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Use of Padé Approximants to 
Estimate the Rayleigh Wave 
Speed
A. T. Spathis

There exists a range of explicit and approximate solutions to the 
cubic polynomial Rayleigh equation for the speed of surface 
waves across an elastic half-space. This article presents an 
alternative approach that uses Padé approximants to estimate 
the Rayleigh wave speed with five different approximations 
derived for two expansions about different points. Maximum 
relative absolute errors of between 0.34% and 0.00011% occur 
for the full range of the Poisson ratio from -1 to 0.5. Even 
smaller errors occur when the Poisson ratio is restricted within a 
range of 0 to 0.5. For higher-order approximants, the derived 
expressions for the Rayleigh wave speed are more accurate 
than previously published solutions, but incur a slight cost in 
extra arithmetic operations, depending on the desired accuracy.

‡ Introduction
In  1885  Lord  Rayleigh  published  his  paper  “On  Waves  Propagated  along  the  Plane
Surface of an Elastic Solid” [1] and observed that:

It is proposed to investigate the behavior of waves upon the plane surface of an
infinite  homogeneous  isotropic  elastic  solid,  their  character  being such that  the
disturbance is confined to a superficial region, of thickness comparable with the
wave-length.  ...  It  is  not  improbable  that  the  surface  waves  here  investigated
play  an  important  part  in  earthquakes,  and  in  the  collision  of  elastic  solids.
Diverging  in  two  dimensions  only,  they  must  acquire  at  a  great  distance  from
the source a continually increasing preponderance.

The italicized phrase above is a supreme understatement, given the ensuing history of seis-
mology.  In  any  case,  Rayleigh  proved  the  theoretical  existence  of  surface  waves  on  an
elastic  half-space  and  showed  that  the  speed  of  such  waves  may  be  calculated  from  the
real roots of a cubic polynomial whose coefficients are all real and depend on the ratio of
the S-wave velocity to the P-wave velocity,  or alternatively on the Poisson ratio n  of the
elastic half-space. He provides the solutions for harmonic waves for both incompressible
and compressible half-spaces, shows the elliptic orbit of points on the surface as the wave
travels  across  the  surface,  demonstrates  that  the  motion  is  restricted  to  within  approxi-
mately  one  wavelength  of  the  surface,  and  states  that  the  Poisson  ratio  may  lie  between
0.5 and -1 for an elastic material. However, he does not provide explicit expressions for
the Rayleigh wave speed.
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The italicized phrase above is a supreme understatement, given the ensuing history of seis-
mology.  In  any  case,  Rayleigh  proved  the  theoretical  existence  of  surface  waves  on  an
elastic  half-space  and  showed  that  the  speed  of  such  waves  may  be  calculated  from  the
real roots of a cubic polynomial whose coefficients are all real and depend on the ratio of
the S-wave velocity to the P-wave velocity,  or alternatively on the Poisson ratio n  of the
elastic half-space. He provides the solutions for harmonic waves for both incompressible
and compressible half-spaces, shows the elliptic orbit of points on the surface as the wave
travels  across  the  surface,  demonstrates  that  the  motion  is  restricted  to  within  approxi-
mately  one  wavelength  of  the  surface,  and  states  that  the  Poisson  ratio  may  lie  between
0.5 and -1 for an elastic material. However, he does not provide explicit expressions for
the Rayleigh wave speed.
It  appears  that  the  first  paper  that  published  explicit  expressions  for  the  Rayleigh  wave
speed  for  the  full  range  of  elastic  material  properties  was  by  Rahman  and  Barber  [2].
Since that time, a number of authors have sought to develop alternative analytical expres-
sions for the Rayleigh wave speed [3–11]. It is noted that the solutions provided cannot be
used indiscriminately, as care is required on occasions to choose the correct root to ensure
a smooth and continuous estimate of the Rayleigh wave speed [3, 5, 7].  A parallel effort
has attempted to derive approximate expressions for the Rayleigh wave speed [3, 12–18].
Complete analytical derivations were provided by [2, 4, 7, 9, 11]. Others have used com-
puter algebra to assist in their derivations [3, 5, 6]. The original approach given in [4] con-
tains  unspecified  typographical  errors  [5,  9].  Indeed,  the  recent  solution  given  in  [9]
appears to have been derived earlier and independently but with typographical errors [6].
It  has also been shown to be identical to the solution provided in [5].  Cardano’s formula
for  the  roots  of  a  cubic  polynomial  with  real  coefficients  [19,  20]  is  used  by [2,  5,  7,  9,
11],  although the starting point  in [9]  appears to be different  from the other  solutions.  A
more  recent  solution  appears  to  use  Cardano’s  formula  (but  referred  to  as  Shengjin’s
formula) [11]. As an aside, an interesting history of Cardano’s formula appears in [21].
Cardano’s  formula  was  published  in  1545,  and  it  is  perhaps  surprising  that  no  explicit
solution  for  the  Rayleigh  speed  was  available  until  the  Rahman  and  Barber  publication
[2].  It  would appear  unreasonable to  expect  that  Rayleigh was not  aware of  the Cardano
formula.  In  any case,  and as  just  one example of  prior  publication of  the Rayleigh wave
speed,  we may refer  to the work in J.  E.  White’s book,  Underground Sound  [22].  Given
without  derivation,  and  in  somewhat  standard  notation  often  associated  with  the  use  of
Cardano’s formula, we find by simple algebra that White’s solution is identical to that of
Rahman and Barber. It may be speculated that similar solutions were found even earlier.
The  approximate  expressions  for  the  Rayleigh  wave  speed  of  surface  waves  have  been
derived  by  various  methods,  including  Taylor  series  expansion  of  the  Rayleigh  equation
[3],  approximation  of  the  Rayleigh  equation  to  lower-degree  polynomials  using  the
Lanczos method [13], minimization of the integral of the Rayleigh equation with arbitrary
coefficients using a least-squares approach [14], least-squares minimization [15, 18] given
a  known  exact  solution  [5,  7],  use  of  a  bilinear  function  for  the  root  and  applying  least
squares to determine the coefficients of the bilinear function [16], and an iterative method
with asymptotic quadratic convergence [17].
In this article,  we follow the approach given by Liner [3],  but rather than using a Taylor
series expansion of the Rayleigh equation, we use Padé approximants. Padé approximants
of various orders are described and their accuracy compared to the exact solution given in
[7]. The complexity of the various derived solutions is assessed in terms of the number of
numerical operations required to calculate the Rayleigh wave speed. 
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‡ Method of Approximation
Functions  may  be  approximated  in  various  ways.  Perhaps  the  best  known  is  the  Taylor
series expansion, whereby a function f HzL can be expressed as an infinite series expanded
around the point a as

