
The Mathematica® Journal

Graphical Representation of
Proximity Measures for
Multidimensional Data
Classical and Metric Multidimensional
Scaling
Martin S. Zand
Jiong Wang
Shannon Hilchey

We describe the use of classical and metric multidimensional
scaling methods for graphical representation of the proximity
between collections of data consisting of cases characterized by
multidimensional attributes. These methods can preserve metric
differences between cases, while allowing for dimensional
reduction and projection to two or three dimensions ideal for
data exploration. We demonstrate these methods with three
datasets for: (i) the immunological similarity of influenza proteins
measured by a multidimensional assay; (ii) influenza protein
sequence similarity; and (iii) reconstruction of airport-relative
locations from paired proximity measurements. These examples
highlight the use of proximity matrices, eigenvalues,
eigenvectors, and linear and nonlinear mappings using
numerical minimization methods. Some considerations and
caveats for each method are also discussed, and compact
Mathematica programs are provided.

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

■ 1. Introduction
One “curse” of high- and multidimensional data is the difficulty in graphically displaying
how the data points are related to each other. Each data point (in some fields referred to as
a case) is characterized by a vector of attributes (e.g. shape, color, temperature, etc.) with
numerical values that form a set of coordinates. These coordinates specify a location in an
N-dimensional space, with N being the number of variables used to describe each case.
Visualization of such N-dimensional data is problematic as, for example, we do not think
in 17 dimensions! For human comprehension, we are limited to two- or three-dimensional
graphics, sometimes referred to as visualizable dimensions, in which each case is repre-
sented by a data point. The distances between points and their relative locations reflect
their proximity (similarity or dissimilarity), as measured by a metric function of their
attributes, such as Euclidean distance. Larger distances between cases indicate that they
are less related. Fortunately, multidimensional scaling (MDS) methods can be used to
visualize the degree of proximity for high-dimensional datasets [1, 2, 3]. MDS methods
can be used to project the N-dimensional coordinates of each case to two or three
dimensions, while preserving the relative distances between cases [4, 5]. These methods
are increasingly employed in such diverse fields as immunology, molecular biology, mar-
keting, perceptual mapping, and ecology to visualize relative “distances” between viruses,
molecules, species, and customers’ behavior. In this article, we discuss some mathe-
matical details of classical and metric MDS methods and build generalizable Mathematica
programs that can be used for each. We incorporate use cases from geography, molecular
virology, and immunology.
Before covering the analytical details, it is worth briefly discussing the variety of MDS
methods. The simplest method is referred to as classical multidimensional scaling, also
known as principal coordinate analysis (PCoA) [1]. PCoA is not to be confused with
principal component analysis (PCA). The difference between PCA and classical
MDS/PCoA is primarily based on the input data. PCA starts with a set of cases or data
points zi, each described by a set of attributes a, and uses a Euclidean distance to project
the data to a lower-dimensional space oriented to maximize the variance observed
between data points. In contrast, classical MDS begins with an input matrix that specifies
proximities between pairs of items, often referred to as dissimilarities. It outputs a coor-
dinate matrix in a lower dimension than the starting data (e.g. 120 dimensions projected to
two) that preserves the relative distances between all data points. Classical MDS was orig-
inally developed by Gower [1] and others and is often demonstrated with a simple
problem: given only the distances between entities (e.g. cities), is it possible to calculate
the map showing their relative distances? We use this example in Section 4. In the
specific case where the dissimilarity is measured by a Euclidean distance, PCA and
classical MDS/PCoA are mathematically identical to another dimensional reduction
method, singular value decomposition (SVD). In that case, there may be computational
advantages to using SVD, which are discussed in this article.
While classical MDS relies on linear transformation of data using matrix operations,
metric MDS methods depend on computational optimization. Metric MDS takes a prox-
imity matrix and calculates a two- or three-dimensional coordinate matrix whose configu-
ration minimizes the difference between the N-dimensional and the calculated distances in
the reduced dimensions for each case or data point [2, 3]. Thus, similar cases are located
next to each other in a reduced-dimensional plot, while disparate cases are farther away,
and the final coordinates can be projected to a planar or three-dimensional space. Other
varieties of MDS, not discussed here, include nonmetric MDS, which uses isotonic
regression methods, and generalized MDS, which projects the coordinates to an arbitrary
smooth target space [3–7]. Metric MDS is more flexible than classical MDS for certain
problems, including when the proximity matrix contains missing data or reflects a dis-
tance function that is not Euclidean. In addition, it can accommodate nonlinear mappings
from the N-dimensional data space to the visualization. However, because metric MDS
uses numerical optimization, it is computationally expensive. These tradeoffs are explored
in Section 7.

2 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

While classical MDS relies on linear transformation of data using matrix operations,
metric MDS methods depend on computational optimization. Metric MDS takes a prox-
imity matrix and calculates a two- or three-dimensional coordinate matrix whose configu-
ration minimizes the difference between the N-dimensional and the calculated distances in
the reduced dimensions for each case or data point [2, 3]. Thus, similar cases are located
next to each other in a reduced-dimensional plot, while disparate cases are farther away,
and the final coordinates can be projected to a planar or three-dimensional space. Other
varieties of MDS, not discussed here, include nonmetric MDS, which uses isotonic
regression methods, and generalized MDS, which projects the coordinates to an arbitrary
smooth target space [3–7]. Metric MDS is more flexible than classical MDS for certain
problems, including when the proximity matrix contains missing data or reflects a dis-
tance function that is not Euclidean. In addition, it can accommodate nonlinear mappings
from the N-dimensional data space to the visualization. However, because metric MDS
uses numerical optimization, it is computationally expensive. These tradeoffs are explored
in Section 7.
A byproduct of both MDS methods is the proximity matrix, which can also be used for
other high-dimensional visualizations, such as heat mapping and multidimensional clus-
tering methods. Combining MDS with these methods often reveals different facets of the
data and aids investigators in gaining understanding of the underlying data structure and
exploratory data analysis.
In the following sections, we discuss construction of proximity matrices, classical MDS,
and metric MDS. Several examples illustrate the strengths and pitfalls of these methods;
the full datasets are included in the article. The tradeoff between computational efficiency
and accuracy is touched on as well. Each section briefly covers the mathematical underpin-
ning of the method, a step-by-step example, a self-contained function using compact code,
considerations for the method and alternate approaches, and a synopsis of the most salient
points. A separate section discusses accuracy and computational efficiency and compares
these methods.

■ 2. Computational Environment and Data
This article was created using Wolfram Mathematica Version 10.0.2, running Macintosh
OS X 10.9.5 on a MacBook Pro with a 2.8 GHz Intel Core i7 processor with 16 GB RAM.
It contains the entire code and all the data needed for execution of all examples. Internet
connectivity is required to retrieve the airport distances and perform the mapping of the
airport locations within Mathematica.
For the sake of aesthetics and clarity, we have collapsed cells containing code related to
the display of tables and figures, which appear in their final form.
Execution of the last section of the article may take 4–8 minutes, given the number of
minimization problems that are calculated. Also, earlier versions of Mathematica may not
execute the GeoListPlot commands properly (or at all for Version 9.0 or lower), given
that this functionality was added in Version 10.0 and several options were added between
Versions 10.0 and 10.0.2.

Graphical Representation of Proximity Measures for Multidimensional Data 3

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

■ 3. Datasets and Display Functions
For the sake of brevity, the datasets are placed here in collapsed cells, along with several
housekeeping functions for displaying tables and figures. Some of the data for intra-air-
port distances is retrieved by using the AirportData function and requires internet ac-
cess if executing the notebook again.
[collapsed cells]

■ 4. Proximity Matrices
Classical and metric MDS methods rely on a symmetric input matrix M (referred to as a
proximity matrix) that specifies the N-dimensional distance between pairs of objects a and
b, denoted δab

N . Proximity may be defined as a distance or dissimilarity.

In some applications, M is composed of distances δab
N that are specified directly, for exam-

ple, the flying distances between airport pairs in the United States, as shown in Table 1.
The proximity matrix is a symmetric distance matrix with the airport names in the first col-
umn and the corresponding airport abbreviations for the column labels.

Birmingham (BHM) 134 1428 0 1171 1727 1050 779 584 604 597 1083
Bismark (BIS) 1247 379 1171 0 786 1490 1109 716 1007 977 516
Boise (BOI) 1838 409 1727 786 0 2265 1876 1437 1750 1272 649

Boston (BOS) 946 1866 1050 1490 2265 0 396 867 563 1562 1754
Buffalo (BUF) 712 1481 779 1109 1876 396 0 473 192 1212 1359
Chicago (ORD) 606 1060 584 716 1437 867 473 0 316 802 888
Cleveland (CLE) 555 1366 604 1007 1750 563 192 316 0 1021 1201
Dallas (DFW) 731 1081 597 977 1272 1562 1212 802 1021 0 641
Denver (DEN) 1199 455 1083 516 649 1754 1359 888 1201 641 0

Des Moines (DSM) 743 800 667 504 1156 1165 771 299 613 624 589
Detroit (DTW) 594 1274 625 913 1660 632 241 234 95 986 1123
El Paso (ELP) 1282 973 1148 1075 972 2067 1693 1236 1509 551 563
Houston (HOU) 696 1327 570 1217 1501 1609 1297 945 1107 247 883

Indianapolis (IND) 432 1202 425 875 1563 818 452 177 261 761 976
Kansas City (MCI) 692 835 594 599 1152 1256 870 403 694 460 533
Little Rock (LIT) 453 1148 324 942 1419 1260 920 552 729 304 771

Los Angeles (LAX) 1946 970 1815 1280 674 2611 2217 1745 2053 1235 862
Louisville (SDF) 321 1281 323 967 1630 829 494 287 304 733 1024
Memphis (MEM) 332 1224 211 984 1516 1139 813 491 623 431 872

Miami (MIA) 595 2083 661 1831 2358 1258 1185 1197 1080 1121 1709
Minneapolis (MSP) 907 748 854 386 1142 1124 734 334 622 852 680
New Orleans (MSY) 425 1472 321 1287 1706 1367 1097 837 917 448 1062

New York (JFK) 760 1776 866 1407 2167 187 301 740 425 1391 1626
Omaha (OMA) 821 706 732 448 1048 1282 887 416 729 583 472

Philadelphia (PHL) 666 1727 772 1363 2113 280 279 678 363 1303 1558
Phoenix (PHX) 1587 873 1455 1094 735 2300 1912 1440 1737 868 602
Pittsburgh (PIT) 526 1469 598 1112 1850 496 186 412 106 1067 1290
Portland (PDX) 2172 679 2064 1048 344 2537 2157 1739 2046 1616 991

Raleigh-−Durham (RDU) 356 1690 480 1360 2045 612 487 646 416 1061 1436
St. Louis (STL) 484 1048 411 764 1383 1047 674 258 487 550 770

Salt Lake City (SLC) 1590 387 1472 696 290 2105 1710 1250 1565 989 391
San Francisco (SFO) 2139 909 2013 1271 522 2704 2309 1846 2161 1464 967

Seattle (SEA) 2182 664 2079 1015 399 2496 2122 1721 2021 1660 1024
Washington (DCA) 547 1671 653 1316 2048 399 296 612 310 1192 1476

▲ Table 1. Airport distance proximity matrix.

