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We describe the use of classical and metric multidimensional 
scaling methods for graphical representation of the proximity 
between collections of data consisting of cases characterized by 
multidimensional attributes. These methods can preserve metric 
differences between cases, while allowing for dimensional 
reduction and projection to two or three dimensions ideal for 
data exploration. We demonstrate these methods with three 
datasets for: (i) the immunological similarity of influenza proteins 
measured by a multidimensional assay; (ii) influenza protein 
sequence similarity; and (iii) reconstruction of airport-relative 
locations from paired proximity measurements. These examples 
highlight the use of proximity matrices, eigenvalues, 
eigenvectors, and linear and nonlinear mappings using 
numerical minimization methods. Some considerations and 
caveats for each method are also discussed, and compact 
Mathematica programs are provided.
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■ 1. Introduction
One “curse” of high- and multidimensional data is the difficulty in graphically displaying
how the data points are related to each other. Each data point (in some fields referred to as
a case) is characterized by a vector of attributes (e.g. shape, color, temperature, etc.) with
numerical values that form a set of coordinates. These coordinates specify a location in an
N-dimensional  space,  with  N  being  the  number  of  variables  used  to  describe  each  case.
Visualization of such N-dimensional data is problematic as, for example, we do not think
in 17 dimensions! For human comprehension, we are limited to two- or three-dimensional
graphics,  sometimes  referred  to  as  visualizable  dimensions,  in  which  each  case  is  repre-
sented  by  a  data  point.  The  distances  between  points  and  their  relative  locations  reflect
their  proximity  (similarity  or  dissimilarity),  as  measured  by  a  metric  function  of  their
attributes,  such  as  Euclidean  distance.  Larger  distances  between  cases  indicate  that  they
are  less  related.  Fortunately,  multidimensional  scaling  (MDS)  methods  can  be  used  to
visualize  the  degree  of  proximity  for  high-dimensional  datasets  [1,  2,  3].  MDS methods
can  be  used  to  project  the  N-dimensional  coordinates  of  each  case  to  two  or  three
dimensions,  while  preserving  the  relative  distances  between  cases  [4,  5].  These  methods
are increasingly employed in such diverse fields as immunology, molecular biology, mar-
keting, perceptual mapping, and ecology to visualize relative “distances” between viruses,
molecules,  species,  and  customers’  behavior.  In  this  article,  we  discuss  some  mathe-
matical details of classical and metric MDS methods and build generalizable Mathematica
programs that can be used for each. We incorporate use cases from geography, molecular
virology, and immunology.
Before  covering  the  analytical  details,  it  is  worth  briefly  discussing  the  variety  of  MDS
methods.  The  simplest  method  is  referred  to  as  classical  multidimensional  scaling,  also
known  as  principal  coordinate  analysis  (PCoA)  [1].  PCoA  is  not  to  be  confused  with
principal  component  analysis  (PCA).  The  difference  between  PCA  and  classical
MDS/PCoA is  primarily  based  on  the  input  data.  PCA starts  with  a  set  of  cases  or  data
points zi,  each described by a set of attributes a,  and uses a Euclidean distance to project
the  data  to  a  lower-dimensional  space  oriented  to  maximize  the  variance  observed
between data points. In contrast, classical MDS begins with an input matrix that specifies
proximities  between pairs  of  items,  often  referred  to  as  dissimilarities.  It  outputs  a  coor-
dinate matrix in a lower dimension than the starting data (e.g. 120 dimensions projected to
two) that preserves the relative distances between all data points. Classical MDS was orig-
inally  developed  by  Gower  [1]  and  others  and  is  often  demonstrated  with  a  simple
problem: given only the distances between entities  (e.g.  cities),  is  it  possible to calculate
the  map  showing  their  relative  distances?  We  use  this  example  in  Section  4.  In  the
specific  case  where  the  dissimilarity  is  measured  by  a  Euclidean  distance,  PCA  and
classical  MDS/PCoA  are  mathematically  identical  to  another  dimensional  reduction
method,  singular  value  decomposition  (SVD).  In  that  case,  there  may  be  computational
advantages to using SVD, which are discussed in this article.
While  classical  MDS  relies  on  linear  transformation  of  data  using  matrix  operations,
metric  MDS methods  depend  on  computational  optimization.  Metric  MDS takes  a  prox-
imity matrix and calculates a two- or three-dimensional coordinate matrix whose configu-
ration minimizes the difference between the N-dimensional and the calculated distances in
the reduced dimensions for each case or data point [2, 3]. Thus, similar cases are located
next  to  each other  in a  reduced-dimensional  plot,  while  disparate  cases are farther  away,
and  the  final  coordinates  can  be  projected  to  a  planar  or  three-dimensional  space.  Other
varieties  of  MDS,  not  discussed  here,  include  nonmetric  MDS,  which  uses  isotonic
regression methods, and generalized MDS, which projects the coordinates to an arbitrary
smooth  target  space  [3–7].  Metric  MDS is  more  flexible  than  classical  MDS for  certain
problems,  including  when  the  proximity  matrix  contains  missing  data  or  reflects  a  dis-
tance function that is not Euclidean. In addition, it can accommodate nonlinear mappings
from  the  N-dimensional  data  space  to  the  visualization.  However,  because  metric  MDS
uses numerical optimization, it is computationally expensive. These tradeoffs are explored
in Section 7.
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While  classical  MDS  relies  on  linear  transformation  of  data  using  matrix  operations,
metric  MDS methods  depend  on  computational  optimization.  Metric  MDS takes  a  prox-
imity matrix and calculates a two- or three-dimensional coordinate matrix whose configu-
ration minimizes the difference between the N-dimensional and the calculated distances in
the reduced dimensions for each case or data point [2, 3]. Thus, similar cases are located
next  to  each other  in a  reduced-dimensional  plot,  while  disparate  cases are farther  away,
and  the  final  coordinates  can  be  projected  to  a  planar  or  three-dimensional  space.  Other
varieties  of  MDS,  not  discussed  here,  include  nonmetric  MDS,  which  uses  isotonic
regression methods, and generalized MDS, which projects the coordinates to an arbitrary
smooth  target  space  [3–7].  Metric  MDS is  more  flexible  than  classical  MDS for  certain
problems,  including  when  the  proximity  matrix  contains  missing  data  or  reflects  a  dis-
tance function that is not Euclidean. In addition, it can accommodate nonlinear mappings
from  the  N-dimensional  data  space  to  the  visualization.  However,  because  metric  MDS
uses numerical optimization, it is computationally expensive. These tradeoffs are explored
in Section 7.
A byproduct  of  both  MDS methods  is  the  proximity  matrix,  which  can  also  be  used  for
other  high-dimensional  visualizations,  such  as  heat  mapping  and  multidimensional  clus-
tering methods. Combining MDS with these methods often reveals different facets of the
data  and aids  investigators  in  gaining understanding of  the  underlying data  structure  and
exploratory data analysis.
In  the  following sections,  we discuss  construction of  proximity  matrices,  classical  MDS,
and metric  MDS. Several  examples  illustrate  the strengths  and pitfalls  of  these methods;
the full datasets are included in the article. The tradeoff between computational efficiency
and accuracy is touched on as well. Each section briefly covers the mathematical underpin-
ning of the method, a step-by-step example, a self-contained function using compact code,
considerations for the method and alternate approaches, and a synopsis of the most salient
points. A separate section discusses accuracy and computational efficiency and compares
these methods.

■ 2. Computational Environment and Data
This  article  was created using Wolfram Mathematica  Version 10.0.2,  running Macintosh
OS X 10.9.5 on a MacBook Pro with a 2.8 GHz Intel Core i7 processor with 16 GB RAM.
It contains the entire code and all the data needed for execution of all examples. Internet
connectivity  is  required  to  retrieve  the  airport  distances  and  perform the  mapping  of  the
airport locations within Mathematica.
For  the sake of  aesthetics  and clarity,  we have collapsed cells  containing code related to
the display of tables and figures, which appear in their final form.
Execution  of  the  last  section  of  the  article  may  take  4–8  minutes,  given  the  number  of
minimization problems that are calculated. Also, earlier versions of Mathematica may not
execute the GeoListPlot commands properly (or at all for Version 9.0 or lower), given
that this functionality was added in Version 10.0 and several options were added between
Versions 10.0 and 10.0.2.
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■ 3. Datasets and Display Functions
For the sake of brevity, the datasets are placed here in collapsed cells, along with several
housekeeping  functions  for  displaying  tables  and  figures.  Some  of  the  data  for  intra-air-
port distances is retrieved by using the AirportData function and requires internet ac-
cess if executing the notebook again.
[collapsed cells]

■ 4. Proximity Matrices
Classical and metric MDS methods rely on a symmetric input matrix M  (referred to as a
proximity matrix) that specifies the N-dimensional distance between pairs of objects a and
b, denoted δab

N . Proximity may be defined as a distance or dissimilarity. 

In some applications, M is composed of distances δab
N  that are specified directly, for exam-

ple,  the flying distances between airport  pairs  in  the United States,  as  shown in Table 1.
The proximity matrix is a symmetric distance matrix with the airport names in the first col-
umn and the corresponding airport abbreviations for the column labels.