(1)f HzL = ‚
k=0

¶ f kHaL

k !
Hz- aLk,

where  f kHaL  is  the  kth  derivative  of  the  function  evaluated  at  the  point  a.  It  is  usual  to
truncate the series to use the lower-order terms as an approximation to the function.
An  alternative  method  to  approximate  a  function  is  to  use  Padé  approximants.  Here  the
function  is  approximated  as  a  rational  function  of  two  truncated  polynomials  expanded
around the point a:

(2)R HzL =
⁄ i=0

m ciHz- aLi

⁄ j=0
n d jHz- aL j

,

where the numerator and denominator are polynomials of degree at most m and at most n,
respectively.  The  approximant  is  referred  to  as  a  Padé  approximant  of  type  Hm, nL.  The
approximation given in equation (2) has m+ n+ 1 parameters.
The Rayleigh equation [1] for an elastic half-space is given by

(3)s3 - 8 s2 + H24- 16 LL s- 16 H1-LL = 0,

where  s = cR2 ë b2,  L = b2 ë a2,  cR  is  the  Rayleigh  wave  speed,  and  a  and  b  are  the  P-
wave and S-wave velocities  of  the  medium, respectively.  Real  roots  of  equation (3)  rep-
resent  the  normalized  Rayleigh  wave  speed,  and  in  the  case  of  several  real  roots,  the
smallest is taken. The Poisson ratio may be calculated to give n = H1- 2 LL ê H2- 2 LL.
The  Padé  approximant  is  found  for  the  left-hand  side  of  equation  (3),  using  computer
algebra to calculate the necessary coefficients [23]. Equating the numerator polynomial in
equation (2) to zero yields the estimate of the normalized Rayleigh speed. Multiple solu-
tions are possible, and these depend on the Padé approximant type, Hm, nL. Given that the
Rayleigh  equation  is  a  cubic  polynomial,  the  approximations  are  restricted  to  m § 2 and
n § 3.  In  particular,  the  following  Padé  approximant  types  are  examined:  H1, 1L,  H1, 2L,
H1, 3L, H2, 2L, and H2, 3L.

‡ Results
The five sets of Padé approximants obtained yield solutions for the value of s in equation
(2) with the following forms: for types H1, 1L, H1, 2L, and H1, 3L, the solutions are ratios of
polynomials in L of degree 2, 3, and 4, respectively. In each case, both the numerator and
denominator polynomials have identical degree, and a general expression for them is
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(4)s =
⁄ k=0

n+1 hk Lk

⁄ k=0
n+1 gk Lk

for the type H1, nL. For the types H2, 2L, and H2, 3L, the general expression is

(5)s =
⁄ k=0

2 hk Lk + A ⁄ k=0
4 pk Lk

⁄ k=0
r gk Lk

,

where r = 1 for type H2, 2L  and r = 2 for type H2, 3L.  The coefficient A = -1 for all cases
considered  here,  except  in  the  single  case  of  type  H2, 2L  for  expansion  about  1 ë 3 ,  in
which case A = 1.
Like  the  Taylor  series  expansion,  the  Padé  approximants  are  expansions  about  a  given
value.  In  the  first  instance,  expansions  were  obtained  around  unity,  following  previous
work  [3],  but  after  some  trial  and  error,  expansions  around  1 ë 3 were  found  to  be
superior in terms of minimizing the absolute relative error across the full range of values
for L. It is worth repeating that the expansions are done for the ratio of the Rayleigh wave
speed  to  the  S-wave  velocity  squared  s,  unlike  the  Taylor  expansion  in  Liner  [3]  that  is
done  about  the  square  root  of  s.  Clearly,  it  is  possible  to  seek  the  value  around  which
expansions are minimized using a least-squares approach, some aspects of which are dis-
cussed below. Below are shown the results obtained for the coefficients in (4) and (5) for
expansions  about  1 ë 3  (suitable  for  the  full  range  of  Poisson’s  ratio)  and  9 ê 11
(suitable  for  non-negative  Poisson’s  ratio),  respectively.  The  coefficient  values  were
obtained using Mathematica 9 and are exact.
The relative absolute errors in percentages for the range of L  are shown below for some
of the cases considered. The errors are defined as