4 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ 4.1. Constructing a Proximity Matrix from a Cases by Attributes
Table

Often, M is not the primary data but must be calculated from a set of cases, each of which
is described by a vector of attributes, with the primary data specified in an m× n cases by
attributes data matrix. The attributes can be binary membership in a category or group,
physical properties, or string sequences. The methods used to calculate δab

N vary by the
data and the application. The most commonly used metric is the Euclidean distance for
continuous variables, but other distance functions may also be used, such as the Hamming
and Manhattan distances, Boolean distances for Boolean data, Smith–Waterman string
sequence similarity, or color distance functions for images.
Table 2 is an example of such a cases by attributes matrix. The cases (rows) represent the
influenza virus surface hemagglutinin proteins from various influenza strains (H1, H3,
H5) and substrains (e.g. A/California/04/2009). The data is taken from an antibody
binding assay, with the values reflecting the amount of antibody binding to each influenza
hemagglutinin protein. The antibodies were isolated from the serum of ferrets infected
with an influenza virus strain, shown in the columns. Each case (row) is characterized by
a 15-dimensional attribute vector, with each attribute corresponding to the serum antibody
binding values against that particular influenza strain hemagglutinin from a biological
assay. Higher values indicate more antibody binding. Such assays are used to select
vaccines each year against strains predicted to circulate in the fall. Note that there are 15
different cases characterized by 14 sera.

ScrollTable[fluData, virusLabShort, seraLabLong,
{500, Automatic}, {True, False}]

C
A
L709-−H

1

SC
0118-−H

1

PR
34-−H

1

U
SSR

77-−H
1

TX91-−H
1

PER
1609-−H

3

VIC
361-−H

3

TX12-−H
3

W
ISC

05-−H
3

H
IR
O
05-−H

3

PC
73-−H

3

A/∕California/∕07/∕2009 (H1) 5586 274 491 246 73 0 0 0 0 16 0
A/∕Mexico/∕4108/∕2009 (H1) 4876 332 441 215 131 74 27 59 51 8 54

A/∕Utah/∕20/∕2009 (H1) 5428 819 238 165 426 55 20 33 33 26 88
A/∕Brisbane/∕59/∕2007 (H1) 260 720 412 707 951 47 2 12 4 22 15

A/∕USSR/∕90/∕1977 (H1) 303 805 530 7472 1204 135 109 92 77 75 206
A/∕Taiwan/∕1/∕1986 (H1) 53 236 195 527 5791 96 32 9 28 28 115
A/∕Indiana/∕10/∕2011 (H3) 137 119 157 81 135 719 1547 1551 2045 3914 1701 1775
A/∕Victoria/∕361/∕2011 (H3) 151 100 76 118 89 3403 5910 4609 1006 6561 1324 1821

A/∕Wisconsin/∕15/∕2009 (H3) 86 49 97 147 52 3391 5159 3621 717 3972 1352 1578
A/∕Perth/∕16/∕2009 (H3) 84 13 95 145 56 3784 5520 3443 703 3561 1119 1292

A/∕Victoria/∕210/∕2009 (H3) 0 0 0 0 0 4727 7192 5422 491 4336 832 1284
A/∕Vietnam/∕1203/∕2004 (H5) 59 157 147 335 434 48 33 7 33 0 101

A/∕India/∕NIV/∕2006 (H5) 184 304 183 350 211 290 232 147 271 210 442
A/∕Anhui/∕01/∕2005 (H5) 24 59 76 179 55 12 29 1 44 17 108
A/∕Hubei/∕1/∕2010 (H5) 94 581 133 147 317 60 17 8 46 16 80

▲ Table 2. Influenza antibody binding assay data.

Graphical Representation of Proximity Measures for Multidimensional Data 5

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Before performing the MDS calculations, it is important to rescale each attribute to span
the same range across all the cases, especially if the attributes have different units or vari-
able ranges. This rescaling does not assume any specific statistical distribution. It is de-
signed so that each attribute has equal weight in the proximity calculation, although
weighted proximity matrices can also be used if the application requires this. Here we
rescale the results for the above attributes so that the range of each attribute column
(antibody binding test result for a single hemagglutinin) has a minimum of 0 and a maxi-
mum of 1000.

fluDataR =
Transpose[1. Rescale[#, {Min[#], Max[#]}, {0, 1000}] & /∕@

Transpose[fluData]];

ScrollTable[Round[fluDataR], virusLabShort, seraLabLong,
{500, Automatic}, {True, False}]

C
A
L709-−H

1

SC
0118-−H

1

PR
34-−H

1

U
SSR

77-−H
1

TX91-−H
1

PER
1609-−H

3

VIC
361-−H

3

TX12-−H
3

W
ISC

05-−H
3

H
IR
O
05-−H

3

PC
73-−H

3

A/∕California/∕07/∕2009 (H1) 1000 335 926 33 13 0 0 0 0 2 0
A/∕Mexico/∕4108/∕2009 (H1) 873 405 832 29 23 16 4 11 25 1 32

A/∕Utah/∕20/∕2009 (H1) 972 1000 449 22 74 12 3 6 16 4 52
A/∕Brisbane/∕59/∕2007 (H1) 47 879 777 95 164 10 0 2 2 3 9

A/∕USSR/∕90/∕1977 (H1) 54 983 1000 1000 208 29 15 17 38 11 121
A/∕Taiwan/∕1/∕1986 (H1) 9 288 368 71 1000 20 4 2 14 4 68
A/∕Indiana/∕10/∕2011 (H3) 25 145 296 11 23 152 215 286 1000 597 1000
A/∕Victoria/∕361/∕2011 (H3) 27 122 143 16 15 720 822 850 492 1000 778

A/∕Wisconsin/∕15/∕2009 (H3) 15 60 183 20 9 717 717 668 351 605 795
A/∕Perth/∕16/∕2009 (H3) 15 16 179 19 10 801 768 635 344 543 658

A/∕Victoria/∕210/∕2009 (H3) 0 0 0 0 0 1000 1000 1000 240 661 489
A/∕Vietnam/∕1203/∕2004 (H5) 11 192 277 45 75 10 5 1 16 0 59

A/∕India/∕NIV/∕2006 (H5) 33 371 345 47 36 61 32 27 133 32 260
A/∕Anhui/∕01/∕2005 (H5) 4 72 143 24 9 3 4 0 22 3 63
A/∕Hubei/∕1/∕2010 (H5) 17 709 251 20 55 13 2 1 22 2 47

▲ Table 3. Rescaled influenza antibody binding data.

6 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

For multidimensional scaling, this data is transformed into a proximity matrix using a
EuclideanDistance calculation. The larger the proximity measurement, the greater
the difference between the hemagglutinin proteins from the two viral infection strains, as
specified by the reactivity of immune sera against the probe hemagglutinin proteins. Table
4 uses the DistanceMatrix function to create a proximity matrix for the influenza.
There are many ways to calculate distance matrices, and custom functions are often used.
One convenient option is to use the DistanceMatrix function, which allows access to
a number of standardized distance metrics (e.g. EuclideanDistance, Manhattan!
Distance, CorrelationDistance, etc.), which can be directly set by the option
DistanceFunction. The DistanceMatrix function is contained in the Hier!
archicalClustering package.

Needs["HierarchicalClustering`"];
Dm = DistanceMatrix[fluDataR,

DistanceFunction → EuclideanDistance];

A
/∕C
alifornia/∕07/∕2009

(H
1)

A
/∕M
exico/∕4108/∕2009

(H
1)

A
/∕U
tah/∕20/∕2009

(H
1)

A
/∕B
risbane/∕59/∕2007

(H
1)

A
/∕U
SSR

/∕90/∕1977
(H
1)

A
/∕Taiw

an/∕1/∕1986
(H
1)

A
/∕Indiana/∕10/∕2011

(H
3)

A
/∕Victoria/∕361/∕2011

(H
3)

A
/∕W
isconsin/∕15/∕2009

(H
3)

A
/∕Perth/∕16/∕2009

(H
3)

A
/∕Victoria/∕210/∕2009

(H
3)

A/∕California/∕07/∕2009 (H1) 0 186 825 1121 1527 1510 2200 2523 2223 2147 2490
A/∕Mexico/∕4108/∕2009 (H1) 186 0 716 968 1424 1391 2080 2414 2107 2033 2385

A/∕Utah/∕20/∕2009 (H1) 825 716 0 998 1462 1517 2210 2511 2241 2185 2495
A/∕Brisbane/∕59/∕2007 (H1) 1121 968 998 0 953 1106 2047 2386 2082 2014 2363

A/∕USSR/∕90/∕1977 (H1) 1527 1424 1462 953 0 1545 2262 2589 2320 2275 2616
A/∕Taiwan/∕1/∕1986 (H1) 1510 1391 1517 1106 1545 0 2040 2355 2042 1964 2292
A/∕Indiana/∕10/∕2011 (H3) 2200 2080 2210 2047 2262 2040 0 1226 1102 1225 1695
A/∕Victoria/∕361/∕2011 (H3) 2523 2414 2511 2386 2589 2355 1226 0 493 631 721

A/∕Wisconsin/∕15/∕2009 (H3) 2223 2107 2241 2082 2320 2042 1102 493 0 245 666
A/∕Perth/∕16/∕2009 (H3) 2147 2033 2185 2014 2275 1964 1225 631 245 0 560

A/∕Victoria/∕210/∕2009 (H3) 2490 2385 2495 2363 2616 2292 1695 721 666 560 0
A/∕Vietnam/∕1203/∕2004 (H5) 1844 1739 1883 1611 1957 1669 2254 2544 2254 2185 2484

A/∕India/∕NIV/∕2006 (H5) 1241 1074 1223 830 1360 1061 1543 1954 1601 1542 1948
A/∕Anhui/∕01/∕2005 (H5) 1555 1430 1616 1327 1778 1336 1967 2284 1956 1872 2199
A/∕Hubei/∕1/∕2010 (H5) 1674 1534 1497 1212 1637 1508 2168 2470 2186 2123 2428

▲ Table 4. Proximity matrix derived from Table 3.

□ 4.2. Visualization

It is often helpful to visualize a proximity matrix as a heat map using the ArrayPlot
function. In Figure 1 the most similar hemagglutinin protein pairs are blue and the most
different are red. As can be seen, this representation of the data suggests a similarity of
influenza virus hemagglutinin proteins from similar strains (H1, H3, H5) and the occur-
rence of year-to-year differences, especially for the H1 strains.