Birmingham (BHM) 134 1428 0 1171 1727 1050 779 584 604 597 1083
Bismark (BIS) 1247 379 1171 0 786 1490 1109 716 1007 977 516
Boise (BOI) 1838 409 1727 786 0 2265 1876 1437 1750 1272 649

Boston (BOS) 946 1866 1050 1490 2265 0 396 867 563 1562 1754
Buffalo (BUF) 712 1481 779 1109 1876 396 0 473 192 1212 1359
Chicago (ORD) 606 1060 584 716 1437 867 473 0 316 802 888
Cleveland (CLE) 555 1366 604 1007 1750 563 192 316 0 1021 1201
Dallas (DFW) 731 1081 597 977 1272 1562 1212 802 1021 0 641
Denver (DEN) 1199 455 1083 516 649 1754 1359 888 1201 641 0

Des Moines (DSM) 743 800 667 504 1156 1165 771 299 613 624 589
Detroit (DTW) 594 1274 625 913 1660 632 241 234 95 986 1123
El Paso (ELP) 1282 973 1148 1075 972 2067 1693 1236 1509 551 563
Houston (HOU) 696 1327 570 1217 1501 1609 1297 945 1107 247 883

Indianapolis (IND) 432 1202 425 875 1563 818 452 177 261 761 976
Kansas City (MCI) 692 835 594 599 1152 1256 870 403 694 460 533
Little Rock (LIT) 453 1148 324 942 1419 1260 920 552 729 304 771

Los Angeles (LAX) 1946 970 1815 1280 674 2611 2217 1745 2053 1235 862
Louisville (SDF) 321 1281 323 967 1630 829 494 287 304 733 1024
Memphis (MEM) 332 1224 211 984 1516 1139 813 491 623 431 872

Miami (MIA) 595 2083 661 1831 2358 1258 1185 1197 1080 1121 1709
Minneapolis (MSP) 907 748 854 386 1142 1124 734 334 622 852 680
New Orleans (MSY) 425 1472 321 1287 1706 1367 1097 837 917 448 1062

New York (JFK) 760 1776 866 1407 2167 187 301 740 425 1391 1626
Omaha (OMA) 821 706 732 448 1048 1282 887 416 729 583 472

Philadelphia (PHL) 666 1727 772 1363 2113 280 279 678 363 1303 1558
Phoenix (PHX) 1587 873 1455 1094 735 2300 1912 1440 1737 868 602
Pittsburgh (PIT) 526 1469 598 1112 1850 496 186 412 106 1067 1290
Portland (PDX) 2172 679 2064 1048 344 2537 2157 1739 2046 1616 991

Raleigh-−Durham (RDU) 356 1690 480 1360 2045 612 487 646 416 1061 1436
St. Louis (STL) 484 1048 411 764 1383 1047 674 258 487 550 770

Salt Lake City (SLC) 1590 387 1472 696 290 2105 1710 1250 1565 989 391
San Francisco (SFO) 2139 909 2013 1271 522 2704 2309 1846 2161 1464 967

Seattle (SEA) 2182 664 2079 1015 399 2496 2122 1721 2021 1660 1024
Washington (DCA) 547 1671 653 1316 2048 399 296 612 310 1192 1476

▲ Table 1. Airport distance proximity matrix.
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□ 4.1. Constructing a Proximity Matrix from a Cases by Attributes 
Table 

Often, M is not the primary data but must be calculated from a set of cases, each of which
is described by a vector of attributes, with the primary data specified in an m× n cases by
attributes  data  matrix.  The  attributes  can  be  binary  membership  in  a  category  or  group,
physical  properties,  or  string  sequences.  The  methods  used  to  calculate  δab

N  vary  by  the
data  and  the  application.  The  most  commonly  used  metric  is  the  Euclidean  distance  for
continuous variables, but other distance functions may also be used, such as the Hamming
and  Manhattan  distances,  Boolean  distances  for  Boolean  data,  Smith–Waterman  string
sequence similarity, or color distance functions for images. 
Table 2 is an example of such a cases by attributes matrix. The cases (rows) represent the
influenza  virus  surface  hemagglutinin  proteins  from  various  influenza  strains  (H1,  H3,
H5)  and  substrains  (e.g.  A/California/04/2009).  The  data  is  taken  from  an  antibody
binding assay, with the values reflecting the amount of antibody binding to each influenza
hemagglutinin  protein.  The  antibodies  were  isolated  from  the  serum  of  ferrets  infected
with an influenza virus strain, shown in the columns. Each case (row) is characterized by
a 15-dimensional attribute vector, with each attribute corresponding to the serum antibody
binding  values  against  that  particular  influenza  strain  hemagglutinin  from  a  biological
assay.  Higher  values  indicate  more  antibody  binding.  Such  assays  are  used  to  select
vaccines each year against strains predicted to circulate in the fall. Note that there are 15
different cases characterized by 14 sera. 

ScrollTable[fluData, virusLabShort, seraLabLong,
{500, Automatic}, {True, False}]
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A/∕California/∕07/∕2009 (H1) 5586 274 491 246 73 0 0 0 0 16 0
A/∕Mexico/∕4108/∕2009 (H1) 4876 332 441 215 131 74 27 59 51 8 54

A/∕Utah/∕20/∕2009 (H1) 5428 819 238 165 426 55 20 33 33 26 88
A/∕Brisbane/∕59/∕2007 (H1) 260 720 412 707 951 47 2 12 4 22 15

A/∕USSR/∕90/∕1977 (H1) 303 805 530 7472 1204 135 109 92 77 75 206
A/∕Taiwan/∕1/∕1986 (H1) 53 236 195 527 5791 96 32 9 28 28 115
A/∕Indiana/∕10/∕2011 (H3) 137 119 157 81 135 719 1547 1551 2045 3914 1701 1775
A/∕Victoria/∕361/∕2011 (H3) 151 100 76 118 89 3403 5910 4609 1006 6561 1324 1821

A/∕Wisconsin/∕15/∕2009 (H3) 86 49 97 147 52 3391 5159 3621 717 3972 1352 1578
A/∕Perth/∕16/∕2009 (H3) 84 13 95 145 56 3784 5520 3443 703 3561 1119 1292

A/∕Victoria/∕210/∕2009 (H3) 0 0 0 0 0 4727 7192 5422 491 4336 832 1284
A/∕Vietnam/∕1203/∕2004 (H5) 59 157 147 335 434 48 33 7 33 0 101

A/∕India/∕NIV/∕2006 (H5) 184 304 183 350 211 290 232 147 271 210 442
A/∕Anhui/∕01/∕2005 (H5) 24 59 76 179 55 12 29 1 44 17 108
A/∕Hubei/∕1/∕2010 (H5) 94 581 133 147 317 60 17 8 46 16 80

▲ Table 2. Influenza antibody binding assay data.
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Before performing the MDS calculations,  it  is  important to rescale each attribute to span
the same range across all the cases, especially if the attributes have different units or vari-
able  ranges.  This  rescaling  does  not  assume  any  specific  statistical  distribution.  It  is  de-
signed  so  that  each  attribute  has  equal  weight  in  the  proximity  calculation,  although
weighted  proximity  matrices  can  also  be  used  if  the  application  requires  this.  Here  we
rescale  the  results  for  the  above  attributes  so  that  the  range  of  each  attribute  column
(antibody binding test result for a single hemagglutinin) has a minimum of 0 and a maxi-
mum of 1000.

fluDataR =
Transpose[1. Rescale[#, {Min[#], Max[#]}, {0, 1000}] & /∕@

Transpose[fluData]];

ScrollTable[Round[fluDataR], virusLabShort, seraLabLong,
{500, Automatic}, {True, False}]
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A/∕California/∕07/∕2009 (H1) 1000 335 926 33 13 0 0 0 0 2 0
A/∕Mexico/∕4108/∕2009 (H1) 873 405 832 29 23 16 4 11 25 1 32

A/∕Utah/∕20/∕2009 (H1) 972 1000 449 22 74 12 3 6 16 4 52
A/∕Brisbane/∕59/∕2007 (H1) 47 879 777 95 164 10 0 2 2 3 9

A/∕USSR/∕90/∕1977 (H1) 54 983 1000 1000 208 29 15 17 38 11 121
A/∕Taiwan/∕1/∕1986 (H1) 9 288 368 71 1000 20 4 2 14 4 68
A/∕Indiana/∕10/∕2011 (H3) 25 145 296 11 23 152 215 286 1000 597 1000
A/∕Victoria/∕361/∕2011 (H3) 27 122 143 16 15 720 822 850 492 1000 778

A/∕Wisconsin/∕15/∕2009 (H3) 15 60 183 20 9 717 717 668 351 605 795
A/∕Perth/∕16/∕2009 (H3) 15 16 179 19 10 801 768 635 344 543 658

A/∕Victoria/∕210/∕2009 (H3) 0 0 0 0 0 1000 1000 1000 240 661 489
A/∕Vietnam/∕1203/∕2004 (H5) 11 192 277 45 75 10 5 1 16 0 59

A/∕India/∕NIV/∕2006 (H5) 33 371 345 47 36 61 32 27 133 32 260
A/∕Anhui/∕01/∕2005 (H5) 4 72 143 24 9 3 4 0 22 3 63
A/∕Hubei/∕1/∕2010 (H5) 17 709 251 20 55 13 2 1 22 2 47

▲ Table 3. Rescaled influenza antibody binding data.
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For  multidimensional  scaling,  this  data  is  transformed  into  a  proximity  matrix  using  a
EuclideanDistance  calculation.  The  larger  the  proximity  measurement,  the  greater
the difference between the hemagglutinin proteins from the two viral infection strains, as
specified by the reactivity of immune sera against the probe hemagglutinin proteins. Table
4  uses  the  DistanceMatrix  function  to  create  a  proximity  matrix  for  the  influenza.
There are many ways to calculate distance matrices, and custom functions are often used.
One convenient option is to use the DistanceMatrix function, which allows access to
a number of standardized distance metrics (e.g. EuclideanDistance,  Manhattan!
Distance,  CorrelationDistance,  etc.),  which  can  be  directly  set  by  the  option
DistanceFunction.  The  DistanceMatrix  function  is  contained  in  the  Hier!
archicalClustering package.