(6)D = 100
cRn - cRa

cRa
,

where Rn  and Ra  denote numerical and analytical solutions for the Rayleigh wave speed,
respectively, and the analytical solution refers to that in [7].
Figure  1  shows  a  comparison  of  the  exact  analytical  solution  [7],  the  solution  obtained
using the Padé approximant H1, 1L, and the solution for a Taylor expansion of the Rayleigh
equation  given  in  equation  (3).  The  solution  based  on  the  Padé  approximant  was  for  an
expansion  with  a = 1 ë 3 ,  while  the  Taylor  series  solution  was  for  an  expansion  with
a = 1.  The  relative  absolute  errors  for  these  two approximate  solutions  and  the  one  pro-
vided  by  Liner  [3]  are  shown  in  Figure  2.  The  Liner  solution  was  a  Taylor  series
expansion in the normalized Rayleigh wave speed, whereas the expansion in its square is
shown in Figure 1 and labeled as “Taylor.” It  is  clear that  both Taylor series expansions
have  increasing  errors  as  L = b2 ë a2  increases.  The  solution  based  on  the  Padé  approx-
imant  H1, 1L  has  larger  errors  than  either  of  the  Taylor  expansion  solutions  for  smaller
values of L but performs better for larger values of L.
Figures 3 and 4 show the relative absolute errors for solutions based on the Padé approxi-
mants H1, 2L, H1, 3L and H2, 2L, H2, 3L expanded around the point a = 1 ë 3 . As expected,
the errors are smaller for the solutions based on higher-order Padé approximants.
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Figures 3 and 4 show the relative absolute errors for solutions based on the Padé approxi-
mants H1, 2L, H1, 3L and H2, 2L, H2, 3L expanded around the point a = 1 ë 3 . As expected,
the errors are smaller for the solutions based on higher-order Padé approximants.
The following function gives an exact analytical expression for the Rayleigh wave speed
[7, 10].

vinhR@L_D := Module@
8R, D<,
R = 2 H27 - 90 L + 99 L^2 - 32 L^3L ê 27;
D = 4 H1 - LL^2 H11 - 62 L + 107 L^2 - 64 L^3L ê 27;
Sqrt@
4 H1 - LL
H2 - 4 L ê 3 + HR + Sqrt@DDL^H1 ê 3L + HR - Sqrt@DDL^H1 ê 3LL^
H-1LD

D

The  function  taylorR  gives  the  Taylor  series  expansion  in  the  square  of  the  ratio  of
Rayleigh wave velocity to the S-wave velocity. (The expansion is not in the ratio alone as
in the Liner Taylor series expansion given below.)

taylorR@L_D := Sqrt@H21 - 16 L - Sqrt@141 - 352 L + 256 L^2DL ê 10D

The  function  padeR  calculates  the  Rayleigh  wave  speed  based  on  using  Padé  approxi-
mants.  Here  mdegree  is  the  numerator  degree,  ndegree  is  the  denominator  degree,
avalue  is  the  expansion  point,  and  root1or2  is  1  or  2,  so  as  to  ensure  the  smallest
root is chosen. (Normally root1or2 is 1, and an incorrect choice is obvious when over-
laying the Rayleigh velocity estimate and the exact analytical Rayleigh wave velocity.)

padeR@L_, mdegree_, ndegree_, avalue_, root1or2_D := Module@
8padeExpansion, m<,
padeExpansion =
PadeApproximant@m^3 - 8 m^2 + H24 - 16 LL m - 16 H1 - LL,
8m, avalue, 8mdegree, ndegree<<D;

Sqrt@m ê. Solve@Numerator@padeExpansionD == 0, mD@@
root1or2DDD

D

The  function  legName  is  for  the  labels  in  the  legend  of  some  of  the  plots.  rspeed  is
used  to  switch  to  one  of  the  functions  defined  for  the  Rayleigh  wave  speed;  they  are
defined in the body of the article or in the Appendix.
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legName@rspeed_D := SwitchArspeed,
linerR, "Liner",
taylorR, "Taylor",
vinhR, "analytical",
bergmannR, "Bergmann",
rahMR, "Rahman and Michelitsch",
liRall, "Li full range Poisson ratio",
liRpos, "Li positive Poisson ratio",
vinhMR2, RowA9"Vinh and Malischewsky to order ", n2=E,

vinhMR3, RowA9"Vinh and Malischewsky to order ", n3=E,

vinhMR4, RowA9"Vinh and Malischewsky to order ", n4=EE

plotRayleighSpeedEstimate is a plotting function that enables comparison of the
Rayleigh  wave  speed  obtained  by  using  two  functions  given  in  either  the  body  of  the
report or in the Appendix, and also one derived from a Padé approximant (see the function
legName).  The  input  parameters  are  rspeed1,  rspeed2  (for  the  two  different  func-
tions), and the Padé approximant parameters. Lmax is 3 ê 4 for the full range of Poisson’s
ratio  and  1 ê 2  for  positive  Poisson’s  ratio.  Note  that  when  L = 0,  n = 1 ê 2;  L = 1 ê 2,
n = 0; L = 3 ê 4, n = –1.