Graphical Representation of Proximity Measures for Multidimensional Data 7

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

A/∕California/∕07/∕2009 (H1)
A/∕Mexico/∕4108/∕2009 (H1)

A/∕Utah/∕20/∕2009 (H1)
A/∕Brisbane/∕59/∕2007 (H1)

A/∕USSR/∕90/∕1977 (H1)
A/∕Taiwan/∕1/∕1986 (H1)
A/∕Indiana/∕10/∕2011 (H3)
A/∕Victoria/∕361/∕2011 (H3)

A/∕Wisconsin/∕15/∕2009 (H3)
A/∕Perth/∕16/∕2009 (H3)

A/∕Victoria/∕210/∕2009 (H3)
A/∕Vietnam/∕1203/∕2004 (H5)

A/∕India/∕NIV/∕2006 (H5)
A/∕Anhui/∕01/∕2005 (H5)
A/∕Hubei/∕1/∕2010 (H5)

A
/∕C
alifornia/∕07/∕2009

(H
1)

A
/∕M
exico/∕4108/∕2009

(H
1)

A
/∕U
tah/∕20/∕2009

(H
1)

A
/∕B
risbane/∕59/∕2007

(H
1)

A
/∕U
SSR

/∕90/∕1977
(H
1)

A
/∕Taiw

an/∕1/∕1986
(H
1)

A
/∕Indiana/∕10/∕2011

(H
3)

A
/∕Victoria/∕361/∕2011

(H
3)

A
/∕W
isconsin/∕15/∕2009

(H
3)

A
/∕Perth/∕16/∕2009

(H
3)

A
/∕Victoria/∕210/∕2009

(H
3)

A
/∕Vietnam

/∕1203/∕2004
(H
5)

A
/∕India/∕N

IV/∕2006
(H
5)

A
/∕A
nhui/∕01/∕2005

(H
5)

A
/∕H
ubei/∕1/∕2010

(H
5)

▲ Figure 1. Heat map of proximity matrix data.

□ 4.3. Proximity Matrices from Molecular Sequence Comparisons

Another common application of multidimensional scaling is to compare protein or DNA
sequences. Such sequences are essentially linear lists of strings that specify the protein or
nucleic acid composition. Sequence differences are used to estimate molecular evolution,
how the immune system may respond to a new virus after immunization, and cross-
species comparison of molecules.
To construct a protein sequence proximity matrix, we begin with the amino acid
sequences of the hemagglutinin proteins from influenza strains specified in the proximity
matrix of the previous section. These were retrieved from the UniProt database
(www.uniprot.org). Each letter in the sequence represents an amino acid, and each
sequence is approximately 566 amino acids long.
To calculate the proximity matrix, we use a rescaled inverse of the Smith–Waterman simi-
larity calculation, with the PAM70 similarity rules for amino acid comparison. Sequence
similarity calculations have larger values with greater similarity, and the minimum score
is generally the length of the sequence. Because MDS methods use proximity measures
that increase monotonically with dissimilarity, the inverse of the sequence similarity func-
tion is used. Thus, for clarity in this example, we have transformed the result by subtract-
ing a constant (528), which is one less than the minimum sequence length, and multiply-
ing the inverse by a scale factor of 106. Note that nonzero values do not occur.

8 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

To calculate the proximity matrix, we use a rescaled inverse of the Smith–Waterman simi-
larity calculation, with the PAM70 similarity rules for amino acid comparison. Sequence
similarity calculations have larger values with greater similarity, and the minimum score
is generally the length of the sequence. Because MDS methods use proximity measures
that increase monotonically with dissimilarity, the inverse of the sequence similarity func-
tion is used. Thus, for clarity in this example, we have transformed the result by subtract-
ing a constant (528), which is one less than the minimum sequence length, and multiply-
ing the inverse by a scale factor of 106. Note that nonzero values do not occur.

fluPm = ParallelTable[
(2 × 10^6 /∕ SmithWatermanSimilarity[seqFluHA[[i]],

seqFluHA[[j]], SimilarityRules → "PAM70"] -− 528),
{i, Length[seqFluHA]}, {j, Length[seqFluHA]}];

A
/∕C
alifornia/∕07/∕2009

(H
1)

A
/∕M
exico/∕4108/∕2009

(H
1)

A
/∕U
tah/∕20/∕2009

(H
1)

A
/∕B
risbane/∕59/∕2007

(H
1)

A
/∕U
SSR

/∕90/∕1977
(H
1)

A
/∕Taiw

an/∕1/∕1986
(H
1)

A
/∕Indiana/∕10/∕2011

(H
3)

A
/∕Victoria/∕361/∕2011

(H
3)

A
/∕W
isconsin/∕15/∕2009

(H
3)

A
/∕Perth/∕16/∕2009

(H
3)

A
/∕Victoria/∕210/∕2009

(H
3)

A/∕California/∕07/∕2009 (H1) 10 13 19 148 142 138 1302 1300 1329 1293 1750
A/∕Mexico/∕4108/∕2009 (H1) 13 11 17 153 144 140 1295 1298 1322 1287 1747

A/∕Utah/∕20/∕2009 (H1) 19 17 12 160 149 147 1292 1297 1320 1285 1734
A/∕Brisbane/∕59/∕2007 (H1) 148 153 160 10 65 47 1375 1317 1350 1312 1734

A/∕USSR/∕90/∕1977 (H1) 142 144 149 65 8 28 1414 1406 1416 1384 1853
A/∕Taiwan/∕1/∕1986 (H1) 138 140 147 47 28 8 1410 1368 1379 1348 1814
A/∕Indiana/∕10/∕2011 (H3) 1302 1295 1292 1375 1414 1410 1 81 75 72 140
A/∕Victoria/∕361/∕2011 (H3) 1300 1298 1297 1317 1406 1368 81 3 19 17 71

A/∕Wisconsin/∕15/∕2009 (H3) 1329 1322 1320 1350 1416 1379 75 19 4 9 68
A/∕Perth/∕16/∕2009 (H3) 1293 1287 1285 1312 1384 1348 72 17 9 4 66

A/∕Victoria/∕210/∕2009 (H3) 1750 1747 1734 1734 1853 1814 140 71 68 66 58
A/∕Vietnam/∕1203/∕2004 (H5) 355 354 354 368 372 364 1478 1435 1419 1390 1902

A/∕India/∕NIV/∕2006 (H5) 370 369 364 376 370 370 1464 1444 1431 1401 1920
A/∕Anhui/∕01/∕2005 (H5) 353 352 349 360 363 358 1437 1429 1427 1397 1923
A/∕Hubei/∕1/∕2010 (H5) 352 351 350 355 358 352 1431 1404 1401 1371 1882

▲ Table 5. Proximity matrix for influenza sequence comparisons.

□ 4.4. Synopsis: Proximity Matrices

The first step in multidimensional scaling is to create a proximity matrix. The value of
each matrix element is a distance measure; the greater the difference between the two
elements being compared, the greater the value of the metric. We have demonstrated three
different cases of proximity matrix construction, including: (i) the airport distance case,
where the proximities are known a priori and do not need to be calculated; (ii) the
influenza protein antibody reactivity case, with proximity calculation from a cases by
attributes matrix; and (iii) the influenza protein sequence example, with calculation from a
sequence similarity measure. Heat maps are useful for displaying proximity matrices,
giving a visual view of similarities. All the resulting proximity matrices can be used for
MDS calculations, as will be discussed next.

Graphical Representation of Proximity Measures for Multidimensional Data 9

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

■ 5. Classical Multidimensional Scaling
Here we briefly describe the mathematics of classical multidimensional scaling, which
uses a linear coordinate transformation calculation to reduce case coordinates from N
dimensions down to two or three dimensions. The approach begins with calculating a
proximity matrix. The orientation of the new coordinate system is such that it accounts for
the greatest amount of variance between cases, as defined by attributes, in the reduced
number of dimensions. The new coordinates can be used to plot the relative locations of
the data points and help visualize differences between data points and clusters of similar
cases. The proximity matrix can also be used for data clustering and heat mapping, which
provide alternate visualizations of case relationships.

□ 5.1. Mathematics

Let M be a 𝒸⨯𝓋 matrix, where 𝒸 is the number of individual cases (e.g. data points) and 𝓋
is the number of measured variables or attributes (e.g. financial variables, consumer prod-
uct attributes, antibody binding measurements, etc.), which are used to discriminate be-
tween each case zi, i = 1, 2, …, 𝒸.
If the data attributes are of different scales and units, they are generally rescaled with a
range of [0, 1]. This assures that each attribute contributes equally to the proximity
measure.
Alternatively, M may remain in the original units if each attribute has the same range and
units, or if a weighted proximity matrix is desired. Next, let the proximity matrix D of M
or M rescaled be a matrix of dimensions 𝒸⨯𝒸 with elements

dij = +xi -− xj- , i, j = 1, 2, …, 𝒸. (1)

One can use a variety of applicable proximity measures (e.g. Euclidean, Mahalanobis,
etc.) to create the proximity matrix. If the proximity measure is a Euclidean distance, then
classical MDS is equivalent to principal component analysis (PCA). If any other distance
function is used, then classical MDS will result in a different transformation that is not
equivalent to PCA.
Let I be the identity matrix of dimensions 𝒸⨯𝒸 and K be the constant matrix of dimensions
𝒸⨯𝒸, where Kij = 1. Let P be the matrix of the squared proximities:

P = +xi -− xj -2, i, j = 1, 2, …, 𝒸. (2)

The kernel matrix B is derived by first calculating the matrix J from the identity matrix
and the number of variables 𝓋:

J = I -− 𝓋-−1 K. (3)

10 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

J is the matrix that double-centers the input matrix by subtracting the row and column
means from every element of the matrix. Introducing the constant -− 1

2 creates an equiva-
lence to PCA if d is a Euclidean distance function:

B = -−
1
2

J · P · J. (4)

The eigenvalues λ1, λ2…, λ𝓋 and eigenvectors e1, e2…, e𝓋 of B are calculated. To reduce
to dimension 𝓂 with 𝓂 < 𝒸, only the first 𝓂 of a ranked list of the λ and e are selected
(e.g. 𝓂 = 2 for a two-dimensional mapping).
The diagonal matrix of the square roots of the eigenvalues Λm is

Λm =

λ1 0 0
0 λ2 0

…
0 0 0 λ𝓂

. (5)

The matrix X of relative coordinates in 𝓂 dimensions is then calculated by the product of
the matrix of eigenvectors E𝓂 and the diagonal matrix of the square roots of the eigenval-
ues Λm:

X = E𝓂 · Λ𝓂
1/∕2. (6)

□ 5.2. Case Study: Airport Location Mapping

We begin with one of the original motivating problems related to MDS, reconstructing the
relative locations between cities in two dimensions, knowing only the relative distances
between each one. We use the United States airport distance data from Section 3 and
reconstruct the cities’ relative geographic positions. We begin by squaring the distance
functions and calculating the scale of the dataset.

Am = airData2;
scale = Length[Am];

Next, we create an identity matrix, with all elements being 0 except the diagonal elements,
which are 1, and a constant matrix with all elements equal to 1. Both matrices are of the
same dimensions and are used in subsequent calculations to transform data from 28 down
to two dimensions.

Idm = IdentityMatrix[Length[Am]];
oneM = ConstantArray[1, Dimensions[Am]];

We then calculate the kernel matrix and double-center the new N-dimensional coordi-
nates.

