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Domain coloring is a technique for constructing a tractable visual 
object of the graph of a complex function. The package 
complexVisualize.m improves on existing domain coloring 
techniques by rendering a global picture on the Riemann sphere 
(the compactification of the complex plane). Additionally, the 
package allows dynamic visualization of families of Möbius 
transformations. In this article we discuss the implementation of 
the package and illustrate its usage with some examples.

■ 1. Introduction
Domain coloring is a technique that uses a color spectrum to compensate for the missing
dimension  in  the  graph  of  a  complex  function.  It  was  first  introduced  in  [1],  with  a
detailed description of the complex-plane case in [2]. A general definition is found in [3].
More  precisely,  consider  a  function  f : U → V  between  two sets  U, V  (for  example,  two
complex  manifolds).  Choose  a  “color"  function,  κ : V → HSB,  where  HSB  denotes  the
Hue-Saturation-Brightness  standard  color  space.  Next,  for  any  z ∈ U,  compute  f(z)  and
evaluate  the  resulting  color  κ ◦ f(z),  assigning  this  color  to  the  preimage  z.  The  final
colored domain has all the information (through the color) needed to say where the point
z ∈ U  gets  mapped.  Of  course,  the  effectiveness  of  domain  coloring  depends  on  the
choice of an adequate color scheme κ.
Geometrically,  the  HSB  color  space  is  identified  with  an  inverted  solid  cone.  In  cylin-
drical  coordinates,  HSB  is  parametrized  by  (s b cos θ, s b sin θ, b),  where  θ ∈ [0, 2 π],
s ∈ [0, 1],  and  b ∈ [0, 1].  Then  θ  corresponds  to  the  hue  value  of  the  visible  spectrum,
with  θ + 0,  θ + π,  and  θ + 2 π -− ϵ  corresponding  to  red,  cyan,  and  violet,  respectively.
The axis of the cone s + 0 corresponds to zero saturation (purely a gradient of grays), and
the external surface of the cone s + 1 corresponds to full saturation. The brightness corre-
sponds to the height b of the cone, with b + 0 (the vertex) being black and b + 1 (the top)
corresponding to full brightness.
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This shows the HSB color space.

Manipulate[
ParametricPlot3D[{s b Cos[θ], s b Sin[θ], b}, {θ, 0, 2 π},
{b, 0, 1},
ColorFunction → Function[{x, y, z, θ, b}, Hue[θ, s, b]],
PlotRange → {{-−1, 1}, {-−1, 1}, {0, 1}},
Lighting → {{"Ambient", White}},
ViewPoint → {-−1.5, -−2.8, 1.1}],

{{s, 0.8, "saturation"}, 0, 1}
]

saturation

In  other  words,  HSB + (S1⨯[0, 1]⨯[0, 1]) /∕ ~∼,  with  the  equivalence  given  by
(θ1, 0, b) ~∼ (θ2, 0, b) for all θ1, θ2 ∈ S1, and S1⨯[0, 1]⨯{0} identified as a single point, the
vertex.

This article considers U + V + ℂ
4
, where ℂ

4
 is the Riemann sphere: the complex numbers

ℂ  plus  a  single  point  at  infinity  (the north pole),  embedded in ℝ3,  and κ : ℂ
4
→ HSB, the

color  scheme,  a  usually  injective  map  from the  sphere  to  the  solid  inverted  cone.  Given
f : U⟶V,  we call  U  and V  the  domain  and image  Riemann spheres,  respectively.  (The
terminology source and target spheres is also used.)
The  package  complexVisualize.m  renders  the  domain  coloring  of  a  complex  function
f : ℂ

4
⟶ℂ

4
 on  the  Riemann  sphere.  The  two  main  commands  defined  in  the  package  are

complexVisualize and mobiusVisualize. The former renders the domain color-
ing of a generic f(z); the latter is optimized for Möbius transformations for the purpose of
dynamic rendering. This article describes the package’s implementation and illustrates its
use with some examples.
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In the color schemes that  we explicitly consider here,  the value of the hue is  directly re-
lated to the argument of the image of the function, while the saturation and brightness are
related  to  the  modulus  of  the  image  values.  Since  a  complex-valued  function  is  deter-
mined  by  the  argument  and  modulus  of  its  image,  the  color  scheme  gives  a  complete
global picture of the function. 
The program also draws the preimage of  the grid on the image sphere determined by its
longitudes and latitudes. Furthermore, the preimages of three special geodesics are empha-
sized: the preimages of the equator are red, and the meridians corresponding to the inter-
sections of the X-Z and Y-Z planes with the image sphere are blue and green, respectively.
These correspond to the unit circle and the real and imaginary axes on the image sphere.
To use the functions in this article, make sure the $Path variable points to the file com-
plexVisualize.m  (Mathematica’s  front  end  menu  command  File▶ Install  does  this  auto-
matically) and load it.

Needs["complexVisualize`"]

■ 2. Domain Coloring
In this section we continue to elaborate on the theory of domain coloring and discuss the
main ideas behind the implementation of the package complexVisualize.m. We also take a
close look at the implementation of some color schemes.

