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New Symbolic Solutions of
Biot’s 2D Pore Elasticity
Problem
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Denis P. Gontarev

This article presents new symbolic solutions for the problem of
pore elasticity and pore pressure. These techniques are based
on the classic theoretical approach proposed by M. A. Biot [1].
The new symbolic solutions differ from the well-known
approximations of the functions proposed for the 2D pore
elasticity problem. Both new symbolic and numerical solutions
are then applied to solve problems arising in offshore design
technology, specifically dealing with the penetration of a gravity-
based rig installed in the Arctic region of the North Sea of
Russia. All symbolic approaches are based on solutions of the
linear problem of the pore elasticity for homogeneous soil. The
new symbolic solutions are compared with Biot’s solutions.

Introduction

The main purpose of this article is to derive new symbolic solutions for the classic prob-
lem of pore elasticity set up in [1]. Approximate solutions proposed by Biot have been
widely used to solve various linear initial-boundary problems involving pore elasticity.
But more accurate solutions of the problem are still of interest.

In offshore technology, a practical example deals with the penetration of huge oil rigs into
the soil of the sea bed. Such cases are usually based on solutions given by the linear the-
ory of pore elasticity.

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



Alexander N. Papusha and Denis P. Gontarev

B 1. Setting Up the Problem

First, consider Biot’s problem for a rectangular load on homogeneous soil [1].

In the three-dimensional case, the depth of penetration of a rigid body into soil may be
found by solving the equations

G 0e 0
GViu+ ———p::O,
1-2v dx Ox
G oJ0e 0
GV2V+1 ) [j__(')_p:_ .
-2v
G 6ye ay O
GViw+ A - ,
1-2v 0z 0z
1 Je
Vie=— —,
c Ot

where u, v, w are the components of the displacements of the saturated soil in the x, y, z
directions and
ou Jdv Ow

€= —+ —+

— 2
ox dy 0z @)

is the divergence of the displacements of the soil. The initial and boundary conditions will
be given later.
The other variables are:

e p, the pore pressure

e G, the shear modulus of the rigid skeleton of the saturated soil

e v, the Poisson coefficient of the rigid skeleton of the soil

¢ = k/ a, the coefficient of consolidation

k, the coefficient of permeability

a=(1-2v)/(2G(1-v)),the final compressibility

As usual, define the Laplace operator:

L/

= —+ —+—.

ox* 0y* 072
Consider an infinite half-space (e.g. clay) bounded by the horizontal x-y plane, and let the
z axis be directed vertically downward.

V2

3)

The vertical deflection of the horizontal plane is to be found when a vertical load acts on
the rectangular plane at time ¢ = 0; the rectangular load is distributed in the strip
—1/2 < x < 1/2 on the surface.
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Assume that water saturates the clay and may be freely filtered by the neighboring half-
area, and that the water pressure on the x-y surface equals atmospheric pressure.

Then the original problem becomes two dimensional, with v (x, y, z, ) = 0. The equations
in (1) become

G 0e 0
GViu+ ———p== ,
1-2v 0x Ox
G Jde 0
G V2w + A )
1-2v 9z 9z
1 de
Vie= — —.
c Ot

Taking the Laplace transform and noting that €(x, z) =0 = 0 changes the third equation,
giving the system

G o0e 0
GV2u+ A~y
1-2v 0x O0x
G 0e 0
GVw+ A (5)
1-2v 0z 0z
S
Vie= —¢,
C

where § is a Laplace-transformed parameter.

B 2. Boundary Conditions

The boundary conditions for the 2D case (reduced for the full symmetric geometry of the
body) of the pore elasticity are:

1. The displacements and pore pressure are 0 as z — oo:

u(x, 00) = W(x, ) = p(x, 00) = 0. ©6)
2. The pore pressure at the surface is

p(x,0) =0. (M
3. The skeleton stress 07, ; at the surface is equal to the external load given by

ow U .

auzzu(g+ 1_2‘/e)z:()=—Asm(/1x). (8)
4. The shear stress at the surface is 0:

O'X,Z:G(a—wwta—u) =0. 9)

0x 07 )=0
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B 3. Symbolic Solutions

o 3.1. Operators
First, clear any old values of x and z.
Clear][x, 7]

Define three operators and three equations.

