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This article describes the implementation of RIFA, a 
computational biology algorithm designed to identify the genes 
most directly responsible for creating differences in phenotype 
between two biological states, for example, tumorous liver tissue 
versus cirrhotic liver tissue.

‡ Introduction and Background
With  the  invention  of  microarray  technology,  scientists  finally  had  a  means  to  measure
global changes in gene expression between two biological states [1]. This has led to thou-
sands  of  scientific  publications  describing  long  lists  of  differentially  expressed  genes  in
each scientist’s favorite experimental system. What has gradually become apparent to biol-
ogists is that having a list of differentially expressed genes, while an important first step in
understanding  the  differences  between  two  phenotypes  (where  phenotype  represents  the
physical  manifestation  of  one  or  more  traits),  is  often  not  enough  to  identify  the  genes
most directly responsible for driving changes in phenotype. While it is true that genes that
are differentially expressed between two biological states may be important in explaining
those differences, it  is also possible that genes whose expression is not  changed can also
be pivotal in driving phenotypic differences.
For those unfamiliar  with biology,  a  rough analogy may prove useful.  Consider  a  manu-
facturing  setting  where  there  is  a  supervisor  (a  “boss”  gene)  and  employees  (“slave”
genes)  under  the  supervisor’s  responsibility  charged  with  manufacturing  widgets  (a
particular phenotype, such as healthy liver tissue). A change in phenotype, such as transi-
tioning  from  healthy  liver  tissue  (manufacturing  blue  widgets)  to  cancerous  liver  tissue
(manufacturing  red  widgets)  can  be  accomplished  by:  (1)  changing  the  rate  that
employees  work  (such  as  might  happen  if  a  supervisor  shouts  at  the  employees;  this  is
analogous to differential expression); and/or (2) changing the instructions the supervisor is
giving to employees (keeping the volume of instructions constant, but changing the infor-
mation contained in the instructions;  this  is  analogous to a mutation in the “boss” gene);
and/or (3)  a  combination of  scenarios (1)  and (2).  In scenario (1),  there is  a  transition in
phenotype  because  the  employees  (“slave”  genes)  begin  working  faster  or  slower  than
they  have  previously,  which  produces  too  many  or  too  few  gene  products  at  the  wrong
time,  creating  a  rippling  effect  throughout  all  of  the  manufacturing,  which  ends  up  in  a
different  product  (the  red  widget  phenotype)  being  made.  In  this  situation,  the  super-
visor’s instructions to the employees remain constant (manufacture blue widgets) but are
spoken  with  more  (“shouting”)  or  less  (“whispering”)  volume.  Scenario  (1)  reflects  the
kind of information that can be measured in microarray studies, whose sole purpose is to
identify  genes  whose  expression  changes  between  two  biological  states.  In  scenario  (2),
the rate at which employees work remains constant, but they still manufacture a different-
colored  widget  (phenotype),  because  the  instructions  they  are  receiving  from  their
supervisor  have  changed.  Differences  in  phenotype  due  to  scenario  (2)  are  rarely
discovered by producing long lists of differentially expressed genes, because the primary
driving force creating a change in phenotype is a change in instruction from the supervisor
(such as a mutation in the “boss” gene) to the employees (“slave” genes), not a difference
in the manufacturing rate of employees.

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



For those unfamiliar  with biology,  a  rough analogy may prove useful.  Consider  a  manu-
facturing  setting  where  there  is  a  supervisor  (a  “boss”  gene)  and  employees  (“slave”
genes)  under  the  supervisor’s  responsibility  charged  with  manufacturing  widgets  (a
particular phenotype, such as healthy liver tissue). A change in phenotype, such as transi-
tioning  from  healthy  liver  tissue  (manufacturing  blue  widgets)  to  cancerous  liver  tissue
(manufacturing  red  widgets)  can  be  accomplished  by:  (1)  changing  the  rate  that
employees  work  (such  as  might  happen  if  a  supervisor  shouts  at  the  employees;  this  is
analogous to differential expression); and/or (2) changing the instructions the supervisor is
giving to employees (keeping the volume of instructions constant, but changing the infor-
mation contained in the instructions;  this  is  analogous to a mutation in the “boss” gene);
and/or (3)  a combination of scenarios (1)  and (2).  In scenario (1),  there is  a  transition in
phenotype  because  the  employees  (“slave”  genes)  begin  working  faster  or  slower  than

time,  creating  a  rippling  effect  throughout  all  of  the  manufacturing,  which  ends  up  in  a
different  product  (the  red  widget  phenotype)  being  made.  In  this  situation,  the  super-
visor’s instructions to the employees remain constant (manufacture blue widgets) but are
spoken  with  more  (“shouting”)  or  less  (“whispering”)  volume.  Scenario  (1)  reflects  the
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the rate at which employees work remains constant, but they still manufacture a different-
colored  widget  (phenotype),  because  the  instructions  they  are  receiving  from  their
supervisor  have  changed.  Differences  in  phenotype  due  to  scenario  (2)  are  rarely
discovered by producing long lists of differentially expressed genes, because the primary
driving force creating a change in phenotype is a change in instruction from the supervisor
(such as a mutation in the “boss” gene) to the employees (“slave” genes), not a difference
in the manufacturing rate of employees.
For these reasons, computational biologists have begun to develop algorithms that are bet-
ter at highlighting those genes primarily responsible for driving changes in phenotype, re-
gardless of whether those genes are differentially expressed or not. This is the purpose of
the regulatory impact factor analysis (RIFA) algorithm presented here; that is, to highlight
those genes most directly responsible for driving changes in phenotype. RIFA provides a
computationally tractable way to detect differences in connectivity between genes in two
biological  states.  Figure 1 illustrates the basic premise of  connectivity and differences in
connectivity between two biological states.

Ú Figure 1. Two gene networks comprised of the same five genes (a through e) in two different 
biological states (phenotypes). Each vertex represents a gene, and each edge represents a 
connection between genes. In standard differential expression studies, each geneʼs expression 
level is compared to itself between the two biological states but ignores potential relationships 
between different genes. When even a casual observer compares the two networks above, it is 
immediately noticeable that the shape of each network is different, a difference driven by a 
change in connectedness between genes within each biological state.
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Regulatory impact factor analysis (RIFA) is based on seminal work by Hudson, Reverter,
and Dalrymple [2],  which introduced three higher-order metrics all  computed from basic
information obtained in differential gene expression studies. The purpose of these metrics
is to use the information present in gene expression studies to quantify the connectedness
between  differentially  expressed  genes  (“slave”  genes,  using  the  analogy  above)  and  a
group of gene expression regulator genes, known as transcription factors (“boss” genes, us-
ing the analogy above). The three metrics are:
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Equation (1) (PIF) computes the average expression of the ith gene between two biological
states  (A  and  B)  and  multiplies  that  result  by  the  differential  expression  of  the  ith  gene
between  states  A  and  B.  In  doing  so,  the  magnitude  of  the  differential  expression  of  a
gene is weighted by the overall expression level of the gene. PIF is then used to compute
equation (2) (RIF4), which multiples the PIF value for each differentially expressed gene
by  the  differential  co-expression  (calculated  using  the  Spearman  correlation  coefficient)
between each differentially expressed gene (the “slave” genes in our analogy above) and
each  transcriptional  regulator  (the  “boss”  genes  in  our  analogy  above)  between  states  A
and  B.  By  summing  these  calculations  over  each  differentially  expressed  gene,  a  priori-
tized list of the most important regulators driving changes in phenotype between states A
and  B  can  be  obtained.  Equation  (2)  is  designed  to  provide  an  answer  to  the  question,
which regulator is  consistently highly differentially co-expressed with the most abundant
differentially expressed genes? Equation (3) (RIF5) is an alternative metric to equation (2)
(RIF4),  which  also  seeks  to  produce  a  prioritized  list  of  the  most  important  regulators
driving phenotypic change. By multiplying the expression of each differentially expressed
gene by the correlation between itself and each transcription regulator twice, once in state
A and once in  state  B,  the  difference in  state  values  can be  computed and then summed
over each differentially expressed gene to yield an alternative prioritized list  of  the most
important regulators. Equation (3) is designed to answer the question, which regulator has
the most altered ability to predict the abundance of differentially expressed genes? Further
details of these equations are presented in [3-4], but the basic idea behind the use of these
metrics in RIFA is straightforward.  When gene expression data (from a well-thought-out
experiment)  is  presented  to  RIFA,  the  algorithm can use  the  “echoes  of  sound off  struc-
tures” (differential gene expression data) to triangulate the location of the “rifle shot cre-
ating the sound” (identify the master gene(s) driving the changes in phenotype).
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‡ The Regulatory Impact Factor Analysis (RIFA) Algorithm
RIFA is template driven, meaning the algorithm expects several pieces of user-defined in-
formation to be provided in a notebook cell that is used as a template for entering informa-
tion. As RIFA was designed to process output from AffyDGED [5], it will be assumed the
reader is familiar with AffyDGED as well. The features of RIFA are illustrated using data
from  a  microarray  study  comparing  gene  expression  profiles  of  tumorous  liver  tissue  to
cirrhotic liver tissue [6]. All microarray data used in this study and presented here is pub-
licly  available  at  NCBI’s  Gene  Expression  Omnibus  portal  (www.ncbi.nlm.nih.gov/geo),
using the access number GSE17548. 