□ 2.1. Implementation of Domain Coloring 

Let us now formalize the concepts behind domain coloring and develop the code that pro-
vides its basic implementation.
The  code  in  the  next  two  subsections  is  self-contained  and  should  be  evaluated  sequen-
tially. The code in the third subsection requires loading the package complexVisualize.m.

◼ Main Ideas and Basic Implementation

Given a complex function f : ℂ⟶ℂ, let

κ : ℂ⟶HSB ≅ S1⨯[0, 1]⨯[0, 1]  ~∼

satisfy  the  condition  (h ◦ κ) (z) + arg(z),  where  h  is  the  projection  h : HSB⟶S1.  Recall
that  HSB is  interpreted  as  the  Hue-Saturation-Brightness  space.  Such  a  function  κ  is  re-
ferred to as the color scheme.  Domain coloring can be understood as the implementation
of the composition κ ◦ f : ℂ⟶HSB to assign color to the domain of f .
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This  technique  can  be  extended  to  the  Riemann  sphere  ℂ
4
≅ S2 ⊂ R3.  Identifying  ℂ  with

the x-y plane in R3, the stereographic projection

σ : ℂ
4
⟶ℂ⋃ {∞}

is  defined  by  the  requirement  that  ζ ∈ ℂ
4
,  σ(ζ),  and  N + (0, 0, 1)  are  collinear,  while

σ(N) + ∞. The function f  induces

f
4

: ℂ
4
⟶ℂ

4
,

defined by f
4
+ (σ)-−1 ◦ f ◦ σ,  with f

4
(N) + σ-−1(limz→∞ f(z)),  provided that  the limit  exists

in ℂ⋃ {∞}. (In the package’s documentation, the domain and image of f
4
 are referred to as

source and target, respectively.)

drawStereographic[1 + 3 /∕ 2 ⅈ, showLabels → True,
PlotRegion → {{0, 1}, {-−0.4, 1.1}}]

▲ Figure 1. Stereographic projection.

The coordinate realization of the stereographic projection σ  is  deduced from Figure 1 as

follows.  Let  ζ + (θ, φ) ∈ ℂ
4

 and  (u, v) + σ(ζ).  Let  ρ + u2 + v2 ,  a + sin φ,  and
b + z + cos φ. 
By similar triangles,

ρ +
a

1-− b
,

so

ρ2 +
sin2 φ

(1-− cos φ)2
+

1-− cos2 φ

(1-− cos φ)2
+

1+ cos φ
1-− cos φ

+ cot2(φ /∕ 2) .

Note that cot2(φ /∕ 2) ≥ 0 for 0 ≤ φ ≤ π. Thus,
ρ + cot(φ /∕ 2),

and hence

(u, v) + (ρ cos θ, ρ sin θ) + (cot(φ /∕ 2) cos θ, cot(φ /∕ 2) sin θ).
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So define a function from the plane to the sphere and its inverse. 

sphericalToProjective[{θ_, φ_}] :=
{Cos[θ] Cot[φ /∕ 2], Cot[φ /∕ 2] Sin[θ]}

projectiveToSpherical[{u_, v_}] :=
ArcTan[u, v], 2 ArcTan1  Sqrtu2 + v2

A  color  scheme  on  the  Riemann  sphere  is  a  function  κ : ℂ
4
⟶HSB  such  that

(h ◦ κ) (θ, φ) + θ, where (θ, φ) are spherical coordinates on ℂ
4
, and again h denotes projec-

tion onto S1. Domain coloring is implemented, essentially, by a parametric plot.
ParametricPlot[
{Cos[θ] Sin[φ], Sin[θ] Sin[φ], Cos[φ]},
{θ, 0, 2 π}, {φ, 0, π},
ColorFunction → colorfunction

]

Here colorfunction is, conceptually, given by κ∘ f
4
.

For example, consider the function f  and color scheme κ:

f(z) = z3 + 1  z3, κ(θ, φ) = hue(θ /∕ (2 π)), (1)

where the function hue(x) corresponds to the command Hue[x]. To start, transform f(z)
to its vector form.

complexToVectorFunction[f_, z_][{x_, y_}] :=
ComplexExpand[{Re[#], Im[#]} &[f] /∕. {z → x + ⅈ y}]

For example, here is the vector form of z ↦ z3 + 1 /∕ z3.

theFunction[{x_, y_}] =
complexToVectorFunctionz3 + 1  z3, z[{x, y}]

x3 -− 3 x y2 +
x3

(x2 + y2)3
-−

3 x y2

(x2 + y2)3
,

3 x2 y -− y3 -−
3 x2 y

(x2 + y2)3
+

y3

(x2 + y2)3


Choose the color scheme to be (θ, φ) ↦ κ(θ, φ).

colorScheme1[θ_, φ_] := Hue[θ /∕ (2 π)]
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Therefore this is κ∘ f
4
.

theColoring = Composition[colorScheme1 @@ # &,
projectiveToSpherical, theFunction,
sphericalToProjective];

This is the domain coloring of f(z).

ParametricPlot3D[{Cos[θ] Sin[φ], Sin[θ] Sin[φ], Cos[φ]},
{θ, 0, 2 π}, {φ, 0, π},
ColorFunction → Function[{x, y, z, θ, φ},

theColoring[{θ, φ}]], ColorFunctionScaling → False,
PlotPoints → 70, Mesh → None, Ticks → False, Boxed → False,
AxesOrigin → {0, 0, 0}]

▲ Figure 2. Domain coloring associated with theFunction using the chosen colorScheme1; see 
equations (1).