Needs["HierarchicalClustering`"];
Dm = DistanceMatrix[fluDataR,

DistanceFunction → EuclideanDistance];
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A/∕California/∕07/∕2009 (H1) 0 186 825 1121 1527 1510 2200 2523 2223 2147 2490
A/∕Mexico/∕4108/∕2009 (H1) 186 0 716 968 1424 1391 2080 2414 2107 2033 2385

A/∕Utah/∕20/∕2009 (H1) 825 716 0 998 1462 1517 2210 2511 2241 2185 2495
A/∕Brisbane/∕59/∕2007 (H1) 1121 968 998 0 953 1106 2047 2386 2082 2014 2363

A/∕USSR/∕90/∕1977 (H1) 1527 1424 1462 953 0 1545 2262 2589 2320 2275 2616
A/∕Taiwan/∕1/∕1986 (H1) 1510 1391 1517 1106 1545 0 2040 2355 2042 1964 2292
A/∕Indiana/∕10/∕2011 (H3) 2200 2080 2210 2047 2262 2040 0 1226 1102 1225 1695
A/∕Victoria/∕361/∕2011 (H3) 2523 2414 2511 2386 2589 2355 1226 0 493 631 721

A/∕Wisconsin/∕15/∕2009 (H3) 2223 2107 2241 2082 2320 2042 1102 493 0 245 666
A/∕Perth/∕16/∕2009 (H3) 2147 2033 2185 2014 2275 1964 1225 631 245 0 560

A/∕Victoria/∕210/∕2009 (H3) 2490 2385 2495 2363 2616 2292 1695 721 666 560 0
A/∕Vietnam/∕1203/∕2004 (H5) 1844 1739 1883 1611 1957 1669 2254 2544 2254 2185 2484

A/∕India/∕NIV/∕2006 (H5) 1241 1074 1223 830 1360 1061 1543 1954 1601 1542 1948
A/∕Anhui/∕01/∕2005 (H5) 1555 1430 1616 1327 1778 1336 1967 2284 1956 1872 2199
A/∕Hubei/∕1/∕2010 (H5) 1674 1534 1497 1212 1637 1508 2168 2470 2186 2123 2428

▲ Table 4. Proximity matrix derived from Table 3.

□ 4.2. Visualization

It  is  often  helpful  to  visualize  a  proximity  matrix  as  a  heat  map  using  the  ArrayPlot
function.  In  Figure  1  the  most  similar  hemagglutinin  protein  pairs  are  blue and the most
different  are  red.  As  can  be  seen,  this  representation  of  the  data  suggests  a  similarity  of
influenza  virus  hemagglutinin  proteins  from similar  strains  (H1,  H3,  H5)  and  the  occur-
rence of year-to-year differences, especially for the H1 strains. 
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▲ Figure 1. Heat map of proximity matrix data.

□ 4.3. Proximity Matrices from Molecular Sequence Comparisons 

Another  common application of  multidimensional  scaling is  to  compare  protein  or  DNA
sequences. Such sequences are essentially linear lists of strings that specify the protein or
nucleic acid composition. Sequence differences are used to estimate molecular evolution,
how  the  immune  system  may  respond  to  a  new  virus  after  immunization,  and  cross-
species comparison of molecules. 
To  construct  a  protein  sequence  proximity  matrix,  we  begin  with  the  amino  acid
sequences of the hemagglutinin proteins from influenza strains specified in the proximity
matrix  of  the  previous  section.  These  were  retrieved  from  the  UniProt  database
(www.uniprot.org).  Each  letter  in  the  sequence  represents  an  amino  acid,  and  each
sequence is approximately 566 amino acids long. 
To calculate the proximity matrix, we use a rescaled inverse of the Smith–Waterman simi-
larity calculation, with the PAM70 similarity rules for amino acid comparison. Sequence
similarity calculations have larger  values with greater  similarity,  and the minimum score
is  generally  the  length  of  the  sequence.  Because  MDS  methods  use  proximity  measures
that increase monotonically with dissimilarity, the inverse of the sequence similarity func-
tion is used. Thus, for clarity in this example, we have transformed the result by subtract-
ing a constant (528), which is one less than the minimum sequence length, and multiply-
ing the inverse by a scale factor of 106. Note that nonzero values do not occur.
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To calculate the proximity matrix, we use a rescaled inverse of the Smith–Waterman simi-
larity calculation, with the PAM70 similarity rules for amino acid comparison. Sequence
similarity calculations have larger  values with greater  similarity,  and the minimum score
is  generally  the  length  of  the  sequence.  Because  MDS  methods  use  proximity  measures
that increase monotonically with dissimilarity, the inverse of the sequence similarity func-
tion is used. Thus, for clarity in this example, we have transformed the result by subtract-
ing a constant (528), which is one less than the minimum sequence length, and multiply-
ing the inverse by a scale factor of 106. Note that nonzero values do not occur.

fluPm = ParallelTable[
(2 × 10^6 /∕ SmithWatermanSimilarity[seqFluHA[[i]],

seqFluHA[[j]], SimilarityRules → "PAM70"] -− 528),
{i, Length[seqFluHA]}, {j, Length[seqFluHA]}];
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A
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(H
1)

A
/∕Indiana/∕10/∕2011

(H
3)

A
/∕Victoria/∕361/∕2011
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3)

A
/∕W
isconsin/∕15/∕2009
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3)

A
/∕Perth/∕16/∕2009

(H
3)

A
/∕Victoria/∕210/∕2009

(H
3)

A/∕California/∕07/∕2009 (H1) 10 13 19 148 142 138 1302 1300 1329 1293 1750
A/∕Mexico/∕4108/∕2009 (H1) 13 11 17 153 144 140 1295 1298 1322 1287 1747

A/∕Utah/∕20/∕2009 (H1) 19 17 12 160 149 147 1292 1297 1320 1285 1734
A/∕Brisbane/∕59/∕2007 (H1) 148 153 160 10 65 47 1375 1317 1350 1312 1734

A/∕USSR/∕90/∕1977 (H1) 142 144 149 65 8 28 1414 1406 1416 1384 1853
A/∕Taiwan/∕1/∕1986 (H1) 138 140 147 47 28 8 1410 1368 1379 1348 1814
A/∕Indiana/∕10/∕2011 (H3) 1302 1295 1292 1375 1414 1410 1 81 75 72 140
A/∕Victoria/∕361/∕2011 (H3) 1300 1298 1297 1317 1406 1368 81 3 19 17 71

A/∕Wisconsin/∕15/∕2009 (H3) 1329 1322 1320 1350 1416 1379 75 19 4 9 68
A/∕Perth/∕16/∕2009 (H3) 1293 1287 1285 1312 1384 1348 72 17 9 4 66

A/∕Victoria/∕210/∕2009 (H3) 1750 1747 1734 1734 1853 1814 140 71 68 66 58
A/∕Vietnam/∕1203/∕2004 (H5) 355 354 354 368 372 364 1478 1435 1419 1390 1902

A/∕India/∕NIV/∕2006 (H5) 370 369 364 376 370 370 1464 1444 1431 1401 1920
A/∕Anhui/∕01/∕2005 (H5) 353 352 349 360 363 358 1437 1429 1427 1397 1923
A/∕Hubei/∕1/∕2010 (H5) 352 351 350 355 358 352 1431 1404 1401 1371 1882

▲ Table 5. Proximity matrix for influenza sequence comparisons.

□ 4.4. Synopsis: Proximity Matrices

The  first  step  in  multidimensional  scaling  is  to  create  a  proximity  matrix.  The  value  of
each  matrix  element  is  a  distance  measure;  the  greater  the  difference  between  the  two
elements being compared, the greater the value of the metric. We have demonstrated three
different  cases  of  proximity  matrix  construction,  including:  (i)  the  airport  distance  case,
where  the  proximities  are  known  a  priori  and  do  not  need  to  be  calculated;  (ii)  the
influenza  protein  antibody  reactivity  case,  with  proximity  calculation  from  a  cases  by
attributes matrix; and (iii) the influenza protein sequence example, with calculation from a
sequence  similarity  measure.  Heat  maps  are  useful  for  displaying  proximity  matrices,
giving a  visual  view of  similarities.  All  the  resulting  proximity  matrices  can be  used for
MDS calculations, as will be discussed next.
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■ 5. Classical Multidimensional Scaling
Here  we  briefly  describe  the  mathematics  of  classical  multidimensional  scaling,  which
uses  a  linear  coordinate  transformation  calculation  to  reduce  case  coordinates  from  N
dimensions  down  to  two  or  three  dimensions.  The  approach  begins  with  calculating  a
proximity matrix. The orientation of the new coordinate system is such that it accounts for
the  greatest  amount  of  variance  between  cases,  as  defined  by  attributes,  in  the  reduced
number of  dimensions.  The new coordinates can be used to plot  the relative locations of
the data points and help visualize differences between data points and clusters of similar
cases. The proximity matrix can also be used for data clustering and heat mapping, which
provide alternate visualizations of case relationships.

□ 5.1. Mathematics

Let M be a 𝒸⨯𝓋 matrix, where 𝒸 is the number of individual cases (e.g. data points) and 𝓋
is the number of measured variables or attributes (e.g. financial variables, consumer prod-
uct  attributes,  antibody  binding  measurements,  etc.),  which  are  used  to  discriminate  be-
tween each case zi, i = 1, 2, …, 𝒸.
If  the  data  attributes  are  of  different  scales  and  units,  they  are  generally  rescaled  with  a
range  of  [0, 1].  This  assures  that  each  attribute  contributes  equally  to  the  proximity
measure.
Alternatively, M may remain in the original units if each attribute has the same range and
units, or if a weighted proximity matrix is desired. Next, let the proximity matrix D of M
or M rescaled be a matrix of dimensions 𝒸⨯𝒸 with elements

dij = +xi -− xj- , i, j = 1, 2, …, 𝒸. (1)

One  can  use  a  variety  of  applicable  proximity  measures  (e.g.  Euclidean,  Mahalanobis,
etc.) to create the proximity matrix. If the proximity measure is a Euclidean distance, then
classical MDS is equivalent to principal component analysis (PCA). If any other distance
function  is  used,  then  classical  MDS  will  result  in  a  different  transformation  that  is  not
equivalent to PCA. 
Let I be the identity matrix of dimensions 𝒸⨯𝒸 and K be the constant matrix of dimensions
𝒸⨯𝒸, where Kij = 1. Let P be the matrix of the squared proximities:

P = +xi -− xj -2, i, j = 1, 2, …, 𝒸. (2)

The kernel  matrix  B  is  derived  by  first  calculating  the  matrix  J  from the  identity  matrix
and the number of variables 𝓋:

J = I -− 𝓋-−1 K. (3)
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J  is  the  matrix  that  double-centers  the  input  matrix  by  subtracting  the  row  and  column
means from every element of the matrix. Introducing the constant -− 1

2  creates an equiva-
lence to PCA if d is a Euclidean distance function:

B = -−
1
2

J · P · J. (4)

The eigenvalues λ1, λ2…, λ𝓋  and eigenvectors e1, e2…, e𝓋  of B are calculated. To reduce
to  dimension  𝓂  with  𝓂 < 𝒸,  only  the  first  𝓂  of  a  ranked  list  of  the  λ  and  e  are  selected
(e.g. 𝓂 = 2 for a two-dimensional mapping).
The diagonal matrix of the square roots of the eigenvalues Λm is

Λm =

λ1 0 0
0 λ2 0

…
0 0 0 λ𝓂

. (5)

The matrix X  of relative coordinates in 𝓂 dimensions is then calculated by the product of
the matrix of eigenvectors E𝓂  and the diagonal matrix of the square roots of the eigenval-
ues Λm:

X = E𝓂 · Λ𝓂
1/∕2. (6)

□ 5.2. Case Study: Airport Location Mapping 

We begin with one of the original motivating problems related to MDS, reconstructing the
relative  locations  between  cities  in  two  dimensions,  knowing  only  the  relative  distances
between  each  one.  We  use  the  United  States  airport  distance  data  from  Section  3  and
reconstruct  the  cities’  relative  geographic  positions.  We  begin  by  squaring  the  distance
functions and calculating the scale of the dataset.