Needs@"JLink`"D
ReinstallJava@JVMArguments Ø "-Xmx512m"D ;

timecoursedata =
Flatten@
Import@
"C:\\Users\\Wookie\\Desktop\\Mathematica

Projects\\Mathematica Journal
Projects\\Differential Wiring & RIF
development\\Rif validation - Yildiz -
liver\\liver all expression data for rifa.xls"D,

1D;

conditiononecol = 82, 7<;
conditiontwocol = 88, 13<;

rawtranscriptionreg =
Flatten@
Import@
"C:\\Users\\Wookie\\Desktop\\Mathematica

Projects\\Mathematica Journal
Projects\\Differential Wiring & RIF
development\\Rif validation - Yildiz -
liver\\hgplus2 trfactors.xls"DD;

rawdegenes =
Flatten@
Import@
"C:\\Users\\Wookie\\Desktop\\Mathematica

Projects\\Mathematica Journal
Projects\\Differential Wiring & RIF
development\\Rif validation - Yildiz -
liver\\liver de genes for rifa.xls"DD;
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affyginlocation =
Import@
"C:\\Users\\Wookie\\Desktop\\Mathematica

Projects\\Mathematica Journal
Projects\\Data\\AffyChip Description
Files\\HG-U133_Plus_2\\LibFiles\\HG-U133_Plus_2.gin"D;

savelocationroot = "C:\\Users\\Wookie\\Desktop\\";

studyname = livercirrandcancer;

The  template  cell  begins  with  a  command  to  purposefully  reinstall  Java,  for  the  express
purpose of expanding the memory available to import large datasets into Mathematica.
The remainder of the template cell defines several variables requiring user input.

1.  timecoursedata:  This  variable  points  to  the  directory  containing  the  microarray
gene expression data, in spreadsheet format, to be processed by RIFA. While this variable
uses  the  term  "timecourse"  as  part  of  its  name,  it  is  not  necessary  for  the  microarray
data  to  be  part  of  a  time  course  experiment.  The  spreadsheet  format  of  the  data  is  non-
negotiable  and  requires  strict  organization.  To  aid  in  instruction,  a  screen  shot  of
the  timecoursedata  that  will  be  described  throughout  this  paper  is  included  here
(Figure 2). 

Ú Figure 2. Formatting of gene expression data for variable <timecoursedata>. 

Column A contains unique transcript  identification information from the microarray chip
used  in  the  study.  Columns  B  through  X  contain  gene  expression  measurement  from
samples (or time points) under the same experimental condition of the study. The columns
after  X  contain  gene  expression  measurements  from  samples  (or  time  points)  under  the
same  control  condition  of  the  study.  For  example,  in  the  liver  study  referenced  above,
tumor  samples  from  multiple  patients  were  randomly  placed  into  six  groups  and  com-
pared  to  six  groups  of  cirrhotic  liver  tissue  by  AffyDGED.  Column B contains  the  gene
expression  measurements  (transcript  abundance,  not  differential  expression)  for  the
first  group  of  tumor  samples  processed  with  AffyDGED,  column  C  contains  the  gene
expression measurements from the second group of tumor samples, and so on. In this ex-
ample,  the  last  column  containing  tumor  (experimental  condition)  data  is  column  G.
Column  H  is  the  first  column  containing  gene  expression  measurements  from  the  first
group of cirrhotic (control condition) tissue, column I from the second group of cirrhotic
tissue,  and  so  on.  Notice  how  columns  B  and  H  contain  output  from  AffyDGED’s  pro-
cessing of the first groups of tumor and cirrhotic tissues, respectively.
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expression measurements from the second group of tumor samples, and so on. In this ex-
ample,  the  last  column  containing  tumor  (experimental  condition)  data  is  column  G.
Column  H  is  the  first  column  containing  gene  expression  measurements  from  the  first
group of cirrhotic (control condition) tissue, column I from the second group of cirrhotic
tissue,  and  so  on.  Notice  how  columns  B  and  H  contain  output  from  AffyDGED’s  pro-
cessing of the first groups of tumor and cirrhotic tissues, respectively.
2. conditiononecol: This contains a short list defining the first and last column posi-
tions within timecoursedata to contain experimental condition data.
3. conditiontwocol: This contains a short list defining the first and last column posi-
tions within timecoursedata to contain control condition data.
4.  rawtranscriptionreg:  This  variable  points  to  the  location  of  a  spreadsheet  file
containing  a  list  (organized  into  a  single  column)  of  known  or  suspected  transcription
factor genes present on the microarray chip being used. The file used here was created by
parsing  the  biological  process  column  of  the  annotation  file  for  Affymetrix’s  Human
Genome  U133  Plus  2.0  chip  (available  at  www.affymetrix.com)  for  genes  linked  to  the
transcription process.  The probeset  identifiers  referring to  this  group of  genes  were  used
to build a list of transcription factor genes.
5. rawdegenes: This link points to the spreadsheet file containing lists of differentially
expressed genes (referenced by their probeset IDs, organized into columns) created by pro-
cessing  the  experimental  and  control  groups  referenced  in  timecoursedata  (above)
with  AffyDGED.  In  the  liver  example  here,  there  are  six  columns  of  differentially  ex-
pressed genes created by using AffyDGED to compare the six groups of tumorous livers
with the six groups of cirrhotic livers.
6.  affyginlocation:  This  variable  holds  the  directory  location  for  finding  the
Affymetrix  .gin  (gene  information)  file  that  provides  the  necessary  information  to  anno-
tate output from RIFA.
7. savelocationroot: This variable holds the location where the user would like the
final results of the analysis to be saved.
8. studyname: This variable allows the user to name the output files generated by RIFA
with study-specific information.
The first  tasks completed by RIFA include the loading,  parsing,  and organization of  raw
data to facilitate downstream computation.

starttime = AbsoluteTime@D;

allmicroarraytranscripts = timecoursedata@@All, 1DD;

conditiononetimepts =
timecoursedata@@All,
conditiononecol@@1DD ;; conditiononecol@@2DDDD;

conditiontwotimepts =
timecoursedata@@All,
conditiontwocol@@1DD ;; conditiontwocol@@2DDDD ;
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empties =
Flatten@Map@Position@rawtranscriptionreg, ÒD &,

Complement@rawtranscriptionreg,
allmicroarraytranscriptsDD, 81, 2<D;

transcriptionreg = Delete@rawtranscriptionreg, emptiesD;

tregpositions =
Flatten@Map@Position@allmicroarraytranscripts, Ò1D &,

transcriptionregDD;

tregconditiononetimepts =
conditiononetimepts@@tregpositionsDD;

tregconditiontwotimepts =
conditiontwotimepts@@tregpositionsDD;

delist = Drop@Union@rawdegenesD, 1D;

delistpositions =
Flatten@Map@Position@allmicroarraytranscripts, Ò1D &,

delistDD;

delistconditiononetimepts =
conditiononetimepts@@delistpositionsDD;

delistconditiontwotimepts =
conditiontwotimepts@@delistpositionsDD;

condition1liststocorrelate =
Flatten@Outer@List, tregconditiononetimepts,

delistconditiononetimepts, 1D, 81, 2<D;
condition2liststocorrelate =

Flatten@Outer@List, tregconditiontwotimepts,
delistconditiontwotimepts, 1D, 81, 2<D;

Upon  completion  of  this  first  section  of  code,  the  transcription  factor  genes  (the  “boss”
genes  from  the  analogy  above)  are  grouped  with  the  differentially  expressed  genes  (the
“slave” genes from above) to facilitate calculation of each pairings’ Spearman rank correla-
tion coefficient.
RIFA proceeds by calculating the Spearman rank correlation coefficients,  which requires
that each vector of gene expression measurements be tested for the presence of duplicate
entries, which requires special handling to calculate Spearman rho. This is the purpose of
the  tieCheck  module  below.  Based  on  the  results  of  tieCheck,  the  code  calls  the
spearmanControl module to optimize calculation of Spearman rho, taking advantage
of function listability and the use of compilable expressions, where appropriate, to maxi-
mize speed.
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tieCheck@origdata_D :=
Module@8tiecheck1, tiecheck2, tiepos, tiecheckresult,

datawithnomultiples, tiedata, notiepos<,

tiecheck1 = Length@origdata@@1, 1DDD;
tiecheck2 = Map@Length@Union@ÒDD &, origdata, 82<D;

tiepos = Position@tiecheck2,
8x_, y_< ê; Hx < tiecheck1Í y < tiecheck1L, 81<D;

notiepos = Position@tiecheck2,
8x_, y_< ê; Hx == tiecheck1 && y == tiecheck1L, 81<D;