Remark. The reader may already experiment at this point with different functions or
color  schemes  by  running  the  previous  commands  with  a  different  definition  of
theFunction or colorScheme1.

◼ The Reference Lines

The  information  given  by  the  domain  coloring  can  be  complemented  by  displaying  the
preimages of the standard reference lines.

reference line (preimage) default color
real axis blue ● 

imaginary axis green ● 
unit circle red ● 

▲ Table 1. Default colors for reference lines.
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These  preimages  are  given,  respectively,  by  (πx ◦ f ◦ σ)-−1 (0),  (πy ◦ f ◦ σ)-−1 (0),  and

(πR ◦ f ◦ σ)-−1 (1),  where  πx(x+ i y) + x,  πy(x+ i y) + y  and  πR(x+ i y) + x2 + y2 .  This
defines the projections πx, πy, and πR.

polarR[{x_, y_}] := Sqrt[x^2 + y^2];
cartesianX[{x_, y_}] := x;
cartesianY[{x_, y_}] := y;

This defines the reference lines.

theReferenceLines = {
Composition[polarR, theFunction, sphericalToProjective][

{#4, #5}] &,
Composition[cartesianX, theFunction,

sphericalToProjective][{#4, #5}] &,
Composition[cartesianY, theFunction,

sphericalToProjective][{#4, #5}] &
};

This shows the domain coloring in Figure 2 complemented with the preimages of the ref-
erence lines.

ParametricPlot3D[
{Cos[θ] Sin[φ], Sin[θ] Sin[φ], Cos[φ]}, {θ, 0, 2 π},
{φ, 0, π},
ColorFunction → Function[{x, y, z, θ, φ},

theColoring[{θ, φ}]],
ColorFunctionScaling → False,
MeshFunctions → theReferenceLines,
Mesh → {{1}, {0}, {0}},
MeshStyle → Map[{Thickness[0.0045], #} &,

{Red, Blue, Green}], PlotPoints → 73, Mesh → None,
Ticks → False, Boxed → False, Axes → False

]

▲ Figure 3. Domain coloring of function and color scheme (1), showing reference lines.
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◼ The Package complexVisualize

The  command  complexVisualize,  provided  by  the  package  complexVisualize.m,
automates the domain coloring so far described and adds the following features:

1. The inclusion of the Cartesian x, y, and z axes (colored blue, green, and black).

These Cartesian axes serve to orient the reader with respect to the location of 1, i,
and infinity on the domain Riemann sphere. (We also refer to the Cartesian x and y
axes  as  the  real  and  imaginary  axes,  since  the  inverse  stereographic  projection
sends those axes to the meridians representing the real and imaginary lines on the
domain ℂ

4
.)

2. The rendering of the pullback of the standard mesh determined by the spherical co-
ordinate parametrization of the target ℂ

4
.

This  pulled-back mesh complements the visual  cues given by the pullback of  the
three reference lines. Its implementation follows the same idea used previously to
draw  theReferenceLines,  that  is  to  say,  using  the  options  Mesh  and
MeshFunctions within the sphere rendering by ParametricPlot3D.

3. Most importantly, a simple and flexible syntax, with the ability to call various op-
tions defined by the package.
These options (specifying the number or color of mesh lines, for example) let you
fine-tune the domain coloring of a given complex function. Standard Mathematica
options can also be called.

The command complexVisualize has the following simple syntax.

? complexVisualize

complexVisualize[f[z], z] provides a visualization of a
complex function f[z] on the Riemann sphere (compactified
complex plane) through domain coloring. It admits the options:

'colorScheme' (default is "azimuth")
'targetMesh' (default is {15,15})
'targetMeshColors' (default is {Gray, Black})
'referenceMeshColors' (default is {Red, Blue, Green})
'referenceMeshThickness' (default is Thickness[0.0045])

(Further details available within each option's help.)
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To  illustrate  it,  consider  the  working  example,  the  domain  coloring  of  f(z) = z3 + 1 /∕ z3

with the same color scheme κ(θ, φ) = hue(θ /∕ (2 π)).

exampleDC1 = complexVisualizez3 + 1  z3, z

Here is an alternate rendering with a different color scheme.

exampleDC2 = complexVisualizez3 + 1  z3, z,

colorScheme → "metallic"

We omit here the discussion of how the various options are implemented. The interested
reader  may consult  the  help  documentation  for  individual  options  or  review their  imple-
mentation in the package.
An exception  must  however  be  granted  to  the  option  colorScheme,  which  deserves  a
careful discussion; it is clear that different color schemes will emphasize different features
of a given complex function.

Domain Coloring on the Riemann Sphere 9
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□ 2.2. Color Scheme

The “color scheme” κ : ℂ
4
⟶HSB is specified with the option colorScheme.

? colorScheme

colorScheme is an option for complexVisualize that
determines how the target Riemann sphere is identified
with the hue-−saturation-−brightness (HSB) space.

With the default setting "azimuth", only the hue is
accounted for and is identified with the azimuthal angle θ𝜃.