plotRayleighSpeedEstimate@rspeed1_, rspeed2_, mdegree_,
ndegree_, avalue_, root1or2_, Lmax_D :=

PlotB

8
rspeed1@xD,
rspeed2@xD,
padeR@x, mdegree, ndegree, avalue, root1or2D

<,
8x, 0, Lmax<,
ImageSize Ø Scaled@0.7D,
Frame Ø True,

FrameLabel Ø :L,
CR

b
>,

BaseStyle Ø 8FontSize Ø 12<,
GridLines Ø Automatic,
GridLinesStyle Ø Directive@8Dotted<D,
PlotStyle Ø 88Dashing@8<D, Black<, 8Dashed, Blue<,

8Dashed, Red<<,
PlotLegends Ø LineLegend@

8Black, 8Dashed, Blue<, 8Dashed, Red<<,
8
legName@rspeed1D, legName@rspeed2D,
Row@8"Padé H", mdegree, ", ", ndegree, "L, \n",

Style@"a", ItalicD, " = ", TraditionalForm@avalueD<D
<,
LabelStyle Ø 812<

D

F
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plotRayleighSpeedEstimate@vinhR, taylorR, 1, 1,
1 ê Sqrt@3D, 1, 3 ê 4D
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Ú Figure 1. The normalized Rayleigh wave speed using the Padé approximant H1, 1L expanded 
around a = 1ë 3  and the Taylor series expanded around a = 1. The solid curve is the analytical
solution given in Vinh and Ogden [7].

We define  a  function  for  the  approximation  to  the  Rayleigh  wave  speed  given  by  Liner
[3]. The approximation is based on a Taylor series expansion in the ratio of the Rayleigh
wave speed to the shear wave speed.

linerR@L_D := H20 - Sqrt@256 L^2 - 336 L + 130DL ê H16 L + 9L

plot3RayleighWaveSpeedRelativeError  is  a  plotting  function  for  comparing
the  relative  absolute  errors  for  the  Rayleigh  speed  estimates  from  two  functions  and  an
estimate obtained from a Padé approximant with similar inputs, described above. ymax is
the maximum range for the relative error and is adjusted to scale the plot.

plot3RayleighWaveSpeedRelativeError@rspeed1_, rspeed2_,
m1_, n1_, a1_, root1or2_, ymax_, Lmax_D := Module@
8padeR1<,
padeR1 = padeR@L, m1, n1, a1, root1or2D;
Plot@
8
100 Abs@Hrspeed1@LD - vinhR@LDL ê vinhR@LDD,
100 Abs@Hrspeed2@LD - vinhR@LDL ê vinhR@LDD,
100 Abs@HpadeR1 - vinhR@LDL ê vinhR@LDD

<,
8L, 0, Lmax<,
ImageSize Ø Scaled@0.7D,
PlotRange Ø 80, ymax<,
Frame Ø True,
FrameLabel Ø 8L, "Relative Absolute Error H%L"<,
BaseStyle Ø 8FontSize Ø 12<,
GridLines Ø Automatic,
GridLinesStyle Ø Directive@8Dotted<D,
PlotStyle Ø 88Dashing@8<D, Black<, 8Dashed, Blue<,

<,
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PlotStyle Ø 88Dashing@8<D, Black<, 8Dashed, Blue<,
8Dashed, Red<<,

PlotLegends Ø
LineLegend@8Black, 8Dashed, Blue<, 8Dashed, Red<<,
8legName@rspeed1D, legName@rspeed2D,
Row@8"Padé H", m1, ", ", n1, "L, \n",

Style@"a", ItalicD, " = ", TraditionalForm@a1D<D<,
LabelStyle Ø 812<D

D
D

plot3RayleighWaveSpeedRelativeError@linerR, taylorR,
1, 1, 1 ê Sqrt@3D, 1, 0.5, 3 ê 4D
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3

Ú Figure 2. Relative absolute error for Rayleigh wave speed using the Padé approximant H1, 1L 
expanded around a = 1ë 3  compared to the two Taylor series expansions, both expanded 
around a = 1.

plot2RayleighWaveSpeedRelativeError  is  a  plotting  function  for  comparing
the  relative  absolute  errors  for  the  Rayleigh  speed  estimates  obtained  using  two  Padé
approximants. The function has similar inputs described above, and here the suffix 1 or 2
refers to the given Padé approximant.

plot2RayleighWaveSpeedRelativeError@m1_, n1_, a1_,
root1or21_, m2_, n2_, a2_, root1or22_, ymax_, Lmax_D :=

Module@
8padeR1, padeR2<,
padeR1 = padeR@L, m1, n1, a1, root1or21D;
padeR2 = padeR@L, m2, n2, a2, root1or22D;
Plot@
8
100 Abs@HpadeR1 - vinhR@LDL ê vinhR@LDD,
100 Abs@HpadeR2 - vinhR@LDL ê vinhR@LDD