If@Length@Flatten@tieposDD ã 0,
Htiecheckresult = FalseL,
Hdatawithnomultiples = Delete@origdata, tieposD;
tiedata = Extract@origdata, tieposD;
tiecheckresult = 8datawithnomultiples, tiedata,

tiepos, notiepos<LDD

spearmanControl@tieresult_, condliststocorrelate_D :=
Module@8sprho, tierho, tierhotopos, notierhotopos,

joinrho, rhosorted, finalrho<,

If@tieresult === False,
sprho = fastSpearNoTie@condliststocorrelate@@All, 1DD,

condliststocorrelate@@All, 2DDD,

sprho = fastSpearNoTie@tieresult@@1DD@@All, 1DD,
tieresult@@1DD@@All, 2DDD;

tierho =
Table@SpearmanRho@Apply@Sequence, tieresult@@2, iDDDD,
8i, 1, Length@tieresult@@2DDD<D;

tierhotopos =
Partition@
Flatten@MapThread@List, 8tierho, tieresult@@3DD<DD,
2D;

notierhotopos =
Partition@
Flatten@MapThread@List, 8sprho, tieresult@@4DD<DD, 2D;

joinrho = Join@tierhotopos, notierhotoposD;
rhosorted = Sort@joinrho, Ò1@@2DD < Ò2@@2DD &D;
finalrho = rhosorted@@All, 1DDDD

fastSpearNoTie@vector1_, vector2_D :=
Module@8vector1sort, vector2sort, rankvec1, rankvec2<,
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vector1sort = fastSort@vector1D;
vector2sort = fastSort@vector2D;

rankvec1 = fastRank@vector1sort, vector1D;
rankvec2 = fastRank@vector2sort, vector2D;

listableSpear@rankvec1, rankvec2DD

fastSort = Compile@88vector, _Real, 2<<,

Module@8vectorsort<,

vectorsort = Map@Sort@ÒD &, vectorDD,

CompilationTarget Ø "WVM", Parallelization Ø TrueD;

fastRank =
Compile@88vectorsort, _Real, 2<, 8vector, _Real, 2<<,

Module@8rankvec<,

rankvec = Map@Flatten,
Table@Position@vectorsort@@iDD, vector@@i, jDDD,
8i, 1, Length@vectorsortD<,
8j, 1, Length@vectorsort@@1DDD<D, 81<DD,

CompilationTarget Ø "WVM", Parallelization Ø TrueD;

listableSpear =
Compile@88rankvec1, _Integer, 2<,

8rankvec2, _Integer, 2<<,

Module@8bottom, final<,

top = 6 * HTotal@Hrankvec1 - rankvec2L^2, 82<DL;

bottom = Length@rankvec1@@1DDD *
HLength@rankvec1@@1DDD^2 - 1L;

final = 1 - Htop ê bottomL êê ND,

88top, _Integer, 1<<, CompilationTarget Ø "WVM",
Parallelization Ø True, RuntimeAttributes Ø 8Listable<D;
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Caution:  Due  to  the  sheer  volume of  computation  that  needs  to  be  completed  using  the
data  described  in  this  paper,  the  next  segment  of  code  will  likely  take  20–40 minutes  to
complete  (depending  on  the  speed  of  your  computer)  and  consume  roughly  28  Gb  of
RAM. Computations  on  machines  with  less  RAM will  finish  but  will  require  significant
use of the hard drive, slowing computation considerably.

tieresultscond1 = tieCheck@condition1liststocorrelateD;
tieresultscond2 = tieCheck@condition2liststocorrelateD;

condition1corr = spearmanControl@tieresultscond1,
condition1liststocorrelateD;

Clear@tieresultscond1, condition1liststocorrelateD;

condition2corr = spearmanControl@tieresultscond2,
condition2liststocorrelateD;

Clear@tieresultscond2, condition2liststocorrelateD;

By pairing (and taking a sampling of) the correlations of the “boss” and “slave” genes be-
tween the tumor and cirrhotic livers,  a satisfying (but not biologically surprising) pattern
reveals itself (Figure 3). It is clear that there are many more strongly positive correlations
between the “boss” and “slave” genes in the cirrhotic liver  than the tumorous liver.  This
supports what biologists have known for a long time; that is, gene regulation in tumorous
tissue is significantly uncoordinated.

temp1 = MapThread@List, 8condition1corr, condition2corr<D;
temp2 = RandomSample@temp1, 100 000D;

Histogram@8temp2@@All, 1DD, temp2@@All, 2DD<,
ChartLegends Ø Placed@8"Tumorous liver", "Cirrhotic liver"<,

CenterD, PerformanceGoal Ø "Speed", Frame Ø True,
FrameLabel Ø 88"SpearmanRho Count", ""<,

8"SpearmanRho Bins", ""<<D

Ú Figure 3. A histogram of the Spearman rank correlation coefficients between regulator and differen-
tially expressed genes in tumorous and cirrhotic liver biopsies.
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Following the correlation calculations, RIFA calculates several important metrics, includ-
ing PIF, RIF4, and RIF5 of equations (1), (2), and (3) described above.

diffwiring = condition1corr - condition2corr;

diffexp = Map@Mean, delistconditiononetimeptsD -
Map@Mean, delistconditiontwotimeptsD;

timeptscombinedmean =
Map@Mean, Map@Flatten@ÒD &,

MapThread@List, 8delistconditiononetimepts,
delistconditiontwotimepts<DDD;

pif = timeptscombinedmean * diffexp;

pifcopyforrif =
Flatten@Table@pif, 8Length@transcriptionregD<DD;

rif4 =
HMap@Total, Partition@pifcopyforrif * Hdiffwiring^2L,

Length@delistDDDL ê Length@diffexpD;

rif4standard = Standardize@rif4D;

conditiononemeans = Map@Mean, delistconditiononetimeptsD;
conditiontwomeans = Map@Mean, delistconditiontwotimeptsD;

cond1meancopyforrif5 =
Flatten@Table@conditiononemeans,

8Length@transcriptionregD<DD;
cond2meancopyforrif5 =

Flatten@Table@conditiontwomeans,
8Length@transcriptionregD<DD;

rif5 =
HMap@Total,

Partition@HHcond1meancopyforrif5 * condition1corrL^2L -
HHcond2meancopyforrif5 * condition2corrL^2L,

Length@delistDDDL ê Length@diffexpD;

rif5standard = Standardize@rif5D;

avgrif =
Map@Mean, MapThread@List, 8rif4standard, rif5standard<DD;

avgresult = MapThread@List, 8transcriptionreg, avgrif<D;

rif4result = MapThread@List,
8transcriptionreg, rif4standard<D;

rif5result = MapThread@List,
8transcriptionreg, rif5standard<D;

The  resulting  plots  (Figure  4)  of  PIF  (equation  (1)),  RIF4  (equation  (2)),  and  RIF5
(equation (3)) reveal the bidirectional nature of each of the three metrics. In other words,
regardless of the metric used, -8 and +8 are equally influential to the underlying biology.
This  makes  sense  when  one  remembers  that  gene  expression  measurements,  used  in  the
calculations of the metrics above, are represented on a log2 scale.
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The  resulting  plots  (Figure  4)  of  PIF  (equation  (1)),  RIF4  (equation  (2)),  and  RIF5
(equation (3)) reveal the bidirectional nature of each of the three metrics. In other words,
regardless of the metric used, -8 and +8 are equally influential to the underlying biology.
This  makes  sense  when  one  remembers  that  gene  expression  measurements,  used  in  the
calculations of the metrics above, are represented on a log2 scale.

temp3 = Histogram@pif, ChartStyle Ø Orange, Frame Ø True,
FrameLabel Ø 88"PIF Count", ""<, 8"PIF Bins", ""<<,
PerformanceGoal Ø "Speed"D;

temp4 = Histogram@rif4standard, ChartStyle Ø Green,
Frame Ø True,
FrameLabel Ø 88"RIF4 Count", ""<, 8"RIF4 Bins", ""<<,
PerformanceGoal Ø "Speed"D;

temp5 = Histogram@rif5standard, ChartStyle Ø Red,
Frame Ø True,
FrameLabel Ø 88"RIF5 Count", ""<, 8"RIF5 Bins", ""<<,
PerformanceGoal Ø "Speed"D;

GraphicsColumn@8temp3, temp4, temp5<D

Ú Figure 4. Histograms for each of the three primary metrics used in the RIFA algorithm. Positive 
and negative values should be interpreted as equally important (i.e., a gene that is fourfold down 
in expression is equally as likely to be important as a gene that is fourfold up in expression.)

After  the  metric  calculations  are  completed,  four  files  are  exported containing all  the  re-
sults in file formats directly usable by Mathematica and Microsoft Excel. One set of files
is  appended  with  the  phrase  “RifSortByAvg”  and  contains  the  following  information  in
table form, sorted by the average of RIF4 and RIF5 values.
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After  the  metric  calculations  are  completed,  four  files  are  exported  containing  all  the  re-
sults in file formats directly usable by Mathematica and Microsoft Excel. One set of files
is  appended  with  the  phrase  “RifSortByAvg”  and  contains  the  following  information  in
table form, sorted by the average of RIF4 and RIF5 values.

Column 1: unique transcript (gene) IDs

Column 2: the average of RIF4 and RIF5 values

Column 3: RIF4 values

Column 4: RIF5 values

Column 5: genbank accession numbers

Column 6: gene names

Column 7: gene product information

A second set of files is appended with the phrase “sortedPIF” and contains the following
information in table form, sorted by PIF values.