With colorScheme -−> "azimuthLatitude" the colatitude φ𝜙 is
taken into account in the saturation and brightness, so that zero
(infinity) on the target sphere is totally dark (bright). Further
control is achieved with colorScheme -−> azimuthLatitude[a,r].

A general color scheme is specified as
colorScheme-−>cs, with cs[θ𝜃, φ𝜙] a Hue function of the azimuthal
and colatitudinal angles in the target Riemann sphere.

colorScheme -−> "azimuth" is equivalent to
colorScheme -−> Function[{θ𝜃, φ𝜙}, Hue[θ𝜃/∕(2π𝜋)]]

colorScheme -−> "azimuthLatitude" is equivalent to
colorScheme -−> azimuthLatitude[0.9,0.3]

colorScheme -−> "metallic" is equivalent to
colorScheme -−> Function[{θ𝜃,

φ𝜙}, Hue[θ𝜃/∕(2π𝜋), (φ𝜙/∕π𝜋)^(1/∕2), ((π𝜋-−φ𝜙)/∕π𝜋)^(1/∕2)]]

With  the  setting  colorScheme → "azimuth",  the  color  scheme  function  κA(θ, φ)  is
implemented with azimuthColorScheme.

azimuthColorScheme[θ_] := Hue
θ

2 π

This  coloring  only  keeps  track  of  arg( f(z))  and  not  the  modulus.  Although  this  seems
rather restrictive, it is satisfactory in many examples. Indeed, the argument principle (see
[4]) is usually enough to distinguish between zeros and poles without a visual cue coming
from I f(z)J.

10 María de los Ángeles Sandoval-Romero and Antonio Hernández-Garduño

The Mathematica Journal 17 © 2015 Wolfram Media, Inc.



To  keep  track  of  both  the  argument  and  the  modulus  of  the  function,  use  the  option
colorScheme → azimuthLatitude[a, r] with 0 < a < 1, 0 < r < 1. 

? azimuthLatitude

azimuthLatitude[a,r] is a setting for option colorScheme. Parameters must
satisfy 0<a<1, 0<r<1. With 'a' near 1, 'r' controls the concentration
of black/∕white around zeros/∕poles. Setting azimuthLatitude[]
or "azimuthLatitude" is equivalent to azimuthLatitude[0.9,0.3].

This implements the corresponding color scheme function κAL(θ, φ).

azimuthLatitude[a_, r_][θ_, φ_] :=

Hue
θ

2 π
, Exp Log[a] 

r π

φ

2
, Exp Log[a] 

r π

π -− φ

2

The saturation and brightness are given by bump functions.

Manipulate[
Plot[
Evaluate[Rest[List @@ azimuthLatitude[a, r][θ, φ]]],
{φ, 0, π},
PlotRange → {0, 1},
Ticks → {Table[φ, {φ, 0, π, π /∕ 4}], Automatic},
PlotLegends → {"saturation", "brightness"},
AxesLabel → {φ}, ImageSize → 280

],
{{a, 0.9}, 0, 1, Appearance → "Labeled"},
{{r, 0.3}, 0, 1, Appearance → "Labeled"},
SaveDefinitions → True

]

a 0.9

r 0.3

0
π

4

π

2

3 π

4 π

φ

0.2

0.4

0.6

0.8

1.0

saturation

brightness

▲ Figure 4. Saturation and brightness for color scheme azimuthLatitude[a, r].
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The  net  effect  is  that  close  to  zeros  of  the  function,  the  coloring  tends  to  darken,  while
close  to  poles  the  coloring  tends  to  whiten.  This  is  because  on  the  target  ℂ

4
,  zero  corre-

sponds  to  φ = π  (the  south  pole)  and  infinity  corresponds  to  φ = 0 (the  north  pole).  The
parameters  a  and r  fine-tune how this  effect  is  achieved.  The rational  function shown in
Section 3.2 gives a nice illustration of the azimuthLatitude color scheme.
A somewhat less sophisticated but attractive method of getting the “dark zeros and bright
poles” effect is to use the color scheme function κM(θ, φ).

metallicColorScheme[θ_, φ_] := Hue
θ

2 π
,

φ

π
, 1 -−

φ

π

This  is  invoked  with  the  setting  colorScheme → "metallic".  The  saturation  and
brightness curves associated with this color scheme are shown in Figure 5, and its usage is
illustrated in Section 3.2.

Plot


φ

π
, 1 -−

φ

π
, {φ, 0, π},

PlotRange → {0, 1},
Ticks → {Table[φ, {φ, 0, π, π /∕ 4}], Automatic},
PlotLegends → {"saturation", "brightness"},
AxesLabel → {φ}, ImageSize → 280



0
π

4
π

2

3 π
4 π

φ

0.2

0.4

0.6

0.8

1.0

saturation

brightness

▲ Figure 5. Saturation and brightness for color scheme “metallic”.
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■ 3. Examples
This section lists domain coloring examples, which illustrate the concepts discussed so far.