J = Idm -− 1. /∕ scale oneM;
Bm = -−1 /∕ 2 J.Am.J;

Graphical Representation of Proximity Measures for Multidimensional Data 11

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

With the number of dimensions set to 2, the matrix eigenvectors and eigenvalues are calcu-
lated. The sign of the first eigenvector is adjusted to lay out the cities from west to east.
(Mathematica does not guarantee the direction of an eigenvector.)

dim = 2;
Em = Eigenvectors[Bm, dim]

If[$VersionNumber < 10.2, 1, {-−1, 1}]

{{0.129171, -−0.164791, 0.101168, -−0.0843364,
-−0.248814, 0.237447, 0.155102, 0.0613687, 0.128977,
-−0.0244763, -−0.122908, -−0.000635832, 0.109603,
-−0.141688, 0.00345098, 0.0865066, -−0.00785255,
0.0313444, -−0.291272, 0.0981005, 0.0577967, 0.210212,
-−0.00330048, 0.0674643, 0.218743, -−0.0249825,
0.207308, -−0.212435, 0.150431, -−0.310908, 0.187052,
0.0432586, -−0.205778, -−0.33099, -−0.302226, 0.192888},

{-−0.138278, 0.17658, -−0.154413, 0.210242, 0.117269,
0.230394, 0.184481, 0.0997557, 0.116632, -−0.218811,
-−0.0125633, 0.0620399, 0.131882, -−0.267718, -−0.314541,
0.0380486, -−0.0115239, -−0.144878, -−0.182929,
-−0.00641343, -−0.125285, -−0.349034, 0.168374,
-−0.282816, 0.154349, 0.0477733, 0.118949, -−0.213395,
0.0993995, 0.203908, -−0.0304331, -−0.0120272,
0.0201888, -−0.0508981, 0.262057, 0.0736327}}

Ev = Eigenvalues[Bm, dim]

2.14663 × 107, 4.77758 × 106

12 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

The transformation matrix dMTX is calculated from a diagonal matrix formed by the eigen-
values Ev, and the coordinate matrix EmM is calculated from the eigenvectors Em.

dMTX = DiagonalMatrix[Ev];
EmM = Transpose[Em];

Transformation Matrix

 2.14663 × 107 0.
0. 4.77758 × 106



Coordinate Matrix
0.129171 -−0.138278
-−0.164791 0.17658
0.101168 -−0.154413

-−0.0843364 0.210242
-−0.248814 0.117269
0.237447 0.230394
0.155102 0.184481
0.0613687 0.0997557
0.128977 0.116632

-−0.0244763 -−0.218811
-−0.122908 -−0.0125633

-−0.000635832 0.0620399
0.109603 0.131882
-−0.141688 -−0.267718
0.00345098 -−0.314541
0.0865066 0.0380486

-−0.00785255 -−0.0115239
0.0313444 -−0.144878
-−0.291272 -−0.182929
0.0981005 -−0.00641343
0.0577967 -−0.125285
0.210212 -−0.349034

-−0.00330048 0.168374
0.0674643 -−0.282816
0.218743 0.154349

-−0.0249825 0.0477733
0.207308 0.118949
-−0.212435 -−0.213395
0.150431 0.0993995
-−0.310908 0.203908
0.187052 -−0.0304331
0.0432586 -−0.0120272
-−0.205778 0.0201888
-−0.33099 -−0.0508981
-−0.302226 0.262057
0.192888 0.0736327

Graphical Representation of Proximity Measures for Multidimensional Data 13

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

The graph coordinates cMDScoord are calculated and projected to two dimensions.

cMDScoord = EmM. dMTX

{{598.473, -−302.244}, {-−763.504, 385.964},
{468.731, -−337.511}, {-−390.745, 459.541},
{-−1152.8, 256.323}, {1100.13, 503.588},
{718.612, 403.233}, {284.332, 218.043}, {597.573, 254.93},
{-−113.403, -−478.27}, {-−569.455, -−27.4605},
{-−2.94592, 135.605}, {507.808, 288.264},
{-−656.464, -−585.169}, {15.989, -−687.514}, {400.8, 83.1654},
{-−36.3822, -−25.1885}, {145.224, -−316.669},
{-−1349.51, -−399.841}, {454.517, -−14.0183},
{267.782, -−273.843}, {973.947, -−762.908},
{-−15.2917, 368.028}, {312.574, -−618.169},
{1013.47, 337.371}, {-−115.748, 104.421},
{960.493, 259.995}, {-−984.249, -−466.433},
{696.974, 217.264}, {-−1440.49, 445.696},
{866.642, -−66.5197}, {200.425, -−26.2887},
{-−953.404, 44.128}, {-−1533.53, -−111.251},
{-−1400.26, 572.796}, {893.684, 160.944}}

Finally, we plot the two-dimensional airport locations in cMDScoord, which shows the
airports in the new coordinate system.

ATL

BIL

BHM

BIS

BOI

BOS
BUF

ORD CLE

DFW

DEN

DSM

DTW

ELP
HOU

IND
MCI

LIT
LAX

SDF

MEM

MIA

MSP

MSY

JFK

OMA

PHL

PHX

PIT

PDX

RDUSTL
SLC

SFO

SEA

DCA

▲ Figure 2. Classical MDS display of relative airport locations.

14 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Classical multidimensional scaling gives a solution that has an excellent projection of the
cases in a lower dimension, preserving the between-cases distances from N dimensions. It
is important to note, however, that the solution is not unique with respect to the rotation
and reflection of the visualization. It is often the case when one knows the “true” orienta-
tion of the case locations (e.g. the previous map example), that classical (and metric)
MDS methods yield a visualization that is reflected or rotated. In these cases, use of other
boundary conditions (fixing known coordinates) helps constrain the orientation of the solu-
tion. Often, however, such boundary conditions are not available.
Given the above solution, how well does classical MDS reproduce the airport coordi-
nates? Because we have a gold standard, the actual airport locations, comparison of the
coordinate estimates is possible. However, the airport locations are represented in a
geographic coordinate system, making a comparison of calculated versus actual airport
locations a bit more complicated. One approximate way to approach this issue is by first
examining the correlation between the actual airport locations, in longitude and latitude
coordinates, and the derived coordinates from the classical MDS calculation, using the
PearsonCorrelationTest. The units are different, which we will address in a
moment, but this does not affect the Pearson correlation test.

Longitude versus X
r = 0.996165

-−120 -−110 -−100 -−90 -−80 -−70
-−1500

-−1000

-−500

0

500

1000

True Coordinates

M
et
ric
M
D
S
C
oo
rd
in
at
es

Latitude versus Y
r = 0.964591

30 35 40 45
-−800

-−600

-−400

-−200

0

200

400

600

True Coordinates

M
et
ric
M
D
S
C
oo
rd
in
at
es

▲ Figure 3. Comparison of actual and estimated coordinates.

While the correlations are high, they are not perfect, as we can see by the off-diagonal
locations of some of the points. To better visualize these differences, we transform the
classical MDS coordinates into longitude and latitude units. This is a transformation that
uses the pseudoinverse matrix to translate and rotate to find a good alignment between the
two coordinate sets.

newcoords = Map[# + {c, d} &,
TrcMDSCoordinates.{{a, b}, {-−b, a}}];

{vec, mat} = CoefficientArrays[Flatten[newcoords],
{a, b, c, d}];

res =
Thread[
{a, b, c, d} -−> PseudoInverse[mat].Flatten[geoCoordsAir]]

{a → 0.0179315, b → -−0.00149652, c → -−94.1752, d → 38.6731}

This type of transformation preserves the relative distances between the classical MDS de-
rived city locations and thus provides a relatively accurate estimate of how close the esti-
mates are to the actual city locations. A more accurate solution would involve mapping of
the coordinates to an appropriate spherical projection system; however, this is outside the
focus of this article.

Graphical Representation of Proximity Measures for Multidimensional Data 15

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

This type of transformation preserves the relative distances between the classical MDS de-
rived city locations and thus provides a relatively accurate estimate of how close the esti-
mates are to the actual city locations. A more accurate solution would involve mapping of
the coordinates to an appropriate spherical projection system; however, this is outside the
focus of this article.
The transformation coefficients can now be used to transform the classical MDS derived
coordinates into GeoPosition values. To compare the actual (●) with the cMDS calcu-
lated (◆) airport locations, we use the GeoListPlot function, which plots both sets of
points on a map of North America.

transCMDS = newcoords /∕. res;
geoMMDS = Map[GeoPosition, Map[Reverse, transCMDS]];

● Actual
◆ cMDS

▲ Figure 4. Comparison of airport geo locations.

The accuracy of the classical MDS estimates is fairly good, but not perfect. Part of this
error is due to the approximate transformation from arbitrary MDS coordinates to geo-
graphic coordinates, and the complex projection to a flat map.

16 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ 5.3. Function: Classical Multidimensional Scaling

The preceding code can be summarized in a succinct Mathematica function for classical
MDS calculation. This function takes a proximity matrix as input and returns coordinates
mapped to a space of the specified number of dimensions. The default number of dimen-
sions is two, but the function also works with three or more dimensions.

classicalMDS[Dm_, dim_: 2] :=

Module{Idm, oneM, A, scale, J, Bm, Em, DmS, Ev, dMTX,

EmM, coordX}, 

DmS = Dm2;
Idm = IdentityMatrix[Length[Dm]];
oneM = ConstantArray[1, Dimensions[Dm]];
scale = Length[Dm];
J = Idm -− 1. /∕ scale oneM;
Bm = -−0.5 J.DmS.J;
Em = Eigenvectors[Bm, dim];
Ev = Eigenvalues[Bm, dim];
dMTX = DiagonalMatrix[Ev];
EmM = Transpose[Em];

coordX = EmM. dMTX [[1]]

□ 5.4. Classical Multidimensional Scaling and the Singular Value
Decomposition

It is important to note that if the proximity matrix used for classical MDS is formed from
a cases by attributes matrix using a Euclidean distance, then classical MDS is equivalent
to principal component analysis. Principal component analysis is a specific case of the
more general singular value decomposition method (SVD). Details of the SVD mathemat-
ics and computational method is not discussed in detail here, but rather we will outline the
computational steps necessary to use the method with the function Singular!
ValueDecomposition.
As with classical MDS, a transformation matrix is calculated, and the data is centered to a
mean of zero.

len = Length[airData];
hmat = IdentityMatrix[len] -− 1 /∕ len;
zeromeanData = -−hmat.N[airData^2].hmat /∕ 2;

Graphical Representation of Proximity Measures for Multidimensional Data 17

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

The SVD function is then applied to the normalized data and yields three matrices. Here
ww is the diagonal matrix of eigenvalues and vv is the coordinate matrix.

dimensions = 2;
{uu, ww, vv} = SingularValueDecomposition[zeromeanData,

dimensions];

Next, the two-dimensional projection of the coordinates is calculated.

mMDScoordinatesNew = vv.Sqrt[ww];

When the dataset to be analyzed is very large, then the computational efficiency degrades
quickly if the proximity matrix must be directly calculated. In this case, a matrix transfor-
mation can be applied to avoid a cell-by-cell proximity matrix calculation; this greatly in-
creases computational efficiency. The computational efficiency for both classical and met-
ric MDS is discussed, with a direct comparison, in Section 7.

