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This article presents new symbolic solutions for the problem of 
pore elasticity and pore pressure. These techniques are based 
on the classic theoretical approach proposed by M. A. Biot [1]. 
The new symbolic solutions differ from the well-known 
approximations of the functions proposed for the 2D pore 
elasticity problem. Both new symbolic and numerical solutions 
are then applied to solve problems arising in offshore design 
technology, specifically dealing with the penetration of a gravity-
based rig installed in the Arctic region of the North Sea of 
Russia. All symbolic approaches are based on solutions of the 
linear problem of the pore elasticity for homogeneous soil. The 
new symbolic solutions are compared with Biot’s solutions.

■ Introduction
The main purpose of this article is to derive new symbolic solutions for the classic prob-
lem  of  pore  elasticity  set  up  in  [1].  Approximate  solutions  proposed  by  Biot  have  been
widely  used  to  solve  various  linear  initial-boundary  problems  involving  pore  elasticity.
But more accurate solutions of the problem are still of interest.
In offshore technology, a practical example deals with the penetration of huge oil rigs into
the soil of the sea bed. Such cases are usually based on solutions given by the linear the-
ory of pore elasticity.
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■ 1. Setting Up the Problem
First, consider Biot’s problem for a rectangular load on homogeneous soil [1].

In  the  three-dimensional  case,  the  depth  of  penetration  of  a  rigid  body  into  soil  may  be
found by solving the equations
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(1)

where u,  v,  w  are the components of the displacements of the saturated soil  in the x,  y,  z
directions and 

ϵ =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

(2)

is the divergence of the displacements of the soil. The initial and boundary conditions will
be given later.
The other variables are:

- p, the pore pressure

- G, the shear modulus of the rigid skeleton of the saturated soil

- ν, the Poisson coefficient of the rigid skeleton of the soil

- c = k /∕ a, the coefficient of consolidation

- k, the coefficient of permeability

- a = (1-− 2 ν) /∕ (2 G (1-− ν)), the final compressibility

As usual, define the Laplace operator:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3)

Consider an infinite half-space (e.g. clay) bounded by the horizontal x-y plane, and let the
z axis be directed vertically downward.
The vertical deflection of the horizontal plane is to be found when a vertical load acts on
the  rectangular  plane  at  time  t = 0;  the  rectangular  load  is  distributed  in  the  strip
-−1 /∕ 2 ≤ x ≤ 1 /∕ 2 on the surface.
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Assume that  water  saturates  the clay and may be freely filtered by the neighboring half-
area, and that the water pressure on the x-y surface equals atmospheric pressure.
Then the original problem becomes two dimensional, with v (x, y, z, t) = 0. The equations
in (1) become
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∇2 ϵ =
1
c
∂ϵ

∂ t
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(4)

Taking  the  Laplace  transform  and  noting  that  ϵ(x, z) t=0 = 0  changes  the  third  equation,
giving the system
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1-− 2 ν
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∂p
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c
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(5)

where S is a Laplace-transformed parameter.

■ 2. Boundary Conditions
The boundary conditions for the 2D case (reduced for the full symmetric geometry of the
body) of the pore elasticity are:
1. The displacements and pore pressure are 0 as z → ∞:

u(x, ∞) = w(x, ∞) = p(x, ∞) = 0. (6)

2. The pore pressure at the surface is

p(x, 0) = 0. (7)

3. The skeleton stress σz,z at the surface is equal to the external load given by

σz,z = 2 μ
∂w
∂z

+
μ

1-− 2 ν
ϵ

z=0
= -−A sin(λ x). (8)

4. The shear stress at the surface is 0:

σx,z = G
∂w
∂x

+
∂u
∂z z=0

= 0. (9)
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■ 3. Symbolic Solutions

□ 3.1. Operators

First, clear any old values of x and z.

Clear[x, z]

Define three operators and three equations.

L[Ψ_] :=
∂2Ψ

∂x2
+

∂2Ψ

∂z2

div[U_, W_] :=
∂U
∂x

+
∂W
∂z

ϵ(x_, z_) = div[u(x, z), w(x, z)];

eq1 = G L[u(x, z)] +
G

1 -− 2 ν

∂ϵ(x, z)
∂x

-−
∂p(x, z)

∂x
⩵ 0;

eq2 = G L[w(x, z)] +
G

1 -− 2 ν

∂ϵ(x, z)
∂z

-−
∂p(x, z)

∂z
⩵ 0;

eq3 = L[ϵ(x, z)] ⩵
S
c
ϵ(x, z);

□ 3.2. General Solutions

Consider general solutions of the system of equations (5) in the form of functions with sep-
arated variables.

u(x_, z_) = ϕ(z) Cos(λ x);
w(x_, z_) = ψ(z) Sin(λ x);
p(x_, z_) = ξ(z) Sin(λ x);

Then (5) is transformed into the following system of ODEs.