□ 3.1. The Identity

Here is the domain coloring of the identity function f(z) + z.

complexVisualize[z, z, colorScheme → "azimuthLatitude",
Lighting → {{"Ambient", White}}]

This  seemingly  trivial  example  familiarizes  us  with  the  essence  of  domain  coloring:
arg( f(z))  is  represented  by  the  hue,  and  as  f(z) → 0  ( f(z) → ∞)  the  color  darkens
(brightens),  assuming you use colorScheme → azimuthLatitude[].  The real  and
imaginary  axes  are  clearly  shown  in  blue  and  green,  respectively.  The  unit  circle  is  the
equator, shown in red.
Additionally,  the  x,  y,  and  z  axes  are  always  drawn  by  complexVisualize  in  blue,
green, and black, respectively. Their purpose is to keep track of the Riemann sphere in its
role as the domain of the function, with 1, i,  and ∞  located, respectively, at the intersec-
tion of the x, y, and z axes with the sphere.
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□ 3.2. A Rational Function

The domain coloring of the rational function 

f(z) +
(z-− 1)2 (z-− 2-− i)

(z-− i)2 (z+ i)
serves to illustrate the global information that we get working on the Riemann sphere, as
well as the nature of the zeros and poles. 
Here is a rational function.

complexVisualize
(z -− 1)2 (z -− 2 -− ⅈ)

(z -− ⅈ)2 (z + ⅈ)
, z,

colorScheme → azimuthLatitude[0.9, 0.1], targetMesh → {5, 5}

This example shows an important result in complex analysis, the argument principle  [4]:
the number of total hue variations and orientation show the nature (type and order) of iso-
lated singularities.  The brightness and saturation complement this  information,  with total
brightness with zero saturation corresponding to a pole, and zero brightness corresponding
to  a  zero.  See  Section  2.2  for  a  description  of  the  color  scheme  azimuthLatitude
used in this example.
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□ 3.3. Another Rational Function

Next we illustrate the domain coloring of the rational function

f(z) + -−z-−
1
z
+

z-− 1
z+ 1

+
z+ 1
z-− 1

+
z-− i
z+ i

+
z+ i
z-− i

using an alternate color scheme that we have called metallic, whose definition is also
discussed  in  Section  2.2.  The  subtler  variations  in  saturation  and  brightness  still  give  a
visual cue to the location of the zeros and poles.

complexVisualize-−z -−
1

z
+
z -− 1

z + 1
+
z + 1

z -− 1
+
z -− ⅈ

z + ⅈ
+
z + ⅈ

z -− ⅈ
, z,

colorScheme → "metallic"
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□ 3.4. A Polynomial Function

Next, let us look at a polynomial like f(z) + z5 + z3 + z2 + 10 z-− 100.

complexVisualizez5 + z3 + z2 + 10 z -− 100, z,

colorScheme → "azimuth"

This example illustrates the relevance of having a compact domain, the Riemann sphere,
to deal with isolated singularities. Indeed, whenever a function has no essential singulari-
ties, the number of zeros and poles, counted with multiplicity, coincide. This is of course a
consequence of the fact that the Euler characteristic of the sphere is χ = 2, so its genus is
zero.
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□ 3.5. Transcendental Functions

Essential  singularities  have  a  visual  interpretation  closely  related  with  the  great  Picard
theorem [4].  Indeed, at  an essential  singularity we expect to observe an infinite variation
of color. 
Here are the circular and hyperbolic cosines.

GraphicsRow[
complexVisualize[#, z,

referenceMeshThickness → Thickness[0.002],
targetMesh → None, colorScheme → "azimuth",
ViewPoint → {0.9, -−1.5, 2.9},
ViewVertical → {0, 1, 0}] & /∕@

{Cos[z], Cosh[z]},
ImageSize → 500, Spacings → Scaled[-−0.4]

]

Apart  from observing the  essential  singularities  at  infinity,  the  relation cos(i z) + cosh(z)
becomes evident as a π /∕ 2 rotation of the coloring around the z  axis.  Other identities be-
tween  circular  and  hyperbolic  trigonometric  functions  can  be  visualized  in  a  similar
fashion.
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To give one more example of a transcendental function, let us look at the “baroque” color-
ing that we get with the function 

f(z) + sin z+
1
z
+

z-− 1
z+ 1

+
z+ 1
z-− 1

+
z-− i
z+ i

+
z+ i
z-− i

.

complexVisualize

Sinz +
1

z
+
z -− 1

z + 1
+
z + 1

z -− 1
+
z -− ⅈ

z + ⅈ
+
z + ⅈ

z -− ⅈ
, z,

referenceMeshThickness → Thickness[0.003],
targetMesh → None



■ 4. Dynamic Visualization
Given a family of complex functions, an attractive possibility is the use of Mathematica’s
dynamic graphical  capabilities  provided by the Manipulate  command to observe how
the domain coloring changes as we move around the given function family.
One  class  of  complex  functions  that  lends  itself  to  dynamic  visualization  is  the  class  of
Möbius transformations. There have been important efforts to construct optimal computa-
tional models that characterize the geometry of the Möbius group, one of the most popular
being  [5].  Our  approach  here  is  to  construct  a  Manipulate  in  which  the  reference
curves  (i.e.,  the preimages of the real and imaginary axes, as well as the preimage of the
unit  circle)  are  drawn  while  parameters  are  dynamically  varied.  Once  variation  of  the
parameters stops, the rest of the elements of domain coloring are rendered.
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The  Möbius  transformations  constitute  the  set  of  all  linear  rational  functions  on  the  ex-
tended complex plane, which is identified with the set of all conformal automorphisms on
the Riemann sphere [6], also called the Möbius group:

Möb2, ℂ
4
 : + f(z) +

a z+ b
c z+ d

z ∈ ℂ
4
, a, b, c, d ∈ ℂ, a d-− b c + 1 .

