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We present an implementation of the Poisson-Influenced K-Means
Algorithm (PIKA), first developed to characterize the output of a
superconducting transition edge sensor (TES) in the few-photon-
counting regime. The algorithm seeks to group data into several
clusters that minimize their distances from their means, as in
classical K-means clustering, but with the added knowledge that
the cluster sizes should follow a Poisson distribution.

1. Run PIKA Here

The algorithm proper is run when it is submitted using the button near the lower-right
corner of the form. You also have the option to use a separate input file to manually
override the form, which may be more useful for automated runs on multiple datasets. This
function launches the program; evaluating it generates the form and then executes PIKA.
The function pika|[] is defined and documented in Section 7.9. After taking input
through the form, pika calls runPIKA, the de facto main function for the program,
defined in Section 3. You can also specify a separate options file in the form that overrides
the variable assignments that the form makes. The first command ensures that the paclet
for forms is current.

PacletUpdate["Forms"];
pika[]

If you get a popup that asks, Do you want to automatically evaluate all the initialization
cells...?, answer yes. When you get the form, it is necessary to replace [directory] with
the pathname of the location of the data; you might also have to change the backslash to a
forward slash.
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B 2. General Formulation (No Code)

The Poisson-Influenced K-means Algorithm (PIKA) was first described in [1] as a way of
calibrating a transition edge sensor (TES), a superconducting few-photon detector. A TES
can discern the number of photons in a very weak pulse of light, but it must be calibrated
in order to do so. Our implementation deals with photon counting, but many of its features
are applicable to more general probability-assisted K-means clustering situations.

o 2.1. Background

A TES is a superconductor kept in its transition from its superconducting phase to the nor-
mal regime, where it loses its superconducting properties. Photons incident on the sensor
heat it, causing its resistance to rise sharply and then slowly fall to superconducting levels
as the heat dissipates. A current is run through the TES, and the change in resistance is cap-
tured by the voltage signal of a superconducting quantum interference device (SQUID) in-
ductively coupled to the TES circuit.

Several groups of TES signal waveforms are shown in Figure 1 (each graph shows the set
of signals elicited by an ensemble of laser pulses with an average number of photons per

pulse given by N). For N = 4, one can clearly distinguish the different photon numbers
and their relative frequencies; for higher numbers this is harder. Higher photon numbers
create higher signal amplitudes, but at a certain point the TES saturates in the normal
regime and additional photons change the signal maximum very little.

signal (V)

1 0 0
time (u s) time (u s) time (us) time (u s)

N=4 N=17 N =47 N = 1035

A Figure 1. Several collections of TES waveforms resulting from pulses with particular mean photon
numbers given by N, from [2].

The goal of PIKA is to characterize individual TES waveforms by the integer photon num-
bers of the pulses that cause them. The photon numbers of individual pulses cannot be de-
termined directly; we can only estimate the average photon number of all of the pulses,
based on the nominal laser and attenuator parameters of the light source.

K-means clustering, upon which PIKA is based, is a fundamental part of unsupervised ma-
chine learning. PIKA extends the K-means algorithm to scenarios in which the ideal distri-
bution that the clusters should follow is known, and though some of the implementation is
specific to the context of TES calibration (e.g. the use of the Poisson distribution, the idea
of ordering observations by photon number), much of it can be generalized without much
difficulty to other situations with known probability distributions.
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o 2.2. K-means Clustering and the Poisson Distribution

Traditional K-means clustering consists of taking some amount of data and organizing it
into clusters that minimize their members’ distance from the cluster mean. Essentially this
is a minimization of an objective function, the sum over each piece of data of its deviation
from its cluster mean (where deviation is measured by some relevant definition of dis-
tance). We can use a similar approach by considering each signal as a high-dimensional
vector and its deviation from some mean as squared Euclidean distance. Then the K-
means component of the objective function becomes

no+K-1
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where V; is the signal vector for observation i (Vi(¢) is the #" element of the vector V), V.
is the mean of the cluster C,, and N, is the number of time points; ny and K give the first
cluster’s photon number and number of clusters, respectively, and are determined by which
photon numbers we expect to be associated with at least one pulse based on the Poisson dis-

tribution. More physically, V; is an individual waveform and V, is the average of the wave-
forms with an assigned photon number .