Column 1: unique transcript (gene) IDs

Column 2: PIF values

Column 3: genbank accession numbers

Column 4: gene names

Column 5: gene product information

As described above, the RIF4 and RIF5 results are most useful for identifying the “boss”
genes  and  the  PIF  results  are  most  useful  for  identifying  the  “slave”  genes.  Both  the
“boss” and “slave” genes can be influential in creating differences in phenotypes between
two states. 

resultginpositions =
Flatten@Map@Position@affyginlocation@@All, 4DD, ÒD &,

avgresult@@All, 1DDDD;

ginannotationdata = affyginlocation@@resultginpositionsDD@@
All, 8 ;; 10DD;

combinationresult =
MapThread@List, 8avgresult@@All, 1DD, avgresult@@All, 2DD,

rif4result@@All, 2DD, rif5result@@All, 2DD,
ginannotationdata<D;

combinationresult = Table@Flatten@combinationresult@@iDDD,
8i, 1, Length@combinationresultD<D;

combosortbyavg = Sort@combinationresult, Ò1@@2DD > Ò2@@2DD &D;
combosortbyrif4 = Sort@combinationresult,

Ò1@@3DD > Ò2@@3DD &D;

RIFA: A Differential Gene Connectivity Algorithm 13
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combosortbyrif5 = Sort@combinationresult,
Ò1@@4DD > Ò2@@4DD &D;

pifid = MapThread@List, 8delist, pif<D;

pifginpositions =
Flatten@Map@Position@affyginlocation@@All, 4DD, ÒD &,

pifid@@All, 1DDDD;

pifannotationdata = affyginlocation@@pifginpositionsDD@@
All, 8 ;; 10DD;

pifresults =
Sort@MapThread@List, 8delist, pif, pifannotationdata<D,
Ò1@@2DD > Ò2@@2DD &D;

pifresults = Table@Flatten@pifresults@@iDDD,
8i, 1, Length@pifresultsD<D;

date = DateString@D;
date = DateString@date,

8"Month", "Day", "Year", "Hour", "Minute", "Second"<D;

foldername = StringJoin@ToString@studynameD, " - ", dateD;

SetDirectory@savelocationrootD;
savelocationfinal = CreateDirectory@foldernameD;
SetDirectory@savelocationfinalD;

Put@combosortbyavg, StringJoin@ToString@studynameD,
" - RifSortbyAvg"DD;

Export@StringJoin@ToString@studynameD,
" - RifSortbyAvg.csv"D, combosortbyavgD;

Put@pifresults, StringJoin@ToString@studynameD,
" - sortedPIF"DD;

Export@StringJoin@ToString@studynameD, " - sortedPIF.csv"D,
pifresultsD;

Print@
Style@"RIFA calculations complete. All data saved to: ",
BoldD, Style@ToString@savelocationrootD, BoldDD;

endtime = AbsoluteTime@D - starttime ;
Print@"Computational Time: ", endtime, " seconds"D;
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RIFA calculations complete. All data saved to:
C:\Users\Wookie\Desktop\

Computational Time: 1541.1711362 seconds

The final output of RIFA is a network graph that associates the most strongly correlated,
highest  impact  PIF  scores  with  the  highest  impact  RIF  scores.  In  this  graph,  the  top  10
most  positive  and  negative  average  RIF  entries,  the  top  10  most  positive  and  negative
RIF4  entries,  and  the  top  10  most  positive  and  negative  RIF5  entries  are  linked  to  the
phenotype  of  interest  with  red  edges.  In  other  words,  the  red  edges  highlight  the  “boss”
genes  most  responsible  for  driving  changes  in  phenotype.  The  nodes  of  the  graph  use
tooltips  to  identify  the  gene  represented  by  the  node.  The  phenotype  of  interest  node  is
abbreviated  “POI.”  Blue  edges  are  used  to  highlight  the  “slave”  genes  most  responsible
and most correlated to the “boss” genes for driving changes in phenotype. In this way, the
graph  highlights  the  “slave”  genes  responding  to  the  “boss”  genes’  orders  to  change
phenotype. Here, the highest 0.5% of positive and the lowest 0.5% of negative PIF scores
are  connected  to  transcription  regulators  (represented  by  RIF  nodes)  if  they  share  a
Spearman rho value of ±0.9 with the transcription regulator. 

graphRIFA :=
Module@8graphregdata, pifsize, pifforgrph,

delistposofpifids, topregpos, cond1corrpart,
cond2corrpart, pifbyregcond1, pifbyregcond2,
pifcorrstringency1, pifcorrstringency2,
pifforgrphidsonly, regtopifposition1, regtopifposition2,
cond1regtopif, cond2regtopif, regpifgrphdata,
finalgrphdata, grph1<,

graphregdata =
Union@Join@combosortbyavg@@1 ;; 10DD,

combosortbyavg@@-10 ;; -1DD,
combosortbyrif4@@1 ;; 10DD,
combosortbyrif4@@-10 ;; -1DD,
combosortbyrif5@@1 ;; 10DD,
combosortbyrif5@@-10 ;; -1DDD@@All, 1 ;; 2DDD ;

grph1 = Thread@graphregdata@@All, 1DD Ø "POI"D;

pifsize = Ceiling@HLength@pifD * 0.01L ê 2D;

pifforgrph = Join@pifresults@@1 ;; pifsizeDD,
pifresults@@-pifsize ;; -1DDD;

delistposofpifids =
Flatten@Map@Position@delist, ÒD &,

pifforgrph@@All, 1DDDD;
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topregpos =
Flatten@Map@Position@transcriptionreg, ÒD &,

graphregdata@@All, 1DDDD ;

cond1corrpart = Partition@condition1corr, Length@delistDD@@
topregposDD;

cond2corrpart = Partition@condition2corr, Length@delistDD@@
topregposDD;

pifbyregcond1 =
Table@cond1corrpart@@iDD@@delistposofpifidsDD,
8i, 1, Length@cond1corrpartD<D;

pifbyregcond2 =
Table@cond2corrpart@@iDD@@delistposofpifidsDD,
8i, 1, Length@cond1corrpartD<D;

pifcorrstringency1 =
Table@Flatten@Position@pifbyregcond1@@iDD,

x_ ê; Hx § -0.90Í x ¥ 0.90LDD,
8i, 1, Length@pifbyregcond1D<D;

pifcorrstringency2 =
Table@Flatten@Position@pifbyregcond2@@iDD,

x_ ê; Hx § -0.90Í x ¥ 0.90LDD,
8i, 1, Length@pifbyregcond2D<D;

pifforgrphidsonly = pifforgrph@@All, 1DD;

regtopifposition1 =
Table@pifforgrphidsonly@@pifcorrstringency1@@iDDDD,
8i, 1, Length@pifcorrstringency1D<D;

regtopifposition2 =
Table@pifforgrphidsonly@@pifcorrstringency2@@iDDDD,
8i, 1, Length@pifcorrstringency2D<D;

cond1regtopif =
Table@Thread@graphregdata@@All, 1DD@@iDD Ø

regtopifposition1@@iDDD,
8i, 1, Length@graphregdata@@All, 1DDD<D;

cond2regtopif =
Table@Thread@graphregdata@@All, 1DD@@iDD Ø

regtopifposition2@@iDDD,
8i, 1, Length@graphregdata@@All, 1DDD<D;
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regpifgrphdata =
Flatten@Delete@Union@cond1regtopif, cond2regtopifD, 1DD;

finalgrphdata = Union@Flatten@Join@regpifgrphdata, grph1DDDD

rifagrpresults = graphRIFA;

Print@
Style@
"Transcription factor and correlated PIF gene network:",
BoldDD;

Graph@MapThread@Tooltip,
8Join@rifagrpresults@@All, 1DD, rifagrpresults@@All, 2DD,

8"POI"<D, Join@rifagrpresults@@All, 1DD,
rifagrpresults@@All, 2DD, 8"POI"<D<D, rifagrpresults,

DirectedEdges Ø False,
GraphHighlight Ø Select@rifagrpresults, Ò@@2DD ã "POI" &D,
GraphLayout Ø "RadialDrawing"D

Transcription factor and correlated PIF gene network:

RIFA: A Differential Gene Connectivity Algorithm 17

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



‡ Gaining Confidence in RIFA
Three  primary  lines  of  evidence  show  that  RIFA  is  performing  to  design  specifications.
Evidence line 1: RIFA was created to provide a Mathematica implementation of the regu-
latory  impact  factor  algorithm  originally  described  by  Hudson  et  al.  to  highlight  those
genes  most  directly  responsible  for  driving  changes  in  phenotype.  During  development,
RIFA was vetted with the original data used by these authors, to highlight the genes most
responsible  for  driving  phenotypic  differences  between  Wagyu  and  Piedmontese  cattle.
The most prominent (and well-characterized) phenotypic difference between these breeds
of cattle is the increased musculature of Piedmontese animals, which is known to be due
to  a  mutation  in  the  breed’s  myostatin  (GDF8)  gene  [7].  Using  the  author’s  own  data,
RIFA correctly identifies GDF8 at the bottom (most negative value of -3.02) of its RIF5
output.