’rv oY

Li¥_1:= o5+ 57
ou ow
divf[U_,W_]:i= —+ —
ox 0z

e(x_, z_) = div[u(x, z), w(x, 2)];

G af(x9 2) aP(x, 2)

eql = G Llu(x, 2)] + = 0;
q [u(x, 2)] 1-2v ox ox ’

2 = G Liwx, 3] G Oex,z) Jdp(x,2) 0
€ = + - = 0:
4 VBRI T ez oz :

S
eq3 = L[e(x, 2)] == ;e(x, 2);

o 3.2. General Solutions

Consider general solutions of the system of equations (5) in the form of functions with sep-
arated variables.

u(x_,z_) = ¢(z) Cos(A x);
w(x_, z_) = ¥(z) Sin(A x);
p(x_,z_) = &£(z) Sin(A x);

Then (5) is transformed into the following system of ODEs.

A=2211)ER) -G (222 (v=1) ¢@) + Ay (2) + (1 =2v) ¢"(2)) =0,
G U-2MY@D+GAF@+2(v=DY (@) +(1-2v)€(2) =0, (10)

SWz)-A
N4~ R - 1) + YD) = : )

This determines the general solutions of (10).

sol = DSolve[FullSimplify[{eql, eq2, eq3}], {¢(2), ¥(2), £(z)}, z] // Flatten //
Expand;
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Short[sol, 15] // Simplify

—7

1 A+ VA2 ] 2Nzt Vea2+s ¢
{f(Z)—> e Vo Jle a \/cA2+S
2\c2+s @v-1)
(@v=1e1+G(@v-1) 3 + AR = 1)es—2ves +ca)=2(v— 1) cs) +
2y cA?+s
e © AJel2+S (@v-De+G(-2ves+es+

M_z\/ cA2+S ]
Ve )G

AR =Der+@Qv—1)cs)=2ves+2¢s)—2e

(V—l)(l\/cl2+S +Ve des—AlcA2+S 65—\/6_06)—
2esz(v—1)(M/cA2+s 2=V Aez—+/cA2+S 65+\/c_c6) ,

1 1 <t
(z) > - 2ce Ve

454 VA2 +S
()L\/CA2+S cz+\/c—AC3—VC/12+S 05—\/c_c6)7t2+

2c x> (—/1 Ve<l>+S8 ¢+ <<4>>) A2 <> (<1>) 1
+ +

m G2v-1) GQv-1)

e NS GRY=1D)RAcr—c3—=Acy) +zA(<]>)) +2 <d> (1)) |,

—m] 2Az+—m"'
Vo le o (SA-D@v=-Der +

-z |A+

Ve 4GS1(2v-1) ¢

GAQRv-1Dc3+ AR —-1)co—2ves+cy) -2V —1)cs) +
2A((e2+2c)—ca)+(v=-Des)) +

2¢GAQ2v=1(c2 2 +(c3—cs)A=cg)) =2 Ve <> G2

(2v—1)()t\/c)t2+S C2+\/C—7LC3—VC/\2+S 05—\/c_c6)+

N eiss
<I>+e V¢ (S(A+DQRv-De+
G@A(2vez+ce3+ AR =D +Rv—1)cy)—2ves+
2¢5)—=2(A(vera—=2ves+ceg)+(v—=1)¢cs)) —

20GAQ@Y=1) (2= (e3+ e5) A+ ¢)) |}
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This allows us to define the three previously unknown functions.

£(z_) =€) /. sol;
#(z_) = ¢(2) /. sol;
Y(z_) =y /.sol;

New forms of the symbolic solutions are presented in section 3.3.

o 3.3. Partial Solutions for a Rectangular Load on the Plane

The symbolic solutions derived in section 3.2 may be combined in the function f(x).