To account for the Poisson-distributed cluster sizes, we introduce another term,
Opc = —In L, where £ is the likelihood, according to the Poisson distribution, of a group
of clusters associated with a group of photon numbers having the particular sizes that a
given clustering asserts that they do, given the mean photon number of the ensemble of
pulses. The likelihood of a particular sequence of photon numbers occurring in an ensem-
ble with mean y is
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where m,, is the number of waveforms in cluster n. We also need a combinatorial compo-
nent, since different photon-number sequences can yield the same eventual cluster sizes:

M!

Le=—7""T", 3)
ﬂﬁi*hff‘l my!
where M = Y'm,. Then L = Lp L, and the PIKA objective function is
1
OKPC = ——0Og+ Opc. “4)
202

The constant o relating the two terms can be estimated from the data, since the objective
function is itself the negative log-likelihood of a normal distribution. (This also means
that minimizing Ogpc is equivalent to maximizing the product of two likelihoods.) PIKA
minimizes the objective function by moving waveforms to neighboring clusters.

Once the clusters are optimized, each waveform is assigned an effective photon number
by a linear interpolation between the two closest cluster means. First, we find the value «;
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that minimizes the root mean square deviation of V; from (1 —a;) V, +a; V,;, where V,,
and V,; are the closest and second-closest mean waveforms to V;. In practice, i € C,, and
n'=n=1.One can easily show that
(V= Vi) (V= V)
@; = < 5 )
IVy=Vaull

for each V;. The effective photon number is then given by

0 = (1-a)n+a;n'. (6)

o 2.3. Initial Clustering

PIKA needs an initial clustering upon which to improve. Random cluster assignment is an
option, but a better alternative is to give the observations a rough order by photon number,
so that our initial guess is actually a meaningful estimate. This is done via the dot product
method: we assign each observation an initial effective photon number

AL
V2

(7

where V is the entire ensemble’s mean, not a cluster mean V,. The initial clusters are
sized to fit each observation and conform to the Poisson distribution, and the observations
are placed in the clusters by order of effective photon number.

The geometric interpretation of PIKA and the dot product method is a curve and a line,
respectively, evolving through hyperspace (shown in Figure 2). The dot product method
projects each observation onto the mean waveform vector (a line) and then assumes that
photon number scales linearly with distance along the mean vector (which is not actually
true, but suffices for a first guess); that converts distance relative to the mean to photon
number relative to the mean. PIKA, in contrast, finds a piecewise linear approximation of a
curve that passes through the cluster means and projects each observation onto that. Both
essentially measure photon number by progress along a one-dimensional path through high-
dimensional space.
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A Figure 2. An illustration of the geometric differences between the dot product method (green arrow)
and PIKA (blue curve). The 3D space here stands in for a high-dimensional space.

o 2.4. Choice of Mean Photon Number

PIKA requires knowledge of the ensemble’s mean photon number in addition to an initial
clustering. There are two ways of supplying that knowledge. The first is simply to give the
exact mean photon number of the incoming pulses, if it is known; then PIKA clusters the
data accordingly.

The second is to test several mean photon numbers on the data if the true mean is not
known exactly. The test means should be close together in some range around a rough
estimate of the true mean; PIKA clusters the data once for each value, returning a new
(usually better) estimate of the mean based on each optimized clustering, as well as the
value of the objective function associated with each new estimate. (In addition, since the
test means are close together so that adjacent distributions should be very similar, the
effective photon numbers for the waveforms from one round are used as the initial ordering
for the next, instead of the dot product method.)