<,
8L, 0, Lmax<,
ImageSize Ø Scaled@0.7D,
PlotRange Ø 80, ymax<,

,
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PlotRange Ø 80, ymax<,
Frame Ø True,
FrameLabel Ø 8"L", "Relative Absolute Error H%L"<,
BaseStyle Ø 8FontSize Ø 12<,
GridLines Ø Automatic,
GridLinesStyle Ø Directive@8Dotted<D,
PlotStyle Ø 88Dashing@8<D, Black<, 8Dashed, Blue<,

8Dotted, Red<<,
PlotLegends Ø LineLegend@

8Black, 8Dashed, Blue<, 8Dotted, Red<<,
8
Row@8"Padé H", m1, ", ", n1, "L, \n",

Style@"a", ItalicD, " = ", TraditionalForm@a1D<D,
Row@8"Padé H", m2, ", ", n2, "L, \n",

Style@"a", ItalicD, " = ", TraditionalForm@a2D<D
<,
LabelStyle Ø 812<

D
D

D

plot2RayleighWaveSpeedRelativeError@1, 2, 1 ê Sqrt@3D,
1, 1, 3, 1 ê Sqrt@3D, 1, 0.05, 3 ê 4D
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Ú Figure 3. Relative absolute error for Rayleigh wave speed using the Padé approximants H1, 2L and 
H1, 3L expanded around a = 1ë 3 .
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plot2RayleighWaveSpeedRelativeError@2, 2, 1 ê Sqrt@3D,
2, 2, 3, 1 ê Sqrt@3D, 1, 0.001, 3 ê 4D
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Ú Figure 4. Relative absolute error for Rayleigh wave speed using the Padé approximants H2, 2L and 
H2, 3L expanded around a = 1ë 3 .

It is possible to generate the expressions for equations (4) and (5) based on a Padé approx-
imant simply by squaring the Rayleigh wave speed estimate. The square roots of the full
set  of  results  given  below  are  good  estimates  of  the  Rayleigh  wave  speed  for  different
ranges of the Poisson ratio. Simple arithmetic yields the results in the forms given in equa-
tions (4) and (5).
Here are some useful and accurate expressions for the Rayleigh wave speed squared over
the full range of the Poisson ratio with a = 1 ë 3 .

padeR@L, 1, 1, 1 ê Sqrt@3D, 1D^2

3720 - 1111 3 - 6048 L + 1168 3 L + 2304 L2

2 J2415 - 824 3 - 2952 L + 504 3 L + 1152 L2N

padeR@L, 1, 2, 1 ê Sqrt@3D, 1D^2

J2 J-197 352 + 81 671 3 + 412 524 L -

130 224 3 L - 297 216 L2 + 48 384 3 L2 + 82 944 L3NN í

J3 J-151 385 + 63 824 3 + 274 296 L - 82 560 3 L -

201 600 L2 + 32 256 3 L2 + 55 296 L3NN
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padeR@L, 1, 3, 1 ê Sqrt@3D, 1D^2

J51 643 488 - 24 481 675 3 - 135 469 008 L +

54 433 632 3 L + 142 200 576 L2 - 41 538 816 3 L2 -

74 317 824 L3 + 11 612 160 3 L3 + 15 925 248 L4N í

J3 J19 065 399 - 9 058 928 3 - 46 268 016 L +

18 278 640 3 L + 48 842 496 L2 - 14 146 560 3 L2 -

25 104 384 L3 + 3 870 720 3 L3 + 5 308 416 L4NN

padeR@L, 2, 2, 1 ê Sqrt@3D, 2D^2
H* note the use of the second root *L

1

12 J-768 + 305 3 - 1080 L + 120 3 LN

J-24 609 + 7920 3 + 4896 L - 5040 3 L + 6912 L2 +

3 -J107 407 827 - 48 863 136 3 - 223 778 304 L +

112 082 400 3 L + 81 070 848 L2 - 57 922 560 3 L2 +

82 280 448 L3 - 29 859 840 3 L3 + 15 925 248 L4NN

padeR@L, 2, 3, 1 ê Sqrt@3D, 1D^2

J49 896 - 23 181 3 + 44 280 L + 3936 3 L - 48 384 L2 + 6912 3 L2 -

3 -J700 775 058 - 385 572 656 3 - 626 722 704 L + 435 009 168

3 L - 1 025 213 760 L2 + 514 432 512 3 L2 + 735 215 616 L3 -

685 559 808 3 L3 + 1 066 991 616 L4 - 254 803 968 3 L4NN í

J3 J4695 - 2752 3 + 19 152 L - 4320 3 L + 2304 L2NN

Here are some useful and accurate expressions for the Rayleigh wave speed squared over
the positive range of Poisson’s ratio with a = 9 ê 11.

padeR@L, 1, 1, 9 ê 11, 1D^2

23 567 547 - 61 411 856 L + 41 229 056 L2

22 I1 173 935 - 2 907 872 L + 1 874 048 L2M
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padeR@L, 1, 2, 9 ê 11, 1D^2