Am = airData2;
scale = Length[Am];

Next, we create an identity matrix, with all elements being 0 except the diagonal elements,
which are 1, and a constant matrix with all elements equal to 1. Both matrices are of the
same dimensions and are used in subsequent calculations to transform data from 28 down
to two dimensions.

Idm = IdentityMatrix[Length[Am]];
oneM = ConstantArray[1, Dimensions[Am]];

We  then  calculate  the  kernel  matrix  and  double-center  the  new  N-dimensional  coordi-
nates. 

J = Idm -− 1. /∕ scale oneM;
Bm = -−1 /∕ 2 J.Am.J;
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With the number of dimensions set to 2, the matrix eigenvectors and eigenvalues are calcu-
lated.  The sign of the first  eigenvector is  adjusted to lay out the cities from west to east.
(Mathematica does not guarantee the direction of an eigenvector.)

dim = 2;
Em = Eigenvectors[Bm, dim]

If[$VersionNumber < 10.2, 1, {-−1, 1}]

{{0.129171, -−0.164791, 0.101168, -−0.0843364,
-−0.248814, 0.237447, 0.155102, 0.0613687, 0.128977,
-−0.0244763, -−0.122908, -−0.000635832, 0.109603,
-−0.141688, 0.00345098, 0.0865066, -−0.00785255,
0.0313444, -−0.291272, 0.0981005, 0.0577967, 0.210212,
-−0.00330048, 0.0674643, 0.218743, -−0.0249825,
0.207308, -−0.212435, 0.150431, -−0.310908, 0.187052,
0.0432586, -−0.205778, -−0.33099, -−0.302226, 0.192888},

{-−0.138278, 0.17658, -−0.154413, 0.210242, 0.117269,
0.230394, 0.184481, 0.0997557, 0.116632, -−0.218811,
-−0.0125633, 0.0620399, 0.131882, -−0.267718, -−0.314541,
0.0380486, -−0.0115239, -−0.144878, -−0.182929,
-−0.00641343, -−0.125285, -−0.349034, 0.168374,
-−0.282816, 0.154349, 0.0477733, 0.118949, -−0.213395,
0.0993995, 0.203908, -−0.0304331, -−0.0120272,
0.0201888, -−0.0508981, 0.262057, 0.0736327}}

Ev = Eigenvalues[Bm, dim]

2.14663 × 107, 4.77758 × 106
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The transformation matrix dMTX is calculated from a diagonal matrix formed by the eigen-
values Ev, and the coordinate matrix EmM is calculated from the eigenvectors Em.

dMTX = DiagonalMatrix[Ev];
EmM = Transpose[Em];

Transformation Matrix

 2.14663 × 107 0.
0. 4.77758 × 106



Coordinate Matrix
0.129171 -−0.138278
-−0.164791 0.17658
0.101168 -−0.154413

-−0.0843364 0.210242
-−0.248814 0.117269
0.237447 0.230394
0.155102 0.184481
0.0613687 0.0997557
0.128977 0.116632

-−0.0244763 -−0.218811
-−0.122908 -−0.0125633

-−0.000635832 0.0620399
0.109603 0.131882
-−0.141688 -−0.267718
0.00345098 -−0.314541
0.0865066 0.0380486

-−0.00785255 -−0.0115239
0.0313444 -−0.144878
-−0.291272 -−0.182929
0.0981005 -−0.00641343
0.0577967 -−0.125285
0.210212 -−0.349034

-−0.00330048 0.168374
0.0674643 -−0.282816
0.218743 0.154349

-−0.0249825 0.0477733
0.207308 0.118949
-−0.212435 -−0.213395
0.150431 0.0993995
-−0.310908 0.203908
0.187052 -−0.0304331
0.0432586 -−0.0120272
-−0.205778 0.0201888
-−0.33099 -−0.0508981
-−0.302226 0.262057
0.192888 0.0736327
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The graph coordinates cMDScoord are calculated and projected to two dimensions.

cMDScoord = EmM. dMTX

{{598.473, -−302.244}, {-−763.504, 385.964},
{468.731, -−337.511}, {-−390.745, 459.541},
{-−1152.8, 256.323}, {1100.13, 503.588},
{718.612, 403.233}, {284.332, 218.043}, {597.573, 254.93},
{-−113.403, -−478.27}, {-−569.455, -−27.4605},
{-−2.94592, 135.605}, {507.808, 288.264},
{-−656.464, -−585.169}, {15.989, -−687.514}, {400.8, 83.1654},
{-−36.3822, -−25.1885}, {145.224, -−316.669},
{-−1349.51, -−399.841}, {454.517, -−14.0183},
{267.782, -−273.843}, {973.947, -−762.908},
{-−15.2917, 368.028}, {312.574, -−618.169},
{1013.47, 337.371}, {-−115.748, 104.421},
{960.493, 259.995}, {-−984.249, -−466.433},
{696.974, 217.264}, {-−1440.49, 445.696},
{866.642, -−66.5197}, {200.425, -−26.2887},
{-−953.404, 44.128}, {-−1533.53, -−111.251},
{-−1400.26, 572.796}, {893.684, 160.944}}

Finally,  we plot  the  two-dimensional  airport  locations  in  cMDScoord,  which shows the
airports in the new coordinate system. 
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▲ Figure 2. Classical MDS display of relative airport locations.

14 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



Classical multidimensional scaling gives a solution that has an excellent projection of the
cases in a lower dimension, preserving the between-cases distances from N dimensions. It
is  important  to note,  however,  that  the solution is  not  unique with respect  to the rotation
and reflection of the visualization. It is often the case when one knows the “true” orienta-
tion  of  the  case  locations  (e.g.  the  previous  map  example),  that  classical  (and  metric)
MDS methods yield a visualization that is reflected or rotated. In these cases, use of other
boundary conditions (fixing known coordinates) helps constrain the orientation of the solu-
tion. Often, however, such boundary conditions are not available.
Given  the  above  solution,  how  well  does  classical  MDS  reproduce  the  airport  coordi-
nates?  Because  we  have  a  gold  standard,  the  actual  airport  locations,  comparison  of  the
coordinate  estimates  is  possible.  However,  the  airport  locations  are  represented  in  a
geographic  coordinate  system,  making  a  comparison  of  calculated  versus  actual  airport
locations a bit  more complicated. One approximate way to approach this issue is by first
examining  the  correlation  between  the  actual  airport  locations,  in  longitude  and  latitude
coordinates,  and  the  derived  coordinates  from  the  classical  MDS  calculation,  using  the
PearsonCorrelationTest.  The  units  are  different,  which  we  will  address  in  a
moment, but this does not affect the Pearson correlation test.
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▲ Figure 3. Comparison of actual and estimated coordinates.

While  the  correlations  are  high,  they  are  not  perfect,  as  we  can  see  by  the  off-diagonal
locations  of  some  of  the  points.  To  better  visualize  these  differences,  we  transform  the
classical  MDS coordinates into longitude and latitude units.  This is  a transformation that
uses the pseudoinverse matrix to translate and rotate to find a good alignment between the
two coordinate sets. 

newcoords = Map[# + {c, d} &,
TrcMDSCoordinates.{{a, b}, {-−b, a}}];

{vec, mat} = CoefficientArrays[Flatten[newcoords],
{a, b, c, d}];

res =
Thread[
{a, b, c, d} -−> PseudoInverse[mat].Flatten[geoCoordsAir]]

{a → 0.0179315, b → -−0.00149652, c → -−94.1752, d → 38.6731}

This type of transformation preserves the relative distances between the classical MDS de-
rived city locations and thus provides a relatively accurate estimate of how close the esti-
mates are to the actual city locations. A more accurate solution would involve mapping of
the coordinates to an appropriate spherical projection system; however, this is outside the
focus of this article.
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This type of transformation preserves the relative distances between the classical MDS de-
rived city locations and thus provides a relatively accurate estimate of how close the esti-
mates are to the actual city locations. A more accurate solution would involve mapping of
the coordinates to an appropriate spherical projection system; however, this is outside the
focus of this article.
The transformation coefficients can now be used to transform the classical MDS derived
coordinates into GeoPosition values. To compare the actual (●) with the cMDS calcu-
lated (◆) airport locations, we use the GeoListPlot function, which plots both sets of
points on a map of North America.

transCMDS = newcoords /∕. res;
geoMMDS = Map[GeoPosition, Map[Reverse, transCMDS]];

● Actual
◆ cMDS

▲ Figure 4. Comparison of airport geo locations.