The optimized means are usually closer to the true mean than their initial seeds, but,
depending on the structure of the probability distribution underlying the objective
function, some optimized means may be moved farther away due to attraction to local
minima. In the Poisson case, we have observed the objective function to have secondary
minima at integer differences in mean photon number from the primary minimum and
convex regions of width 1 centered around each minimum. Thus, test means that land in
the same region as the true mean should be optimized toward the true mean, but those
outside are diverted by secondary minima. Reference [3] estimates the range of test means
to within half of a photon number from the nominal laser power and attenuation.
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o 2.5. PIKA’s Results

The following results and images (in Section 2.5) except Figure 6 come from [1].

Figure 3(a) shows the optimized cluster means from two PIKA runs (N = 22.6, solid red,

and N = 31.6, dotted blue). The shapes of the mean waveforms appear independent of N—
reassuring, since the average photon number of an ensemble should not affect the shape of
individual waveforms. This independence indicates that PIKA is properly identifying
actual photon numbers in the data, and that the average photon number with which it is sup-
plied is not unduly affecting the results.

Figure 3(b) is a histogram of the optimized effective photon numbers from N = 2.00 (bin
widths of 0.05), which follow a Poisson distribution but with some Gaussian spread
around the integers (the red curves are Gaussians centered on the integers and fitted to the
data), resulting in a comb-like shape.
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A Figure 3. (a) Optimized cluster mean waveforms for N = 22.6 (solid red) and N = 31.6 (dotted blue).
(b) Optimized effective photon numbers for N = 2.00 (black) and integer-centered Gaussians fitted
to the data (red).

Figure 4 shows a similar comb structure for N = 22.6 for both the dot product method and
PIKA. As the photon number 7 increases, the teeth of the comb grow less defined—that is,
the peak visibility (max — min) / (max + min) falls, and with it the photon-resolving capabil-
ity. Figure 5 shows this drop in visibility. The power of PIKA is that it retains nonzero visi-
bility (i.e. the uncertainty does not include 0) through n = 23, whereas the dot product
method alone loses it after n = 19. PIKA has been used to explore the regime just beyond
the loss of peak visibility [4].
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A Figure 4. Effective photon numbers from the dot product method and from PIKA for N = 22.6.
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A Figure 5. Peak visibility for the dot product method (blue) and PIKA (red) through n = 23 (both lose
visibility altogether after that point). Uncertainties are given at two standard deviations and are
purely statistical.
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Figure 6 illustrates the loss of visibility with high photon numbers. As n increases, cluster
means become closer to each other (saturation in the normal regime) and individual wave-
forms overlap with each other more and more, making it more difficult to differentiate
between adjacent photon numbers.
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Figure 6. lllustration of the loss of visibility as n increases. Cluster means become closer together,
so individual waveforms overlap more and more.

3. Terminology and Main Loop (runPika)

The code and documentation are written in the context of few-photon-counting with a
TES, so variables and functions are often named for physical quantities and concepts spe-
cific to the original purpose of the algorithm instead of more abstract ones (e.g. readTES
instead of readData). In addition, the terms “trace,” “observation,” and “waveform” are
used interchangeably and synonymously to mean a single detector response in the set of
signals—that is, a regular sampling of voltage over time that records the response to a sin-
gle optical pulse fired at the TES. In the program a trace is a list of voltage values.

Variable and function names also follow certain conventions:

e A variable beginning with i or j is an index (or list of indices) on the remainder
of its name.

e i0Dbs is single index or list of indices on a set of observations, for example.

e A variable beginning with n is a number or size of the remainder of its name (or a
list of numbers or sizes).

e A variable beginning with m is a maximum number of something.

e mSample gives the maximum allowed number of waveforms to sample for
graphical output, but fewer are taken if the population of waveforms is smaller
than mSample.
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e A variable of the form xOfY lists x for each Y.

e iObsOfClust gives a list of indices "iObs" corresponding to "Of" each
cluster "Clust".

e nClust gives the number of clusters, but nOfClust lists the size of each
cluster.

e A function beginning with get returns something described by the rest of its
name.

e getIObsOfClust returns iObsOfClust.
e A variable such as p1 is a plot.

