The Mathematica® Journal

Exact and Approximate
Solutions of the Abel—
Volterra Equations

Javad Abdalkhani

Picard’s iteration is used to find the analytical solutions of some
Abel-Volterra equations. For many equations, the integrals
involved in Picard’s iteration cannot be evaluated. The author
approximates the solutions of those equations employing a semi-
implicit product midpoint rule.The Aitken A? extrapolation is used
to accelerate the convergence of both methods. A blow-up
phenomena model, a wave propagation, and a superfluity
equation are solved to show the practicality of the methods.
Programs offered solve the general equations. A user needs
only to enter the particular forcing and kernel functions,
constants, and a step size for a particular problem.

Introduction

Abel-Volterra equations are normally represented by

1K (1,5,y(s))
y(t) = g +j(; st, where0 <= a < 1,1 € [0, Ty], Ty € (0,). (D
Equation (1) is called regular if @ =0 and weakly singular (or of Abel type) if a # 0.
Equation (1) is linear if K(z, s, y(s)) = K(t, s) y(s); otherwise, it is nonlinear. In most prac-
tical applications, « is either 0 or 1/2. See [1-4] for conditions on existence, uniqueness,
and continuity of a solution for equation (1). To solve equation (1) analytically, one
normally employs the Picard method, a method of successive iterations, given by

Yo(?) = 8(1), 2)

tK(t,s, Yy,
yu(t) = g(l)+f Mds, wheren=1,2, (3)
0 (t—9)"

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

2 Javad Abdalkhani

From a theoretical point of view, the successive iterations given by equations (2) and (3)
always converge for linear equations; see theorem 10.15, page 152 of [5] and pages 92-95
of [4]; see also solutions of some integral equations by the Picard method in [2]. In practice
the convergence of successive iterations depends on the computability of the corresponding
integrals in equation (3). One might be able to evaluate the integrals in some cases.
Successive iterations may also be effective for some nonlinear equations. In what follows,
we first introduce a simple program that implements the successive iterations and solve
two examples using this program. For many integral equations whose exact solutions
cannot be found by the Picard method, we approximate their analytical solution using a
semi-implicit product midpoint rule. Two practical examples are solved to test the validity
of this numerical approach.

» Picard’s Iteration

The following program implements equations (2) and (3).

PicardIteration[Ker_, g_Function, y_, a_?NumericQ,
n_Integer] := (y[0] =g;
y[m_] :=Block[{t, temp},
temp = g[t] + Integrate[Ker[t, s, y[m-1][s]]/ (t-5s) "a,
{s, 0, t}, Assumptions -» (t >0 && Re[a] <1)];
y[m] = Function@@List[t, temp]
1

r

y[n])
One needs only to introduce the kernel Ker, the forcing function g, and the real value o

to solve the corresponding equation.

= Statement and Solution of Example 1
Example 1

To solve the equation

rys)
H=1+2 f ds, “)
y (@) o (=5
note that
sY
f ds=0*""*Biy+1,1-a), 5)
o (t—s)*
where B is the well-known beta function defined by
F@Iw)
B@,w)=———, (6)
I'z+w)

and I is the gamma function.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations 3

Then it is easy to verify that the outputs y,(f) produced by the Picard method for this exam-
ple can be written as

n
(0 = Y Naiie, 0
i=0

L - -
7, A= ek g =1, and

where agp=1, a;=a,1B(i-(i-Da,l1-a), a=

K, s,y)=—- _\/%

Now substitute the corresponding kernel, forcing function, and the value of @. The evalua-
tion takes a minute or two.

gl = Function[t, 1];
Kerl[t_, s_, y_] :=-y/Sqrt[Pi];
PicardIteration[Kerl, gl, y1, 1/2, 30];

Plot [Evaluate[Table[yl[n] [t], {n, 30}]], {t, O, 5},
PlotRange » {0, 1}]

10,
03
0.6:—
0.4}

02+

0 1 2 3 4 5

A This graph shows convergence of y,(t),n=1,2, ...,30,forO <z <5.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

4 Javad Abdalkhani

= Nonlinear Accelerators to Speed Up the Convergence

Aitken’s A2 method accelerates the convergence [6], but accelerators like this one are
highly unstable numerically. One has to pay careful attention (in particular for division by
zero) when working with such accelerators; it is important to use high precision. The fol-
lowing is a program to accelerate Picard’s iteration using the already developed
PicardIteration program.