The  accuracy  of  the  classical  MDS estimates  is  fairly  good,  but  not  perfect.  Part  of  this
error  is  due  to  the  approximate  transformation  from  arbitrary  MDS  coordinates  to  geo-
graphic coordinates, and the complex projection to a flat map. 
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□ 5.3. Function: Classical Multidimensional Scaling

The preceding code can be summarized in  a  succinct  Mathematica  function for  classical
MDS calculation. This function takes a proximity matrix as input and returns coordinates
mapped to a space of the specified number of dimensions. The default number of dimen-
sions is two, but the function also works with three or more dimensions.

classicalMDS[Dm_, dim_: 2] :=

Module{Idm, oneM, A, scale, J, Bm, Em, DmS, Ev, dMTX,

EmM, coordX}, 

DmS = Dm2;
Idm = IdentityMatrix[Length[Dm]];
oneM = ConstantArray[1, Dimensions[Dm]];
scale = Length[Dm];
J = Idm -− 1. /∕ scale oneM;
Bm = -−0.5 J.DmS.J;
Em = Eigenvectors[Bm, dim];
Ev = Eigenvalues[Bm, dim];
dMTX = DiagonalMatrix[Ev];
EmM = Transpose[Em];

coordX = EmM. dMTX [[1]]

□  5.4. Classical Multidimensional Scaling and the Singular Value 
Decomposition

It is important to note that if the proximity matrix used for classical MDS is formed from
a cases by attributes matrix using a Euclidean distance, then classical MDS is equivalent
to  principal  component  analysis.  Principal  component  analysis  is  a  specific  case  of  the
more general singular value decomposition method (SVD). Details of the SVD mathemat-
ics and computational method is not discussed in detail here, but rather we will outline the
computational  steps  necessary  to  use  the  method  with  the  function  Singular!
ValueDecomposition.
As with classical MDS, a transformation matrix is calculated, and the data is centered to a
mean of zero.

len = Length[airData];
hmat = IdentityMatrix[len] -− 1 /∕ len;
zeromeanData = -−hmat.N[airData^2].hmat /∕ 2;
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The SVD function is then applied to the normalized data and yields three matrices.  Here
ww is the diagonal matrix of eigenvalues and vv is the coordinate matrix.

dimensions = 2;
{uu, ww, vv} = SingularValueDecomposition[zeromeanData,

dimensions];

Next, the two-dimensional projection of the coordinates is calculated. 

mMDScoordinatesNew = vv.Sqrt[ww];

When the dataset to be analyzed is very large, then the computational efficiency degrades
quickly if the proximity matrix must be directly calculated. In this case, a matrix transfor-
mation can be applied to avoid a cell-by-cell proximity matrix calculation; this greatly in-
creases computational efficiency. The computational efficiency for both classical and met-
ric MDS is discussed, with a direct comparison, in Section 7.

□ 5.5. Synopsis: Classical MDS

Classical  MDS  is  a  data  mining  and  data  exploration  method  allowing  dimensional
reduction  to  be  used  to  highlight  possible  clusters,  similarities,  or  differences  between
cases  described  by  high-dimensional  attribute  vectors.  It  is  a  starting  point  for  more  rig-
orous statistical analysis and hypothesis testing. When the input proximity matrix is com-
posed  of  Euclidean  distances,  classical  MDS  is  equivalent  to  both  principal  coordinate
analysis and singular value decomposition. Computational efficiency and possible limita-
tions of classical MDS methods are discussed in Section 7.

■ 6. MDS Methods: Metric Multidimensional Scaling
Metric multidimensional scaling is a second type of MDS. While classical MDS relies on
matrix  algebra,  metric  MDS  involves  computational  minimization  of  the  difference
between  N-dimensional  and  two-dimensional  proximity  measures  (e.g.  Euclidean
distance)  of  the  case  coordinates  in  each  dimensional  system.  In  essence,  the  method
attempts to minimize the total error between actual and reduced intercase distances for the
group of cases as a whole. Metric MDS is also flexible, accommodating different types of
proximity  metrics  (e.g.  not  Euclidean),  as  well  as  different  stress  functions  (nonlinear
transformation and distance metrics other than Euclidean) for minimization. This permits
nonlinear  dimensional  reduction,  where  the  projection  of  data  from  an  N-dimensional
space to lower dimensions can be done using a nonlinear transformation. The end result is
a dimensional reduction that allows for data visualization.
As in the previous section, we first describe the mathematics with some references to im-
plementation, then demonstrate a practical example.
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□ 6.1. Mathematics

Metric MDS also begins with a c× c proximity matrix D, which represents the original N-
dimensional proximity measure for the cases zi, where i = 1, …, c. This proximity matrix
can be given de novo, as in distances between airports, or can be calculated from a cases
by attributes matrix as described previously,

D =

δ11 δ21 δ1c
δ21 δ22 δ2c

…
δc1 δc2 δcc

. (7)

Initial  values  for  the  case  coordinates,  used  to  seed  the  minimization  algorithm,  can  be
generated at random or calculated using values from the classical MDS algorithm. So we
next set up the initial coordinate matrix X  for a two-dimensional projection, for the mini-
mization algorithm,

X =

x1 y1
x2 y2
⋮ ⋮
xc yc

, (8)

where zi = (xi, yi).  Next, we create a matrix of variables representing the coordinates that
the minimization algorithm estimates:

E =

a1 b1
a2 b2
⋮ ⋮
ac bc

. (9)

We then calculate a matrix of distance functions for E  using Euclidean distance between
any two elements (ai, bi) and (aj, bj), 

dij = (ai -− aj)2 + (bi -− bj)2 . (10)

The distance matrix D is now given by

D =

d11 d21 d1c
d21 d22 d2c

…
dc1 dc2 dcc

. (11)

For the minimization, several different types of stress functions may be used. Here we se-
lect the stress function to be the sum of the squares of the errors (SSE):

E(Dm, Δm) = 
i= 0

c


j=0

c
(dij -− δij)2. (12)

We use the efficient and robust "DifferentialEvolution" method, with sufficient
search points to avoid local minima. Some aspects of the choice of minimization methods
are discussed later.
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□ 6.2. Case Study: Mapping Antibody Reactivity Differences 
between Influenza Strains 

This  example  is  motivated  by  the  need  to  determine  if  an  influenza  strain  is  sufficiently
different,  as  determined  by  the  immune  system,  so  that  even  if  a  person  has  prior
immunity  from vaccination  against  other  similar  strains,  it  will  be  insufficient  to  protect
against  the  new  strain.  Influenza  vaccination  relies  on  the  immune  system’s  ability  to
generate  protective  antibodies,  which  are  proteins  that  bind  to  the  virus  and  block  its
ability  to  infect  cells  in  the  respiratory  system.  The  major  protection  comes  from  anti-
bodies  that  bind  the  viral  surface  protein  hemagglutinin,  the  protein  responsible  for
attaching  the  virus  to  the  target  cells.  Variations  in  the  hemagglutinin  protein  structure
between  influenza  strains  allow  the  viruses  to  evade  the  immune  system  and  cause  an
infection. This is why the influenza vaccine composition is changed every year. Figuring
out which strains to include in the influenza vaccine is an annual problem for the interna-
tional organizations that recommend changes in the seasonal influenza vaccine. 
Metric  MDS  provides  a  graphical  way  of  visualizing  influenza  strain  similarity,  derived
from experiments measuring the ability of serum from animals infected with influenza to
bind  to  the  target  virus  hemagglutinin.  There  has  been  extensive  literature  over  the  last
decade  on  the  use  of  metric  MDS  for  this  purpose,  referred  to  as  antigenic  cartography
[8–11].  Metric  MDS  was  chosen  for  dimensional  reduction  and  visualization  by  several
groups, as classical MDS methods could not be easily adapted to solve several issues [8,
9]. These included the need for complete datasets [10, 11], where in some cases data was
missing due to experimental considerations. Metric MDS methods could be adapted to im-
pute relationships [10]. In addition, metric MDS was viewed as a more accurate estimator
of influenza strain antigenic distance due to correlations with the binary logarithm of the
hemagglutinin inhibition assay serum titers [8, 9]. Use of metric MDS continues in the in-
fluenza  literature  [10,  11],  although  newer  methods  of  measuring  antibody  reactivity  do
not  have  the  same  issues  as  older  assays,  and  classical  MDS could  be  used  to  the  same
end. To illustrate the method of metric MDS, however, we will use it in this example. We
discuss  method  selection  in  Section  7,  as  well  as  considerations  of  computational
efficiency.
We  begin  with  the  proximity  matrix  derived  in  the  previous  section  from  the  antibody
reactivity to influenza hemagglutinin data. We next calculate the relative positions of each
influenza strain with respect to the entire set by minimizing a stress function. The Array
function is used to create an array of variables that specify the coordinates for each case as
a 2D set of points. 
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dimensions = 2;
Y = Array[sr, {lenDm = Length[Dm], dimensions}]

{{sr[1, 1], sr[1, 2]},
{sr[2, 1], sr[2, 2]}, {sr[3, 1], sr[3, 2]},
{sr[4, 1], sr[4, 2]}, {sr[5, 1], sr[5, 2]},
{sr[6, 1], sr[6, 2]}, {sr[7, 1], sr[7, 2]},
{sr[8, 1], sr[8, 2]}, {sr[9, 1], sr[9, 2]},
{sr[10, 1], sr[10, 2]}, {sr[11, 1], sr[11, 2]},
{sr[12, 1], sr[12, 2]}, {sr[13, 1], sr[13, 2]},
{sr[14, 1], sr[14, 2]}, {sr[15, 1], sr[15, 2]}}

Each  sr  variable  pair  will  hold  a  pair  of  coordinates  in  two-dimensional  space.  Finally,
we flatten the list of variable pairs to input into the function NMinimize.

minVar = Flatten[Y]

{sr[1, 1], sr[1, 2], sr[2, 1], sr[2, 2], sr[3, 1],
sr[3, 2], sr[4, 1], sr[4, 2], sr[5, 1], sr[5, 2],
sr[6, 1], sr[6, 2], sr[7, 1], sr[7, 2], sr[8, 1],
sr[8, 2], sr[9, 1], sr[9, 2], sr[10, 1], sr[10, 2],
sr[11, 1], sr[11, 2], sr[12, 1], sr[12, 2], sr[13, 1],
sr[13, 2], sr[14, 1], sr[14, 2], sr[15, 1], sr[15, 2]}