□ 5.5. Synopsis: Classical MDS

Classical MDS is a data mining and data exploration method allowing dimensional
reduction to be used to highlight possible clusters, similarities, or differences between
cases described by high-dimensional attribute vectors. It is a starting point for more rig-
orous statistical analysis and hypothesis testing. When the input proximity matrix is com-
posed of Euclidean distances, classical MDS is equivalent to both principal coordinate
analysis and singular value decomposition. Computational efficiency and possible limita-
tions of classical MDS methods are discussed in Section 7.

■ 6. MDS Methods: Metric Multidimensional Scaling
Metric multidimensional scaling is a second type of MDS. While classical MDS relies on
matrix algebra, metric MDS involves computational minimization of the difference
between N-dimensional and two-dimensional proximity measures (e.g. Euclidean
distance) of the case coordinates in each dimensional system. In essence, the method
attempts to minimize the total error between actual and reduced intercase distances for the
group of cases as a whole. Metric MDS is also flexible, accommodating different types of
proximity metrics (e.g. not Euclidean), as well as different stress functions (nonlinear
transformation and distance metrics other than Euclidean) for minimization. This permits
nonlinear dimensional reduction, where the projection of data from an N-dimensional
space to lower dimensions can be done using a nonlinear transformation. The end result is
a dimensional reduction that allows for data visualization.
As in the previous section, we first describe the mathematics with some references to im-
plementation, then demonstrate a practical example.

18 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ 6.1. Mathematics

Metric MDS also begins with a c× c proximity matrix D, which represents the original N-
dimensional proximity measure for the cases zi, where i = 1, …, c. This proximity matrix
can be given de novo, as in distances between airports, or can be calculated from a cases
by attributes matrix as described previously,

D =

δ11 δ21 δ1c
δ21 δ22 δ2c

…
δc1 δc2 δcc

. (7)

Initial values for the case coordinates, used to seed the minimization algorithm, can be
generated at random or calculated using values from the classical MDS algorithm. So we
next set up the initial coordinate matrix X for a two-dimensional projection, for the mini-
mization algorithm,

X =

x1 y1
x2 y2
⋮ ⋮
xc yc

, (8)

where zi = (xi, yi). Next, we create a matrix of variables representing the coordinates that
the minimization algorithm estimates:

E =

a1 b1
a2 b2
⋮ ⋮
ac bc

. (9)

We then calculate a matrix of distance functions for E using Euclidean distance between
any two elements (ai, bi) and (aj, bj),

dij = (ai -− aj)2 + (bi -− bj)2 . (10)

The distance matrix D is now given by

D =

d11 d21 d1c
d21 d22 d2c

…
dc1 dc2 dcc

. (11)

For the minimization, several different types of stress functions may be used. Here we se-
lect the stress function to be the sum of the squares of the errors (SSE):

E(Dm, Δm) = 
i= 0

c


j=0

c
(dij -− δij)2. (12)

We use the efficient and robust "DifferentialEvolution" method, with sufficient
search points to avoid local minima. Some aspects of the choice of minimization methods
are discussed later.

Graphical Representation of Proximity Measures for Multidimensional Data 19

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ 6.2. Case Study: Mapping Antibody Reactivity Differences
between Influenza Strains

This example is motivated by the need to determine if an influenza strain is sufficiently
different, as determined by the immune system, so that even if a person has prior
immunity from vaccination against other similar strains, it will be insufficient to protect
against the new strain. Influenza vaccination relies on the immune system’s ability to
generate protective antibodies, which are proteins that bind to the virus and block its
ability to infect cells in the respiratory system. The major protection comes from anti-
bodies that bind the viral surface protein hemagglutinin, the protein responsible for
attaching the virus to the target cells. Variations in the hemagglutinin protein structure
between influenza strains allow the viruses to evade the immune system and cause an
infection. This is why the influenza vaccine composition is changed every year. Figuring
out which strains to include in the influenza vaccine is an annual problem for the interna-
tional organizations that recommend changes in the seasonal influenza vaccine.
Metric MDS provides a graphical way of visualizing influenza strain similarity, derived
from experiments measuring the ability of serum from animals infected with influenza to
bind to the target virus hemagglutinin. There has been extensive literature over the last
decade on the use of metric MDS for this purpose, referred to as antigenic cartography
[8–11]. Metric MDS was chosen for dimensional reduction and visualization by several
groups, as classical MDS methods could not be easily adapted to solve several issues [8,
9]. These included the need for complete datasets [10, 11], where in some cases data was
missing due to experimental considerations. Metric MDS methods could be adapted to im-
pute relationships [10]. In addition, metric MDS was viewed as a more accurate estimator
of influenza strain antigenic distance due to correlations with the binary logarithm of the
hemagglutinin inhibition assay serum titers [8, 9]. Use of metric MDS continues in the in-
fluenza literature [10, 11], although newer methods of measuring antibody reactivity do
not have the same issues as older assays, and classical MDS could be used to the same
end. To illustrate the method of metric MDS, however, we will use it in this example. We
discuss method selection in Section 7, as well as considerations of computational
efficiency.
We begin with the proximity matrix derived in the previous section from the antibody
reactivity to influenza hemagglutinin data. We next calculate the relative positions of each
influenza strain with respect to the entire set by minimizing a stress function. The Array
function is used to create an array of variables that specify the coordinates for each case as
a 2D set of points.

20 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

dimensions = 2;
Y = Array[sr, {lenDm = Length[Dm], dimensions}]

{{sr[1, 1], sr[1, 2]},
{sr[2, 1], sr[2, 2]}, {sr[3, 1], sr[3, 2]},
{sr[4, 1], sr[4, 2]}, {sr[5, 1], sr[5, 2]},
{sr[6, 1], sr[6, 2]}, {sr[7, 1], sr[7, 2]},
{sr[8, 1], sr[8, 2]}, {sr[9, 1], sr[9, 2]},
{sr[10, 1], sr[10, 2]}, {sr[11, 1], sr[11, 2]},
{sr[12, 1], sr[12, 2]}, {sr[13, 1], sr[13, 2]},
{sr[14, 1], sr[14, 2]}, {sr[15, 1], sr[15, 2]}}

Each sr variable pair will hold a pair of coordinates in two-dimensional space. Finally,
we flatten the list of variable pairs to input into the function NMinimize.

minVar = Flatten[Y]

{sr[1, 1], sr[1, 2], sr[2, 1], sr[2, 2], sr[3, 1],
sr[3, 2], sr[4, 1], sr[4, 2], sr[5, 1], sr[5, 2],
sr[6, 1], sr[6, 2], sr[7, 1], sr[7, 2], sr[8, 1],
sr[8, 2], sr[9, 1], sr[9, 2], sr[10, 1], sr[10, 2],
sr[11, 1], sr[11, 2], sr[12, 1], sr[12, 2], sr[13, 1],
sr[13, 2], sr[14, 1], sr[14, 2], sr[15, 1], sr[15, 2]}

The next section of code creates a series of Euclidean distance calculations for the dis-
tances between all combinations of case locations, using the estimated coordinates for
each point. For succinctness, only one function within the full matrix is displayed.

mY =
Table[
Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 + (Y[[i, 2]] -− Y[[j, 2]])^2],
{i, lenDm}, {j, lenDm}];

mY[[4, 3]]

(-−sr[3, 1] + sr[4, 1])2 + (-−sr[3, 2] + sr[4, 2])2

The stress function is a very large least-squares expression.

stress = Total[Table[((Dm[[i, j]]) -− mY[[i, j]])^2,
{i, lenDm}, {j, lenDm}], 2];

Graphical Representation of Proximity Measures for Multidimensional Data 21

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

The first nonzero element of the stress function is shown here. The reader may expand the
formula to see the entire function, if desired.

stress[[2]]

185.642 -− (sr[1, 1] -− sr[2, 1])2 + (sr[1, 2] -− sr[2, 2])2
2

Finally, we must choose the method for minimizing the stress function. We discuss two
options, FindMinimum and NMinimize. A known issue with metric MDS is the
existence of local minima, and thus identifying a global minimum cannot be guaranteed
[7]. While FindMinimum may be computationally more efficient, it also lacks the
ability to specify the number of search points and is prone to finding local minima instead
of global minima. These issues are discussed in some detail in Section 7. In contrast, the
NMinimize function allows specification of "SearchPoints" to address this issue
and may be substantially more robust. For these reasons, we chose NMinimize to
optimize the stress function.

minSol = NMinimize[stress, minVar,
Method → {"DifferentialEvolution", "SearchPoints" → 30}];

mMDScoordinates = Y /∕. minSol[[2]]

{{-−1402.36, 607.173}, {-−1266.39, 469.958},
{-−1606.69, 264.943}, {-−1126.85, -−53.3117},
{-−1765.08, -−577.081}, {-−1071.77, -−647.566},
{951.972, -−251.212}, {834.508, -−1216.67},
{513.717, -−1011.41}, {349.174, -−1063.05},
{395.11, -−1556.}, {0.591031, 1164.22}, {-−439.039, 135.562},
{-−135.834, 672.137}, {-−369.399, 984.483}}

The viral strains are then plotted in the two-dimensional space and are color-coded for
clarity (H1, H3, and H5). Note that the coordinate system is arbitrary, in the sense that
what is preserved and important are the relative distances between the data points. Thus,
we have omitted the axes, which have the same scale in each dimension.

22 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

CAL709
MEX4109

UT2009

BR5907

USSR77
TW186

INDNA1011

VIC361

WISC09PER1609

VIC21009

VIET1203

IND2006

ANH0105

HUB0110

▲ Figure 5. Relative antigenic distances for influenza strains.

Examining the plot, it is immediately apparent that the influenza strains fall into four dis-
tinct clusters. Two of these correspond to major hemagglutinin protein strains (H3, H5).
In addition, we can see differences between temporally distinct strains in the H1 influenza
strains, giving perhaps two clusters. For example, note the antigenic distance between the
pandemic A/California/07/2009 (CAL709), A/Utah/20/2009 (UT2009), and A/Mexi-
co/41/2009 (MEX4109) strains and the other H1 influenza strains. This likely reflects
molecular mutations in the hemagglutinin proteins for the 2009 strains. These mutations
resulted in decreased binding of antibodies from ferrets infected with earlier influenza
strains. This finding was consistent with the decreased population immunity observed in
humans to A/California/07/2009 and demonstrates the pandemic nature of that particular
influenza strain.
Given that the influenza strains seem to cluster together, what is the relationship between
MDS and methods of unsupervised data clustering used in data mining? The answer lies
in the use of the proximity matrix, which is used by both hierarchical and agglomerative
clustering methods to determine relatedness. This relationship was noted by the devel-
opers of the MDS methods [1, 2, 8]. To briefly demonstrate, we apply hierarchical clus-
tering to the same proximity matrix Dm, using the DirectAgglomerate function.
Ward’s minimum variance method is used for determining cluster linkage.

Graphical Representation of Proximity Measures for Multidimensional Data 23

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

virusLabelsColor =
Table[Style[seraLabShort[[i]], seraColor[[i]], Bold,

FontFamily → "Arial", 9], {i, 1, Length[seraLabShort]}];
clustTR = DirectAgglomerate[Dm, virusLabelsColor,

Linkage → "Ward"];

The resulting dendrogram is displayed in Figure 6. Note the grouping of the different
virus types (H1, H3, and H5) based on the reactivity of ferret serum after infection with a
single virus and the resulting antibodies against the hemagglutinin proteins.

