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On the Maximal Orbit 
Transfer Problem
Marian Mureşan

Assume that a spacecraft is in a circular orbit and consider the 
problem of finding the largest possible circular orbit to which the 
spacecraft can be transferred with constant thrust during a set time, 
so that the variable parameter is the thrust-direction angle β. Also 
assume that there is only one center of attraction at the common 
center of the two circular orbits. Finally, assume normalized values 
for all constants and variables.

This article is divided into five sections: the orbit transfer problem, 
equations of motion, the optimal control problem, necessary 
conditions for the Mayer problem, and a dynamic approach to the 
maximal orbit transfer problem using Mathematica’s built-in 
Manipulate function.

The Earth-Mars orbit transfer problem is timely, given the successful 
flight and smooth landing of the American Curiosity rover on Mars.

■ The Orbit Transfer Problem
For the orbit transfer problem, assume that:

 There is a unique center of attraction.

 Initially  the  spacecraft  moves  in  a  circular  trajectory  around  the  center  of
attraction.

 The spacecraft moves with a constant thrust from a rocket engine operating in the
time interval [0, b].

 The  spacecraft  moves  to  the  largest  possible  circular  orbit  around  the  center  of
attraction.

 The orbit transfer trajectory is coplanar with the two circular orbits and the center
of attraction.

All these assumptions are stated in [1, p. 66]. Here is a sketch of a solution to the problem
with  some  notation.  The  blue  curve  is  the  orbital  transfer  trajectory,  while  the  red  and
green curves are the initial lower circular orbit and the final upper circular orbit.
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Module[
{f, P, Q},
f = BezierFunction[{{3, 0}, {3.3, 1.6}, {1, 5},

{-−2.3, 4.5}, {4.5 Cos[5 Pi /∕ 6], 4.5 Sin[5 Pi /∕ 6]}}];
P = f[0.5];
Q = P[[2]] (P[[2]] -− 3.75) /∕ P[[1]] + P[[1]];
Show[
Graphics[{

{Red, Circle[{0, 0}, 3, {0, 3 Pi /∕ 4}]},
{Green, Circle[{0, 0}, 4.5, {Pi /∕ 6, 5 Pi /∕ 6}]},
Arrowheads[.023],
Arrow[{P + 0.4 {Cos[ Pi /∕ 4 -− 0.13], Sin[ Pi /∕ 4 -− 0.13]},

P + 0.4 {Cos[ Pi /∕ 4 -− 0.135], Sin[ Pi /∕ 4 -− 0.135]}}],
Arrow[{0.55 {Cos[ Pi /∕ 3 + 0.31], Sin[ Pi /∕ 3 + 0.31]},

0.55 {Cos[ Pi /∕ 3 + 0.32], Sin[ Pi /∕ 3 + 0.32]}}],
Arrow[{{0, 0}, {3, 0}}],
Arrow[{{0, 0 }, P}],
Arrow[{{0, 0}, 4.5 {Cos[5 Pi /∕ 6], Sin[5 Pi /∕ 6]}}],
Arrow[{{P[[2]] (P[[2]] -− 3.538) /∕ P[[1]] + P[[1]], 3.538},

{Q, 3.75}}],
Arrow[{{Q, 3.75}, {Q, 3.75} + 0.12 P}],
Arrow[{P, {Q, 3.75} + 0.12 P}],
{Red, Arrow[{P, P + {0.8, .65}}]},
PointSize[0.012], Point[{3, 0}],
Point[{4.5 Cos[5 Pi /∕ 6], 4.5 Sin[5 Pi /∕ 6]}],
Point[P],
Circle[P, 0.4, {Pi -− 0.15, Pi /∕ 4 -− .14}],
Circle[{0, 0}, 0.55, {0, Pi /∕ 3 + 0.32}],
Text[Style[Row[{Style["r", Italic], "(0)"}], 12],
{3.45, 0.0}],

Text[
Style[Row[{Style["r", Italic], "(", Style["b", Italic],

")"}], 12], 4.85 { Cos[5 Pi /∕ 6], Sin[5 Pi /∕ 6]}],
Text[Style["v", Italic, 12], P + {-−0.65, -−.12}],
Text[Style["u", Italic, 12], P + {-−1.4, 0.49}],
Text[Style["T", Italic, Red, 12], P + {0.55, 0.63}],
Text[Style["β", 12], P + {-−0.1, 0.55}],
Text[Style["θ", 12], f[0.25] /∕ 4 ],
Text[Style["center of attraction", Italic, 12],
{0.0, -−0.3}],

