9), 2005.
doi:10.1186/1742-4682-2-9.

[3] M.  Taipale,  D.  F.  Jarosz,  and  S.  Lindquist,  “HSP90  at  the  Hub  of  Protein  Homeostasis:
Emerging  Mechanistic  Insights,”  Nature  Reviews  Molecular  Cell  Biology,  11(7),  2010
pp. 515–528. doi:10.1038/nrm2918.

[4] S.  L.  Rutherford  and S.  Lindquist,  “Hsp90 as  a  Capacitor  for  Morphological  Evolution,”  Na-
ture, 396, 1998 pp. 336–342. doi:10.1038/24550.

[5] J. L. Hartman, B. Garvik, and L. Hartwell,  “Principles for the Buffering of Genetic Variation,”
Science, 291(5506), 2001 pp. 1001–1004.
www.sciencemag.org/content/291/5506/1001.abstract.

[6] L. Hartwell, “Robust Interactions,” Science, 303(5659), 2004 pp. 774–775.
doi:10.1126/science.1094731.

The Quantitation of Non-classical Buffering 29

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



[7] A.  H.  Tong,  G.  Lesage,  G.  D.  Bader,  H.  Ding,  H.  Xu,  X.  Xin,  J.  Young,  G.  F.  Berriz,  R.  L.
Brost,  M.  Chang,  Y.  Chen,  X.  Cheng,  G.  Chua,  H.  Friesen,  D.  S.  Goldberg,  J.  Haynes,  C.
Humphries, G. He, S. Hussein, L. Ke, N. Krogan, Z. Li, J. N. Levinson, H. Lu, P. Ménard, C.
Munyana,  A.  B.  Parsons,  O.  Ryan,  R.  Tonikian,  T.  Roberts,  A.  M.  Sdicu,  J.  Shapiro,  B.
Sheikh, B. Suter, S. L. Wong, L. V. Zhang, H. Zhu, C. G. Burd, S. Munro, C. Sander, J. Rine,
J.  Greenblatt,  M.  Peter,  A.  Bretscher,  G.  Bell,  F.  P.  Roth,  G.  W.  Brown,  B.  Andrews,  H.
Bussey, and C. Boone, “Global Mapping of the Yeast Genetic Interaction Network,” Science,
303(5659), 2004 pp. 808–813. doi:10.1126/science.1091317.

[8] B. Lehner, C. Crombie, J.  Tischler,  A. Fortunato, and A. G. Fraser,  “ Systematic Mapping of
Genetic Interactions in Caenorhabditis Elegans Identifies Common Modifiers of Diverse Sig-
naling Pathways,” Nature Genetics, 38(8), 2006 pp. 896–903. doi:10.1038/ng1844.

J.  Karagiannis,  “The  Quantitation  of  Non-classical  Buffering,”  The  Mathematica  Journal,  2015.
dx.doi.org/doi:10.3888/tmj.17-3.

About the Author

Dr. Jim Karagiannis is an associate professor at the University of Western Ontario in Lon-
don,  Ontario,  Canada.  His  research  makes  use  of  the  model  eukaryote  Schizosaccha-
romyces pombe  and explores the complex post-translational modifications that take place
on  the  carboxy-terminal  domain  (CTD)  of  the  largest  subunit  of  RNA  polymerase  II.
Through an empirical examination of the informational properties and regulatory potential
of  the  CTD,  Dr.  Karagiannis  hopes  to  decipher  the  “programming  language”  used  by
eukaryotes to control aspects of gene expression.
Jim Karagiannis
Department of Biology
The University of Western Ontario
London, ON
Canada, N6A-5B7
jkaragia@uwo.ca

30 Jim Karagiannis

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.