(λ -− 2 λ ν) ξ(z) -−G 2 λ2 (ν -− 1) ϕ(z) + λ ψ′(z) + (1-− 2 ν) ϕ′′(z) ; 0,
G λ2 (1-− 2 ν) ψ(z) +G (λ ϕ′(z) + 2 (ν -− 1) ψ′′(z)) + (1-− 2 ν) ξ′(z) ; 0,

λ3 ϕ(z) -− λ2 ψ′(z) -− λ ϕ′′(z) + ψ(3)(z) ;
S (ψ′(z) -− λ ϕ(z))

c
.

(10)

This determines the general solutions of (10).

sol = DSolve[FullSimplify[{eq1, eq2, eq3}], {ϕ(z), ψ(z), ξ(z)}, z] /∕/∕ Flatten /∕/∕
Expand;
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Short[sol, 15] /∕/∕ Simplify

ξ(z) →
1
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-−

1

c λ2 + S
2 c ⅇ
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c
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2 c >1?-−λ c >1?+ S c2 +>4? λ2

c λ2 + S
+
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+

1
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ⅇ-−z λ (S (G (2 ν -− 1) (2 λ c2 -− c3 -− λ c4) + z λ (>1?)) + 2 >4?(>1?)) ,

ψ(z) →
1
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ⅇ
-−z λ+
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c S ((z λ -− 1) (2 ν -− 1) c1 +
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2 c5) -− 2 (λ (ν c2 -− 2 ν c4 + c4) + (ν -− 1) c5))) -−

2 c G λ (2 ν -− 1) c2 λ2 -− (c3 + c5) λ + c6 
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This allows us to define the three previously unknown functions.

ξ(z_) = ξ(z) /∕. sol;
ϕ(z_) = ϕ(z) /∕. sol;
ψ(z_) = ψ(z) /∕. sol;

New forms of the symbolic solutions are presented in section 3.3.

□ 3.3. Partial Solutions for a Rectangular Load on the Plane

The symbolic solutions derived in section 3.2 may be combined in the function f(x).

f(z) = A1 e-−λ z + A2 ⅇλ z + A3 e
-− z c λ2+S

c + A4 e
z c λ2+S

c .
(11)

To satisfy the boundary condition (6), the coefficients A2 and A4 in (11) must be zero.

Here is a linear system for the unknown coefficients {c1, c2, …, c6} in sol.

system =

Thread

Simplify

Flatten

CoefficientCollectξ(z) /∕/∕ Expand, ⅇ-−λ z, ⅇλ z, ⅇ
z c λ2+S

c , ⅇ
-−
z c λ2+S

c ,

ⅇλ z, ⅇ
z c λ2+S

c ,

CoefficientCollectψ(z) /∕/∕ Expand, ⅇ-−λ z, ⅇλ z, ⅇ
z c λ2+S

c , ⅇ
-−
z c λ2+S

c ,

ⅇλ z, ⅇ
z c λ2+S

c ,

CoefficientCollectϕ(z) /∕/∕ Expand, ⅇ-−λ z, ⅇλ z, ⅇ
z c λ2+S

c , ⅇ
-−
z c λ2+S

c ,

ⅇλ z, ⅇ
z c λ2+S

c  ⩵ {0, 0, 0, 0, 0, 0}


G (λ (2 c2 (ν -− 1) -− 2 c4 ν + c4) + c3 (2 ν -− 1) -− 2 c5 (ν -− 1)) + c1 (2 ν -− 1)

4 ν -− 2
; 0,

,
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-−
G (ν -− 1) c c3 λ + c2 λ c λ2 + S -− c5 c λ2 + S -− c c6