I (11)
f(Z)ZAle_AZ+A2€AZ+A3€ Ve +Ase Ve

To satisfy the boundary condition (6), the coefficients A, and A4 in (11) must be zero.
Here is a linear system for the unknown coefficients {c;, ¢;, ..., c¢} in sol.
system =
Thread[
Simplify[
Flatten[

zw[mhs z\’c,\2+S
A4

{Coefﬁcient[Collect[f(z) // Expand, {e‘“, et e Vo e

zﬁc,\hs
{e“,e Ve }],
z,[c/\2+s zw[mhs

Coefﬁcient[Collect[t//(z) // Expand, {e‘“, et e oo e Ao }],

o
!

Coefﬁcient[Collect[¢(z) // Expand, {e‘“, e, e

J)

z " cA2+S Z4 cA2+S
Yy

,e Ve }],

z4f cAZ4S

{w, e V- }]}]] == {0, 0,0, 0, 0, 0}]

{G(/I(ZCZ(V—1)—ZC4V+C4)+C3(2V—1)—2C5(V—1))+c1 2v-1)
4y -2
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G(v—l)(\/C—C37L+cz/\\/C/\2+S —cs \/C?L2+S _\/?Cé)
_ =0,
QRv—-1)4/cA?2+S

1

4GAQ2v-1)S
SGCGRA(c2+2c)v=—c)+cs(V=1D)+AzA Ry (v=1)=2c4 v+cy) +
3Q2v=D=2cs(v=1D)+c; 2v-1D@QAz-1))=0,

clcs—c3N)+ Ve (cs—cad)ycA2+8 —o 1
28 U 4GA2v=-1)S
(2¢GAQRV=1)(c2A* +(c3—c5) A —c6) +
SGRV=1D)(Q2cr+c)A+3) +AZ(GARer (v=1)=2¢c4 v +ca) +
Qv-1)=2cs(v=1)+c; Qv—1))=

ca[a[&mJ— &_CSJ
\/C/\2+S \/C/\ZJrS

0" 28 =0}

(2¢GAQ2Vv=1)(c2 22+ (c3—c5) A —co) +

This finds solutions for three of the coefficients.

solution = Solve[system, {c1, c2, c4}] // Flatten // FullSimplify

{cl—>(2G(c3/2kz(2v—1)(C3/1—06)—C/\(2V—1)(C3?L—c6) cA2+S —
(c3+¢5)2v=1)SJcA2+S +«/c_(3v—2)S(C3A—c6)))/
—c3A Je2+S
((2v—1)S\/c)L2+S),c2—>\/C_(C6 Gshtesyed+
AAfcA?+S
2\/C—(037L—66)(\/C7L2+S —\/c_/\)—(63+2€5)S

AS

)

Cq —
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We can express the functions in a different form using {cy, ¢, c4}.

£(2) /. solution // FullSimplify

1
(2V—1)S\/6‘12+S
_z cA2+8 +7L] z\/c/\2+5
2Ge Ve AP R2v=D(czA=cg)e V¢ +cA2v=1)(czA—cg)
2\/(/\2+S z\/(/l2+S
Vel +S e Vo +(c3+es)Rv—1D)ScA?+S e Vo o+
2y eA2+§

Ve Sezd-co)|d-2v)e V¢ —(-1)e'*

u(x, z) /. solution // FullSimplify

1 -z
cos(Ax) e

ASA/cA2+S

Jo

2y eA?4s 2y eA?4s
AP (3A=ce)|er*=QAz+De Vo [+cA2z(czsd—ce)\cA2+S e V¢ +

z\/c,\zﬁ' z\/c/\2+S
SycA2+S (cs+es)Az+es)e Vo —e Sesd—cg)Az+De V<

p(x, 2) /. solution // FullSimplify
1

QRv-1)S+cA?+S

VeaZss +A) zy cA2+8
Ve AP R2yv-D(zd—ce)e V¢ +cAv-1)

—Z
2Gsin(Ax) e

2y cA2+8 2y cA2+S
(3A—ce)Vel2+S e Vo +(c3+ce5)Rv—-1)SycA2+S e Vo +

Ve Sed-co)ld=-2ve ¢ —wy-1e'*
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The other three unknown constants {c3, cs, ¢} are found from the boundary conditions
(7), (8), and (9). These conditions lead to three linear equations.