I2 I-8 842 983 329 + 34 001 548 372 L -

44 609 838 592 L2 + 19 954 863 104 L3MM ë

I11 I-1 761 755 777 + 6 547 138 664 L - 8 337 639 552 L2 +

3 628 156 928 L3MM

padeR@L, 1, 3, 9 ê 11, 1D^2

I53 083 060 316 861 - 269 891 481 763 024 L + 524 274 245 766 656 L2 -

460 797 698 797 568 L3 + 154 530 459 877 376 L4M ë

I11 I5 287 767 311 575 - 26 203 829 630 176 L + 49 730 715 981 056 L2 -

42 768 713 867 264 L3 + 14 048 223 625 216 L4MM

padeR@L, 2, 2, 9 ê 11, 1D^2

1

132 H6309 + 38 720 LL
I3 959 227 + 3 266 032 L - 3 748 096 L2 -

,I10 234 921 221 073 - 8 321 453 581 408 L - 17 637 748 927 744 L2 +

13 830 534 209 536 L3 + 14 048 223 625 216 L4MM

padeR@L, 2, 3, 9 ê 11, 1D^2

J19 181 891 + 283 369 416 L - 187 404 800 L2 - 122

,I6 849 361 706 093 + 61 917 473 544 432 L + 41 767 161 240 992 L2 -

430 404 628 211 712 L3 + 428 470 820 569 088 L4MN í

I11 I-968 761 + 15 087 248 L + 3 748 096 L2MM

‡ Discussion
Polynomial  expressions  for  the  Rayleigh  wave  speed  are  given  in  equations  (4)  and  (5)
with respective coefficients given above. These expressions have been derived using Padé
approximants  around  a = 1 ë 3  and  a = 9 ê 11  for  0 § L § 0.75  (Poisson  ratio  in  the
range 0.5 to -1) and 0 § L § 0.5 (Poisson ratio in the range 0.5 to 0),  respectively.  The
two  expansion  values  (a  in  equations  (1)  and  (2))  were  obtained  by  examining  the  area
under the relative absolute error curve for increments of a between 0.5 and 1. In principle,
a least-squares solution for the value of a producing the minimum error would be feasible
for each Padé type, but in so doing we ignore the detailed shape of the error curve across
the  range  of  L  values.  For  example,  Figure  5  shows  the  relative  absolute  error  for  the
Rayleigh  wave  speed  based  on  Padé  type  H1, 2L  for  expansions  around  a = 1 ë 3  and
a = 2 ê 3. While the error is less for the expansion around a = 2 ê 3 for most of the range of
L  values,  we  observe  that  for  larger  values  of  L,  the  errors  become  larger  and  exceed
those  for  the  expansion  around  a = 1 ë 3 .  This  basic  behavior  is  characteristic  of  the
errors  obtained (but  not  shown) using the Padé types H1, 1L  and H1, 3L.  It  is  worth noting
that for non-negative Poisson’s ratio of 0 § L § 0.5, the errors are smaller for expansions
about a = 2 ê 3 for the three Padé types H1, 1L,  H1, 2L,  and H1, 3L.  The question arises,  is it
possible  to  expand  around  another  value  that  will  have  smaller  errors  for  non-negative
Poisson’s  ratio?  Figure  6  shows  the  relative  absolute  error  for  the  Padé  type  H1, 2L
expanded about a = 2 ê 3 and a = 7 ê 8. The error in the latter case is smaller for all values
up  to  approximately  L > 0 .47,  after  which  it  increases  beyond  that  for  the  expansion
about a = 2 ê 3, but not significantly. The maximum error is about the same for both cases.
Once more, similar behavior is observed for the other two Padé types H1, 1L and H1, 3L.
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under the relative absolute error curve for increments of a between 0.5 and 1. In principle,
a least-squares solution for the value of a producing the minimum error would be feasible
for each Padé type, but in so doing we ignore the detailed shape of the error curve across
the  range  of  L  values.  For  example,  Figure  5  shows  the  relative  absolute  error  for  the
Rayleigh  wave  speed  based  on  Padé  type  H1, 2L  for  expansions  around  a = 1 ë 3  and
a = 2 ê 3. While the error is less for the expansion around a = 2 ê 3 for most of the range of
L  values,  we  observe  that  for  larger  values  of  L,  the  errors  become  larger  and  exceed
those  for  the  expansion  around  a = 1 ë 3 .  This  basic  behavior  is  characteristic  of  the
errors  obtained (but  not  shown) using the Padé types H1, 1L  and H1, 3L.  It  is  worth noting
that for non-negative Poisson’s ratio of 0 § L § 0.5, the errors are smaller for expansions
about a = 2 ê 3 for the three Padé types H1, 1L,  H1, 2L,  and H1, 3L.  The question arises,  is it
possible  to  expand  around  another  value  that  will  have  smaller  errors  for  non-negative
Poisson’s  ratio?  Figure  6  shows  the  relative  absolute  error  for  the  Padé  type  H1, 2L
expanded about a = 2 ê 3 and a = 7 ê 8. The error in the latter case is smaller for all values
up  to  approximately  L > 0 .47,  after  which  it  increases  beyond  that  for  the  expansion
about a = 2 ê 3, but not significantly. The maximum error is about the same for both cases.
Once more, similar behavior is observed for the other two Padé types H1, 1L and H1, 3L.
Figure  7  shows  the  relative  absolute  errors  for  the  Rayleigh  wave  speed  based  on  using
the  Padé  type  H2, 3L  expanded  around  a = 1 ë 3  and  a = 2 ê 3.  The  behavior  of  these
curves  is  different  from  those  shown  earlier—here  there  is  a  monotonic  decrease  in  the
error  for  most  of  the  full  range  of  L  as  it  increases.  The  errors  are  one  hundred  times
smaller than those based on the Padé type H1, 2L shown in Figure 6. A somewhat extraor-
dinary  reduction  of  a  further  five  times  (so  a  total  of  a  500-fold  reduction)  in  relative
absolute error occurs for the Rayleigh wave speed estimate based on the Padé type H2, 3L
expanded around a = 9 ê 11 and shown in Figure 8.