AcceleratedPicardIteration[Ker_, g_Function, {ap_, y_},
oa_?NumericQ, {i_Integer, n_Integer}] :=
If [Length[DownValues[ap]] == 0,
ap[-1, -1] = 0;
ap[0, 0] = y[O];
ap[l, m_Integer] :=Block[{temp, t},
PicardIteration[Ker, g, y, a, m+1];
temp = (y[m+1][t] y[m-1][t] - y[m][t]"2)/
(yIm+1][t] -2y[m][t] +y[m-1]1[t]);
ap[1l, m] = Function@@List[t, temp]
1i
ap[j_Integer, m_Integer] := Block[{temp, t},
temp =
(ap[j-1, m+1][t] ap[j-1, m-1][t] -
ap[j-1, m][t]"2)/
(ap[j-1, m+1][t] -2ap[j-1, m][t]+
ap[j-1, m-1][t]);
ap[j, m] = Functione@e@List[t, temp]
1i
1;
ap[i, n]

)

The analytic solution of y(r) = 1 — LS g s y(t) = et erfc \/7 (see [3]). Use that
y

1
Vo P i-s

to compare with the result of the Aitken accelerator.

x1[t_] := x1[t] = Exp[t] Erfc[«/?]

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations 5

Define res1 and plot the error.

resl = AcceleratedPicardIteration[Kerl, gl, {apl, yl},
1/2, {6, 6}];

Plot [Evaluate[Abs[x1[t] -resl[t]]], {t, O, 2000}]
25%1070 |
2‘><10-6;
l.5><10’6f—
1.><10*6;

5.x1077 L

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1000 1500 2000

A This graph shows the error in applying the accelerated Picard’s method on equation (4). We note
that AcceleratedPicardIteration[Kerl,qgl, {apl,yl},1/2,{6,6}] uses only the val-

ues of y;(¢) to yo(r) and provides an excellent approximation for y(f) = ¢’ erfc(x/?) the exact solution
of equation (4).

Equation (7) can be used to find y,(¢), for very large values of n. This equation was ob-
tained as a result of analyzing the corresponding Picard iteration. The same type of analysis
will be used for our next nonlinear example.

= Method Analysis for Example 2
Example 2

We solve a nonlinear blow-up phenomena model,

1 2 2
o) = Vi Lo ®)

2 4 0 \Vt—s

Equation (8) is mentioned as a a blow-up phenomena model on p. 417 of [7]. The analyti-
cal solution y(7) exhibits blow-up at finite time. A blow-up means there is a finite time
r > 0 such that

htlllrlt Y () = oo.)

Our goal is to find the value of r as accurately as possible.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

6 Javad Abdalkhani

Implementing a few steps of Picard’s iteration to equation (8) shows that the solution y(7)
is of the form

y(0) = bt (10)
i=0
which implies that
o) k
Y20 = Y92 by (11)
=0 j=0

Make a change of variable from s to 7 s in equation (8) and replace y(¢) and y2(f) using equa-
tions (10) and (11), respectively, on both sides of equation (8). We obtain

ibktk/z — £+ lit(kn)/z
k=0 2 4 =

where
1 g2 k+2 k+3
Sp = f ds = \/?r()/r() (13)
0 4/ 1 —s 2 2

Equating coefficients corresponding to equal powers of ¢ from both sides, we get

k 1 00
ij bk_jsk+ _Zt(k+])/2 by si, (12)
=0 2 =

1 Sn—1 Sn—1 n-l
by =0, b; = > by = ”2 by + '; ; bibpiet, n=2,3,4, ... (14)
Note that
.. by
limit —— ~ 0.94745798, (15)
n—-co n+1

and that y(#2) is a power series in ¢. Therefore, the radius of convergence for y(r) given by
equation (10) is 0.94745798 ~ 0.897677, which is the blow-up number r in equation (9).

All terms in equation (10) are positive, and the series is wildly divergent beyond
0.897677. For a series with all positive terms, the nonlinear accelerators are not useful in
evaluating y(¢) beyond the radius of convergence. For an alternating series, the situation is
different. Nonlinear extrapolations are normally quite effective in evaluating the sums of
alternating divergent series for variable values far beyond the radius of convergence.

We evaluate

yalt) =) bi 2 (16)
i=0

for large values of n, where b; s are given by equation (14).