combosortbyrif5@@-3 ;; -1DD H* do not execute,
output from another dataset *L

88FOXQ1, -4.06869, -5.24315, -2.89423<,
8GATA3, -3.97711, -5.05679, -2.89744<,
8GDF8, -2.77124, -2.51563, -3.02685<<

Evidence  line  2:  The  Piedmontese/Wagyu  data  represents  the  only  dataset  that  is  com-
pletely and publicly available to validate RIFA. For this reason, evidence line 1 represents
the  strongest  line  of  evidence  that  RIFA  is  functioning  properly,  as  RIFA  is  able  to
duplicate  the  results  of  Hudson et  al.  Even so,  other  gene  expression  datasets  have  been
analyzed and discussed in the literature that allow for comparison to RIFA output. Please
keep in  mind that  RIFA’s results  cannot  be identical  to  these other  examples,  as  the full
list  of  normalized  gene  expression  data  and  the  full  list  of  transcription  regulators,  both
necessary input to RIFA, are not publicly available. Reverter and colleagues discuss their
analysis of porcine gene expression data from [8] and attempt to explain why their results
do not prioritize SRY, a gene that is arguably one of the most important sex-determining
genes  known  to  science  [9].  Reanalysis  of  this  same  data  using  normalized  gene  ex-
pression from AffyDGED and an alternative list of gene regulators shows that RIFA does
highlight  SRY  as  the  fourth  most  negatively  prioritized  gene.  While  being  a  satisfying
result, it also serves to highlight the fact that all algorithms (RIFA included) are sensitive
to the quality of the input data provided to them.
Evidence line 3: Keeping in mind the discussion above, a similar reanalysis of data refer-
enced in [10–11] shows that RIFA highlights CDK8 [12] as the 33rd most negatively pri-
oritized gene. Hudson’s analysis of this data highlights CDK8 as the fourth most positive
regulator  of  colon  cancer.  Why  does  RIFA  rank  CDK8  at  position  33,  while  Hudson’s
analysis  ranks  it  at  4?  The  most  reasonable  explanation  is  that  RIFA  processed  a  tran-
scription  regulator  list  that  included  6,685  regulators,  while  Hudson’s  work  employed  a
smaller regulator list  of 1,292 entries.  Fourth out of 1292 (4 divided by 1292) is  0.0031,
while 33rd out of 6685 is 0.0049. On a percentage basis of the transcription regulator list
size,  RIFA’s  output  is  nearly  identical  to  that  obtained  by  the  original  authors  who
developed the algorithm.
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‡ Interpreting RIFA Results
From  the  evidence  presented,  we  know  that  RIFA  is  performing  as  expected  and  can
begin  to  ask  if  results  from  other  studies  make  biological  sense.  If  RIFA  is  working
correctly, it should highlight genes that have been linked to cirrhosis and/or cancer in the
scientific  literature.  Keep  in  mind  that  not  every  gene  likely  to  be  linked  to  cirrhosis  or
cancer  has  been  discovered  or  characterized  yet—which  is  the  value  in  using  a  program
like RIFA, that is, to find new connections between genes and phenotype. A small sample
of  output  will  be  reprinted  for  easier  referencing  here.  Additionally,  the  output  will  be
reformatted to fit within printable margins by forcing the data in each entry to occupy two
or more rows of the table below.

optemp1 = Join@combosortbyavg@@1 ;; 10DD,
combosortbyavg@@-10 ;; -1DD, combosortbyrif4@@1 ;; 10DD,
combosortbyrif4@@-10 ;; -1DD, combosortbyrif5@@1 ;; 10DD,
combosortbyrif5@@-10 ;; -1DDD;

optemp1@@6, 7DD =
"Homo sapiens mRNA;\ncDNA DKFZp667F2113\nHfrom

clone DKFZp667F2113L";
optemp1@@8, 7DD =

"Homo sapiens cDNA FLJ12380 fis,\nclone MAMMA1002556";
optemp1@@10, 7DD =

"peroxisome proliferative activated receptor\ngamma,
coactivator 1";

optemp1@@13, 7DD =
"TATA box binding protein HTBPL-associatedfactor,\nRNA

polymerase I, A, 48kD";
optemp1@@15, 7DD =

"Homo sapiens cDNA: FLJ22281 fis,\nclone
HRC03849,\nhighly similar to S69002 human mRNA
for AML1-EVI-1";

optemp1@@19, 7DD =
"Homo sapiens cDNA FLJ11655 fis,\nclone HEMBA1004554";

optemp1@@20, 7DD =
"ESTs, weakly similar to S47072 finger protein

HZF10,\nKrueppel-related @H.sapiensD";
optemp1@@33, 7DD =

"signal transducer and activator of\ntranscription
3 Hacute-phase response factorL";

optemp1@@36, 7DD =
"Homo sapiens cDNA FLJ11655 fis,\nclone HEMBA1004554";

optemp1@@40, 7DD =
"ESTs, weakly similar to S47072 finger protein

HZF10,\nKrueppel-related @H.sapiensD";
optemp1@@41, 7DD =

"Homo sapiens mRNA;\ncDNA DKFZp434P228 Hfrom clone
DKFZp434P228L";

optemp1@@42, 7DD =
"nuclear receptor subfamily 4,\ngroup A, member 3";

optemp1@@47, 7DD =
;
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optemp1@@47, 7DD =
"nuclear receptor subfamily 4,\ngroup A, member 2";

optemp1@@50, 7DD =
"v-maf musculoaponeurotic fibrosarcoma\nHavianL

oncogene family, protein F";
optemp1@@52, 7DD =

"ESTs, highly similar to B45036 Pur beta @H.sapiensD";
optemp1@@53, 7DD =

"ESTs, weakly similar to A32891 finger protein
1,\nplacental @H.sapiensD";

optemp1@@54, 7DD =
"Homo sapiens mRNA;\ncDNA DKFZp566P1124 Hfrom

clone DKFZp566P1124L";
optemp1@@55, 7DD =

"Homo sapiens cDNA FLJ11344 fis,\nclone
PLACE1010870,\nmoderately similar to zinc
finger protein 91";

optemp2 = optemp1@@All, 1 ;; 4DD;
optemp3 = optemp1@@All, 5 ;; 7DD;
optemp4 =
Text@Grid@Riffle@optemp2, optemp3D,

Dividers Ø 8False, 88True, False<<<DD

221427_s_at 2.14857 5.78666 -1.48953
gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso

242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
222999_s_at 2.03408 3.84355 0.224612
gb:AF251294.1 None hCLA-iso
200935_at 1.9719 0.927797 3.016

gb:NM_004343.2 CALR calreticulin precursor
203752_s_at 1.94041 4.16704 -0.28622

gb:NM_005354.2 JUND jun D proto-oncogene
1566901_at 1.87135 3.80376 -0.0610645

gb:AL832409.1 None Homo sapiens mRNA;
cDNA DKFZp667F2113
Hfrom clone DKFZp667F2113L

204753_s_at 1.85264 2.12814 1.57713
gb:AI810712 HLF hepatic leukemia factor
215032_at 1.75512 3.79062 -0.280379

gb:AK022442.1 None Homo sapiens cDNA FLJ12380 fis,
clone MAMMA1002556

204937_s_at 1.72693 3.88217 -0.428303
gb:NM_016325.1 ZNF274 KRAB zinc finger protein HFB101L

219195_at 1.69302 -0.676152 4.06218
gb:NM_013261.1 PPARGC1 peroxisome proliferative activated receptor

gamma, coactivator 1
225935_at -2.88534 -3.58043 -2.19025
gb:AI350995 None ESTs
205522_at -3.01448 -4.23534 -1.79362

gb:NM_014621.1 HOXD4 homeo box D4
206613_s_at -3.03219 -4.6906 -1.37378

gb:NM_005681.1 TAF1A TATA box binding protein HTBPL-associatedfactor,
RNA polymerase I, A, 48kD

219990_at -3.08847 -4.4771 -1.69983
gb:NM_024680.1 FLJ23311 hypothetical protein FLJ23311

221884_at -3.29527 -4.32838 -2.26216
gb:BE466525 None Homo sapiens cDNA: FLJ22281 fis,

clone HRC03849,
highly similar to S69002 human mRNA for AML1-EVI-1

235355_at -3.38656 -5.92359 -0.849537
gb:AL037998 None ESTs
201292_at -3.55369 -5.36767 -1.73972
gb:AL561834 TOP2A topoisomerase HDNAL II alpha H170kDL
209153_s_at -3.5649 -4.67937 -2.45043
gb:M31523.1 TCF3 None
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

239043_at -3.97311 -8.63574 0.689522
gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,

Krueppel-related @H.sapiensD
221427_s_at 2.14857 5.78666 -1.48953

gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso
242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
242438_at 1.56291 4.67727 -1.55145
gb:AI819150 None ESTs
231806_s_at 1.35598 4.57285 -1.86088
gb:AL133630.1 DKFZp434N0223 hypothetical protein
208012_x_at 1.60648 4.38909 -1.17613

gb:NM_004509.1 IFI41 interferon-induced protein 41, 30kD
239193_at 1.68248 4.25423 -0.889276
gb:BF060981 None ESTs
213743_at 1.68248 4.25423 -0.889276
gb:BE674119 CCNT2 cyclin T2
232652_x_at 1.43289 4.20575 -1.33997
gb:AF207829.1 RAZ1 SCAN-related protein RAZ1
226166_x_at 1.43289 4.20575 -1.33997
gb:AU149216 KIAA1278 KIAA1278 protein
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
224787_s_at -1.14794 -5.98942 3.69354
gb:AI333232 RAB18 RAB18, member RAS oncogene family
224377_s_at -1.14794 -5.98942 3.69354
gb:AF274957.1 None PNAS-32
208991_at -1.12408 -6.18497 3.93681

gb:AA634272 STAT3 signal transducer and activator of
transcription 3 Hacute-phase response factorL

210541_s_at -1.37037 -6.18751 3.44677
gb:AF230394.1 None tripartite motif protein TRIM27 beta
215223_s_at -1.32836 -6.20014 3.54342
gb:W46388 SOD2 superoxide dismutase 2, mitochondrial
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
1554375_a_at -1.59955 -7.18522 3.98611
gb:AF478446.1 NR1H4 farnesoid-X-receptor beta splice variant 2
234361_at -2.01425 -8.52923 4.50073

gb:AC005620 None Homo sapiens chromosome 19, cosmid R33590
239043_at -3.97311 -8.63574 0.689522

gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,
Krueppel-related @H.sapiensD