plot2RayleighWaveSpeedRelativeError@1, 2, 1 ê Sqrt@3D,
1, 1, 2, 2 ê 3, 1, 0.05, 3 ê 4D
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Ú Figure 5. Relative absolute error for Rayleigh wave speed using the Padé approximants H1, 2L 
expanded around the points a = 1ë 3  and a = 2 ê3.

Use of Padé Approximants to Estimate the Rayleigh Wave Speed 13

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



plot2RayleighWaveSpeedRelativeError@1, 2, 2 ê 3, 1, 1,
2, 7 ê 8, 1, 0.02, 1 ê 2D
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Ú Figure 6. Relative absolute error for Rayleigh wave speed using the Padé approximants H1, 2L 
expanded around the points a = 2 ê3 and a = 7 ê8.

plot2RayleighWaveSpeedRelativeError@2, 3, 1 ê Sqrt@3D,
1, 2, 3, 2 ê 3, 1, 0.0002, 3 ê 4D
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Ú Figure 7. Relative absolute error for Rayleigh wave speed using the Padé approximants H2, 3L 
expanded around the points a = 1ë 3 and a = 2 ê3.
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plot1RayleighWaveSpeedRelativeError  is  a  plotting  function  for  the  relative
absolute  error  of  the  Rayleigh  speed  obtained  using  a  single  Padé  approximant.  The
function has similar inputs described earlier.

plot1RayleighWaveSpeedRelativeError@m1_, n1_, a1_,
root1or2_, ymax_, Lmax_D := Module@

8padeR1<,
padeR1 = padeR@L, m1, n1, a1, root1or2D;
Plot@

100 Abs@HpadeR1 - vinhR@LDL ê vinhR@LDD,
8L, 0, Lmax<,
ImageSize Ø Scaled@0.7D,
PlotRange Ø 80, ymax<,
Frame Ø True,
FrameLabel Ø 8L, "Relative Absolute Error H%L"<,
BaseStyle Ø 8FontSize Ø 12<,
GridLines Ø Automatic,
GridLinesStyle Ø Directive@8Dotted<D,
PlotStyle Ø 88Dashing@8<D, Black<, 8Dashed, Blue<,

8Dotted, Red<<,
PlotLegends Ø LineLegend@

8Black, 8Dashed, Blue<, 8Dotted, Red<<,
8Row@8"Padé H", m1, ", ", n1, "L, \n",

Style@"a", ItalicD, " = ", TraditionalForm@a1D<D<,
LabelStyle Ø 812<

D
D

D

plot1RayleighWaveSpeedRelativeError@2, 3, 9 ê 11, 1,
0.00000012, 1 ê 2D
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Ú Figure 8. Relative absolute error for Rayleigh wave speed using the Padé approximant H2, 3L 
expanded around a = 9 ê11.
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It is worth summarizing the various error estimates arising from the Rayleigh wave speed
based on the Padé approximant types studied for the two ranges of Poisson’s ratios (Table
1).  These  are  compared  to  other  published  estimates  given  in  Table  2.  Tables  1  and  2
show this data and also the number of arithmetic operations required to compute the value
of  s  (equation  (3)),  from  which  we  estimate  any  given  Rayleigh  wave  speed.  The  latter
information shows the tradeoff between the accuracy of the Rayleigh wave speed estimate
and the associated computational effort. The operations included are addition, subtraction,
multiplication,  division,  and the taking of  a  root  or  a  trigonometric  function;  raising to a
power is taken as a series of multiplications, and the minimum number of such operations
is  used  wherever  possible.  It  is  assumed  that  an  analytical  solution  is  exact,  that  L  is
known, and that for each approximate solution all coefficients are known and retained as
integers until  the calculation commences. In the case of the exact solution based on Car-
dano’s formula, two different expressions exist for different values of L, and in this case,
the  number  of  operations  is  given  for  each  path  separated  by  a  forward  slash.  Functions
not previously introduced in the body of the text and required to calculate the estimates in
Table 2 may be found in the Appendix.
The data in Tables 1 and 2 shows that the computational effort is generally greatest for the
three  analytical  solutions.  The  approximate  solutions  based  on  the  Padé  approximants
improve their error estimates approximately tenfold as we move from Padé types H1, 1L to
H2, 3L  for  expansions  around  a = 1 ë 3 .  The  number  of  arithmetic  operations  increases
by about five for Padé types H1, 1L to H1, 3L, without a significant change in the number of
operations  as  we  move  to  Padé  types  H2, 2L  and  H2, 3L.  For  the  Padé  types  expanded
around a = 9 ê 11 and for non-negative Poisson’s ratio, we find a remarkable reduction in
the errors, commencing with a thirtyfold reduction in the Padé type H1, 1L,  followed by a
twentyfold  reduction  as  we  move  from  Padé  types  H1, 1L  to  H1, 3L,  and  a  further  tenfold
reduction  in  the  errors  as  we  move  to  Padé  types  H2, 2L  to  H2, 3L.  The  Padé  type  H1, 1L
expanded around a = 9 ê 11 has a fifteenfold smaller error than either of the Taylor expan-
sions, and with fewer operations. The methods based on least-squares solutions that min-
imize the area under the absolute error curves perform strongly, with a good mix of rela-
tively small errors and a small number of arithmetic operations. It is necessary to go to the
approximation based on Padé type H1, 3L before the error is less than that for the solutions
based on least squares, but this requires more arithmetic operations.
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Padé type a = 1,3
0 § L § 0.75