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations

= Solution of Example 2

s2[k_] :=N['\/;Gamma[k+2]/ Gamma[

2

bcoeff[s_, b_, n_Integer] :=
Block [{$MaxExtraPrecision = 100},
b[0] =0/ 1;
b[1] =1/2;
b[m_Integer] :=
b[m] = Block[{k, gam},
gam= (s[m-1] /2) b[m-1] +

m-1

1+

k+1
2

], 100]

(sim-1]/4) » b[k] b[m-k-1]];

k=0

b[n]]

blowupphenomenaly_, s_, f_Function, g_Function, b_,

n_Integer] := Block[{$MaxExtraPrecision =100},

y[-1] =0;
y[O0] = £;
v[1l] =g;

y[m_Integer] :=y[m] = Block[{t, temp}, bcoeff[s, b, m];

m
temp = y[m- 1] [t] + bcoeff[s, b, m] t* (_);

2

y[m] = FunctioneeList[t, temp]];

y[nl]

t
g2 = Function[t, g

K

f2 = Function[t, 0];

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Javad Abdalkhani

For the following tables, the execution time is provided for cases n = 5000 and n = 10 000.
Table[s2[n], {n, O, 5000}]; // AbsoluteTiming

{0.580887, Null}

Table[s2[n], {n, O, 10000}]; // AbsoluteTiming

{2.43222, Null}

Table[bcoeff[s2, b2, n], {n, 0, 5000}]; // AbsoluteTiming

{30.8509, Null}

Table[bcoeff[s2, b2, n], {n, 0, 10000}]; //
AbsoluteTiming

{104.835, Null}

Table [blowupphenomena[y2, s2, £2, g2, b2, n],
{n, 0, 5000}]; // AbsoluteTiming

{7.93702, Null}

Table [blowupphenomena[y2, s2, £2, g2, b2, n],
{n, 0, 10000}]; // AbsoluteTiming

{25.9239, Null}

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations 9

Plot[{y2[500] [t], y2[5000][t]}, {t, O, .89767},
PlotRange » {0, 80}, PlotStyle » {Red, Dashed}]

80 -

60 -

40 -

20 - }
L]
L S

- e 4 e momosmhmpmp === "‘

0.0 02 04 0.6 038

Plot[{y2[1000] [t], y2[10000][t]}, {t, O, 0.89767},
PlotRange » {0, 140}, PlotStyle » {Red, Dashed}]

140
120
100
80
60
40

20

(=]
(=]
o
o
N
~
[«
=
[«
0

A These graphs clearly demonstrate that limit y,(f) - o, as t - 0.897677.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

10 Javad Abdalkhani

The following program is for the accelerated Picard method for example 2. All terms in
equation (16) are positive, and the acceleration is not as helpful as in example 1, where
the series was alternating.

AcceleratedPicard2[s_, b_, f Function, g_Function,
{ap_, y_}, {i_Integer, n_Integer}] :=
Block [{$MaxExtraPrecision = 100},
ap[-1, -1] = 0;
ap[0, 0] = £;
ap[l, m_Integer] :=ap[l, m] = Block[{temp, t},
blowupphenomenaly, s, £, g, b, m+1];
temp = (y[m+1][t] y[m-1][t] - y[m][t]"2)/
(y[m+1][t] -2y[m][t] +y[m-1][t]);
ap[l, m] = Function@@List[t, temp]];
ap[j_Integer, m_Integer] := ap[j, m] = Block[{temp, t},
temp =
(ap[j-1, m+1][t] ap[j-1, m-1][t] -
ap[i-1, m][t]"2)/
(ap[j-1, m+1][t] -2ap[j-1, m][t] +
ap[i-1, m-1][t]);
ap[j, m] = Function@eList[t, temp]];
ap[i, n]]

res2 = AcceleratedPicard2[s2, b2, f2, g2, {ap2, y2}, {3, 3}1;

Plot [Evaluate@@res2[t], {t, 0.01, 0.8976},
PlotRange » {0, 25}]

25
20}

15]

0]

00 02 04 0.6 0.8

A AcceleratedPicard2(s, b, £, g, {ap, v}, {3, 3}] uses the values of y;(¢) to ys(r) and yet
demonstrates the blow-up phenomena as ¢ » 0.89767.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations 11