It is well known [7] that 

GL(2, ℂ)
ZGL

≅ Möb2, ℂ
4
 ≅

SL(2, ℂ)
ZSL

,

where  GL(2, ℂ) (SL(2, ℂ))  is  the  general  (special)  linear  group with  complex entries  and
Z{·} denotes its center.

□ 4.1. A Useful Characterization

A Möbius  transformation  f(z)  is  completely  characterized  by  the  preimages  of  0,  1,  and
∞,  which we will  refer  to as z0,  z1,  and z∞,  respectively.  Indeed,  it  is  easy to see that  in
terms of these parameters

f(z) +
(z-− z0) (z1 -− z∞)
(z-− z∞) (z1 -− z0)

.

Thus, dynamic visualization of Möbius transformations can be implemented by assigning
a  2D  controller  to  each  of  the  parameters  z0,  z1,  z∞.  Note  that  a  point  on  the  rectangle
[0, 2 π]⨯[-−1, 1] gets mapped to ℂ

4
 through the use of cylindrical coordinates:

(θ, z) ↦  1-− z2 cos θ, 1-− z2 sin θ, z ∈ S2 ⊂ R3.

Since a Möbius transformation, viewed as conformal automorphisms in ℂ
4
, sends circles to

circles,  the  preimages  of  the  reference  curves  (the  real  axis,  the  imaginary  axis,  and  the
unit  circle)  are  circles  on  ℂ

4
.  We  call  them  reference  circles.  Using  the  Manipulate

option  ControlActive,  a  fast-rendering  version  of  complexVisualize  can  be
implemented,  in  which only  the  reference  circles  are  drawn.  To this  effect,  it  suffices  to
characterize each reference circle by three points.

reference circle (preimage of) three points 
real axis z0, z1, z∞ 

imaginary axis z0, zi, z∞ 
unit circle z1, zi, z-−1 

▲ Table 2. Reference curves determined by three preimage points.

Here  zζ +
def f-−1(ζ).  Each  reference  circle  is  drawn  by  the  elementary  geometric  construc-

tion described in the following. The simplicity of the construction translates in an instanta-
neous rendering, which allows a dynamic visualization with the command Manipulate.
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□ 4.2. Drawing the Three Reference Circles

We now describe  the  implementation  of  the  geometric  construction  that  quickly  renders
the three reference circles associated with a given Möbius transformation. 

◼ Drawing a Circle through Three Points on ℂ
"

Given three points p1, p2, p3  on the unit sphere, the circle passing through them is given
by
u+ v1 cos θ + v2 sin θ, 0 ≤ θ ≤ 2 π,

where u is the position vector of the center of the circle 

u +
p2 · n
∥ n ∥2

n, with n + (p1 -− p2)⨯(p3 -− p2),

and

v1 + r(p2 -− u)⋀, v2 + r(n⨯v1)⋀,

with r + 1-− ∥ u ∥2 , and where ⋀ denotes the normalization operator w^ : + w /∕ ∥ w ∥.

Here is the corresponding code.

circleThroughThreePoints[{pt1_, pt2_, pt3_},
colour_: Black] := Block[{center, v1, v2, v3, r},
v3 = Cross[pt1 -− pt2, pt3 -− pt2];
center = pt2.v3 /∕ v3.v3 v3;
r = Sqrt[1 -− center.center];
v1 = r Normalize[pt2 -− center];
v2 = r Normalize[v3⨯v1];
ParametricPlot3D[center + Cos[θ] v1 + Sin[θ] v2,
{θ, 0, 2 π}, PlotStyle → {AbsoluteThickness[2], colour}]

]

The function circleThroughThreePoints  fails  when p1,  p2,  and p3  are  collinear.
This,  however, is guaranteed not to occur, because the command is only applied to three
distinct points on the sphere, which are thus never collinear.
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◼ Drawing the Three Reference Circles on ℂ
"
: Implementation

Given a Möbius transformation f(z) + (a z+ b) /∕ (c z+ d), this recovers its coefficients.

coefficientsMobius[expr_, z_] := Map[
Reverse[Table[Coefficient[#, z, i], {i, 0, 1}]] &,
{Numerator[#], Denominator[#]} &[Together[expr]]

] /∕/∕ Flatten

coefficientsMobius[(a z + b) /∕ (c z + d), z] (*⋆check*⋆)

{a, b, c, d}

This gives its five preimages z0, z1, z∞, zi, z-−1.

fivePreImages[{a_, b_, c_, d_}] := Block[{fpi},
Off[Power::infy];
fpi = {-−(b /∕ a), (d -− b) /∕ (a -− c), -−(d /∕ c), (I d -− b) /∕ (a -− I c),

-−((b + d) /∕ (a + c))};
On[Power::infy];
fpi

]

fivePreImages[{a, b, c, d}] (*⋆check*⋆)

-−
b

a
,

-−b + d

a -− c
, -−

d

c
,

-−b + ⅈ d

a -− ⅈ c
, -−

b + d

a + c


Since  ComplexInfinity  is  an  acceptable  point  in  ℂ
4
,  we  switch  off  the  warning

Power::infty in the declaration of fivePreImages.