This section describes the overarching form of the algorithm. Here, the process is broken
into a series of more isolated procedures, whose implementation details are described in
the next section. Note that the functions referenced in this section and defined in the next
take no arguments and return no output—they merely break the whole algorithm into
smaller pieces of code that operate on global variables.

Below is the skeleton of the process. We begin by defining constants and options (which
can be overridden as necessary by the user), and then reading in the data with a noise
filter. One can optionally filter out observations contaminated by background radiation;
by default the algorithm does not do this. We then proceed to iterate (Loop 1) over the ele-
ments of nPhotonAvgList, a list of hypothetical mean photon numbers for the set of
pulses incident on the sensor, running PIKA once on the dataset for each element. This
lets us compare the optimized objective functions for each hypothesized mean and
estimate the actual mean from the runs with the smallest objective functions. The dot-
product method supplies the initial effective photon numbers (which create the initial clus-
tering) for the first mean photon number; after that we use the optimized effective photon
numbers from the previous mean on the list as our initial guess for the next mean (adjacent
elements of nPhotonAvgList should be close together, so one round’s optimized
ordering of the observations should be a reasonable seed for the next).

In Loop 1 (over nPhotonAvgList), we organize the traces by their clusters and then
find the initial value of the objective function to be minimized. We then enter the actual
optimization loop (Loop 2), which repeats some preset number of times, trying to lower
the objective function by moving observations between clusters. For each iteration of
Loop 2, the nested Loop 3 examines each observation and considers moving it to a neigh-
boring cluster (one with a photon number one greater or less). The greedy algorithm [5]
(the default option) accepts any move that reduces the objective function and rejects any
that does not, while the simulated annealing algorithm [6] may accept disadvantageous
moves so that it can find global minima instead of just local ones. If a move is accepted,
the relevant pieces of the objective function are updated. When Loop 2 finishes, the obser-
vations have been organized into optimized clusters, and we create various graphical and
textual outputs.
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runPIKAJ[] :=
initialSetup[];
readAndFilterData[];
optionallyRejectBackgroundTraces|[];
graphGlobalMeanTrace[];

findDotProductEffectivePhotonNumbers|[];

Do[ (* Loop 1 %)
createInitialClusters[];
graphSampleMiddleClusters|[];
graphClusterMeans|[];
findInitialObjectiveFunction[];
graphClusterDeviationsFromMean|[];
prepareOptimizationLoop[];

Do [ (* Loop 2 =)
prepareSubLoop|[];
Do|[ (* Loop 3 =)

getClusterAndNeighbors|[];
updateRelevantDeviations|[];
findChangeInObjectiveFunction[];
decideWhetherToMove[];
updateIfMoving[];
, {jobs, nObs}

1; (* End Loop 3 =)

updateAnnealingTemperature(];

, {iCool, nCool}

1; (* End Loop 2 «*)
prepareAnalysisAndOutput[];
graphNewSampleMiddleClusters[];
graphNewClusterMeans|[];
graphProbabilityDistribution[];
graphNewClusterToMeanDeviations|[];
graphNewMeanToMeanDeviations|[];
graphNewEf fectivePhotonNumber[];

, {iNPhotonAvgList, Length[nPhotonAvgList]}
1; (* End Loop 1 =*)
showOutput[]

)
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B 4. Implementation

Here we define the functions referenced in the previous section. The structure of the
following subsections mirrors that of the algorithm skeleton above: Subsection 1 defines
the procedures called before Loop 1 begins, Subsections 2 through 4 define those used in
Loop 1 (with Subsection 3 containing the functions for Loops 2 and 3), and Subsection 5
contains the (very minimal) end of the algorithm after exiting Loop 1. The functions are
defined in the order in which they are called, and each is called exactly once. The functions
called inside the bodies of these skeleton functions (i.e. those that take arguments, unlike
the functions defined in this section) are defined in Sections 5 and 7.