(2 ν -− 1) c λ2 + S
; 0,

1
4 G λ (2 ν -− 1) S

2 c G λ (2 ν -− 1) c2 λ2 + (c3 -− c5) λ -− c6 +

S (G (2 (λ ((c2 + 2 c4) ν -− c4) + c5 (ν -− 1)) + λ z (λ (2 c2 (ν -− 1) -− 2 c4 ν + c4) +
c3 (2 ν -− 1) -− 2 c5 (ν -− 1))) + c1 (2 ν -− 1) (λ z -− 1)) ; 0,

c (c6 -− c3 λ) + c (c5 -− c2 λ) c λ2 + S

2 S
; 0,

1
4 G λ (2 ν -− 1) S

2 c G λ (2 ν -− 1) c2 λ2 + (c3 -− c5) λ -− c6 +
S (G (2 ν -− 1) ((2 c2 + c4) λ + c3) + λ z (G (λ (2 c2 (ν -− 1) -− 2 c4 ν + c4) +

c3 (2 ν -− 1) -− 2 c5 (ν -− 1)) + c1 (2 ν -− 1))) ;

0, -−

c λ λ c c3

c λ2+S
+ c2 -− c c6

c λ2+S
-− c5

2 S
; 0

This finds solutions for three of the coefficients.

solution = Solve[system, {c1, c2, c4}] /∕/∕ Flatten /∕/∕ FullSimplify

c1 → 2 G c3/∕2 λ2 (2 ν -− 1) (c3 λ -− c6) -− c λ (2 ν -− 1) (c3 λ -− c6) c λ2 + S -−

(c3 + c5) (2 ν -− 1) S c λ2 + S + c (3 ν -− 2) S (c3 λ -− c6) 

(2 ν -− 1) S c λ2 + S , c2 →
c (c6 -− c3 λ) + c5 c λ2 + S

λ c λ2 + S
,

c4 →
2 c (c3 λ -− c6) c λ2 + S -− c λ -− (c3 + 2 c5) S

λ S
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We can express the functions in a different form using {c1, c2, c4}.

ξ(z) /∕. solution /∕/∕ FullSimplify

-−
1

(2 ν -− 1) S c λ2 + S

2 G ⅇ
-−z c λ2+S

c
+λ

-−c3/∕2 λ2 (2 ν -− 1) (c3 λ -− c6) ⅇ
z c λ2+S

c + c λ (2 ν -− 1) (c3 λ -− c6)

c λ2 + S ⅇ
z c λ2+S

c + (c3 + c5) (2 ν -− 1) S c λ2 + S ⅇ
z c λ2+S

c +

c S (c3 λ -− c6) (1 -− 2 ν) ⅇ
z c λ2+S

c -− (ν -− 1) ⅇλ z

u(x, z) /∕. solution /∕/∕ FullSimplify

1

λ S c λ2 + S
cos(λ x) ⅇ

-−z c λ2+S

c
+λ

c3/∕2 λ2 (c3 λ -− c6) ⅇλ z -− (λ z + 1) ⅇ
z c λ2+S

c + c λ2 z (c3 λ -− c6) c λ2 + S ⅇ
z c λ2+S

c +

S c λ2 + S ((c3 + c5) λ z + c5) ⅇ
z c λ2+S

c -− c S (c3 λ -− c6) (λ z + 1) ⅇ
z c λ2+S

c

p(x, z) /∕. solution /∕/∕ FullSimplify

-−
1

(2 ν -− 1) S c λ2 + S

2 G sin(λ x) ⅇ
-−z c λ2+S

c
+λ

-−c3/∕2 λ2 (2 ν -− 1) (c3 λ -− c6) ⅇ
z c λ2+S

c + c λ (2 ν -− 1)

(c3 λ -− c6) c λ2 + S ⅇ
z c λ2+S

c + (c3 + c5) (2 ν -− 1) S c λ2 + S ⅇ
z c λ2+S

c +

c S (c3 λ -− c6) (1 -− 2 ν) ⅇ
z c λ2+S

c -− (ν -− 1) ⅇλ z
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The  other  three  unknown  constants  {c3, c5, c6}  are  found  from  the  boundary  conditions
(7), (8), and (9). These conditions lead to three linear equations.

beq1 = (p(x, 0) /∕. solution) ⩵ 0 /∕/∕ FullSimplify

G sin(λ x) -−c3/∕2 λ2 (2 ν -− 1) (c3 λ -− c6) +

c λ (2 ν -− 1) (c3 λ -− c6) c λ2 + S + (c3 + c5) (2 ν -− 1) S c λ2 + S -−

c (3 ν -− 2) S (c3 λ -− c6)  (2 ν -− 1) S c λ2 + S ; 0

beq2 = 2G
∂(w(x, z) /∕. solution)