227340_s_at 0.362377 -4.66577 5.39053
gb:AL117590.1 None Homo sapiens mRNA;

cDNA DKFZp434P228 Hfrom clone DKFZp434P228L
207978_s_at 0.949308 -3.01468 4.9133

gb:NM_006981.1 NR4A3 nuclear receptor subfamily 4,
group A, member 3

223650_s_at -0.261895 -5.38941 4.86562
gb:AF267866.1 None hNRBF-2
201130_s_at 1.21496 -2.41524 4.84516
gb:L08599.1 UVO uvomorulin
200776_s_at 0.254236 -4.32905 4.83752
gb:AL518328 KIAA0005 KIAA0005 gene product
216248_s_at 1.16571 -2.48064 4.81205
gb:S77154.1 TINUR None
204622_x_at 1.16571 -2.48064 4.81205

gb:NM_006186.1 NR4A2 nuclear receptor subfamily 4,
group A, member 2

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
211922_s_at 1.35814 -1.92754 4.64381
gb:AY028632.1 CAT catalase
205193_at 0.610199 -3.3539 4.5743

gb:NM_012323.1 MAFF v-maf musculoaponeurotic fibrosarcoma
HavianL oncogene family, protein F

244462_at 0.380642 3.48294 -2.72165
gb:AA811983 None ESTs
227718_at -1.40892 -0.0703075 -2.74754
gb:BF337790 None ESTs, highly similar to B45036 Pur beta @H.sapiensD
242463_x_at -0.952103 0.862884 -2.76709
gb:AI620827 None ESTs, weakly similar to A32891 finger protein 1,

placental @H.sapiensD
225594_at -0.952103 0.862884 -2.76709
gb:AL038866 None Homo sapiens mRNA;

cDNA DKFZp566P1124 Hfrom clone DKFZp566P1124L
227796_at -1.86823 -0.910755 -2.8257

gb:AW157773 None Homo sapiens cDNA FLJ11344 fis,
clone PLACE1010870,
moderately similar to zinc finger protein 91

211721_s_at -2.55532 -2.27466 -2.83599
gb:BC005868.1 None Similar to zinc finger protein 304
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
226037_s_at -2.18038 -1.29873 -3.06202
gb:AL049589 LOC51616 neuronal cell death-related protein
238631_at 0.552748 4.17006 -3.06457

gb:AA490928 None ESTs
1568865_at -0.462844 2.26554 -3.19123

gb:BC035148.1 None Homo sapiens, clone IMAGE:5264828, mRNA
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221427_s_at 2.14857 5.78666 -1.48953
gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso

242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
222999_s_at 2.03408 3.84355 0.224612
gb:AF251294.1 None hCLA-iso
200935_at 1.9719 0.927797 3.016

gb:NM_004343.2 CALR calreticulin precursor
203752_s_at 1.94041 4.16704 -0.28622

gb:NM_005354.2 JUND jun D proto-oncogene
1566901_at 1.87135 3.80376 -0.0610645

gb:AL832409.1 None Homo sapiens mRNA;
cDNA DKFZp667F2113
Hfrom clone DKFZp667F2113L

204753_s_at 1.85264 2.12814 1.57713
gb:AI810712 HLF hepatic leukemia factor
215032_at 1.75512 3.79062 -0.280379

gb:AK022442.1 None Homo sapiens cDNA FLJ12380 fis,
clone MAMMA1002556

204937_s_at 1.72693 3.88217 -0.428303
gb:NM_016325.1 ZNF274 KRAB zinc finger protein HFB101L

219195_at 1.69302 -0.676152 4.06218
gb:NM_013261.1 PPARGC1 peroxisome proliferative activated receptor

gamma, coactivator 1
225935_at -2.88534 -3.58043 -2.19025
gb:AI350995 None ESTs
205522_at -3.01448 -4.23534 -1.79362

gb:NM_014621.1 HOXD4 homeo box D4
206613_s_at -3.03219 -4.6906 -1.37378

gb:NM_005681.1 TAF1A TATA box binding protein HTBPL-associatedfactor,
RNA polymerase I, A, 48kD

219990_at -3.08847 -4.4771 -1.69983
gb:NM_024680.1 FLJ23311 hypothetical protein FLJ23311

221884_at -3.29527 -4.32838 -2.26216
gb:BE466525 None Homo sapiens cDNA: FLJ22281 fis,

clone HRC03849,
highly similar to S69002 human mRNA for AML1-EVI-1

235355_at -3.38656 -5.92359 -0.849537
gb:AL037998 None ESTs
201292_at -3.55369 -5.36767 -1.73972
gb:AL561834 TOP2A topoisomerase HDNAL II alpha H170kDL
209153_s_at -3.5649 -4.67937 -2.45043
gb:M31523.1 TCF3 None
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

239043_at -3.97311 -8.63574 0.689522
gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,

Krueppel-related @H.sapiensD
221427_s_at 2.14857 5.78666 -1.48953

gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso
242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
242438_at 1.56291 4.67727 -1.55145
gb:AI819150 None ESTs
231806_s_at 1.35598 4.57285 -1.86088
gb:AL133630.1 DKFZp434N0223 hypothetical protein
208012_x_at 1.60648 4.38909 -1.17613

gb:NM_004509.1 IFI41 interferon-induced protein 41, 30kD
239193_at 1.68248 4.25423 -0.889276
gb:BF060981 None ESTs
213743_at 1.68248 4.25423 -0.889276
gb:BE674119 CCNT2 cyclin T2
232652_x_at 1.43289 4.20575 -1.33997
gb:AF207829.1 RAZ1 SCAN-related protein RAZ1
226166_x_at 1.43289 4.20575 -1.33997
gb:AU149216 KIAA1278 KIAA1278 protein
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
224787_s_at -1.14794 -5.98942 3.69354
gb:AI333232 RAB18 RAB18, member RAS oncogene family
224377_s_at -1.14794 -5.98942 3.69354
gb:AF274957.1 None PNAS-32
208991_at -1.12408 -6.18497 3.93681

gb:AA634272 STAT3 signal transducer and activator of
transcription 3 Hacute-phase response factorL

210541_s_at -1.37037 -6.18751 3.44677
gb:AF230394.1 None tripartite motif protein TRIM27 beta
215223_s_at -1.32836 -6.20014 3.54342
gb:W46388 SOD2 superoxide dismutase 2, mitochondrial
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
1554375_a_at -1.59955 -7.18522 3.98611
gb:AF478446.1 NR1H4 farnesoid-X-receptor beta splice variant 2
234361_at -2.01425 -8.52923 4.50073
gb:AC005620 None Homo sapiens chromosome 19, cosmid R33590
239043_at -3.97311 -8.63574 0.689522

gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,
Krueppel-related @H.sapiensD

227340_s_at 0.362377 -4.66577 5.39053
gb:AL117590.1 None Homo sapiens mRNA;

cDNA DKFZp434P228 Hfrom clone DKFZp434P228L
207978_s_at 0.949308 -3.01468 4.9133

gb:NM_006981.1 NR4A3 nuclear receptor subfamily 4,
group A, member 3

223650_s_at -0.261895 -5.38941 4.86562
gb:AF267866.1 None hNRBF-2
201130_s_at 1.21496 -2.41524 4.84516
gb:L08599.1 UVO uvomorulin
200776_s_at 0.254236 -4.32905 4.83752
gb:AL518328 KIAA0005 KIAA0005 gene product
216248_s_at 1.16571 -2.48064 4.81205
gb:S77154.1 TINUR None
204622_x_at 1.16571 -2.48064 4.81205

gb:NM_006186.1 NR4A2 nuclear receptor subfamily 4,
group A, member 2

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
211922_s_at 1.35814 -1.92754 4.64381
gb:AY028632.1 CAT catalase
205193_at 0.610199 -3.3539 4.5743

gb:NM_012323.1 MAFF v-maf musculoaponeurotic fibrosarcoma
HavianL oncogene family, protein F

244462_at 0.380642 3.48294 -2.72165
gb:AA811983 None ESTs
227718_at -1.40892 -0.0703075 -2.74754
gb:BF337790 None ESTs, highly similar to B45036 Pur beta @H.sapiensD
242463_x_at -0.952103 0.862884 -2.76709
gb:AI620827 None ESTs, weakly similar to A32891 finger protein 1,

placental @H.sapiensD
225594_at -0.952103 0.862884 -2.76709
gb:AL038866 None Homo sapiens mRNA;

cDNA DKFZp566P1124 Hfrom clone DKFZp566P1124L
227796_at -1.86823 -0.910755 -2.8257

gb:AW157773 None Homo sapiens cDNA FLJ11344 fis,
clone PLACE1010870,
moderately similar to zinc finger protein 91

211721_s_at -2.55532 -2.27466 -2.83599
gb:BC005868.1 None Similar to zinc finger protein 304
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
226037_s_at -2.18038 -1.29873 -3.06202
gb:AL049589 LOC51616 neuronal cell death-related protein
238631_at 0.552748 4.17006 -3.06457

gb:AA490928 None ESTs
1568865_at -0.462844 2.26554 -3.19123

gb:BC035148.1 None Homo sapiens, clone IMAGE:5264828, mRNA
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221427_s_at 2.14857 5.78666 -1.48953
gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso

242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
222999_s_at 2.03408 3.84355 0.224612
gb:AF251294.1 None hCLA-iso
200935_at 1.9719 0.927797 3.016

gb:NM_004343.2 CALR calreticulin precursor
203752_s_at 1.94041 4.16704 -0.28622

gb:NM_005354.2 JUND jun D proto-oncogene
1566901_at 1.87135 3.80376 -0.0610645

gb:AL832409.1 None Homo sapiens mRNA;
cDNA DKFZp667F2113
Hfrom clone DKFZp667F2113L