The  next  section  of  code  creates  a  series  of  Euclidean  distance  calculations  for  the  dis-
tances  between  all  combinations  of  case  locations,  using  the  estimated  coordinates  for
each point. For succinctness, only one function within the full matrix is displayed.

mY =
Table[
Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 + (Y[[i, 2]] -− Y[[j, 2]])^2],
{i, lenDm}, {j, lenDm}];

mY[[4, 3]]

(-−sr[3, 1] + sr[4, 1])2 + (-−sr[3, 2] + sr[4, 2])2

The stress function is a very large least-squares expression.

stress = Total[Table[((Dm[[i, j]]) -− mY[[i, j]])^2,
{i, lenDm}, {j, lenDm}], 2];
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The first nonzero element of the stress function is shown here. The reader may expand the
formula to see the entire function, if desired. 

stress[[2]]

185.642 -− (sr[1, 1] -− sr[2, 1])2 + (sr[1, 2] -− sr[2, 2])2
2

Finally,  we  must  choose  the  method  for  minimizing  the  stress  function.  We discuss  two
options,  FindMinimum  and  NMinimize.  A  known  issue  with  metric  MDS  is  the
existence  of  local  minima,  and  thus  identifying  a  global  minimum cannot  be  guaranteed
[7].  While  FindMinimum  may  be  computationally  more  efficient,  it  also  lacks  the
ability to specify the number of search points and is prone to finding local minima instead
of global minima. These issues are discussed in some detail in Section 7. In contrast, the
NMinimize  function  allows  specification  of  "SearchPoints"  to  address  this  issue
and  may  be  substantially  more  robust.  For  these  reasons,  we  chose  NMinimize  to
optimize the stress function.

minSol = NMinimize[stress, minVar,
Method → {"DifferentialEvolution", "SearchPoints" → 30}];

mMDScoordinates = Y /∕. minSol[[2]]

{{-−1402.36, 607.173}, {-−1266.39, 469.958},
{-−1606.69, 264.943}, {-−1126.85, -−53.3117},
{-−1765.08, -−577.081}, {-−1071.77, -−647.566},
{951.972, -−251.212}, {834.508, -−1216.67},
{513.717, -−1011.41}, {349.174, -−1063.05},
{395.11, -−1556.}, {0.591031, 1164.22}, {-−439.039, 135.562},
{-−135.834, 672.137}, {-−369.399, 984.483}}

The  viral  strains  are  then  plotted  in  the  two-dimensional  space  and  are  color-coded  for
clarity  (H1,  H3,  and  H5).  Note  that  the  coordinate  system  is  arbitrary,  in  the  sense  that
what is preserved and important are the relative distances between the data points.  Thus,
we have omitted the axes, which have the same scale in each dimension.
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▲ Figure 5. Relative antigenic distances for influenza strains.

Examining the plot, it is immediately apparent that the influenza strains fall into four dis-
tinct  clusters.  Two of  these  correspond to  major  hemagglutinin  protein  strains  (H3,  H5).
In addition, we can see differences between temporally distinct strains in the H1 influenza
strains, giving perhaps two clusters. For example, note the antigenic distance between the
pandemic  A/California/07/2009  (CAL709),  A/Utah/20/2009  (UT2009),  and  A/Mexi-
co/41/2009  (MEX4109)  strains  and  the  other  H1  influenza  strains.  This  likely  reflects
molecular  mutations  in  the  hemagglutinin  proteins  for  the  2009  strains.  These  mutations
resulted  in  decreased  binding  of  antibodies  from  ferrets  infected  with  earlier  influenza
strains.  This  finding was  consistent  with  the  decreased population  immunity  observed in
humans to  A/California/07/2009 and demonstrates  the  pandemic nature  of  that  particular
influenza strain. 
Given that the influenza strains seem to cluster together, what is the relationship between
MDS and methods of unsupervised data clustering used in data mining? The answer lies
in the use of the proximity matrix, which is used by both hierarchical and agglomerative
clustering  methods  to  determine  relatedness.  This  relationship  was  noted  by  the  devel-
opers  of  the MDS methods [1,  2,  8].  To briefly demonstrate,  we apply hierarchical  clus-
tering  to  the  same  proximity  matrix  Dm,  using  the  DirectAgglomerate  function.
Ward’s minimum variance method is used for determining cluster linkage.
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virusLabelsColor =
Table[Style[seraLabShort[[i]], seraColor[[i]], Bold,

FontFamily → "Arial", 9], {i, 1, Length[seraLabShort]}];
clustTR = DirectAgglomerate[Dm, virusLabelsColor,

Linkage → "Ward"];

The  resulting  dendrogram  is  displayed  in  Figure  6.  Note  the  grouping  of  the  different
virus types (H1, H3, and H5) based on the reactivity of ferret serum after infection with a
single virus and the resulting antibodies against the hemagglutinin proteins.
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▲ Figure 6. Dendrogram of influenza virus relationships.

To explore which viruses are antigenically closer to each other, a heat map of the relative
distances  from  the  calculated  coordinates  (or  the  original  proximity  matrix)  can  then  be
created with DistanceMatrix and ArrayPlot. Note that more antigenically similar
influenza strains have smaller distances between each other. 

DmC = DistanceMatrix[mMDScoordinates];
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▲ Figure 7. Heat map of proximity matrix data.

□ 6.3. Function: Metric Multidimensional Scaling

As in the previous section, we end with a general function for the metric MDS calculation.
The function requires several input variables, including precision, accuracy, the minimiza-
tion method, and the maximum number of iterations. This function uses the classical MDS
routine for the initial coordinate estimates. Some suggested defaults are given in the func-
tion definition to be passed to NMinimize. The metric MDS function is written for two-
dimensional mapping that could easily be generalized for three dimensions.
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metricMDS[dmT_,
method_: {"DifferentialEvolution", "SearchPoints" → 30},
precGoal_: 5, accurGoal_: 4, itr_: 100] :=

Module[{m, n, Y, mY, stress, minVar, minSol, stval, sr},
{{m, n} = {Length[dmT], 2};

Y = Array[sr, {Length[dmT], 2}];
minVar = Flatten[Y];

mY =
Table[Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 +

(Y[[i, 2]] -− Y[[j, 2]])^2], {i, m}, {j, m}];
stress = Total[Table[(dmT[[i, j]] -− mY[[i, j]])^2,

{i, m}, {j, m}], 2];

minSol = NMinimize[stress, minVar, Method → method,
PrecisionGoal → precGoal, AccuracyGoal → accurGoal,
MaxIterations → itr];

Y /∕. minSol[[2]]

}][[1]]

□ 6.4. Nonlinear Stress Functions 

One  of  the  advantages  of  metric  MDS methods  is  the  ability  to  use  nonlinear  mappings
from  N-dimensional  to  visualizable  space.  We  now  use  this  function  to  create  an  MDS
map  comparing  the  influenza  hemagglutinin  proteins  by  sequence  similarity.  Recall  that
the  proximity  measure  for  sequence  comparison  is  the  Smith–Waterman  sequence  dis-
tance,  which  is  not  a  Euclidean  distance  function.  Thus,  this  violates  the  assumptions  of
classical MDS and makes metric MDS the appropriate method to use, albeit  at  computa-
tional  cost.  Taking  the  hemagglutinin  protein  proximity  matrix,  fluPm,  we  apply  the
metricMDS function and obtain the coordinates. We also apply hierarchical clustering to
the proximity matrix fluPm.
One of the advantages of metric MDS methods is that one can use nonlinear stress func-
tions  to  emphasize  particular  regions  of  data  relationships.  One  of  the  first  nonlinear
metric  MDS methods  was  that  of  Sammon’s  mapping  [12,  13].  Sammon’s  mapping  can
be  useful  in  revealing  underlying  data  structure  or  differences  with  nonlinear  relation-
ships. This mapping minimizes the following general nonlinear form of stress functions:

E(Dm Δm) = C 
i= 0

c


j= 0

c
(dij -− δij)2 F(dij), (13)
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where F  is  a  weighting function and C  is  a  constant.  In the case of  Sammon’s mapping,
the stress function is defined by F (x) = 1 /∕ x, k = 2, with C specified as [12]:

C = 
i= 0

c


j= 0

c
dij . (14)

Many related nonlinear mappings exist of the same form [12, 14]. For the purposes of this
example,  we explore applying a nonlinear exponential  MDS mapping with a stress func-
tion defined by F (x) = e-−β dij , k = 2, α = 9, β = a /∕max(dij), and C = 1:

E(Dm, Δm) = C 
i= 0

c


j= 0

c
(dij -− δij)2 e

-−9 dij
max(dij) . (15)

Note  that  α  is  an  empirically  specified  tuning  factor.  This  nonlinear  mapping  function
decreases the contribution to the overall  stress function of larger dij  and has the effect of
expanding  the  mapped  distances  between  data  points  with  smaller  dij.  The  advantage  of
this mapping is that the weight of any point in the minimization is inversely proportional
to  its  magnitude.  Thus,  smaller  differences  between  data  elements  are  spread  out.  The
coding of the exponential MDS function lets you specify α. 

expMDS[dmT_, alpha_,
method_: {"DifferentialEvolution", "SearchPoints" → 30},
precGoal_: 5, accurGoal_: 4, itr_: 100] :=

Module[{m, n, Y, mY, stress, minVar, minSol, stval, sr},
{{m, n} = {Length[dmT], 2};
Y = Array[sr, {Length[dmT], 2}];
minVar = Flatten[Y];
mY =
Table[Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 +

(Y[[i, 2]] -− Y[[j, 2]])^2], {i, m}, {j, m}];
stress =
Total[Table[((dmT[[i, j]] -− mY[[i, j]])^2)

Exp[-−alpha dmT[[i, j]] /∕ Max[dmT]], {i, m}, {j, m}],
2];

minSol = NMinimize[stress, minVar, Method → method,
PrecisionGoal → precGoal, AccuracyGoal → accurGoal,
MaxIterations → itr];

Y /∕. minSol[[2]]
}][[1]]

To demonstrate, we apply the metric nonlinear MDS method to the above fluPm dataset
of  protein  sequence  comparisons.  First,  we  apply  the  standard  metric  MDS function  de-
fined in the previous section, metricMDS, and generate a dendrogram to highlight the se-
quence differences.
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▲ Figure 8. Influenza virus relationships from protein sequences.