beql = (p(x, 0) /. solution) == 0 // FullSimplify

(G sin(A x) (—63/2 A22v—=1D(czA—ce) +

cAQRv-D(c3d—ce) VA2 +S +(c3+¢5)Qv—1)SycA2+S —

\/?(31/—2)5'(03)(—66)))/((21/—l)S\/C/\2+S)=0

d(w(x, 2) /. solution) %
beq2 =2G ( 3 + 1—2 €(x,2) /. solution] == —-ASin(1x) /.
z —-2v

z = 0 // FullSimplify

ZG(\/c_v(03/\—c6)+C5(1—2v) cA2+S)
sin(Ax) |A — =0
Qv—1lcA2+S

d(w(x, 7) /. solution)  J(u(x, z) /. solution)
beq3 = ( + ] == 0 /. z - 0 // FullSimplify
dx a7
(\/c_(q A —cg) (\/c_l— JeAl2+S )+ cs S)cos(/\x)
=0
S

Finally, here is the system of linear equations.
boundaryConditionSystem = {beql, beq2, beq3};
It leads to the general solutions for all the coefficients of the problem of pore elasticity.

constantSol = Solve[boundaryConditionSystem, {c3, cs, c¢}] // Flatten;
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B 4. New Symbolic Solution for Pore Elasticity Problem

Following [1], we introduce a transformed solution for the vertical deflection of the plane.

W(x) = w(x, 0) /. solution /. constantSol // Apart // Simplify

Aw—1mmmm(¢?aav—n(JFA+Jcﬂ+s)+w—ns)

2GA(cX22v-1)-(-175)

This gives the time dependence of the vertical displacement of the saturated soil.

sollnverse = InverseLaplaceTransform[W(x) s, 8, t] // Simplify

221 [\/C_)LV\/t_]+

_ 2 .
Ae VT sin(A x) [—ve o-12 erf]

262 v—1

cA2v2t
(v- l)edz’erf( Ve A \/t_)‘vew—nz +ve”2’—e”‘2’]

This is the formula for the initial distribution at the surface.

solInverselnitial = sollnverse /.t - 0

A sin(A x)
2GA

Based on [1], here is the general vertical deflection for the horizontal level of the soil.

ws[x_, t_] = (sollnverse — solInverselnitial) // Simplify

1
- A e sin(A x)
2GA
cA2y2y \/C—A v \/t— A2y
v [—e -2 erf[—l] —e o1 + ec’lzl] +(v=1) et erf(\/c_/\ \/t—)
v —

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



New Symbolic Solutions of Biot's 2D Pore Elasticity Problem 11

Finally, a new symbolic solution for a rectangular load acting on the plane (with zero Pois-
son coefficient) is derived by integrating.

ws =po/ 7rIntegrate[)t‘1 wslx, ] /.v = 0,{2,0, Inﬁnity}]

ConditionalExpression[

\/ﬂ—\/rx/t_xeff[zﬁf)Jr xF(O 4_)
ct

Apo

x|

,xe[R/\Re(\/c—\/t—)>0]

2nG

The result is a new symbolic form for problem [1].

Vi Ve Nr |x|erf[ ]
2ye 1 X

APO X + XF(O, 4ct) (12)

w(x, t) =
2nG
Originally in [1] the approximate symbolic solution was given by:
4 1

fé) = fLog[l + —] + ArcTan[ \/75] £ ;

Vo &l n 2ym 324+&

(13)

=2 ct (f(x+l/2] f(x—l/2)]

wix, ) =2apy | — - .

' T Vet Vet

This is the new function for practical solutions based on the exact solution derived above.

ws[x_, t_] = ws[[1]]

VNN e

x|

Apo 2ff]+ xF(O —)

2nG

Here is the displacement of the horizontal level of the porous space under a rectangular
load.

ws(x+1/2,0)

\/n_\/c—\/t_(;er)erf[Ji

Apo |

I+‘
zx

2nG
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B 5. Penetration of the Gravity Rig

Let us consider an application of the new symbolic solution of the pore elasticity problem
obtained above to the study of the penetration of the gravity rig into the sea bed. The plat-
form Prirazlomnaya has a mass of 250,000 tons and its bottom measures 126 m X 126 m
(see [2]). We also define the parameters of the clay soil and sediment.