∂z
+

ν

1 -− 2 ν
ϵ(x, z) /∕. solution == -−A Sin(λ x) /∕.

z → 0 /∕/∕ FullSimplify

sin(λ x) A -−
2 G c ν (c3 λ -− c6) + c5 (1 -− 2 ν) c λ2 + S

(2 ν -− 1) c λ2 + S
; 0

beq3 =
∂(w(x, z) /∕. solution)

∂x
+

∂(u(x, z) /∕. solution)
∂z

== 0 /∕. z → 0 /∕/∕ FullSimplify

c (c3 λ -− c6) c λ -− c λ2 + S + c5 S cos(λ x)

S
; 0

Finally, here is the system of linear equations.

boundaryConditionSystem = {beq1, beq2, beq3};

It leads to the general solutions for all the coefficients of the problem of pore elasticity.

constantSol = Solve[boundaryConditionSystem, {c3, c5, c6}] /∕/∕ Flatten;
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■ 4. New Symbolic Solution for Pore Elasticity Problem
Following [1], we introduce a transformed solution for the vertical deflection of the plane.

W(x) = w(x, 0) /∕. solution /∕. constantSol /∕/∕ Apart /∕/∕ Simplify

-−
A (ν -− 1) sin(λ x) c λ (2 ν -− 1) c λ + c λ2 + S + (ν -− 1) S

2 G λ c λ2 (2 ν -− 1) -− (ν -− 1)2 S

This gives the time dependence of the vertical displacement of the saturated soil.

solInverse = InverseLaplaceTransformW(x) S-−1, S, t /∕/∕ Simplify

-−
1

2 G λ
A ⅇ-−c λ2 t sin(λ x) -−ν ⅇ

c λ2 ν2 t

(ν-−1)2 erf
c λ ν t

ν -− 1
+

(ν -− 1) ⅇc λ2 t erf c λ t  -− ν ⅇ
c λ2 ν2 t

(ν-−1)2 + ν ⅇc λ2 t -− ⅇc λ2 t

This is the formula for the initial distribution at the surface.

solInverseInitial = solInverse /∕. t → 0

A sin(λ x)

2 G λ

Based on [1], here is the general vertical deflection for the horizontal level of the soil.

ws[x_, t_] = (solInverse -− solInverseInitial) /∕/∕ Simplify

-−
1

2 G λ
A ⅇ-−c λ2 t sin(λ x)

ν -−ⅇ
c λ2 ν2 t

(ν-−1)2 erf
c λ ν t

ν -− 1
-− ⅇ

c λ2 ν2 t

(ν-−1)2 + ⅇc λ2 t + (ν -− 1) ⅇc λ2 t erf c λ t 
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Finally, a new symbolic solution for a rectangular load acting on the plane (with zero Pois-
son coefficient) is derived by integrating.

wS = p0 /∕ π Integrateλ-−1 ws[x, t] /∕. ν → 0, {λ, 0, Infinity}

ConditionalExpression

A p0

π c t x erf IxJ

2 c t

IxJ
+ 1

2
x Γ0, x2

4 c t


2 π G
, x ∈ℝ Re c t  > 0

The result is a new symbolic form for problem [1].

w(x, t) =

A p0

π c t IxJ erf IxJ

2 c t

x + 1
2 x Γ0, x2

4 c t 

2 π G
.

(12)

Originally in [1] the approximate symbolic solution was given by:

f(ξ) =
1

4 π
ξ Log1+

4
π ξ2

 +
1
π

ArcTan
π ξ

2
 +

1

2 π

ξ

3.24+ ξ2
;

ws(x, t) = 2 a p0
c t
π

f
x+ l /∕ 2

c t
-− f

x-− l /∕ 2

c t
.