Text[Style["spacecraft", Italic, 12], P + {.85, 0.1}],
Text[
Style[Row[{Style["r", Italic], "(", Style["t", Italic],

")"}], 12], P /∕ 2 + {0.4, 0}],
Text[Style["initial\norbit", Italic, 12], {2.1, 1}],
Text[Style["final\norbit", Italic, 12], {3.3, 2.3}],
{Red, Disk[{0, 0}, 0.06]}

}],
ParametricPlot[f[x], {x, 0, 1},
PlotStyle -−> {Blue, Thickness → 0.005}],

ImageSize → {500, 300}
]

]
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The notation from [1, pp. 66–68], [2], or [3] is:

 t is time in the given interval [0, b], which is called the horizon.

 r(t)  is  the  radial  distance  from  the  center  of  attraction  to  the  spacecraft;  r(t)  in-
creases as fuel is burned; r(0) = r0 is the initial distance; r(b) is the final and maxi-
mal distance.

 θ(t)  is  the polar angle,  measured counterclockwise from the straight line connect-
ing the center of attraction with the position of the spacecraft at t = 0.

 u(t) is the radial velocity component.

 v(t) is the tangential velocity component.

 β(t) is the thrust-direction angle; it is the control variable.

 m0  is  the  initial  mass  of  the  spacecraft  with  propellant  included;  m0 -−m ' t  is  the
time-dependent  mass,  which  decreases  due  to  the  constant  fuel  consumption  rate
m ' > 0.

 T is the thrust, also assumed to be constant.

 μ is the gravitational constant.
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■ Equations of Motion
The equations of motion of the spacecraft consistent with the above assumptions, accord-
ing to [1, p. 67] and [2], are 

r ' (t) = u(t), (1)

u ' (t) =
v2(t)
r(t)

-−
μ

r2(t)
+

T sin β(t)
m0 -−m ' t

, (2)

v ' (t) = -−
u(t) v(t)

r(t)
+

T cos β(t)
m0 -−m ' t

, (3)

θ ' (t) =
v(t)
r(t)

. (4)

The associated boundary conditions are

r(0) = r0, (5)
u(0) = 0, (6)

v(0) =
μ

r0
, (7)

θ(0) = 0, (8)
u(b) = 0, (9)

v(b) =
μ

r(b)
. (10)

The system of nonlinear differential  equations (1)  to (4)  with the boundary value condi-
tions (5) to (10), the control function β, and the maximizing condition

max r(b) (11)
form the  optimal  control  problem to  be  solved,  assuming that  the  state  functions  r,  u,  v,
and θ and the control function β are sufficiently smooth. Conditions (6), (7), (9), and (10)
guarantee that the trajectory of the spacecraft is tangent to the two circular orbits.

■ The Optimal Control Problem
The goal is to maximize r(b), the radius of the orbit transfer at the endpoint in time, so the
cost functional is determined by

Λ[r, u, v, θ, β] = r(b). (12)
Thus the horizon is [0, b] with b > 0. This is a Mayer optimal control problem (see Ch. 4
in [4]).
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Since  the  differential  equations  (1)  to  (4)  with  conditions  (5)  to  (10)  and  the  cost  func-
tional (12) are not time dependent,  the optimal control problem is equivalent to either of
the following two problems:

 differential  equations  (1)  to  (4)  with  conditions  (5)  to  (10),  a  given  r(b),  and  b
finite and arbitrary, with optimality condition to minimize b

 differential  equations (1) to (4) with conditions (5) to (10),  a given r(b),  with the
optimality condition to minimize the fuel consumption ∫0

b(m0 -−m ' t) dt

Theorem 1

Under the hypotheses of Filippov’s theorem (theorem 9.2.i of [4]), the optimal con-
trol problem (1) to (4) with conditions (5) to (10) and the maximizing functional (11) and
(12) has an absolute maximum in the nonempty set Ω of admissible pairs. 