204753_s_at 1.85264 2.12814 1.57713
gb:AI810712 HLF hepatic leukemia factor
215032_at 1.75512 3.79062 -0.280379

gb:AK022442.1 None Homo sapiens cDNA FLJ12380 fis,
clone MAMMA1002556

204937_s_at 1.72693 3.88217 -0.428303
gb:NM_016325.1 ZNF274 KRAB zinc finger protein HFB101L

219195_at 1.69302 -0.676152 4.06218
gb:NM_013261.1 PPARGC1 peroxisome proliferative activated receptor

gamma, coactivator 1
225935_at -2.88534 -3.58043 -2.19025
gb:AI350995 None ESTs
205522_at -3.01448 -4.23534 -1.79362

gb:NM_014621.1 HOXD4 homeo box D4
206613_s_at -3.03219 -4.6906 -1.37378

gb:NM_005681.1 TAF1A TATA box binding protein HTBPL-associatedfactor,
RNA polymerase I, A, 48kD

219990_at -3.08847 -4.4771 -1.69983
gb:NM_024680.1 FLJ23311 hypothetical protein FLJ23311

221884_at -3.29527 -4.32838 -2.26216
gb:BE466525 None Homo sapiens cDNA: FLJ22281 fis,

clone HRC03849,
highly similar to S69002 human mRNA for AML1-EVI-1

235355_at -3.38656 -5.92359 -0.849537
gb:AL037998 None ESTs
201292_at -3.55369 -5.36767 -1.73972
gb:AL561834 TOP2A topoisomerase HDNAL II alpha H170kDL
209153_s_at -3.5649 -4.67937 -2.45043
gb:M31523.1 TCF3 None
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

239043_at -3.97311 -8.63574 0.689522
gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,

Krueppel-related @H.sapiensD
221427_s_at 2.14857 5.78666 -1.48953

gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso
242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
242438_at 1.56291 4.67727 -1.55145
gb:AI819150 None ESTs
231806_s_at 1.35598 4.57285 -1.86088
gb:AL133630.1 DKFZp434N0223 hypothetical protein
208012_x_at 1.60648 4.38909 -1.17613

gb:NM_004509.1 IFI41 interferon-induced protein 41, 30kD
239193_at 1.68248 4.25423 -0.889276
gb:BF060981 None ESTs
213743_at 1.68248 4.25423 -0.889276
gb:BE674119 CCNT2 cyclin T2
232652_x_at 1.43289 4.20575 -1.33997
gb:AF207829.1 RAZ1 SCAN-related protein RAZ1
226166_x_at 1.43289 4.20575 -1.33997
gb:AU149216 KIAA1278 KIAA1278 protein
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
224787_s_at -1.14794 -5.98942 3.69354
gb:AI333232 RAB18 RAB18, member RAS oncogene family
224377_s_at -1.14794 -5.98942 3.69354
gb:AF274957.1 None PNAS-32
208991_at -1.12408 -6.18497 3.93681

gb:AA634272 STAT3 signal transducer and activator of
transcription 3 Hacute-phase response factorL

210541_s_at -1.37037 -6.18751 3.44677
gb:AF230394.1 None tripartite motif protein TRIM27 beta
215223_s_at -1.32836 -6.20014 3.54342
gb:W46388 SOD2 superoxide dismutase 2, mitochondrial
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
1554375_a_at -1.59955 -7.18522 3.98611
gb:AF478446.1 NR1H4 farnesoid-X-receptor beta splice variant 2
234361_at -2.01425 -8.52923 4.50073
gb:AC005620 None Homo sapiens chromosome 19, cosmid R33590
239043_at -3.97311 -8.63574 0.689522

gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,
Krueppel-related @H.sapiensD

227340_s_at 0.362377 -4.66577 5.39053
gb:AL117590.1 None Homo sapiens mRNA;

cDNA DKFZp434P228 Hfrom clone DKFZp434P228L
207978_s_at 0.949308 -3.01468 4.9133

gb:NM_006981.1 NR4A3 nuclear receptor subfamily 4,
group A, member 3

223650_s_at -0.261895 -5.38941 4.86562
gb:AF267866.1 None hNRBF-2
201130_s_at 1.21496 -2.41524 4.84516
gb:L08599.1 UVO uvomorulin
200776_s_at 0.254236 -4.32905 4.83752
gb:AL518328 KIAA0005 KIAA0005 gene product
216248_s_at 1.16571 -2.48064 4.81205
gb:S77154.1 TINUR None
204622_x_at 1.16571 -2.48064 4.81205

gb:NM_006186.1 NR4A2 nuclear receptor subfamily 4,
group A, member 2

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
211922_s_at 1.35814 -1.92754 4.64381
gb:AY028632.1 CAT catalase
205193_at 0.610199 -3.3539 4.5743

gb:NM_012323.1 MAFF v-maf musculoaponeurotic fibrosarcoma
HavianL oncogene family, protein F

244462_at 0.380642 3.48294 -2.72165
gb:AA811983 None ESTs
227718_at -1.40892 -0.0703075 -2.74754
gb:BF337790 None ESTs, highly similar to B45036 Pur beta @H.sapiensD
242463_x_at -0.952103 0.862884 -2.76709
gb:AI620827 None ESTs, weakly similar to A32891 finger protein 1,

placental @H.sapiensD
225594_at -0.952103 0.862884 -2.76709
gb:AL038866 None Homo sapiens mRNA;

cDNA DKFZp566P1124 Hfrom clone DKFZp566P1124L
227796_at -1.86823 -0.910755 -2.8257

gb:AW157773 None Homo sapiens cDNA FLJ11344 fis,
clone PLACE1010870,
moderately similar to zinc finger protein 91

211721_s_at -2.55532 -2.27466 -2.83599
gb:BC005868.1 None Similar to zinc finger protein 304
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
226037_s_at -2.18038 -1.29873 -3.06202
gb:AL049589 LOC51616 neuronal cell death-related protein
238631_at 0.552748 4.17006 -3.06457

gb:AA490928 None ESTs
1568865_at -0.462844 2.26554 -3.19123

gb:BC035148.1 None Homo sapiens, clone IMAGE:5264828, mRNA
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221427_s_at 2.14857 5.78666 -1.48953
gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso

242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
222999_s_at 2.03408 3.84355 0.224612
gb:AF251294.1 None hCLA-iso
200935_at 1.9719 0.927797 3.016

gb:NM_004343.2 CALR calreticulin precursor
203752_s_at 1.94041 4.16704 -0.28622

gb:NM_005354.2 JUND jun D proto-oncogene
1566901_at 1.87135 3.80376 -0.0610645

gb:AL832409.1 None Homo sapiens mRNA;
cDNA DKFZp667F2113
Hfrom clone DKFZp667F2113L

204753_s_at 1.85264 2.12814 1.57713
gb:AI810712 HLF hepatic leukemia factor
215032_at 1.75512 3.79062 -0.280379

gb:AK022442.1 None Homo sapiens cDNA FLJ12380 fis,
clone MAMMA1002556

204937_s_at 1.72693 3.88217 -0.428303
gb:NM_016325.1 ZNF274 KRAB zinc finger protein HFB101L

219195_at 1.69302 -0.676152 4.06218
gb:NM_013261.1 PPARGC1 peroxisome proliferative activated receptor

gamma, coactivator 1
225935_at -2.88534 -3.58043 -2.19025
gb:AI350995 None ESTs
205522_at -3.01448 -4.23534 -1.79362

gb:NM_014621.1 HOXD4 homeo box D4
206613_s_at -3.03219 -4.6906 -1.37378

gb:NM_005681.1 TAF1A TATA box binding protein HTBPL-associatedfactor,
RNA polymerase I, A, 48kD

219990_at -3.08847 -4.4771 -1.69983
gb:NM_024680.1 FLJ23311 hypothetical protein FLJ23311

221884_at -3.29527 -4.32838 -2.26216
gb:BE466525 None Homo sapiens cDNA: FLJ22281 fis,

clone HRC03849,
highly similar to S69002 human mRNA for AML1-EVI-1

235355_at -3.38656 -5.92359 -0.849537
gb:AL037998 None ESTs
201292_at -3.55369 -5.36767 -1.73972
gb:AL561834 TOP2A topoisomerase HDNAL II alpha H170kDL
209153_s_at -3.5649 -4.67937 -2.45043
gb:M31523.1 TCF3 None
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

239043_at -3.97311 -8.63574 0.689522
gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,

Krueppel-related @H.sapiensD
221427_s_at 2.14857 5.78666 -1.48953

gb:NM_030937.1 HCLA-ISO hypothetical protein hCLA-iso
242297_at 2.06738 5.37004 -1.23529
gb:BF904033 None ESTs
242438_at 1.56291 4.67727 -1.55145
gb:AI819150 None ESTs
231806_s_at 1.35598 4.57285 -1.86088
gb:AL133630.1 DKFZp434N0223 hypothetical protein
208012_x_at 1.60648 4.38909 -1.17613

gb:NM_004509.1 IFI41 interferon-induced protein 41, 30kD
239193_at 1.68248 4.25423 -0.889276
gb:BF060981 None ESTs
213743_at 1.68248 4.25423 -0.889276
gb:BE674119 CCNT2 cyclin T2
232652_x_at 1.43289 4.20575 -1.33997
gb:AF207829.1 RAZ1 SCAN-related protein RAZ1
226166_x_at 1.43289 4.20575 -1.33997
gb:AU149216 KIAA1278 KIAA1278 protein
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
224787_s_at -1.14794 -5.98942 3.69354
gb:AI333232 RAB18 RAB18, member RAS oncogene family
224377_s_at -1.14794 -5.98942 3.69354
gb:AF274957.1 None PNAS-32
208991_at -1.12408 -6.18497 3.93681

gb:AA634272 STAT3 signal transducer and activator of
transcription 3 Hacute-phase response factorL