B Numerical Approximation

For most integral equations, Picard iteration is not practical, and we approximate the solu-
tion of equation (1) y(#) using a semi-implicit product midpoint rule. To understand the
method, we start by subdividing the interval of integration [0, #] into n equal subintervals
using a step size h. Equation (1) becomes

nhK(nh,s,y(s))
(nh)=gnh) +f ——ds; (17)
Y 8 0 (nh-s)*
note that y(0) = g(0). For n = 1, we only have the subinterval [0, /]. Let s (the middle vari-
able of the kernel function K) be the midpoint of the interval [0, A]; thatis,s =h/2.Lety
(the third variable of K) be the midpoint of y(0) and y(h); that is, y = (y(0) + y(h)) /2, and
recall that y(0) = g(0). The denominator of the integral that contains the singularity stays

as is, so
hK(h,h/2,(0)+yh)/2)
y(h) = g(h) + f 0O *+y ds =
0 (h—s)*
T |
gh)+K(h,h/2, (y(0)+y(h))/2))f ds = (18)
o (h—s)*
h'= hY g0)+y(h)
h h|—=|, ———|.
8)+1—aK((2) 2)

We solve equation (17) for y(h) using Mathematica’s built-in function FindRoot with
an initial guess of g(0). The integral that contains the singularity is solved exactly and
therefore does not introduce any inaccuracy in the method, which is why the word
“product rule” is added to the name of this technique; see [8] for more details on product
integration. Also, at each step only the very last variable (in this case y(h)) needs to be
found, which is why the name “semi-implicit” is used. We also use the midpoints of the in-
tervals; hence the term “a semi-implicit product midpoint rule.” Now let n = 2 to get

Y R) = g2 h)+ f QR B2, 00) 4y W)/D)
0 2h-s) o
f 20 KQR3h/2, () +y2I)/D)
h 2 h—s)®
Or
e o B o [00,
l-a t-a 2 2 20)

K2h,3h/2,(y(h)+y(2h))/2.

Then equation (19) is solved to find an approximation for y(2 &) using FindRoot with an
initial guess of y(h) from the previous step. Continuing the same procedure, we arrive at
the following program.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

12 Javad Abdalkhani

= A Program for the Semi-implicit Product Midpoint Rule and Its
Corresponding Extrapolation to Approximate the Solution of Equation (1)

Midpoint[Ker_, a_, g_, 0, h_] :=g[0]

Midpoint[Ker_, a_, g _, n_, h_] :=
Midpoint[Ker, a, g, n, h] =

Evaluate[
x/.
FindRoot[
hl-«

x::g[nh]+Sum[()((n+1-i)1‘°‘_(n_i)1—a)

l-a
2i-1

)
2

Ker[nh, (

1
— (Midpoint[Ker, a, g, i-1, h] +
2
Midpoint [Ker, a, g, i, h])], {1, 1, n—l}] +

2n-1
Ker[nh, ()h,
l-a 2

Midpoint[Ker, a, g, n-1, h] +x
2]'
{x, Midpoint[Ker, a, g, n-1, h]}”

hl-a

ExtrapolatedMidpoint[Ker_ , a_, g _, n_, h_] :=

h
(Midpoint[Ker, a, g, 4n, —] Midpoint [Ker, a, g, n, h] -
4

h
(Midpoint[Ker, a, g, 2n, —]) "2)/
2
. . h . . h
(Mldelnt[Ker, a, g, 4n, —] —2M1dp01nt[Ker, a, g, 2n, —] +
4 2

Midpoint [Ker, a, g, n, h]);

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations 13

= Solution of Example 3
Example 3

The nonlinear integral equation

1 t —si 3
¥ = — f (v(s) — sin(s)) Js o
\/7 0 Vit—s

arises in the theory of superfluity [9].

We use the semi-implicit product midpoint rule program to approximate the solution of
equation (1).

g3[t_] :=g3[t] =0

1 .
Ker3[t_,s_,y_] :=-—— (y-Sin[s]) "3

7
ListLinePlot[Table[Midpoint[Ker3, 1/2, g3, n, 1/100],

{n, 1, 700}]]

03
02

0.1

P P T - L P T \A
100 200 300 0 500 600 00

-0.1

-0.2

-0.3

A Graph of superfluity equation with no acceleration and a step size of 0.01 and e = 1/2.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

14 Javad Abdalkhani

ListLinePlot][
Table [ExtrapolatedMidpoint [Ker3, 1/2, g3, n, 1/100],
{n, 1, 700}]]

03
0.2

0.1

100

L P R S I St P I S SO S S R I ST
200 300 0 500 600 00

-0.1

-0.2

-03

A Graph of superfluity equation with acceleration and a step size of 0.01.