■ Necessary Conditions for a Mayer Problem
For brevity, here is an abbreviated version of theorem 4.2.i in [4]: Let the Mayer problem
be expressed as

Λ[x, u] = g (a, x (a), b, x(b)) (cost functional), (13)
dx
dt

= f(t, x(t), u(t)), t ∈ [a, b],

almost everywhere (a.e.) (differential constraint),
(14)

e[x] = (a, x(a), b, x(b)) ∈ B ⊂ ℝ1+n+1+n (boundary conditions),
(t, x(t)) ∈ A, t ∈ [a, b] (time and state constraint),

u(t) ∈ U(t), t ∈ [a, b] (control constraint).

A  pair  (x(t), u(t)),  a ≤ t ≤ b,  is  said  to  be  admissible  (or  feasible)  provided  that
x : [a, b] → ℝn  is absolutely continuous [5], u : [a, b] → ℝp  is measurable, and x and u sat-
isfy (14) a.e. Let Ω be the class of admissible pairs (x, u). The goal is to find the minimum
of  the  cost  functional  (13)  over  Ω,  that  is,  to  find  an  element  (x*⋆, u*⋆) ∈ Ω  so  that
-−∞ < Λ[x*⋆, u*⋆] ≤ Λ[x, u]  for  all  (x, u) ∈ Ω.  Introduce  the  variables  λ = (λ1, …, λn),
called multipliers,  and an auxiliary function H(t, x, u, λ),  called the Hamiltonian,  defined
on T×U ×ℝn by

H(t, x, u, λ) = 
i=1

n
λi fi(t, x, u). (15)

Define

M(t, x, λ) = inf
u∈U(t)

H(t, x, u, λ).

Further necessary assumptions:

1. There  exists  an  element  (x*⋆, u*⋆) ∈ Ω  such  that  -−∞ < Λ[x*⋆, u*⋆] ≤ Λ[x, u]  for  all
(x, u) ∈ Ω.

2. A is closed in ℝ1+n.
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3. The set S = {(t, x, u) (t, x) ∈ A, u ∈ U(t)} is closed in ℝ1+n+p.

4. f ∈ C1(S, ℝ).
5. Notation:

fit =
∂ fi
∂t , fixj =

∂ fi
∂xj

, Hxj =
∂H
∂xj

= ∑i=1
n λi fixj , Ht =

∂H
∂t = ∑i=1

n λi fit, Hλj =
∂H
∂λj

= fj.

6. The graph {(t, x*⋆(t)) a ≤ t ≤ b}  of the optimal trajectory x*⋆  belongs to the interior
of A.

7. U does not depend on time and is a closed set.

8. The endpoint e(x*⋆) = (a, x*⋆(a), b, x*⋆(b)) of the optimal trajectory x*⋆  is a point of B,
where B has a tangent variety B ' (of some dimension δ, 0 ≤ δ ≤ 2 n+ 2) whose vec-
tors are denoted by

h = (a, ξ1, b, ξ2), ξ1 = ξ1
1, …, ξ1

n, ξ2 = ξ2
1, …, ξ2

n,

or by

h = (da, dx1, db, dx2), dx1 = dξ1
1, …, dξ1

n, dx2 = dξ2
1, …, dξ2

n.

Theorem 2

Assume the above eight hypotheses and let (x*⋆, u*⋆) be an optimal pair for the Mayer
problem  (13)  and  (14).  Then  the  optimal  pair  (x*⋆, u*⋆)  necessarily  has  the  following
properties:
(a) There exists an absolutely continuous function λ (t) = (λ1(t), …, λn(t)) such that

dλi

dt
= -−Hxi(t, x*⋆(t), u*⋆(t), λ(t)), i = 1, …, n, t ∈ [a, b] (a.e.).

If dg is not identically zero at e[x*⋆], then λ (t) is never zero in [a, b].

(b) For almost any fixed t∈ [a, b] (a.e.), the Hamiltonian, as a function depending only on
u,  takes  its  minimum  value  in  U  at  the  optimal  strategy  u*⋆ = u*⋆(t).  This  implies
M(t, x*⋆(t), λ (t)) =H(t, x*⋆(t), u*⋆(t), λ (t)), t∈ [a, b] (a.e).
(c) The function M (t) =M(t, x*⋆(t), λ(t)) coincides a.e. in [a, b] with an absolutely continu-
ous function, and

dM
dt

=
d
dt

M(t, x*⋆(t), λ(t)) = Ht(t, x*⋆(t), u*⋆(t), λ(t)), t ∈ [a, b] (a.e.).