210541_s_at -1.37037 -6.18751 3.44677
gb:AF230394.1 None tripartite motif protein TRIM27 beta
215223_s_at -1.32836 -6.20014 3.54342
gb:W46388 SOD2 superoxide dismutase 2, mitochondrial
233446_at -3.72081 -6.24142 -1.20021

gb:AU145336 None Homo sapiens cDNA FLJ11655 fis,
clone HEMBA1004554

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
1554375_a_at -1.59955 -7.18522 3.98611
gb:AF478446.1 NR1H4 farnesoid-X-receptor beta splice variant 2
234361_at -2.01425 -8.52923 4.50073
gb:AC005620 None Homo sapiens chromosome 19, cosmid R33590
239043_at -3.97311 -8.63574 0.689522

gb:AA084273 None ESTs, weakly similar to S47072 finger protein HZF10,
Krueppel-related @H.sapiensD

227340_s_at 0.362377 -4.66577 5.39053
gb:AL117590.1 None Homo sapiens mRNA;

cDNA DKFZp434P228 Hfrom clone DKFZp434P228L
207978_s_at 0.949308 -3.01468 4.9133

gb:NM_006981.1 NR4A3 nuclear receptor subfamily 4,
group A, member 3

223650_s_at -0.261895 -5.38941 4.86562
gb:AF267866.1 None hNRBF-2
201130_s_at 1.21496 -2.41524 4.84516
gb:L08599.1 UVO uvomorulin
200776_s_at 0.254236 -4.32905 4.83752
gb:AL518328 KIAA0005 KIAA0005 gene product
216248_s_at 1.16571 -2.48064 4.81205
gb:S77154.1 TINUR None
204622_x_at 1.16571 -2.48064 4.81205

gb:NM_006186.1 NR4A2 nuclear receptor subfamily 4,
group A, member 2

207001_x_at -0.846111 -6.42241 4.73019
gb:NM_004089.1 DSIPI delta sleep inducing peptide, immunoreactor
211922_s_at 1.35814 -1.92754 4.64381
gb:AY028632.1 CAT catalase
205193_at 0.610199 -3.3539 4.5743

gb:NM_012323.1 MAFF v-maf musculoaponeurotic fibrosarcoma
HavianL oncogene family, protein F

244462_at 0.380642 3.48294 -2.72165
gb:AA811983 None ESTs
227718_at -1.40892 -0.0703075 -2.74754
gb:BF337790 None ESTs, highly similar to B45036 Pur beta @H.sapiensD
242463_x_at -0.952103 0.862884 -2.76709
gb:AI620827 None ESTs, weakly similar to A32891 finger protein 1,

placental @H.sapiensD
225594_at -0.952103 0.862884 -2.76709
gb:AL038866 None Homo sapiens mRNA;

cDNA DKFZp566P1124 Hfrom clone DKFZp566P1124L
227796_at -1.86823 -0.910755 -2.8257

gb:AW157773 None Homo sapiens cDNA FLJ11344 fis,
clone PLACE1010870,
moderately similar to zinc finger protein 91

211721_s_at -2.55532 -2.27466 -2.83599
gb:BC005868.1 None Similar to zinc finger protein 304
239738_at 0.638527 4.18173 -2.90467

gb:AW780006 None ESTs
226037_s_at -2.18038 -1.29873 -3.06202
gb:AL049589 LOC51616 neuronal cell death-related protein
238631_at 0.552748 4.17006 -3.06457

gb:AA490928 None ESTs
1568865_at -0.462844 2.26554 -3.19123

What  information  is  revealed  in  this  list?  First,  let  us  obtain  a  list  of  the  unique  entries
present in this list (a handful of entries may be prioritized by RIF4 and RIF5 metrics simul-
taneously, thus showing up more than once).

optemp5 = Union@optemp1D;

Do any of the results contain entries that have been linked to cirrhotic or tumorous livers
in the scientific literature? Any entry that has a gene name associated with it may have in-
formation that can be investigated further.

optemp6 = Select@optemp5, Ò@@6DD =!= None &D@@All, 6DD

8NR1H4, KIAA0005, CALR, UVO, TOP2A, JUND, NR4A2, HLF,
ZNF274, MAFF, HOXD4, TAF1A, DSIPI, NR4A3, IFI41, STAT3,
TCF3, CAT, CCNT2, SOD2, TINUR, PPARGC1, FLJ23311,
HCLA-ISO, RAB18, LOC51616, KIAA1278, DKFZp434N0223, RAZ1<

Length@optemp6D

29

RIFA  produces  a  list  of  29  unique  gene  names  that  can  be  searched  for  in  PubMed
(www.ncbi.nlm.nih.gov/pubmed). Performing a literature search for these genes in associa-
tion with liver disease search terms produces the results described in Table 1.

NR1H4
@13, 14D

CALR
@15D

UVO
@16D

TOP2A
@17, 18, 19D

JUND
@20, 21D

NR4A2
@22D

HLF
@23D

ZNF274
@24D

MAFF
@25D

HOXD4
@26D

DSIPI
@27D

NR4A3
@28D

STAT3
@29D

TCF3
@30D

CAT
@31D

CCNT2
@32D

SOD2
@33D

TINUR
@34D

PPARGC1
@35D

HCLA-ISO
@36D

RAB18
@37D

Ú Table 1. Results of a PubMed literature search using the names of the genes above in combina-
tion with one or more of the following search terms: “liver cancer,” liver cirrhosis,” “cancer.” Cita-
tions listed represent a small sampling of the total hits typically discovered.

Twenty-one of  the  29 RIFA output  entries  with  a  gene name associated with  them yield
compelling connections between each gene and the disease phenotype search terms “liver
cirrhosis,” “liver cancer,” and “cancer,” suggesting that RIFA is enriching for genes driv-
ing the phenotypic changes observed between cirrhotic and tumorous liver tissue.
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Twenty-one of  the  29 RIFA output  entries  with  a  gene name associated with  them yield
compelling connections between each gene and the disease phenotype search terms “liver
cirrhosis,” “liver cancer,” and “cancer,” suggesting that RIFA is enriching for genes driv-
ing the phenotypic changes observed between cirrhotic and tumorous liver tissue.
The  remaining  eight  out  of  29  genes  do  not  show  evidence  in  the  scientific  literature
linking  them to  these  disease  phenotypes.  Explanations  for  this  abound,  but  it  is  impos-
sible  to  rule  out  the  possibility  that  these  genes  are,  in  fact,  linked to  the  disease pheno-
types but have not yet been characterized by the scientific community. It is simply impos-
sible to conclude if those eight genes are or are not linked to the disease phenotypes at this
time. The same conclusion must also be admitted for the other 25 RIFA output entries that
have no gene name associated with them. In other words, RIFA has identified 25 potential
new  “boss”  genes  associated  with  the  cirrhotic  to  tumor  transition  in  liver  tissue.  These
may represent valuable new avenues of research. 

‡ RIFA Performance
To gauge the  performance of  RIFA,  several  publicly  available  datasets  of  different  sizes
and  complexity  were  analyzed.  The  first  column  of  Table  2  shows  the  series  accession
number for each dataset available at NCBI’s Gene Expression Omnibus. Timings were ac-
quired running Mathematica 9.0.1 under Windows 7 (64 bit) using an Intel Core i5-2500K
processor  overclocked  to  4.48Ghz.  Total  system  memory  is  32GB.  All  reported  timings
use a fresh kernel.
Table  2  reveals  that  small  datasets  can  easily  be  processed  in  under  one  minute,  while
very  large  datasets,  involving  thousands  of  transcription  regulators,  differentially  ex-
pressed  genes,  and  multiple  time  points  can  take  upwards  of  30  minutes.  RIFA’s  code
base utilizes functions with the Listable attribute whenever possible to increase speed,
which places demands on the computer’s memory infrastructure, as evidenced by the size-
able memory consumption measured with large datasets. 

Series accession
number

Time
HsecL

Number of
transcription
regulators

Number of
differentially
expressed genes

Number of
time points
per condition

Max
memory
used HbytesL

GSE14739 19.4 354 2411 4 456369816
GSE7032 21.5 1595 1113 2 522299688
GSE8536 94.4 766 6685 6 3561336832
GSE17548 1391 6685 8830 6 40899150240
GSE4183 1883 6685 7777 8 47534803296

Ú Table 2. Performance timings of RIFA using five different, publicly available datasets.
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‡ Conclusion
Changes in gene expression are at the core of what distinguishes healthy tissue from dis-
eased  tissue.  Part  of  unraveling  the  mystery  behind  disease  centers  on  identifying  those
genes most directly responsible for controlling the differences in gene expression that link
those differences to disease traits. RIFA’s implementation brings to the Mathematica user
community a compelling algorithm used by biomedical researchers to intelligently priori-
tize the thousands of genes present in an organism and tie their behavior to specific traits
of interest.
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