o 4.1. Set Options and Read Data

The main execution function, pika, assigns values to the following variables based on
the user’s response to the input form:

e iNPhoton—the index of the dataset to read (assuming that multiple datasets are
stored in the same location)

e iDataSet—a list of indices of parts of the dataset to read (assuming that
datasets are split over multiple files)

e nTime—the number of time points to keep after filtration

e mSample—the maximum number of traces to randomly sample when outputting
samples

e nDatUse—the maximum number of traces to read in (if this is equal to 0, we use
all of the traces)

e backgroundReject—a Boolean, true if PIKA should reject response wave-
forms with background radiation

e peakValCut —the voltage cutoff for background rejection

e peakPosCut—the peak location cutoff for background rejection

e peakNumCut —the cutoff for number of peaks for background rejection

e nCool —the number of optimizing rounds to perform

e nGreedy—the number of rounds that should be run with the greedy algorithm
e coolConst—the cooling constant for simulated annealing

e tAnneal —the starting annealing temperature

e probDistName —the name of the probability distribution

e nSigma—the number of standard deviations from the mean of the probability dis-
tribution to generate

e binFract—the histogram bin size (fraction of a photon number)

e outputImageSize—the default graphics size for output

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.



12

Brian P. M. Morris and Zachary H. Levine

nPhotonAvgList—a list of (close together) mean photon numbers with which
to run PIKA on the dataset

partialFilePath—the directory and the beginning of the name of the data
files, without the iNPhoton or iDataSet markers

fileExt —the file extension of the data files (without the iDataSet marker)
nSamplePerTrace—the number of samples per trace
nTracePerFile—the number of traces per file

useInputFile—a Boolean, true if there is another options file to read in and
override settings from the form

pikaInput —the path to the options override file

runPIKA (defined in Section 3 with implementation in this section) begins with some
initial setup, processing some of the input given in pika and setting up tables to store
graphical output.

initialSetup[] :=

SetOptions[$Output, PageWidth » 110];

SetOptions[ListPlot, Joined -» True, Frame - True,
PlotRange -» All];

SetOptions[ListLogPlot, Joined -» True, Frame - True,
PlotRange -» All];

tStart = TimeUsed[];

If [useInputFile, Get[pikaInput]];
(* user defined override =)
tAnnealOrig = tAnneal;

Print["Options read; now running"];

fileInfo = {{partialFilePath, fileExt}, nSamplePerTrace,
nTracePerFile};

outputCreateTabs [Length[nPhotonAvgList]];
print [0, "dataset number (iNPhoton): ", iNPhoton];
print [0, "file range (iDataSet): ", iDataSet];

)

Now we read in the data and apply a noise filter. readTESandFilter, defined in Sec-
tion 7.7, takes the data from the set of files specified in the options above and applies a
Hanning filter to it. We can then take a random sample and reduce the dataset to a smaller
size, if desired, but by default we keep all of the observations. dat is a list of lists—each
sublist corresponds to a waveform in the data and lists its values at regular time points.
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readAndFilterDatal] :=

print[0, "PIKA: about to read data. iNPhoton ", iNPhoton];

dat = readTESandFilter [iNPhoton, iDataSet, nTime,
fileInfo];

print [0, "PIKA: {nObs,nTime} ", Dimensions[dat]];

If[nDatUse > O,

dat = randomSample[dat, nDatUse];

print [0, "PIKA: nDatUse ... reduced to {nObs, nTime} "
Dimensions[dat]];

1;

4

)

In addition to the noise filter, we can remove observations from the dataset that have been
contaminated by background radiation. getIObsKeep returns the indices of the observa-
tions in dat that should not be thrown out, based on the parameters peakPosCut,
peakvValCut, and peakNumCut that characterize waveforms unduly influenced by
background radiation. The graphical output is a random sample of rejected observations.

optionallyRejectBackgroundTraces|[] :=

If [backgroundReject,
iObsKeep = getIObsKeep[dat, peakPosCut, peakValCut,
peakNumCut];

iObsDrop = Complement [Range[Length[dat]], iObsKeep];
pl = ListPlot[dat[ randomSample[iObsDrop, mSample] J,