1-2v
T 2G(1-v)
k
c= —;
a
K
k= —;
7
Y
T2+

datal = {Y - 75%105, v > 031, 4 » 1.7x 1073, K » 1.73x 101, 1 - 126,
250 000 000 x 9.81
1262

Po > - A > 1/2);

This is the average pressure of the rig on the surface of the sediment.
Mg 250000000 % 9.81
A 1262

Here is a plot of the rectangular load.

Po = = 154.5 kPa. (14)

Plot[(3 + (2 (UnitStep[x + 126 / 2] — UnitStep[x — 126 / 2]))) .03, {x, —200, 200},
PlotRange — All, Filling - Axis,
AxesLabel — {"distance [m]", "pressure [MPa]"}, ImageSize — 350]

pressure [MPa]
045

0.14 -

0.13 -

0.12

0.11F

0.10 -

- : - : L distance [m]
-200 -100 100 200

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



New Symbolic Solutions of Biot's 2D Pore Elasticity Problem 13

This plots the family of vertical displacements of the rig penetrated into clay and sedi-
ment.

Plot[Evaluate[Table[((ws(x + /2, ¢) — ws(x =1/ 2, 1))) /. datal,
{t, 3600, 3600 x 24 x 14, 3600 x 24 x 2}]1, {x, — 140, 140}, Frame - True,
GridLines - Automatic,
FrameLabel — {"distance [m]", "penetration [m]", "full penetration platform",
"duration of the installation is two weeks"}]

full penetration platform

-0.05 - 8

-0.10 - 8

—0.15 - "

-0.20

penetration [m]

-0.25

duration of the installation is two weeks

-0.30

—-100 =50 0 50 100

distance [m]

B 6. Complex Loads Acting on the Gravity Rig

For a complex load acting on the rig, the general penetration is the sum of each of the com-
ponent penetrations.

1
Weomplextoad = —— (A1 po,1 B(l1) + Az po2 B(1)),
2nG
! !
74 (15
erf

Liv (2o Vi
where [; and [, are the sizes of the mechanical components and living quarters of the
platform.

B(l) =\ e i

L, )2 (15)
+ 11 5
4 ct
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Here is a plot of the loads on the platform from the housing and mechanical blocks.
Plot[(3 + (2 (UnitStep[x + 126 / 2] — UnitStep[x + 126 / 3]) +

(UnitStep[x + 126 / 3] — UnitStep[x — 126 / 2]))) .04, {x, —200, 200},
PlotRange — All, Filling —» Axis,

AxesLabel - {"distance [m]", "pressure [MPa]"}, ImageSize - 350]

pressure [MPa]
— 0.20

0.18 |-

0.14 |-

- : : distance [m]
-200 —100 100

Let the production unit have length 30 meters and suppose the distributed load is
PO,l = 195p0

data2 = {Y - 75%x10°% v - 031, u - 1.7x 1073, K - 1.73x 10719, 1 > 30,

250000 000 % 9.81
po = —1.95 e LA - 1/2};

This shows the penetration of the platform on the sediment due to the production unit over
a two-week period.

Plot[Evaluate[Table[((ws((x + 126 /2) +1/2,t) —ws((x + 126 /2) — 1/ 2, ¢))) /. data2,
{t, 3600, 3600 x 24 x 14, 3600 x 24 x 2}]], {x, — 140, 140}, Frame — True,

GridLines —» Automatic, FrameLabel — {"distance [m]", "penetration [m]"}]

T T T

~005|

~0.10 [ =

penetration [m]

~0.15]

—-100 =50 0 50 100

distance [m]

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



New Symbolic Solutions of Biot's 2D Pore Elasticity Problem 15

This shows the penetration of the platform, taking into account the nonuniform load distri-

bution on the sediment, where [ is the side length of the square of the bottom of the rig in
(15).