CAL709
MEX4109
UT2009
BR5907
USSR77
TW186
HUB0110
VIET1203
ANH0105
IND2006
PER1609
WISC09
VIC361
VIC21009
INDNA1011

▲ Figure 6. Dendrogram of influenza virus relationships.

To explore which viruses are antigenically closer to each other, a heat map of the relative
distances from the calculated coordinates (or the original proximity matrix) can then be
created with DistanceMatrix and ArrayPlot. Note that more antigenically similar
influenza strains have smaller distances between each other.

DmC = DistanceMatrix[mMDScoordinates];

24 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

A/∕California/∕07/∕2009 (H1)
A/∕Mexico/∕4108/∕2009 (H1)

A/∕Utah/∕20/∕2009 (H1)
A/∕Brisbane/∕59/∕2007 (H1)

A/∕USSR/∕90/∕1977 (H1)
A/∕Taiwan/∕1/∕1986 (H1)
A/∕Indiana/∕10/∕2011 (H3)
A/∕Victoria/∕361/∕2011 (H3)

A/∕Wisconsin/∕15/∕2009 (H3)
A/∕Perth/∕16/∕2009 (H3)

A/∕Victoria/∕210/∕2009 (H3)
A/∕Vietnam/∕1203/∕2004 (H5)

A/∕India/∕NIV/∕2006 (H5)
A/∕Anhui/∕01/∕2005 (H5)
A/∕Hubei/∕1/∕2010 (H5)

A
/∕C
alifornia/∕07/∕2009

(H
1)

A
/∕M
exico/∕4108/∕2009

(H
1)

A
/∕U
tah/∕20/∕2009

(H
1)

A
/∕B
risbane/∕59/∕2007

(H
1)

A
/∕U
SSR

/∕90/∕1977
(H
1)

A
/∕Taiw

an/∕1/∕1986
(H
1)

A
/∕Indiana/∕10/∕2011

(H
3)

A
/∕Victoria/∕361/∕2011

(H
3)

A
/∕W
isconsin/∕15/∕2009

(H
3)

A
/∕Perth/∕16/∕2009

(H
3)

A
/∕Victoria/∕210/∕2009

(H
3)

A
/∕Vietnam

/∕1203/∕2004
(H
5)

A
/∕India/∕N

IV/∕2006
(H
5)

A
/∕A
nhui/∕01/∕2005

(H
5)

A
/∕H
ubei/∕1/∕2010

(H
5)

▲ Figure 7. Heat map of proximity matrix data.

□ 6.3. Function: Metric Multidimensional Scaling

As in the previous section, we end with a general function for the metric MDS calculation.
The function requires several input variables, including precision, accuracy, the minimiza-
tion method, and the maximum number of iterations. This function uses the classical MDS
routine for the initial coordinate estimates. Some suggested defaults are given in the func-
tion definition to be passed to NMinimize. The metric MDS function is written for two-
dimensional mapping that could easily be generalized for three dimensions.

Graphical Representation of Proximity Measures for Multidimensional Data 25

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

metricMDS[dmT_,
method_: {"DifferentialEvolution", "SearchPoints" → 30},
precGoal_: 5, accurGoal_: 4, itr_: 100] :=

Module[{m, n, Y, mY, stress, minVar, minSol, stval, sr},
{{m, n} = {Length[dmT], 2};

Y = Array[sr, {Length[dmT], 2}];
minVar = Flatten[Y];

mY =
Table[Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 +

(Y[[i, 2]] -− Y[[j, 2]])^2], {i, m}, {j, m}];
stress = Total[Table[(dmT[[i, j]] -− mY[[i, j]])^2,

{i, m}, {j, m}], 2];

minSol = NMinimize[stress, minVar, Method → method,
PrecisionGoal → precGoal, AccuracyGoal → accurGoal,
MaxIterations → itr];

Y /∕. minSol[[2]]

}][[1]]

□ 6.4. Nonlinear Stress Functions

One of the advantages of metric MDS methods is the ability to use nonlinear mappings
from N-dimensional to visualizable space. We now use this function to create an MDS
map comparing the influenza hemagglutinin proteins by sequence similarity. Recall that
the proximity measure for sequence comparison is the Smith–Waterman sequence dis-
tance, which is not a Euclidean distance function. Thus, this violates the assumptions of
classical MDS and makes metric MDS the appropriate method to use, albeit at computa-
tional cost. Taking the hemagglutinin protein proximity matrix, fluPm, we apply the
metricMDS function and obtain the coordinates. We also apply hierarchical clustering to
the proximity matrix fluPm.
One of the advantages of metric MDS methods is that one can use nonlinear stress func-
tions to emphasize particular regions of data relationships. One of the first nonlinear
metric MDS methods was that of Sammon’s mapping [12, 13]. Sammon’s mapping can
be useful in revealing underlying data structure or differences with nonlinear relation-
ships. This mapping minimizes the following general nonlinear form of stress functions:

E(Dm Δm) = C 
i= 0

c


j= 0

c
(dij -− δij)2 F(dij), (13)

26 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

where F is a weighting function and C is a constant. In the case of Sammon’s mapping,
the stress function is defined by F (x) = 1 /∕ x, k = 2, with C specified as [12]:

C = 
i= 0

c


j= 0

c
dij . (14)

Many related nonlinear mappings exist of the same form [12, 14]. For the purposes of this
example, we explore applying a nonlinear exponential MDS mapping with a stress func-
tion defined by F (x) = e-−β dij , k = 2, α = 9, β = a /∕max(dij), and C = 1:

E(Dm, Δm) = C 
i= 0

c


j= 0

c
(dij -− δij)2 e

-−9 dij
max(dij) . (15)

Note that α is an empirically specified tuning factor. This nonlinear mapping function
decreases the contribution to the overall stress function of larger dij and has the effect of
expanding the mapped distances between data points with smaller dij. The advantage of
this mapping is that the weight of any point in the minimization is inversely proportional
to its magnitude. Thus, smaller differences between data elements are spread out. The
coding of the exponential MDS function lets you specify α.

expMDS[dmT_, alpha_,
method_: {"DifferentialEvolution", "SearchPoints" → 30},
precGoal_: 5, accurGoal_: 4, itr_: 100] :=

Module[{m, n, Y, mY, stress, minVar, minSol, stval, sr},
{{m, n} = {Length[dmT], 2};
Y = Array[sr, {Length[dmT], 2}];
minVar = Flatten[Y];
mY =
Table[Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 +

(Y[[i, 2]] -− Y[[j, 2]])^2], {i, m}, {j, m}];
stress =
Total[Table[((dmT[[i, j]] -− mY[[i, j]])^2)

Exp[-−alpha dmT[[i, j]] /∕ Max[dmT]], {i, m}, {j, m}],
2];

minSol = NMinimize[stress, minVar, Method → method,
PrecisionGoal → precGoal, AccuracyGoal → accurGoal,
MaxIterations → itr];

Y /∕. minSol[[2]]
}][[1]]

To demonstrate, we apply the metric nonlinear MDS method to the above fluPm dataset
of protein sequence comparisons. First, we apply the standard metric MDS function de-
fined in the previous section, metricMDS, and generate a dendrogram to highlight the se-
quence differences.

Graphical Representation of Proximity Measures for Multidimensional Data 27

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

CAL709MEX4109UT2009BR5907USSR77TW186

INDNA1011VIC361WISC09PER1609

VIC21009

VIET1203IND2006ANH0105HUB0110

CAL709
MEX4109
UT2009
BR5907
USSR77
TW186
HUB0110
ANH0105
VIET1203
IND2006
INDNA1011
VIC361
WISC09
PER1609
VIC21009

▲ Figure 8. Influenza virus relationships from protein sequences.

While the major influenza viral subtypes (H1, H3, and H5) all cluster together, minimal
differences can be observed with respect to sequences differences within each subtype.
Using the nonlinear mapping, as shown in Figure 9, accentuates the small differences
between the hemagglutinin protein sequences. Note the negative exponential weighting
function, with the large distances between hemagglutinins being given less weight in the
minimization. We are now able to visualize the division of the H1 influenza hemagglu-
tinins into two major clusters and the split between clusters of the H3 substrains within the
visualization. It is worth noting that the hierarchical clustering may capture these
differences.

28 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

0 500 1000 1500

10-−4

0.001

0.010

0.100

1

Protein pair dissimilarity

W
ei
gh
tin
g

CAL709MEX4109UT2009
BR5907USSR77TW186

INDNA1011VIC361
WISC09PER1609

VIC21009

VIET1203IND2006ANH0105HUB0110

▲ Figure 9. Weighting function and nonlinear mapping of protein sequences.

□ 6.5. Synopsis: Metric MDS

Metric multidimensional scaling is a more flexible method compared to classical MDS.
While computationally less efficient, it allows nonlinear dimensional reduction that is not
possible with the SVD or PCA method of classical MDS. This functionality can be used
to highlight possible clusters, similarities, or differences between cases described by high-
dimensional attribute vectors and to weight or penalize the stress function based on data at-
tributes. As with classical MDS, complementary visualization methods allow for a fuller
picture of case differences but must be carefully interpreted when nonlinear stress func-
tions are used.

■ 7. Some Considerations on Selecting a Method for MDS
From a computational perspective, several features of classical and metric MDS methods
should be considered when selecting which method to use for a specific analysis.
Classical MDS is computationally straightforward but has some subtle mathematical con-
straints. For a solution to exist in Euclidean space, the distance matrix must follow a set of
necessary and sufficient conditions [1, 15]. In practice, this is rarely an issue. When it is
an issue, it often manifests by a computational result expressed in imaginary numbers. If,
however, the proximity matrix is composed of Euclidean distances, classical MDS be-
comes principal component analysis, and the support vector machine (SVM) function can
be used. This is much more computationally efficient, as we demonstrate in Section 7.3,
and is the preferred method of MDS for visualization of most data.

Graphical Representation of Proximity Measures for Multidimensional Data 29

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Classical MDS is computationally straightforward but has some subtle mathematical con-
straints. For a solution to exist in Euclidean space, the distance matrix must follow a set of
necessary and sufficient conditions [1, 15]. In practice, this is rarely an issue. When it is
an issue, it often manifests by a computational result expressed in imaginary numbers. If,
however, the proximity matrix is composed of Euclidean distances, classical MDS be-
comes principal component analysis, and the support vector machine (SVM) function can
be used. This is much more computationally efficient, as we demonstrate in Section 7.3,
and is the preferred method of MDS for visualization of most data.
Metric MDS has somewhat more relaxed constraints than classical MDS. For very high
numbers of initial dimensions N, metric MDS is computationally and memory intensive.
This is primarily due to the need to use iterative optimization to minimize the stress func-
tion, whereas classical MDS uses more efficient matrix algebra operations. In addition,
one needs to pay attention to the algorithms used to perform metric MDS to ensure that
minimization finds global rather than local minima.
We next examine the selection of minimization algorithms for metric MDS, compare the
computational efficiency of classical and metric MDS methods, and discuss the particular
circumstances where metric MDS may be the method of choice.