While  the  major  influenza  viral  subtypes  (H1,  H3,  and H5)  all  cluster  together,  minimal
differences  can  be  observed  with  respect  to  sequences  differences  within  each  subtype.
Using  the  nonlinear  mapping,  as  shown  in  Figure  9,  accentuates  the  small  differences
between  the  hemagglutinin  protein  sequences.  Note  the  negative  exponential  weighting
function,  with the large distances between hemagglutinins being given less weight in the
minimization.  We  are  now able  to  visualize  the  division  of  the  H1  influenza  hemagglu-
tinins into two major clusters and the split between clusters of the H3 substrains within the
visualization.  It  is  worth  noting  that  the  hierarchical  clustering  may  capture  these
differences.
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▲ Figure 9. Weighting function and nonlinear mapping of protein sequences.

□ 6.5. Synopsis: Metric MDS

Metric  multidimensional  scaling  is  a  more  flexible  method  compared  to  classical  MDS.
While computationally less efficient, it allows nonlinear dimensional reduction that is not
possible with the SVD or PCA method of classical  MDS. This functionality can be used
to highlight possible clusters, similarities, or differences between cases described by high-
dimensional attribute vectors and to weight or penalize the stress function based on data at-
tributes.  As with classical  MDS, complementary visualization methods allow for  a  fuller
picture  of  case  differences  but  must  be  carefully  interpreted  when  nonlinear  stress  func-
tions are used.

■ 7. Some Considerations on Selecting a Method for MDS
From a computational perspective, several features of classical and metric MDS methods
should be considered when selecting which method to use for a specific analysis.
Classical MDS is computationally straightforward but has some subtle mathematical con-
straints. For a solution to exist in Euclidean space, the distance matrix must follow a set of
necessary and sufficient conditions [1,  15].  In practice,  this is rarely an issue. When it  is
an issue, it often manifests by a computational result expressed in imaginary numbers. If,
however,  the  proximity  matrix  is  composed  of  Euclidean  distances,  classical  MDS  be-
comes principal component analysis, and the support vector machine (SVM) function can
be used.  This  is  much more computationally efficient,  as  we demonstrate  in Section 7.3,
and is the preferred method of MDS for visualization of most data.
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Classical MDS is computationally straightforward but has some subtle mathematical con-
straints. For a solution to exist in Euclidean space, the distance matrix must follow a set of
necessary and sufficient conditions [1,  15].  In practice,  this is rarely an issue. When it  is
an issue, it often manifests by a computational result expressed in imaginary numbers. If,
however,  the  proximity  matrix  is  composed  of  Euclidean  distances,  classical  MDS  be-
comes principal component analysis, and the support vector machine (SVM) function can
be used.  This  is  much more computationally efficient,  as  we demonstrate  in Section 7.3,
and is the preferred method of MDS for visualization of most data.
Metric  MDS has  somewhat  more  relaxed  constraints  than  classical  MDS.  For  very  high
numbers  of  initial  dimensions  N,  metric  MDS is  computationally  and memory intensive.
This is primarily due to the need to use iterative optimization to minimize the stress func-
tion,  whereas  classical  MDS  uses  more  efficient  matrix  algebra  operations.  In  addition,
one  needs  to  pay attention  to  the  algorithms used to  perform metric  MDS to  ensure  that
minimization finds global rather than local minima. 
We next examine the selection of minimization algorithms for metric MDS, compare the
computational efficiency of classical and metric MDS methods, and discuss the particular
circumstances where metric MDS may be the method of choice.

□ 7.1 Convergence, Accuracy, and Selection of Minimization 
Algorithms for Metric MDS

With  metric  MDS,  selecting  a  minimization  algorithm  with  an  appropriate  Method
setting for Mathematica’s built-in function NMinimize may require some investigation.
In  addition,  a  known  issue  with  metric  MDS is  the  existence  of  local  minima,  so  that  a
global  minimum  cannot  be  guaranteed  [7].  Using  a  large  number  of  starting  points  or
selecting  the  appropriate  minimization  function  and  method  may  help.  In  this  article  we
have  used  NMinimize  with  Method  set  to  the  "RandomSearch"  option.  We  also
specified  sufficient  search  points  to  avoid  local  minima.  This  can  be  an  important  issue
when no other external data is available to constrain the solution and when it is not known
if other minimization methods will routinely converge to a solution. 
It is worth exploring this tradeoff between convergence, accuracy, and computational effi-
ciency. For example, the execution time of NMinimize increases with the number of ini-
tial search points. The next example uses NMinimize  on the influenza antibody dataset
distance matrix Dm and the method "RandomSearch". In this case, however, the num-
ber  of  search points  appears  to  make little  difference in  the  residual  after  optimizing the
stress function.

sp = {1, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300};

minSolT =
Parallelize[
Timing[NMinimize[stress, minVar,

Method → {"RandomSearch", "SearchPoints" → #}]] & /∕@
sp];
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▲ Figure 10. Efficiency of NMinimize (RandomSearch).

In  the  case  of  RandomSearch,  there  appears  to  be  no  tradeoff  with  this  particular
dataset.  In  contrast,  the  theoretically  more  robust  setting  Method → Differen!
tialEvolution  finds a small  number of varying minima, which improves after spec-
ifying  a  larger  number  of  search  points.  Also  note  the  improved  execution  times,  which
are an order of magnitude less than with RandomSearch.

minSolTde =
Parallelize[
Timing[NMinimize[stress, minVar,

Method → {"DifferentialEvolution",
"SearchPoints" → #}]] & /∕@ sp];
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▲ Figure 11. Efficiency of NMinimize (DifferentialEvolution).

Another consideration is the speed of computation. The FindMinimum function is often
much  faster  than  NMinimize,  but  the  tradeoff  is  the  risk  that  the  algorithm  will  not
converge  or  that  it  will  find  local  instead  of  global  minima.  For  the  influenza  data,
FindMinimum  can  suffer  from  both  nonconvergence  and  local  minima,  although  the
former issue may be sporadic. The sporadic nature of convergence can be frustrating and
problematic. The issue of finding local minima is potentially more serious. To explore this
further, we minimized 300 times with FindMinimum.
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mY1 =
Table[
Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 + (Y[[i, 2]] -− Y[[j, 2]])^2],
{i, lenDm}, {j, lenDm}];

stress1 =
Total[Table[((Dm[[i, j]] /∕ 10.)^2 -− mY1[[i, j]])^2,

{i, lenDm}, {j, lenDm}], 2];

simMin =
Quiet[
Table[
{start =

Thread[{minVar, RandomReal[{-−1000, 1000},
Length[minVar]]}];

test =
Check[
mSol2 = Timing[FindMinimum[stress1, start,

Method → "LevenbergMarquardt", AccuracyGoal → 6,
PrecisionGoal → 5 ]], {}];

If[test ≠ {}, {"Converges",
mCoords2 = Y /∕. mSol2[[2, 2]],
timing2 = mSol2[[1]],
residual2 = mSol2[[2, 1]]},

{"Does Not Converge", mCoords2 = Y /∕. mSol2[[2, 2]],
timing2 = mSol2[[1]],
residual2 = mSol2[[2, 1]]}]}[[1]], {i, 1, 300}]];

sim2 = simMin[[All, 1]];

The  results  are  displayed  as  a  histogram  in  Figure  13.  We  found  that  a  number  did  not
converge  with  the  influenza  antibody-reactivity  dataset.  Of  even  more  concern  is  that
FindMinimum was not consistent, and often appeared to provide local rather than global
minima.  This  may in  some cases  be  dataset  specific.  The starting  points  selected,  here  a
RandomReal number between -−1000 and 1000 for each coordinate, are also critical for
FindMinimum. 
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▲ Figure 12. Residuals and convergence using FindMinimum.

The convergence can be improved by minimizing the sum of  the squares  rather  than the
Euclidean  distance.  Note  that  the  minimum residual  is  higher  than  when minimizing  the
sum of the differences between distances rather than the square of the difference between
distances.  This  may  be  due  to  computational  considerations,  in  that  there  is  differentia-
bility at the optima when minimizing the sum of the squares of the distances, while this is
lacking if minimizing the difference between the distances. Still, a moderate number (2%
to  15%  from  300  attempts)  of  the  solution  attempts  did  not  converge  or  find  global
minima. Whether this is an issue for your particular application depends on both the level
of precision required and the computational efficiency required.

mY3 = Table[(Y[[i, 1]] -− Y[[j, 1]])^2 +
(Y[[i, 2]] -− Y[[j, 2]])^2, {i, lenDm}, {j, lenDm}];

stress3 =
Total[Table[((Dm[[i, j]] /∕ 10.)^2 -− mY3[[i, j]])^2,

{i, lenDm}, {j, lenDm}], 2];
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▲ Figure 13. FindMinimum and minimizing the sum of the squares.

Given the low percentage of nonconvergence and the presence of local minima, one could
execute FindMinimum  several  times and take the results  that  converge with the lowest
minimum. This does increase the time for execution. An alternative is to use the function
NMinimize. The tradeoff is an increased computational time for consistent convergence
on global minima, as shown here. This demonstration takes several minutes to perform on
this dataset, even with parallelization.
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mY3 = Table[(Y[[i, 1]] -− Y[[j, 1]])^2 +
(Y[[i, 2]] -− Y[[j, 2]])^2, {i, lenDm}, {j, lenDm}];

stress3 =
Total[Table[((Dm[[i, j]] /∕ 10.)^2 -− mY3[[i, j]])^2,

{i, lenDm}, {j, lenDm}], 2];

Quiet[
simMin4 = ParallelTable[

{test4 =
Check[
mSol4 =
Timing[minSol = NMinimize[stress3, minVar,

Method → {"DifferentialEvolution",
"SearchPoints" → 30}, AccuracyGoal → 6,

PrecisionGoal → 5]], {}];
If[test4 ≠ {}, {"Converges",

mCoords4 = Y /∕. mSol4[[2, 2]],
timing4 = mSol4[[1]],
residual4 = mSol4[[2, 1]]},

{"Does Not Converge", mCoords4 = Y /∕. mSol4[[2, 2]],
timing4 = mSol4[[1]],
residual4 = mSol4[[2, 1]]}]}[[1]], {i, 1, 300}]];

sim4 = simMin4[[All, 1]];

Converges 300
Global Min %
Global Min

100. %
9610226262

▲ Figure 14. Residuals and convergence using NMinimize.