Plot[
Evaluate[
Table[((wWs((x + 126 /2)+1/2,0) —ws((x + 126 /2)—1/2,1))) /. data2) +
(((ws(x+1/2,)—ws(x—=1/2,1))) /. datal),
{t, 3600, 3600 x 24 x 14, 3600 x 24 x 2}]1, {x, — 140, 140}, Frame - True,

GridLines —» Automatic, FrameLabel — {"distance [m]", "penetration [m]"}]

penetration [m]

—
_—

-100 =50 0 50 100

distance [m]

A Figure 1. Here is a photo of the rig Prirazlomnaya.
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B 7. Symbolic Solution for Porous Pressure

Since [1] does not take account of porous pressure, here is a new symbolic solution for
this case, substituting O for v.

s(x_, z_) = Simplify[PowerExpand[p(x, z) /. solution /. constantSol /. v - 0]]

A2KY
AuSsinAx) |23 K2V 41378 | ——+85 +
u

A2KY
Vi —tS
"
-z [A+

LKY VKN
+8 —2AVK uS\Y |e

2XKNu Y

e | s
NKY

e VK et / Vu

+S —AVK VY

u

2KY
+S +A2KY+uS

-AVK Vu NY

u

o 7.1. Approximate Solution for Pressure
Following [1], here is an approximate symbolic solution for the pressure.

pr = Series[s[x, zl, {z, 0, 2}] // Normal // PowerExpand // FullSimplify

AuSzsin(x) (z JURKY+us +VE «/T(Az—z))
2KYAJAN2KY+uS
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The explicit form of the pore pressure function is computed by taking the inverse Laplace
transform.

pressureSolution = InverseLaplaceTransform[pr s, t]

2Ky

. VK VY Az-2)e u
A A o) +
uzsin(A x) [z () N

2KY

So this is a new symbolic solution for the porous pressure for a rectangular load at the
surface.

Dw [x_,t_]=
P/ Integrate[)t‘1 pressureSolution, {2, 0, Inﬁnity}] // PowerExpand // Simplify

1
ConditionalExpression[ —
g

1 vu x
Do 2Vn AVK Vu \/t_\/Yzerfﬂ——
4Kty 2VK Vi VY
2 Vu x TAuz o) KtY
Apz? e i erfi K ihids , Re( )> O]
WK NTNT )| 4KY "

o 7.2. Porous Pressure in the Soil

This section shows how the pore pressure changes with time and depth of the soil layer
near the horizon.

data3 = {Y - 75%x10%, v - 021, 4 » 1.7x 1073, K » 1.73x 1071,

250000 000 x 9.81
- 126, py - — = ,A—>1/2};
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18 Alexander N. Papusha and Denis P. Gontarev

This determines the distribution function of pore pressure 1.5 meters below the bottom of
the gravity platform.

Plot[Evaluate| Table[10~> ((p,,(x +1/2, ) = p,(x =1/ 2, 1)) /. data3 /.z > 1.5,
{t, 10, 3600 x 24 x 14, 3600 x 24 x 2}]], {x, —160, 160}, AxesOrigin - {0, 0},
PlotRange — All, Frame — True, GridLines —» Automatic,
FrameLabel — {"distance [m]", "pressure [kPa] "}]

0 [ T T T T T T

20} 1
5 J
=
% —-40 - 8
o
&

—60 |- 1

-150 -100 -50 0 50 100 150

distance [m]

This shows the family of porous pressure distributions at the bottom of the gravity
platform.

Plot|Evaluate| Table[10= ((p,,(x +1/2, ) = p,(x =1/ 2, 1)) /. data3 /. t > 10600,
{z, 1, 36, 2}]], {x, — 160, 160}, AxesOrigin - {0, 0}, PlotRange — All,
Frame — True, GridLines —» Automatic,
FrameLabel — {"distance [m]", "pressure [kPa] "}]

7

7 ]
=
=¥
=
o
5 ]
2 /
&

-150  -100 -50 0 50 100 150

distance [m]

Obviously, the pore pressure is the load-bearing frame factor, which restrains the platform
to the surface of the ground.
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B Conclusion

In this article, new symbolic solutions for the penetration of a gravity platform into soil
and a determination of the porous pressure in the saturated soil are found by computer
algebra techniques. These solutions improve upon earlier solutions obtained by M. Biot
and give us new possibilities to apply symbolic computer applications to diverse problems
in pore elasticity theory.

Both symbolic solutions are applicable to the design of offshore gravity structures in-
stalled in shallow water.
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