(13)

This is the new function for practical solutions based on the exact solution derived above.

ws[x_, t_] = wS[[1]]

A p0

π c t x erf IxJ

2 c t

IxJ
+ 1

2
x Γ0, x2

4 c t


2 π G

Here  is  the  displacement  of  the  horizontal  level  of  the  porous  space  under  a  rectangular
load.

ws(x+ l /∕ 2, t)

A p0

π c t 
l
2
+x erf

l

2
+x

2 c t


l
2
+x

+ 1
2
 l

2
+ x Γ 0,


l
2
+x

2

4 c t

2 π G
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■ 5. Penetration of the Gravity Rig
Let us consider an application of the new symbolic solution of the pore elasticity problem
obtained above to the study of the penetration of the gravity rig into the sea bed. The plat-
form Prirazlomnaya has  a  mass  of  250,000 tons  and its  bottom measures  126 m× 126 m
(see [2]). We also define the parameters of the clay soil and sediment.

a =
1 -− 2 ν

2G (1 -− ν)
;

c =
k
a

;

k =
K
μ

;

G =
Y

2 (1 + ν)
;

data1 = Y → 75 × 106, ν → 0.31, μ → 1.7 × 10-−3, K → 1.73 × 10-−10, l → 126,

p0 → -−
250 000 000 × 9.81

1262
, A → 1 /∕ 2;

This is the average pressure of the rig on the surface of the sediment.

p0 =
M g
A

=
250 000 000 × 9.81

1262
= 154.5 kPа. (14)

Here is a plot of the rectangular load.

Plot[(3 + (2 (UnitStep[x+ 126 /∕ 2] -− UnitStep[x-− 126 /∕ 2]))) .03, {x, -−200, 200},
PlotRange → All, Filling → Axis,
AxesLabel → {"distance [m]", "pressure [MPa]"}, ImageSize → 350]
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This  plots  the  family  of  vertical  displacements  of  the  rig  penetrated  into  clay  and  sedi-
ment. 

Plot[Evaluate[Table[((ws(x+ l /∕ 2, t) -− ws(x-− l /∕ 2, t))) /∕. data1,
{t, 3600, 3600 × 24 × 14, 3600 × 24 × 2}]], {x, -−140, 140}, Frame → True,

GridLines → Automatic,
FrameLabel → {"distance [m]", "penetration [m]", "full penetration platform",

"duration of the installation is two weeks"}]

■ 6. Complex Loads Acting on the Gravity Rig
For a complex load acting on the rig, the general penetration is the sum of each of the com-
ponent penetrations.

Wcomplex load =
1

2 π G
(A1 p0,1 B(l1) + A2 p0,2 B(l2)),

B(l) = π c t
 l

2 + x
l
2 + x

erf
 l

2 + x

2 c t
+

1
2

l
2
+ x Γ 0,

 l
2 + x2

4 ct
,

(15)

where  l1  and  l2  are  the  sizes  of  the  mechanical  components  and  living  quarters  of  the
platform.
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Here is a plot of the loads on the platform from the housing and mechanical blocks.

Plot[(3 + (2 (UnitStep[x+ 126 /∕ 2] -− UnitStep[x+ 126 /∕ 3]) +
(UnitStep[x+ 126 /∕ 3] -− UnitStep[x-− 126 /∕ 2]))) .04, {x, -−200, 200},

PlotRange → All, Filling → Axis,
AxesLabel → {"distance [m]", "pressure [MPa]"}, ImageSize → 350]

Let  the  production  unit  have  length  30  meters  and  suppose  the  distributed  load  is
p0,1 = 1.95 p0.

data2 = Y → 75 × 106, ν → 0.31, μ → 1.7 × 10-−3, K → 1.73 × 10-−10, l → 30,

p0 → -−1.95
250 000 000 × 9.81

1262
, A → 1 /∕ 2;

This shows the penetration of the platform on the sediment due to the production unit over
a two-week period.

Plot[Evaluate[Table[((ws((x+ 126 /∕ 2) + l /∕ 2, t) -− ws((x+ 126 /∕ 2) -− l /∕ 2, t))) /∕. data2,
{t, 3600, 3600 × 24 × 14, 3600 × 24 × 2}]], {x, -−140, 140}, Frame → True,

GridLines → Automatic, FrameLabel → {"distance [m]", "penetration [m]"}]
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This shows the penetration of the platform, taking into account the nonuniform load distri-
bution on the sediment, where l is the side length of the square of the bottom of the rig in
(15).