(d) (transversality relation) There exists a constant λ0 ⩾ 0  such that

(λ0 ga -−M(a)) da+
i=1

n
λ0 gx1

i + λi(a) dx1
i +

(λ0 gb +M(b)) db+
i=1

n
λ0 gx2

i -− λi(b) dxi
2 = 0,

(16)

for every vector h = (da, dx1, db, dx2) ∈ B '.
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From (15) and (a) of theorem 2, the Hamiltonian and the equations for the multipliers for
(1) to (4) are

H = λ1 u(t) + λ2
v2(t)
r(t)

-−
μ

r2(t)
+

T sin β(t)
m0 -−m ' t

+

λ3 -−
u(t) v(t)

r(t)
+

T cos β(t)
m0 -−m ' t

+ λ4
v(t)
r(t)

,
(17)

λ1 ' (t) = -−
∂H
∂r

= -−λ2(t) -−
v2(t)

r2(t)
+

2 μ

r3(t)
-− λ3(t)

u(t) v(t)

r2(t)
-− λ4(t) -−

v(t)

r2(t)
, (18)

λ2 ' (t) = -−
∂H
∂u

= -−λ1(t) + λ3(t)
v(t)
r(t)

, (19)

λ3 ' (t) = -−
∂H
∂v

= -−λ2(t)
2 v(t)
r(t)

+ λ3(t)
u(t)
r(t)

-− λ4(t)
1

r(t)
, (20)

λ4 ' (t) = 0. (21)
From (21) and (18), λ4 ≡ 0 and thus (17) to (20) become 

H = λ1 u(t) + λ2
v2(t)
r(t)

-−
μ

r2(t)
+

T sin β(t)
m0 -−m ' t

+ λ3 -−
u(t) v(t)

r(t)
+

T cos β(t)
m0 -−m ' t

,

λ1 ' (t) = -−λ2(t) -−
v2(t)

r2(t)
+

2 μ

r3(t)
-− λ3(t)

u(t) v(t)

r2(t)
, (22)

λ2 ' (t) = -−λ1(t) + λ3(t)
v(t)
r(t)

, (23)

λ3 ' (t) = -−λ2(t)
2 v(t)
r(t)

+ λ3(t)
u(t)
r(t)

. (24)

Furthermore, from (b) in theorem 2, 

0 =
∂H
∂ β

=
T

m0 -−m ' t
(λ2(t) cos β(t) -− λ1(t) sin β(t)) ⟹ β(t) = arctan

λ2(t)
λ3(t)

.

Thus the control function β is determined by the multipliers λ2 and λ3. 

Based on (4), note that the polar angle θ is determined by v and r.

From the transversality relation (d) in theorem 2 (i.e. equation (16)), 

λ1(b) = 1. (25)
This  yields  a  system  of  six  nonlinear  differential  equations  (1),  (2),  (3),  (22),  (23),  and
(24) in the variables r,  u,  v,  λ1,  λ2,  and λ3  with six bilocal  conditions (5),  (6),  (7),  (9),
(10), and (25). 
As mentioned earlier, the variables β and θ follow. 

The next section implements a dynamical approach to the maximal orbit transfer problem.
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■ A Dynamic Approach to the Maximal Orbit Transfer 
Problem
The  function  MaximalRadiusOrbitTransfer  dynamically  shows  the  maximal  ra-
dius orbit transfer between two coplanar circular orbits so that their centers are located at
a single center of attraction. Here thrust is the constant thrust of the engine, dmr is the
decreasing mass rate due to the constant propellant flow rate, b is the final time, m0 is the
initial mass of the spacecraft including the propellant, μ is the gravitational constant, r0 is
the initial radius, u0 is the initial radial velocity, ub is the final radial velocity, v0 is the
initial tangential velocity, and k is the number of thrust vectors.
Clearly the problem is nonlinear and, to the author’s knowledge, no closed-form solution
has  been  found.  The  possibility  of  obtaining  a  solution  through  a  numerical  method
remains, as implied by theorem 1. The accuracy of the results depends sensitively on the
initial  values.  The Method  option is  needed for Mathematica  9 or lower;  for faster pro-
cessing, remove it in Mathematica 10 or higher.