These five preimages need to be located on the Riemann sphere ℂ
4
, and this is achieved by

stereoInv, the inverse of the stereographic projection.

stereo[{x_, y_, z_}] = {x , y} /∕ (1 -− z);

stereoInv[ζ_] = {2 u, 2 v, ρsq -− 1} /∕ (ρsq + 1) /∕. ρsq → u2 + v2 /∕.
{u → Re[ζ], v → Im[ζ]};

stereoInv[ComplexInfinity] = {0, 0, 1};
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According to Table 2, given {z0, z1, z∞, zi, z-−1}, each reference circle is in correspondence
with each triple in the list.

referenceTriads[{z0_, z1_, zInf_, zI_, zm1_}] :=
{{z1, zI, zm1}, {z0, z1, zInf}, {z0, zI, zInf}}

referenceTriads[{z0, z1, z∞, zⅈ, z-−1}](*⋆check*⋆)

{{z1, zⅈ, z-−1}, {z0, z1, z∞}, {z0, zⅈ, z∞}}

This finishes all the necessary ingredients needed to draw the reference circles associated
with a given Möbius transformation. Let us implement the procedure with an example.

◼ Drawing the Three Reference Circles on ℂ
"
: Example

Let us write the code that renders the reference circles for the Möbius transformation

f(z) =
(0.04-− 0.93 i) z+ 0.2+ 0.74 i

z-− 1.1+ 2.41 i
. (2)

This defines the function.

theMobiusT =
(0.04 -− 0.93 ⅈ) z + 0.2 + 0.74 ⅈ

z -− 1.1 + 2.41 ⅈ
;

Here are the preimages under f  of 0, 1, ∞, i, and -−1, regarded as points on the Riemann
sphere ℂ

4
.

theFivePreimages =
stereoInv /∕@
fivePreImages[coefficientsMobius[theMobiusT, z]]

{{0.935562, -−0.296541, -−0.191802},
{-−0.097392, -−0.897692, 0.429725},
{0.274379, -−0.60114, 0.750564},
{0.495081, -−0.734103, 0.464745},
{0.609748, -−0.384731, 0.692957}}

Hence,  using  the  color  code  in  Table  1,  here  is  how  the  three  reference  circles  are
rendered.

theReferenceCircles = MapThread[
circleThroughThreePoints[#1, #2] &,
{referenceTriads[theFivePreimages], {Red, Blue, Green}}

];
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Finally, here are the three reference circles rendered on the Riemann sphere ℂ
4
.

Show[{
Graphics3D[Sphere[]], theReferenceCircles

}, Lighting → "Neutral", Boxed → False]

□ 4.3. The Command mobiusVisualize

The procedure discussed is implemented with the command mobiusVisualize, which
is also part of the package complexVisualize.m.

? mobiusVisualize

mobiusVisualize[f[z], z] provides a visualization of the Möbius
transformation f[z] on the Riemann sphere. Its option fastRender
(True/∕False) controls whether only the preimages of the reference
curves (the real and imaginary axes, and the unit circle) are drawn.

The  main  option  for  this  command  is  fastRender.  With  fastRender → False,
mobiusVisualize  simply  invokes  complexVisualize  to  do  the  rendering.  With
the (default) setting fastRender → True, the procedure described in the previous two
subsections is invoked in order to draw the reference circles.
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For example, here is the Möbius transformation defined in (2).

Manipulate

mobiusVisualize
(0.04 -− 0.93 ⅈ) z + 0.2 + 0.74 ⅈ

z -− 1.1 + 2.41 ⅈ
, z,

fastRender → fR,

{{fR, False, "fast render"}, {False, True}},
ControlPlacement → Bottom, SaveDefinitions → True



fastrender

The  command  mobiusVisualize  can  be  customized  like  complexVisualize
through  options,  both  the  ones  defined  in  the  package  and  most  of  the  standard
ParametricPlot3D  options.  The  interested  reader  can  consult  all  the  details  in  the
package.
The  point  of  having  the  ability  to  switch  off  the  coloring  (through  the  option
fastRender) is that we can now implement a fast dynamic Manipulate to visualize
families of Möbius transformations.
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□ 4.4. Dynamic Visualization of Möbius Transformations

The command cylC handles the 2D controllers representing complex parameters on ℂ
4
.

? cylC

cylC[{θ𝜃,z}] gives the complex number represented by the
point on the Riemann sphere with cylindrical coordinates {θ𝜃,z}.

Here is a Manipulate allowing dynamic visualization of the group Möb2, ℂ
4
.