ListLinePlot[
Table[ExtrapolatedMidpoint [Ker3, 1/2, g3, n, 1/100] -
Midpoint[Ker3, 1/2, g3, n, 1/100], {n, 1, 700}]]

0.00005 +

100, 200 /30 40 500 6o/ 700

—0.00005 -

A This graph shows the difference between the accelerated and non-accelerated methods for the
superfluity equation. The difference is of order 10~, which shows that iterating the extrapolation
once more is not sensible. The execution time goes up exponentially, and not much is gained in
accuracy.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations

For our next example, we were able to find the corresponding analytical solution. There-
fore, we can demonstrate the efficiency of our method by comparing the numerical solu-
tion with the exact solution.

Before solving example 4, we prove the following theorem for a class of inhomogeneous
equations to find its analytic solution.

Theorem 1

The equation

y@) =g +A fo \/yt_ ds (22)
-5

is equivalent to the differential equation

0 !
y'(t) = nA2+g'(t)+/\(g() +ft g'(s) ds], with y(0) = g(0). (23)
\/7 0 t—s

Proof
From the general theory of the Abel equations ([2], p. 224), if

t@(s)
£() = ds, 24)
0 \Vt—s
then
1.d [t f()
Py e i (25)

ds.
7 dt Jo Vi—s

Equation (22) can be written as

Y0 -g® f y(s)
= ds. (26)
A S rrs

Using equations (24), (25), and (26), we get

| d ,
y(t)=——Ut . ds—f 8s) ds). 27)
Am dt\Jo Jr—5 0 \t—s

Now on the right side of equation (27), replace the integral ﬁ)t—ﬂl\/&ds by wL;gAQ from
=S

equation (26) to get the desired result, equation (23).
O

We now use Theorem 1 to find the exact solution of wave propagation for example 4 and
test the efficiency of our midpoint rule and its extrapolated version.

15

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

16 Javad Abdalkhani

Example 4
The equation
1 i yE)

+
Viemt yx dyiss

represents wave propagation over a flat surface (see p. 229 and p. 235, exercise 3 of [2]).
Using Theorem 1, the exact solution of equation (28) can be obtained as

«/7—217]
2i)

y(1) = ds (28)

a
€ 4t

oy =ieVayr + ——ieiVaiyn erf[(29)

t

= Solution of Example 4

Solving equation (28) with our midpoint rule and an Aitken extrapolation with an step
size h = 1 /10, we obtain an approximation with a maximum absolute error of order 1075,

Example 4 is the three-dimensional case. Therefore, the program for the general midpoint
rule given for equation (1) must be adjusted a little.

MidpointWave[Ker_, a_, a_, g_, 0, h_] :=0

MidpointWave[Ker_, a_, a_, g_, n_, h_] :=
MidpointWave[Ker, a, a, g, n, h] =

Evaluate[
x/.
FindRoot[

x=g[nh, a] +

l-a
Sum[(h)((n+1_i)1-a_(n_i)1_a)
l-a

2i-1
Ker[nh, ()h,

2
1. . .
— (MidpointWave[Ker, a, a, g, i-1, h] +
2
MidpointWave[Ker, a, a, g, i, h])],

(i, 1, n—l}] +

hl-@ 2n-1
Ker[nh, h,
l-a 2
MidpointWave[Ker, a, a, g, n-1, h] +x]
14
2

{x, MidpointWave[Ker, a, a, g, n-1, h]}”

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations

ExtrapolatedMidpointWave[Ker_, a_, a_, g_, n_, h_] :=
h
(MidpointWave[Ker, a, a, g, 4n, —]
4
MidpointWave[Ker, a, a, g, n, h] -

h
(MidpointWave[Ker, a, a, g, 2n, —]] "2)/
2
. . h
(MldelntWave [Ker, a, a, g, 4n, —] -
4
. . h
2M:|.dpo:|.ntWave[Ker, a, a, g, 2n, —] +
2

MidpointWave[Ker, a, a, g, n, h])