□ 7.1 Convergence, Accuracy, and Selection of Minimization
Algorithms for Metric MDS

With metric MDS, selecting a minimization algorithm with an appropriate Method
setting for Mathematica’s built-in function NMinimize may require some investigation.
In addition, a known issue with metric MDS is the existence of local minima, so that a
global minimum cannot be guaranteed [7]. Using a large number of starting points or
selecting the appropriate minimization function and method may help. In this article we
have used NMinimize with Method set to the "RandomSearch" option. We also
specified sufficient search points to avoid local minima. This can be an important issue
when no other external data is available to constrain the solution and when it is not known
if other minimization methods will routinely converge to a solution.
It is worth exploring this tradeoff between convergence, accuracy, and computational effi-
ciency. For example, the execution time of NMinimize increases with the number of ini-
tial search points. The next example uses NMinimize on the influenza antibody dataset
distance matrix Dm and the method "RandomSearch". In this case, however, the num-
ber of search points appears to make little difference in the residual after optimizing the
stress function.

sp = {1, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300};

minSolT =
Parallelize[
Timing[NMinimize[stress, minVar,

Method → {"RandomSearch", "SearchPoints" → #}]] & /∕@
sp];

30 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

●●●●
●●

●

●

●
●

●

●

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Search Points

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on
ds

)

●●●●●●● ● ● ● ● ●

0 50 100 150 200 250 300
1.0

1.5

2.0

2.5

3.0

Search Points

R
es
id
ua
lx
10

7

▲ Figure 10. Efficiency of NMinimize (RandomSearch).

In the case of RandomSearch, there appears to be no tradeoff with this particular
dataset. In contrast, the theoretically more robust setting Method → Differen!
tialEvolution finds a small number of varying minima, which improves after spec-
ifying a larger number of search points. Also note the improved execution times, which
are an order of magnitude less than with RandomSearch.

minSolTde =
Parallelize[
Timing[NMinimize[stress, minVar,

Method → {"DifferentialEvolution",
"SearchPoints" → #}]] & /∕@ sp];

Graphical Representation of Proximity Measures for Multidimensional Data 31

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

●●●●
●●●

●
●

●

●

●

0 50 100 150 200 250 300
0

2

4

6

8

10

12

Search Points

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on
ds

)

●●●●●●

●

●

●

● ● ●

0 50 100 150 200 250 300
1.0

1.5

2.0

2.5

3.0

3.5

Search Points

R
es
id
ua
lx
10

7

▲ Figure 11. Efficiency of NMinimize (DifferentialEvolution).

Another consideration is the speed of computation. The FindMinimum function is often
much faster than NMinimize, but the tradeoff is the risk that the algorithm will not
converge or that it will find local instead of global minima. For the influenza data,
FindMinimum can suffer from both nonconvergence and local minima, although the
former issue may be sporadic. The sporadic nature of convergence can be frustrating and
problematic. The issue of finding local minima is potentially more serious. To explore this
further, we minimized 300 times with FindMinimum.

32 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

mY1 =
Table[
Sqrt[(Y[[i, 1]] -− Y[[j, 1]])^2 + (Y[[i, 2]] -− Y[[j, 2]])^2],
{i, lenDm}, {j, lenDm}];

stress1 =
Total[Table[((Dm[[i, j]] /∕ 10.)^2 -− mY1[[i, j]])^2,

{i, lenDm}, {j, lenDm}], 2];

simMin =
Quiet[
Table[
{start =

Thread[{minVar, RandomReal[{-−1000, 1000},
Length[minVar]]}];

test =
Check[
mSol2 = Timing[FindMinimum[stress1, start,

Method → "LevenbergMarquardt", AccuracyGoal → 6,
PrecisionGoal → 5]], {}];

If[test ≠ {}, {"Converges",
mCoords2 = Y /∕. mSol2[[2, 2]],
timing2 = mSol2[[1]],
residual2 = mSol2[[2, 1]]},

{"Does Not Converge", mCoords2 = Y /∕. mSol2[[2, 2]],
timing2 = mSol2[[1]],
residual2 = mSol2[[2, 1]]}]}[[1]], {i, 1, 300}]];

sim2 = simMin[[All, 1]];

The results are displayed as a histogram in Figure 13. We found that a number did not
converge with the influenza antibody-reactivity dataset. Of even more concern is that
FindMinimum was not consistent, and often appeared to provide local rather than global
minima. This may in some cases be dataset specific. The starting points selected, here a
RandomReal number between -−1000 and 1000 for each coordinate, are also critical for
FindMinimum.

Graphical Representation of Proximity Measures for Multidimensional Data 33

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Converges 299
Does Not Converge 1
Global Min %
Global Min

18.0 %
4253353453

▲ Figure 12. Residuals and convergence using FindMinimum.

The convergence can be improved by minimizing the sum of the squares rather than the
Euclidean distance. Note that the minimum residual is higher than when minimizing the
sum of the differences between distances rather than the square of the difference between
distances. This may be due to computational considerations, in that there is differentia-
bility at the optima when minimizing the sum of the squares of the distances, while this is
lacking if minimizing the difference between the distances. Still, a moderate number (2%
to 15% from 300 attempts) of the solution attempts did not converge or find global
minima. Whether this is an issue for your particular application depends on both the level
of precision required and the computational efficiency required.

mY3 = Table[(Y[[i, 1]] -− Y[[j, 1]])^2 +
(Y[[i, 2]] -− Y[[j, 2]])^2, {i, lenDm}, {j, lenDm}];

stress3 =
Total[Table[((Dm[[i, j]] /∕ 10.)^2 -− mY3[[i, j]])^2,

{i, lenDm}, {j, lenDm}], 2];

34 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

Converges 291
Does Not Converge 9
Global Min %
Global Min

97.7 %
9610226262

▲ Figure 13. FindMinimum and minimizing the sum of the squares.

Given the low percentage of nonconvergence and the presence of local minima, one could
execute FindMinimum several times and take the results that converge with the lowest
minimum. This does increase the time for execution. An alternative is to use the function
NMinimize. The tradeoff is an increased computational time for consistent convergence
on global minima, as shown here. This demonstration takes several minutes to perform on
this dataset, even with parallelization.

Graphical Representation of Proximity Measures for Multidimensional Data 35

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

mY3 = Table[(Y[[i, 1]] -− Y[[j, 1]])^2 +
(Y[[i, 2]] -− Y[[j, 2]])^2, {i, lenDm}, {j, lenDm}];

stress3 =
Total[Table[((Dm[[i, j]] /∕ 10.)^2 -− mY3[[i, j]])^2,

{i, lenDm}, {j, lenDm}], 2];

Quiet[
simMin4 = ParallelTable[

{test4 =
Check[
mSol4 =
Timing[minSol = NMinimize[stress3, minVar,

Method → {"DifferentialEvolution",
"SearchPoints" → 30}, AccuracyGoal → 6,

PrecisionGoal → 5]], {}];
If[test4 ≠ {}, {"Converges",

mCoords4 = Y /∕. mSol4[[2, 2]],
timing4 = mSol4[[1]],
residual4 = mSol4[[2, 1]]},

{"Does Not Converge", mCoords4 = Y /∕. mSol4[[2, 2]],
timing4 = mSol4[[1]],
residual4 = mSol4[[2, 1]]}]}[[1]], {i, 1, 300}]];

sim4 = simMin4[[All, 1]];

Converges 300
Global Min %
Global Min

100. %
9610226262

▲ Figure 14. Residuals and convergence using NMinimize.

A single minimum residual is obtained for all 300 separate runs of NMinimize. Thus, un-
less local minima are known not to be an issue, NMinimize may be a more consistent
minimization method for metric MDS routines.

36 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ 7.2. Computational Efficiency

The issues of optimization and computational efficiency make it useful to benchmark clas-
sical and metric MDS methods with respect to execution time. Therefore, we compared
SVD with classical and metric MDS across the three example datasets. For metric MDS,
we include both FindMinimum and NMinimize. The measured execution times
encompass all the steps from the input of the proximity matrix through final coordinate
output, but not plotting. The previously created classicalMDS and metricMDS func-
tions defined previously were used, along with new functions created for singular value
decomposition (mdsSVD) and metric MDS using FindMinimum (findMinMDS).

mdsSVD[data_, dimensions_: 2] :=
Module[{hmat, len, zeromeanData, uu, ww, vv}, {

len = Length[data];
hmat = IdentityMatrix[len] -− 1 /∕ len;
zeromeanData = -−hmat.N[data^2].hmat /∕ 2;
{uu, ww, vv} = SingularValueDecomposition[

zeromeanData, dimensions]}][[1]]

findMinMDS[dmT_, start_: {-−1000, 1000},
method_: "LevenbergMarquardt", precGoal_: 5,
accurGoal_: 6, itr_: 100] :=

Module[{m, n, Y, mY, stress, minVar, minSol, stval, sr},
{{m, n} = {Length[dmT], 2};
Y = Array[sr, {Length[dmT], 2}];
minVar = Flatten[Y];
mY =
Table[((Y[[i, 1]] -− Y[[j, 1]])^2 +

(Y[[i, 2]] -− Y[[j, 2]])^2), {i, m}, {j, m}];
stress = Total[Table[(dmT[[i, j]] -− mY[[i, j]])^2,

{i, m}, {j, m}], 2];
minSol = FindMinimum[stress,

Transpose[
{minVar, RandomReal[start, Length[minVar]]}],

Method → method, PrecisionGoal → precGoal,
AccuracyGoal → accurGoal, MaxIterations → itr];

Y /∕. minSol[[2]]
}][[1]]

Graphical Representation of Proximity Measures for Multidimensional Data 37

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

times =
Transpose[
Parallelize[
{Timing[mdsSVD[#, 2]][[1]],

Timing[classicalMDS[#]][[1]],
Timing[findMinMDS[#]][[1]],
Timing[metricMDS[#, {"DifferentialEvolution",

"SearchPoints" → 5}]][[1]]} & /∕@
{airData, Dm, fluPm}]];

#FindMinimum::cvmit : Failed to converge to the
requested accuracy or precision within 100 iterations.

#FindMinimum::cvmit : Failed to converge to the
requested accuracy or precision within 100 iterations.

Note that FindMinimum failed to converge for the airport dataset but did converge for
both the flu antibody and sequence datasets, a behavior that may vary between executions.
Timings are shown here.

Airport Flu Antibody Flu Sequence
SVD 0.001834 0.000528 0.00055
cMDS 0.001546 0.000396 0.000699

mMDS(FindMinimum) 1.06058 0.099026 0.050825
mMDS(NMinimize) 13.4262 0.755616 0.756747

▲ Table 6. MDS computational efficiency (seconds).

Overall, there is a speed advantage to using classical MDS and SVD, which are several or-
ders of magnitude faster than metric MDS using either FindMinimum or NMinimize.
This advantage assumes that the proximity matrix can be formulated using a Euclidean dis-
tance, and thus other measurements (e.g. Manhattan distance, etc.) may require other meth-
ods. It also assumes that you require a linear mapping from the N-dimensional space to
the visualizable space. SVD has the advantage that, for many applications, the proximity
matrix may not have to be directly calculated, saving additional memory and computa-
tional time [8]. With respect to metric MDS, there are also tradeoffs. For moderately large
datasets, if one can optimize the conditions to avoid nonconvergence and local minima,
FindMinimum is a good choice. Note that the execution time for FindMinimum in the
airport and influenza antibody dataset examples occurred in the setting of failure to con-
verge. Although slower, metric MDS using NMinimize had no issues with nonconver-
gence or finding local instead of global minima.