Manipulate

ϵ = 1 × 10-−6;

Block{z0, z1, zinf},

{z0, z1, zinf} = Map[cylC, {cz0, cz1, czinf}];

mobiusVisualize
(z -− z0) (z1 -− zinf)

(z -− zinf) (z1 -− z0)
, z,

colorScheme → "azimuth",

fastRender → ControlActive[True, ! coloring]

,

{{cz0, {0, -−1}, "z0"}, {-−π, -−1}, {π, 1 -− ϵ}},
{{cz1, {0, 0}, "z1"}, {-−π, -−1}, {π, 1 -− ϵ}},
{{czinf, {0, 1 -− ϵ}, "z∞"}, {-−π, -−1}, {π, 1 -− ϵ}},
{coloring, {False, True}}, ControlPlacement → Left,
SaveDefinitions → True,
TrackedSymbols ⧴ {cz0, cz1, czinf, coloring}


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z0

z1

z∞

coloring

The wrapper ControlActive in the option assignment to fastRender enables an in-
stantaneous redrawing of the reference circles as the parameters are varied.
This example can be regarded as a first step in an exploration of how Manipulate and
mobiusVisualize  can  be  used  together  to  dynamically  visualize  the  generators  and
subgroups of Möb2, ℂ

4
.

□ 4.5. Generators of Möb2, ℂ" 

To  further  illustrate  the  dynamic  visualization  of  Möbius  transformations  using  a
Manipulate,  consider the generators of  the group of Möb2, ℂ

4
:  translations,  complex

multiplication, and complex inversion.
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◼ Translations

This shows all pure translations z ↦ z+ ζ, with ζ ∈ ℂ. Experiment by varying the value of
the parameter ζ.

Manipulate[
mobiusVisualize[
cylC[czeta] + z, z,
colorScheme → "azimuthLatitude", targetMesh → {14, 14},
fastRender → ControlActive[True, ! coloring]],

{{czeta, {0, -−1}, "ζ"}, {-−π, -−1}, {π, 1}},
{coloring, {False, True}},
ControlPlacement → Left, SaveDefinitions → True,
TrackedSymbols ⧴ {czeta, coloring}

]

ζ

coloring
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◼ Complex Multiplication

This shows complex multiplication z ↦ ζ z, with ζ ∈ ℂ.

Manipulate
ϵ = 1 × 10-−6;
mobiusVisualize[
cylC[czeta] z, z,
colorScheme → "azimuthLatitude",
fastRender → ControlActive[True, ! coloring]],

{{czeta, {π /∕ 2, 0}, "ζ"}, {-−π, -−1 + ϵ}, {π, 1 -− ϵ}},
{coloring, {False, True}},
ControlPlacement → Left, SaveDefinitions → True,
TrackedSymbols ⧴ {czeta, coloring}



ζ

coloring

On the complex plane, complex multiplication is a homothety followed by a rotation, both
with respect to the origin. The preceding Manipulate shows how rotations with respect
to the origin become rotations around the z axis. The effect of a homothety also becomes
visually evident as a transformation in ℂ

4
.
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◼ Inversion

The complex inverse function is z ↦ 1 /∕ z . A homotopy continuously relating the identity
with inversion is given by

φa(z) =
(1-− a) z+ i a
i a z+ (1-− a)

, a ∈ [0, 1],

so that φo(z) = z and φ1(z) = 1 /∕ z.

The following animation shows this homotopy.

homotopyInverse =

TablemobiusVisualize
(1 -− a) z + ⅈ a

ⅈ a z + (1 -− a)
, z, fastRender → False,

{a, 0, 1, 1 /∕ 12};

ListAnimate[homotopyInverse, AnimationRepetitions → 1,
AnimationRunning → False, SaveDefinitions → True]

It  becomes  evident  that  on  ℂ
4
,  the  geometry  of  a  complex  inversion  is  simply  a  rotation

around the real axis. Note that the simplicity of this homotopy is lost when we try to vis-
ualize it purely in the complex plane.
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■ Conclusion
The  package  complexVisualize.m  is  a  robust  and  flexible  tool  for  generating  global  do-
main  coloring  for  holomorphic,  meromorphic,  and  conformal  functions  of  one  complex
variable, which makes it a valuable exploratory and didactic tool. We have described the
main ideas behind its implementation and examples of its use.
You  can  experiment  with  further  applications.  Some ideas  for  classroom demonstrations
are:  (a)  a  sequential  rendering  of  the  Taylor  expansion  of  a  transcendental  function  in
increasing degree; (b) exploration of the subgroups of Möbius transformations; and (c) ex-
ploration of different color schemes.
With the colorScheme option it is possible to implement any color rule with an appro-
priate function between the HSB space and the Riemann sphere. This allows the program
to generalize color schemes that have appeared in the literature in the planar case. 
Being on the Riemann sphere, the global character of domain coloring gives a visual inter-
pretation  of  various  fundamental  complex  analysis  results.  Here  we  have  shown  only  a
few. 
When  working  with  automorphisms  on  the  Riemann  sphere,  it  is  possible  to  construct
Manipulate animations of families of domain colorings. This dynamic visualization al-
lows geometrical  interpretations of  the fundamental  properties  and results  of  these trans-
formations to be given in an accessible and comprehensive manner. 
There are many possibilities for extending the reach of the visualizations considered here.
Probably  the  most  obvious  line  of  exploration  is  a  deeper  analysis  of  multifunctions  on
general Riemann surfaces, for which [3] is a good starting point. 
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