A single minimum residual is obtained for all 300 separate runs of NMinimize. Thus, un-
less  local  minima are  known not  to  be  an issue,  NMinimize  may be a  more  consistent
minimization method for metric MDS routines.
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□ 7.2. Computational Efficiency

The issues of optimization and computational efficiency make it useful to benchmark clas-
sical  and  metric  MDS  methods  with  respect  to  execution  time.  Therefore,  we  compared
SVD with classical and metric MDS across the three example datasets. For metric MDS,
we  include  both  FindMinimum  and  NMinimize.  The  measured  execution  times
encompass  all  the  steps  from  the  input  of  the  proximity  matrix  through  final  coordinate
output, but not plotting. The previously created classicalMDS and metricMDS func-
tions  defined  previously  were  used,  along  with  new functions  created  for  singular  value
decomposition (mdsSVD) and metric MDS using FindMinimum (findMinMDS). 

mdsSVD[data_, dimensions_: 2] :=
Module[{hmat, len, zeromeanData, uu, ww, vv}, {

len = Length[data];
hmat = IdentityMatrix[len] -− 1 /∕ len;
zeromeanData = -−hmat.N[data^2].hmat /∕ 2;
{uu, ww, vv} = SingularValueDecomposition[

zeromeanData, dimensions]}][[1]]

findMinMDS[dmT_, start_: {-−1000, 1000},
method_: "LevenbergMarquardt", precGoal_: 5,
accurGoal_: 6, itr_: 100] :=

Module[{m, n, Y, mY, stress, minVar, minSol, stval, sr},
{{m, n} = {Length[dmT], 2};
Y = Array[sr, {Length[dmT], 2}];
minVar = Flatten[Y];
mY =
Table[((Y[[i, 1]] -− Y[[j, 1]])^2 +

(Y[[i, 2]] -− Y[[j, 2]])^2), {i, m}, {j, m}];
stress = Total[Table[(dmT[[i, j]] -− mY[[i, j]])^2,

{i, m}, {j, m}], 2];
minSol = FindMinimum[stress,

Transpose[
{minVar, RandomReal[start, Length[minVar]]}],

Method → method, PrecisionGoal → precGoal,
AccuracyGoal → accurGoal, MaxIterations → itr];

Y /∕. minSol[[2]]
}][[1]]
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times =
Transpose[
Parallelize[
{Timing[mdsSVD[#, 2]][[1]],

Timing[classicalMDS[#]][[1]],
Timing[findMinMDS[#]][[1]],
Timing[metricMDS[#, {"DifferentialEvolution",

"SearchPoints" → 5}]][[1]]} & /∕@
{airData, Dm, fluPm}]];

#FindMinimum::cvmit : Failed to converge to the
requested accuracy or precision within 100 iterations.

#FindMinimum::cvmit : Failed to converge to the
requested accuracy or precision within 100 iterations.

Note that  FindMinimum  failed to converge for  the airport  dataset  but  did converge for
both the flu antibody and sequence datasets, a behavior that may vary between executions.
Timings are shown here.

Airport Flu Antibody Flu Sequence
SVD 0.001834 0.000528 0.00055
cMDS 0.001546 0.000396 0.000699

mMDS(FindMinimum) 1.06058 0.099026 0.050825
mMDS(NMinimize) 13.4262 0.755616 0.756747

▲ Table 6. MDS computational efficiency (seconds).

Overall, there is a speed advantage to using classical MDS and SVD, which are several or-
ders of magnitude faster than metric MDS using either FindMinimum  or NMinimize.
This advantage assumes that the proximity matrix can be formulated using a Euclidean dis-
tance, and thus other measurements (e.g. Manhattan distance, etc.) may require other meth-
ods.  It  also  assumes  that  you  require  a  linear  mapping  from the  N-dimensional  space  to
the visualizable space. SVD has the advantage that,  for many applications, the proximity
matrix  may  not  have  to  be  directly  calculated,  saving  additional  memory  and  computa-
tional time [8]. With respect to metric MDS, there are also tradeoffs. For moderately large
datasets,  if  one  can  optimize  the  conditions  to  avoid  nonconvergence  and  local  minima,
FindMinimum is a good choice. Note that the execution time for FindMinimum in the
airport  and influenza antibody dataset  examples occurred in the setting of failure to con-
verge.  Although slower,  metric  MDS using NMinimize  had no issues  with  nonconver-
gence or finding local instead of global minima.
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□ 7.3. Some Thoughts on Method Selection: Classical versus 
Metric MDS

Given the computational advantages of classical MDS in its various forms (principal com-
ponent analysis, singular value decomposition, etc.), why would you choose metric MDS,
which requires numerical optimization? For those wishing an in-depth and lucid explana-
tion, we refer you to the initial work of Gower [15] and the outstanding article by Shiens
[16].  In short,  classical MDS methods are usually preferable to and always computation-
ally  more  efficient  than  metric  MDS  methods.  The  method  is  computationally  efficient
and robust; there are very few cases where classical MDS methods fail to provide a visual-
ization. For some datasets, classical MDS methods may not provide optimal visualization,
and metric  MDS should be considered.  Some examples include datasets  whose variables
have a non-Gaussian distribution, those where the distance metric is not Euclidean, those
requiring  imputation  of  missing  data  [10,  11],  or  cases  with  a  parametrization  in  a
nonorthogonal coordinate system [16].  For nonlinear dimensional reduction, which is of-
ten used in graph layout algorithms, metric MDS with stress function minimization is the
method of choice [14].
Thus, selection of an MDS method for visualization should consider several factors. If the
distance  function  is  Euclidean,  and  especially  if  the  dataset  is  large,  SVD  or  classical
MDS are the most appropriate and computationally efficient methods. In the less common
case  where  metric  MDS  is  used,  careful  consideration  should  be  given  to  the  choice  of
stress  function  minimization  method  (in  this  example  NMinimize  versus  Find!
Minimum) to avoid local minima. 

■ 8. Summary and Conclusion
We  have  demonstrated  the  application  of  two  methods  of  multidimensional  scaling,
classical  and  metric,  for  the  visualization  of  similarity/proximity  of  high-dimensional
data, with reduction to two or three dimensions. We have shown how these methods can
be  used  to  visualize  the  relatedness  of  influenza  virus  strains  with  respect  to  antibody-
mediated  immunity,  as  well  as  their  utility  in  reconstructing  relative  spatial-geographic
locations using only interlocation distances. These MDS methods are, however, quite gen-
eralizable. Both classical and metric MDS rely on a proximity matrix. While the examples
in this article use continuous variables and sequences or case attributes,  a variety of data
types  with  appropriate  proximity  metrics  can  be  visualized  with  MDS  methods,  such  as
molecular  DNA  or  protein  sequence  data  (Smith–Waterman  similarity,  Needleman–
Wunsch  similarity,  or  Damerau–Levenshtein  distance),  Boolean  data  (Hamming
distance),  and  images  (image  distance,  color  distance).  For  cases  with  a  single  data
attribute  (e.g.  sequence similarity,  distance),  no data  scaling is  necessary.  For  cases  with
multiple  attributes  having  disparate  units,  standardization  (e.g.  z-score)  and  rescaling  are
needed to equally weight each attribute. 

Graphical Representation of Proximity Measures for Multidimensional Data 39

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



In our examples, we used reduction down to two dimensions for multidimensional data vi-
sualization. Reduction to three dimensions is easily accomplished with both classical and
metric MDS, although the computational cost may increase with the added dimension, de-
pending on the method used.  While we have emphasized data visualization,  the classical
MDS method can also be used for  reduction to  four  or  more dimensions  as  a  method of
identifying the weighted combinations of components that contribute the most to the data
variance. In these cases, the goal is to select a small set of variables that explain the most
variance in the dataset, such that this minimum set of variables can be further used for sta-
tistical or other modeling. 
We have also shown how MDS methods are related to clustering algorithms,  which also
use proximity matrices to compare and classify cases by their attributes. This relationship
also  allows  creative  graphical  display  of  multidimensional  data  from  several  vantage
points. For example, one can use the MDS plot to display the relative proximity of cases
to  each  other  and  plot  marker  coloring  or  other  methods  to  add  information  regarding
other case attributes.  Some caution is  in order,  however,  as different proximity measures
and data transformations may give different clustering and classification. Parallel  display
of dendrograms and heat maps may also enhance understanding of the relationship of data
clusters to each other. Similarly, heat maps, combined with MDS displays, are particularly
helpful  for  data  exploration,  in  that  they  enhance  visual  identification  of  those  data  at-
tributes (dimensions) that contribute the most to differentiating between case clusters.
Care should be taken when selecting the MDS method. In most cases, classical MDS will
be  the  most  computationally  efficient  method,  especially  for  very  large  datasets.  In  the
cases where metric MDS is optimal, such as the use of nonlinear mapping, care should be
taken to choose a minimization method that is  robust and avoids local minima. Perform-
ing some testing on a subset of the data can be very informative regarding convergence, 
accuracy, and computational efficiency. While we did not discuss in detail how constrain-
ing  optimization  problems  can  improve  computational  efficiency  and  accuracy,  this
should also be considered whenever boundary conditions or other information is available.
Finally,  one  must  remain  aware  that  these  methods  reveal  only  associative  patterns.
Further  analysis  with  rigorous  statistical  inference  methods  is  needed  to  test  the  validity
and  specify  the  error  boundaries  of  these  associations.  Mechanistic  studies  should  be
performed, if possible, to confirm suspected causal relationships. Overall, however, MDS
methods  are  excellent  for  dimensional  reduction  and  data  exploration  with  the  goal  of
creating comprehensible and informative quantitative graphical representations of multidi-
mensional data.
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