38 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

□ 7.3. Some Thoughts on Method Selection: Classical versus
Metric MDS

Given the computational advantages of classical MDS in its various forms (principal com-
ponent analysis, singular value decomposition, etc.), why would you choose metric MDS,
which requires numerical optimization? For those wishing an in-depth and lucid explana-
tion, we refer you to the initial work of Gower [15] and the outstanding article by Shiens
[16]. In short, classical MDS methods are usually preferable to and always computation-
ally more efficient than metric MDS methods. The method is computationally efficient
and robust; there are very few cases where classical MDS methods fail to provide a visual-
ization. For some datasets, classical MDS methods may not provide optimal visualization,
and metric MDS should be considered. Some examples include datasets whose variables
have a non-Gaussian distribution, those where the distance metric is not Euclidean, those
requiring imputation of missing data [10, 11], or cases with a parametrization in a
nonorthogonal coordinate system [16]. For nonlinear dimensional reduction, which is of-
ten used in graph layout algorithms, metric MDS with stress function minimization is the
method of choice [14].
Thus, selection of an MDS method for visualization should consider several factors. If the
distance function is Euclidean, and especially if the dataset is large, SVD or classical
MDS are the most appropriate and computationally efficient methods. In the less common
case where metric MDS is used, careful consideration should be given to the choice of
stress function minimization method (in this example NMinimize versus Find!
Minimum) to avoid local minima.

■ 8. Summary and Conclusion
We have demonstrated the application of two methods of multidimensional scaling,
classical and metric, for the visualization of similarity/proximity of high-dimensional
data, with reduction to two or three dimensions. We have shown how these methods can
be used to visualize the relatedness of influenza virus strains with respect to antibody-
mediated immunity, as well as their utility in reconstructing relative spatial-geographic
locations using only interlocation distances. These MDS methods are, however, quite gen-
eralizable. Both classical and metric MDS rely on a proximity matrix. While the examples
in this article use continuous variables and sequences or case attributes, a variety of data
types with appropriate proximity metrics can be visualized with MDS methods, such as
molecular DNA or protein sequence data (Smith–Waterman similarity, Needleman–
Wunsch similarity, or Damerau–Levenshtein distance), Boolean data (Hamming
distance), and images (image distance, color distance). For cases with a single data
attribute (e.g. sequence similarity, distance), no data scaling is necessary. For cases with
multiple attributes having disparate units, standardization (e.g. z-score) and rescaling are
needed to equally weight each attribute.

Graphical Representation of Proximity Measures for Multidimensional Data 39

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

In our examples, we used reduction down to two dimensions for multidimensional data vi-
sualization. Reduction to three dimensions is easily accomplished with both classical and
metric MDS, although the computational cost may increase with the added dimension, de-
pending on the method used. While we have emphasized data visualization, the classical
MDS method can also be used for reduction to four or more dimensions as a method of
identifying the weighted combinations of components that contribute the most to the data
variance. In these cases, the goal is to select a small set of variables that explain the most
variance in the dataset, such that this minimum set of variables can be further used for sta-
tistical or other modeling.
We have also shown how MDS methods are related to clustering algorithms, which also
use proximity matrices to compare and classify cases by their attributes. This relationship
also allows creative graphical display of multidimensional data from several vantage
points. For example, one can use the MDS plot to display the relative proximity of cases
to each other and plot marker coloring or other methods to add information regarding
other case attributes. Some caution is in order, however, as different proximity measures
and data transformations may give different clustering and classification. Parallel display
of dendrograms and heat maps may also enhance understanding of the relationship of data
clusters to each other. Similarly, heat maps, combined with MDS displays, are particularly
helpful for data exploration, in that they enhance visual identification of those data at-
tributes (dimensions) that contribute the most to differentiating between case clusters.
Care should be taken when selecting the MDS method. In most cases, classical MDS will
be the most computationally efficient method, especially for very large datasets. In the
cases where metric MDS is optimal, such as the use of nonlinear mapping, care should be
taken to choose a minimization method that is robust and avoids local minima. Perform-
ing some testing on a subset of the data can be very informative regarding convergence,
accuracy, and computational efficiency. While we did not discuss in detail how constrain-
ing optimization problems can improve computational efficiency and accuracy, this
should also be considered whenever boundary conditions or other information is available.
Finally, one must remain aware that these methods reveal only associative patterns.
Further analysis with rigorous statistical inference methods is needed to test the validity
and specify the error boundaries of these associations. Mechanistic studies should be
performed, if possible, to confirm suspected causal relationships. Overall, however, MDS
methods are excellent for dimensional reduction and data exploration with the goal of
creating comprehensible and informative quantitative graphical representations of multidi-
mensional data.

40 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

■ Acknowledgments
We would like to thank Ollivier Hyrien, Alex Rosenberg, Chris Fucile, and Melissa Tray-
han for their suggestions and critical reading of the manuscript. We would also like to ac-
knowledge the reviewer at the Mathematica Journal, who suggested several improve-
ments and additions, including the evaluation of execution time and accuracy for the MDS
methods, and the discussion regarding the relative merits of SingularValue!
Decomposition, NMinimize, and FindMinimum. This work was supported by
grants to the authors from the Philip Templeton Foundation, as well as the National Insti-
tute of Allergy and Infectious Diseases and the National Institute of Immunology, grant
and contract numbers HHSN272201000055C, AI087135, AI098112, AI069351.

■ References
[1] J. C. Gower, “Some Distance Properties of Latent Root and Vector Methods Used in Multi-

variate Analysis,” Biometrika 53(3–4), 1966 pp. 325–338. doi:10.1093/biomet/53.3-4.325.

[2] W. S. Torgerson, “Multidimensional Scaling: I. Theory and Method,” Psychometrika, 17(4),
1952 pp. 401–419. doi:10.1007/BF02288916.

[3] W. S. Torgerson, Theory and Methods of Scaling, New York: Wiley, 1958.

[4] T. F. Cox and M. A. A. Cox, Multidimensional Scaling, Boca Raton: Chapman and Hall, 2001.

[5] I. Borg, P. Groenen, Modern Multidimensional Scaling: Theory and Applications, 2nd ed.,
New York: Springer, 2005 pp. 207–212.

[6] M. Wish and J. D. Carroll, “Multidimensional Scaling and Its Applications,” Handbook of
Statistics, Vol. 2: Classification, Pattern Recognition and Reduction of Dimensionality (P. R.
Krishnaiah and L. N. Kanal, eds.), Amsterdam: North-Holland, 1982 pp. 317–345.

[7] V. Saltenis, “Constrained Optimization of the Stress Function for Multidimensional Scaling,”
in Computational Science–ICCS 2006 (V. Alexandrov, G. van Albada, P. A. Sloot, and J.
Dongarra, eds.), Berlin: Springer, 2006 pp. 704–711.
link.springer.com/chapter/10.1007/11758501_ 94.

[8] D. J. Smith, A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan, A. D. M. E.
Osterhaus, and R. A. M. Fouchier, “Mapping the Antigenic and Genetic Evolution of In-
fluenza Virus,” Science, 305(5682), 2004 pp. 371–376. doi:10.1126/science.1097211.

[9] T. Bedford, M. A. Suchard, P. Lemey, G. Dudas, V. Gregory, A. J. Hay, J. W. McCauley, C.
A. Russell, D. J. Smith, and A. Rambaut, “Integrating Influenza Antigenic Dynamics with
Molecular Evolution,” eLife, 3:e01914, 2014. doi:10.7554/eLife.01914.

[10] Z. Cai, T. Zhang, and X.-F. Wan, “Concepts and Applications for Influenza Antigenic Cartog-
raphy,” Influenza and Other Respiratory Viruses, 5(Suppl. s1), 2011 pp. 204–207.
www.ncbi.nlm.nih.gov/pmc/articles/PMC3208348.

[11] D. W. Fanning, J. A. Smith, and G. D. Rose, “Molecular Cartography of Globular Proteins
with Application to Antigenic Sites,” Biopolymers, 25(5), 1986 pp. 863–883.
doi:10.1002/bip.360250509.

[12] S. Lespinats and M. Aupetit, “False Neighbourhoods and Tears are the Main Mapping De-
faults. How to Avoid It? How to Exhibit Remaining Ones?,” QIMIE/PAKDD 2009 (PAKDD
Workshops, Thailand), Bangkok, 2009 pp. 55–64.
conferences.telecom-bretagne.eu/data/qimie09/lespinats_aupetit_QIMIE _ 2009.pdf.

Graphical Representation of Proximity Measures for Multidimensional Data 41

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

[13] J. W. Sammon, “A Nonlinear Mapping for Data Structure Analysis,” IEEE Transactions on
Computers, C-18(5), 1969 pp. 401–409. doi:10.1109/T-C .1969.222678.

[14] L. Chen and A. Buja, “Stress Functions for Nonlinear Dimension Reduction, Proximity Analy-
sis, and Graph Drawing,” Journal of Machine Learning Research, 14(1), 2013
pp. 1145–1173. dl.acm.org/citation.cfm?id=2502616.

[15] J. C. Gower, “A Comparison of Some Methods of Cluster Analysis,” Biometrics, 23(4), 1967
pp. 623–637. doi:10.2307/2528417.

[16] J. Shiens, “A Tutorial on Principal Component Analysis.” arxiv.org/pdf/1404.1100.pdf.

M. S. Zand, J. Wang, and S. Hilchey, “Graphical Representation of Proximity Measures for Multidimensional
Data,” The Mathematica Journal, 2015. dx.doi.org/doi:10.3888/tmj.17-7.

About the Authors

Martin S. Zand is a professor of medicine and director of the Rochester Center for Health
Informatics at the University of Rochester. His research includes the application of infor-
matics, graph theory, and computational modeling to vaccine immunology, gene regula-
tory networks, and health care delivery.
Jiong Wang is a molecular virologist and research assistant professor at the University of
Rochester. She works on influenza vaccination responses and developing high-dimen-
sional measurements of vaccine immune responses.
Shannon Hilchey is a cellular immunologist and research associate professor at the Univer-
sity of Rochester. He studies human immune responses to vaccination, hematologic can-
cers, and organ transplants in human subjects.
Martin S. Zand, MD, PhD
University of Rochester Medical Center
601 Elmwood Avenue - Box 675
Rochester, NY 14618
martin_zand@urmc.rochester.edu
Jiong Wang, PhD
University of Rochester Medical Center
601 Elmwood Avenue - Box 675
Rochester, NY 14618
jiong_wang@urmc.rochester.edu
Shannon Hilchey, PhD
University of Rochester Medical Center
601 Elmwood Avenue - Box 675
Rochester, NY 14618
shannon_hilchey@urmc.rochester.edu

42 Martin S. Zand, Jiong Wang, and Shannon Hilchey

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.