a = 9 ê11
0 § L § 0.5

Number of arithmetic
operations

H1, 1L 0.34 0.011 9
H1, 2L 0.044 0.0005 15
H1, 3L 0.0057 0.000023 20
H2, 2L 0.00076 1.9µ10-6 19
H2, 3L 0.00011 1.1µ10-7 21

Ú Table 1. Maximum relative absolute error (%) and number of arithmetic operations for the 
Rayleigh wave speed estimates based on Padé approximants.

Method
0 § L § 0.5

unless noted otherwise
Number of arithmetic

operations

Exact @2, 22D none 21 or 26 Hsee textL
Exact @5, 7D none 36
Exact @9D none 25
Bergmann @24D 0.47 3
Taylor expansion for,s @3D 0.29 10
Taylor expansion 0.17 10
Lanczos method @13D 0.38 13
Lanczos method @13D 0.43 H0 § L § 0.75L 13
Least squares on integral of cubic @14D 0.004 13
Least squares on integral of cubic @14D 0.16 H0 § L § 0.75L 13

Least squares for
quadratic equation in n @18D

0.014 5

Least squares for
cubic equation in n @18D

0.0031 8

Least squares for
quartic equation in n @18D

0.000051 11

Ú Table 2. Maximum relative absolute error (%) and number of arithmetic operations for the 
Rayleigh wave speed estimates based on various published solutions.
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‡ Conclusion
The Rayleigh wave speed was estimated based on expansions of the Rayleigh equation by
Padé  approximants  and  equating  the  numerator  of  that  representation  to  zero.  The
numerator polynomials were solved for the normalized Rayleigh wave speed and provide
five distinct solutions. The solutions have varying degrees of accuracy, depending on the
value about which the Rayleigh equation is expanded. Good, accurate solutions occur for
the full range of Poisson’s ratio, and even more accurate solutions are found for non-neg-
ative  Poisson’s  ratio.  It  is  concluded that  these  expressions  for  the  Rayleigh  wave speed
provide  a  useful  approximation,  with  a  balance  between  accuracy  and  number  of  arith-
metic operations required. 

‡ Appendix
This  Appendix  contains  a  number  of  functions  that  estimate  the  Rayleigh  wave  speed,
which  may  be  used  to  reproduce  some  results  for  the  approximate  solutions  found  in
Table 2. Other needed functions have been presented in the body of the main text.
Here is the Bergmann formula from Vinh and Malischewsky [24].

bergmannR@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
H0.87 + 1.12 nL ê H1 + nL

D

Here is the Vinh and Malischewsky [18] formula to degree 2 in Poisson’s ratio.

vinhMR2@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
0.8739 + 0.2008 n - 0.07566 n^2

D

Here is the Vinh and Malischewsky [18] formula to degree 3 in Poisson’s ratio.

vinhMR3@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
0.874006 + 0.19704 n - 0.05558 n^2 - 0.02677 n^3

D
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Here is the Vinh and Malischewsky [18] formula to degree 4 in Poisson’s ratio.

vinhMR4@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
0.8740325 + 0.1953777 n - 0.038923 n^2 - 0.080072 n^3 +
0.053299 n^4

D

Here is the Rahman and Michelitsch [18] formula using the Lanczos approximation.

rahMR@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
Sqrt@
H30.876 - 14.876 n -

Sqrt@H224.545376 n^2 - 93.122752 n + 124.577376LDL ê
H26 H1 - nLLD

D

Here is the Li [14] formula for the full range of Poisson’s ratio.

liRall@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
Sqrt@
H28.84 - 12.84 n - Sqrt@H198.89 n^2 - 66.98 n + 124.1LDL ê
H23.18 H1 - nLLD

D

Here is the Li [14] formula for the positive range of Poisson’s ratio.

liRpos@L_D := Module@
8n<,
n = H2 L - 1L ê H2 HL - 1LL;
Sqrt@
H27.425 - 11.425 n -

Sqrt@H187.4384 n^2 - 52.4769 n + 121.0384LDL ê
H21.5 H1 - nLLD

D
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