1 -a
ga[t_, a_] := —Exp[—

,\/? 4t
i

—v
Vo

Kerd4[t_,s_, y_] :=

.= . o _2it
faft_, a Ji=die V2t 4 g —ieiVa-tafn Erf[2 =
Vt 2Vt

17

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

18 Javad Abdalkhani

ListPlot3D][
Table|[
{Re[MidpointWave[Ker4, n/10, 1/2, g4, n, 1/10] -
f4[n/10, n/10]],
Im[MidpointWave [Ker4, n/10, 1/2, g4, n, 1/10] -
f4[n/10, n/10]]}, {n, 1, 100}], ImageSize » {450, 350}]

0.0005
0.0000

—-0.0005
-0.0010

—
20

A This plots the error in applying the midpoint rule with a step size h=1/10;forO0 <a=nh < 10 and
0<r=nh=<10,withn=1, ..., 100, the maximum absolute error is of order 0.001.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

Exact and Approximate Solutions of the Abel-Volterra Equations 19

ListPlot3D[
Table [
{Re[ExtrapolatedMidpointWave[Ker4, n/10, 1/2, g4,
n, 1/10] -£f4[n/10, n/10]],
Im[ExtrapolatedMidpointWave[Ker4, n/10, 1/ 2, g4,
n, 1/10] -f4[n/10, n/10]]}, {n, 1, 100}],
ImageSize -» {450, 350}]

A This plots the error in applying the Aitken extrapolation with a step size 4 = 1/10; for
O<a=nh=<10and0<r=nh=<10,n=1, ..., 100, the maximum absolute error is of order 107°.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

20 Javad Abdalkhani

B Conclusion

We studied two methods: Picard’s iteration and a semi-implicit product midpoint rule. The
Aitken A? extrapolation was used to accelerate the convergence of these methods. In some
cases, the extrapolation demonstrated a significant improvement. A blow-up phenomena
model, a wave propagation, and a superfluity equation were solved, and the efficiency and
the practicality of the methods were established. The user-friendly programs created here
solve the general equations. One only needs to enter a forcing function, a kernel function,
the « value, and a step size h for a particular problem. We used Mathematica 10.2 on the
Mac OS X operating system with 16 GB RAM and a 2.8 GHz processor. The execution
time was always under five minutes, and the vast majority of problems were executed in
less than five seconds.

B Acknowledgments

I am grateful for constructive suggestions by a reviewer, resulting in more transparent coding.

B Dedication

The author dedicates his work to Mahshid, Arman, and Ida; wife, son, and daughter.

B References

[11 W. Hackbusch, Integral Equations: Theory and Numerical Treatment, Boston: Birkhduser
Verlag, 1995.

[2] R. P. Kanwal, Linear Integral Equations, 2nd ed., Boston: Birkhauser, 1997.

[3] R. K. Miller, Nonlinear Volterra Integral Equations, Menlo Park, CA: W. A. Benjamin, Inc., 1971.
[4] A. Pipkin, A Course on Integral Equations, New York: Springer-Verlag, 1991.

[5] R. Kress, Linear Integral Equations, Berlin: Springer-Verlag, 1989.

[6] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., New York: Springer,
1996.

[7] H. Brunner, Collocation Methods for Volterra and Related Functional Equations, Cambridge:
Cambridge University Press, 2004.

[8] P. Linz, Analytical and Numerical Methods for Volterra Equations, Philadelphia: SIAM, 1985.

[9] N. Levinson, “A Nonlinear Volterra Equation Arising in the Theory of Superfluidity,” Journal of
Mathematical Analysis and Applications, 1(1), 1960 pp. 1-11.
doi:10.1016/0022-247X(60)90028-7.

J. Abdalkhani, “Exact and Approximate Solutions of the Abel-Volterra Equations,” The Mathematica Journal,
2016. dx.doi.org/doi:10.3888/tmj.18-2.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

http://dx.doi.org/10.1016/0022-247X(60)90028-7

Exact and Approximate Solutions of the Abel-Volterra Equations 21

About the Author

Javad Abdalkhani is an associate professor of mathematics at the Ohio State University,
Lima campus and a Distinguished Alumni teacher at the Ohio State University. His area
of research is numerical analysis. His hobbies are reading and cycling.

Javad Abdalkhani
Department of Mathematics

The Ohio State University, Lima
4240 Campus Drive

Lima, Ohio 45804

abdalkhani.l @osu.edu

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.

mailto:abdalkhani.1@osu.edu