MaximalRadiusOrbitTransfer[thrust_, dmr_, b_, r0_, μ_,
m0_, u0_, ub_, k_] :=

Module[{v0, t, r, u, v, λr, λv, λu, sol, R, V, θ, θmax},
(*⋆ data for the flight *⋆)
v0 = Sqrt[μ /∕ r0]; (*⋆ initial tangential velocity;
tangent to the inner circle *⋆)
sol = NDSolve[{ (*⋆ solution of the problem *⋆)

r'[t] ⩵ u[t],
u'[t] ⩵ v[t]^2 /∕ r[t] -− μ /∕ r[t]^2 +

thrust /∕ (m0 -− dmr t) λu[t] /∕ Sqrt[λu[t]^2 + λv[t]^2],
v'[t] ⩵ -−((u[t] v[t]) /∕ r[t]) +

thrust /∕ (m0 -− dmr t) λv[t] /∕ Sqrt[λu[t]^2 + λv[t]^2],
λr'[t] ⩵ λu[t] (v[t]^2 /∕ r[t]^2 -− 2.0 μ /∕ r[t]^3) -−

λv[t] (u[t] v[t]) /∕ r[t]^2,
λu'[t] ⩵ -−λr[t] + λv[t] v[t] /∕ r[t],
λv'[t] ⩵ -−2.0 λu[t] v[t] /∕ r[t] + λv[t] u[t] /∕ r[t],
r[0] ⩵ r0,
u[0] ⩵ u0,
v[0] ⩵ v0,
λr[b] ⩵ 1.0,
u[b] ⩵ ub,
v[b] ⩵ Sqrt[μ /∕ r[b]]},

{r, u, v, λr, λu, λv}, {t, 0, b},
Method → {"Shooting", "StartingInitialConditions" →

{r[0] ⩵ r0, u[0] ⩵ u0, v[0] ⩵ v0, λr[0] ⩵ 1.0,
λu[0] ⩵ -−0.5, λv[0] ⩵ 0.0}}];

R[t_] = Evaluate[r[t] /∕. sol][[1]];
V[t_] = Evaluate[v[t] /∕. sol][[1]];
(*⋆ the orbit transfer figure *⋆)
θ[time_] :=
NIntegrate[
Interpolation[Table[{n b /∕ k, V[n b /∕ k] /∕ R[n b /∕ k]},

{n, 0, k}], InterpolationOrder -−> 1][t],
{t, 0, time}];

θmax = 180 θ[b] /∕ N[Pi];
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Show[
Graphics[{

Text[Style[Row[{"final radius = ", R[b]}], 12],
{0, .36 r0}],

Text[
Style[Row[{"final θ = ", Superscript[θmax, "∘"]}],
12], {0, .19 r0}],

{EdgeForm[Thin], Red, Disk[{0, 0}, 0.04]},
{Red, Circle[{0, 0}, r0, {0, 2 Pi}]},
{Green, Circle[{0, 0}, R[b], {0, 2 Pi}]},
{Red, Arrowheads[0.02],
Arrow[Table[{R[n b /∕ k] {Cos[θ[n b /∕ k]], Sin[θ[n b /∕ k]]},

R[n b /∕ k] {Cos[θ[n b /∕ k]], Sin[θ[n b /∕ k]]} +
thrust {Sin[θ[n b /∕ k]], Cos[θ[n b /∕ k]]}},

{n, 0, k}]]}
}],

ListLinePlot[
Table[R[n b /∕ k] {Cos[θ[n b /∕ k]], Sin[θ[n b /∕ k]]},
{n, 0, k}], PlotStyle → {Blue, Thick}],

Axes → False, PlotRange → All, ImageSize → {400, 400},
AxesOrigin → {0, 0}]

]

Manipulate[
Quiet@MaximalRadiusOrbitTransfer[thrust, dmr, b, 1.0,

1.0, 1.0, 0.0, 0.0, k],
{{thrust, 0.1405}, 0.14, 0.15, 0.0001,
Appearance → "Labeled"},

{{dmr, 0.07485, "decreasing mass rate"}, 0.07, 0.08,
0.001, Appearance → "Labeled"},

{{b, 3.317291, "final time interval"}, 3.2, 3.5, 0.01,
Appearance → "Labeled"},

{{k, 20, "number of thrust arrows"}, 15, 50, 1,
Appearance → "Labeled"},

SaveDefinitions → True, TrackedSymbols → {thrust, dmr, b, k},
SynchronousUpdating → False

]
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thrust 0.1456

decreasing mass rate 0.07485

final time interval 3.31729

number of thrust arrows 20

final radius = 1.54228

final θ = 141.512 ∘

A similar picture can be found on the front cover and on pages 1–2 of [6].
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