Plot[
Evaluate[

Table[(((ws((x+ 126 /∕ 2) + l /∕ 2, t) -− ws((x+ 126 /∕ 2) -− l /∕ 2, t))) /∕. data2) +
(((ws(x+ l /∕ 2, t) -− ws(x-− l /∕ 2, t))) /∕. data1),

{t, 3600, 3600 × 24 × 14, 3600 × 24 × 2}]], {x, -−140, 140}, Frame → True,
GridLines → Automatic, FrameLabel → {"distance [m]", "penetration [m]"}]

▲ Figure 1. Here is a photo of the rig Prirazlomnaya.
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■ 7. Symbolic Solution for Porous Pressure
Since  [1]  does  not  take  account  of  porous  pressure,  here  is  a  new symbolic  solution  for
this case, substituting 0 for ν.

s(x_, z_) = Simplify[PowerExpand[p(x, z) /∕. solution /∕. constantSol /∕. ν → 0]]

A μ S sin(λ x) -−2 λ3 K3/∕2 Y3/∕2 + μ3/∕2 S
λ2 K Y

μ
+ S +

2 λ2 K μ Y
λ2 K Y

μ
+ S -− 2 λ K μ S Y ⅇ

-−z λ+
μ

λ2 K Y

μ
+S

K Y

ⅇ

μ z
λ2 K Y

μ
+S

K Y -− ⅇλ z  μ
λ2 K Y

μ
+ S -− λ K Y

-−λ K μ Y
λ2 K Y

μ
+ S + λ2 K Y + μ S

2

□ 7.1. Approximate Solution for Pressure

Following [1], here is an approximate symbolic solution for the pressure.

pr = Series[s[x, z], {z, 0, 2}] /∕/∕ Normal /∕/∕ PowerExpand /∕/∕ FullSimplify

-−
A μ S z sin(λ x) z λ2 K Y + μ S + K Y (λ z -− 2)

2 K Y λ2 K Y + μ S
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The explicit form of the pore pressure function is computed by taking the inverse Laplace
transform.

pressureSolution = InverseLaplaceTransformpr S-−1, S, t

-−

A μ z sin(λ x) z δ(t) + K Y (λ z-−2) ⅇ-−
λ2 K t Y

μ

π μ t

2 K Y

So  this  is  a  new  symbolic  solution  for  the  porous  pressure  for  a  rectangular  load  at  the
surface.

pw[x_, t_] =
p0 /∕ π Integrateλ-−1 pressureSolution, {λ, 0, Infinity} /∕/∕ PowerExpand /∕/∕ Simplify

ConditionalExpression
1
π

p0
1

4 K t Y
2 π A K μ t Y z erf

μ x

2 K t Y
-−

A μ z2 ⅇ-−
μ x2

4 K t Y erfi
μ x

2 K t Y
-−
π A μ z2 δ(t)

4 K Y
, Re

K t Y

μ
> 0

□ 7.2. Porous Pressure in the Soil

This  section  shows how the  pore  pressure  changes  with  time and  depth  of  the  soil  layer
near the horizon.

data3 = Y → .75 × 106, ν → 0.21, μ → 1.7 × 10-−3, K → 1.73 × 10-−10,

l → 126, p0 → -−
250 000 000 × 9.81

1262
, A → 1 /∕ 2;
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This determines the distribution function of pore pressure 1.5 meters below the bottom of
the gravity platform.

PlotEvaluateTable10-−3 ((pw(x+ l /∕ 2, t) -− pw(x-− l /∕ 2, t))) /∕. data3 /∕. z → 1.5,
{t, 10, 3600 × 24 × 14, 3600 × 24 × 2}, {x, -−160, 160}, AxesOrigin → {0, 0},

PlotRange → All, Frame → True, GridLines → Automatic,
FrameLabel → {"distance [m]", "pressure [kPa]"}

This  shows  the  family  of  porous  pressure  distributions  at  the  bottom  of  the  gravity
platform.

PlotEvaluateTable10-−3 ((pw(x+ l /∕ 2, t) -− pw(x-− l /∕ 2, t))) /∕. data3 /∕. t → 10 600,
{z, 1, 36, 2}, {x, -−160, 160}, AxesOrigin → {0, 0}, PlotRange → All,

Frame → True, GridLines → Automatic,
FrameLabel → {"distance [m]", "pressure [kPa]"}

Obviously, the pore pressure is the load-bearing frame factor, which restrains the platform
to the surface of the ground.
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■ Conclusion
In  this  article,  new symbolic  solutions  for  the  penetration  of  a  gravity  platform into  soil
and  a  determination  of  the  porous  pressure  in  the  saturated  soil  are  found  by  computer
algebra  techniques.  These  solutions  improve  upon  earlier  solutions  obtained  by  M.  Biot
and give us new possibilities to apply symbolic computer applications to diverse problems
in pore elasticity theory.
Both  symbolic  solutions  are  applicable  to  the  design  of  offshore  gravity  structures  in-
stalled in shallow water.
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