PlotStyle -» Blue,

FrameLabel -» {"t (shorter input units)",

"V (input units)"},
PlotLabel -» ToString[mSample] <> " rejected traces",
ImageSize -» outputImageSize
1i

outputAdd([pl, 0, ""];

dat = dat [ iObsKeep ] ;
iObsDrop =.;
(# after dat is overwritten these index sets lose
their meaning =*)
iObsKeep =.
1;

nObs = Length[dat];
print[0, "PIKA: nObs ", nObs, " traces selected"];
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meanTrace is the average of all of the waveforms in dat. The output here is a graph of
meanTrace with a sample of accepted traces underlaid.

graphGlobalMeanTrace[] :=
meanTrace = getMeanOfEachTime [dat];
p2a = ListPlot [randomSample[dat, mSample],
PlotStyle -» Black];
pP2b = ListPlot [meanTrace, PlotStyle -» Red];
p2 = Show[p2a, p2b, DisplayFunction -» $DisplayFunction,
FrameLabel -» {"Time (input units)",
"Voltage (input units)"},
PlotLabel -» ToString[mSample] <>
" accepted traces (black) and mean trace (red)",
ImageSize » outputImageSize];
Export["p2.pdf", p2];
outputAdd[p2, 0, ""];
)

For the first mean photon number in nPhotonAvgList, the effective photon number
nPhotonEff [i] for observation i is found via the dot-product method. For subsequent
means, the optimized effective photon number from the previous item on nPhoton-
AvgList serves as the initial estimate for the next mean, since the elements of
nPhotonAvgList are expected to be in order and close together. In the beginning of
Loop 1, we create the initial clustering based on these effective photon numbers.

findDotProductEffectivePhotonNumbers[] :=
nPhotonAvg = First [nPhotonAvgList];
nPhotonEff = nPhotonAvg * getDotToIdeal [dat, meanTrace];

)

o 4.2. Preprocessing (Loop 1)

Now we enter Loop 1, whose index, iNPhotonAvgList, is the position in nPhoton-
AvgList of the current mean photon number. Each iteration of Loop 1 runs PIKA on the
given dataset with the assumption that the waveforms in the data come from pulses incident
on the sensor with an average of nPhotonAvgList [iNPhotonAvgList] photons per
pulse. The runs are independent of each other apart from the fact that one round’s optimized
effective photon numbers are used as initial effective photon numbers for the next.

The initial clusters are formed from the effective photon numbers of the individual observa-
tions. The effective photon numbers order the observations, but the relative sizes of the
clusters and the photon number to which each one corresponds are determined by the mean
photon number, nPhotonAvg, and the Poisson distribution. groupProbability
, defined and described in more detail in Section 7.4, returns:

1. prob—a list of ordered pairs, the first a photon number and the second the Pois-
son probability mass function at that photon number.
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2. nPhotonOfClust—a list of photon numbers for the clusters created.

3. iObsOfClust—a list of lists. Each sublist corresponds to a cluster and contains
the indices in dat of the waveforms in that cluster. The cluster iObsOf"
Clust[i] has photon number nPhotonOfClust[i].

4. clustMeanTrace—a list of waveforms. clustMeanTrace[i] is the aver-
age waveform of the cluster 1i0bsOfClust[i].

nClust is then the number of clusters, which groupProbability decides based on
which photon numbers we expect to see in at least one observation.

createInitialClusters[] :=

nPhotonAvg = nPhotonAvgList [ [iNPhotonAvgList];

{prob, nPhotonOfClust, iObsOfClust, clustMeanTrace} =
groupProbability[dat, nPhotonAvg, nPhotonEff, nSigma];

nClust = Length[clustMeanTrace];

print [iNPhotonAvgList, "PIKA: nClust ", nClust];

printSp[iNPhotonAvgList, "",
"Initial mean photon number:

, nPhotonAvg] ;
)

The following code graphs samples of waveforms from the middle three clusters.

graphSampleMiddleClusters|[] :=
pda =
ListPlot [randomSample [
dat[ iObsOfClust[ Round[nClust /2] -1] ], mSample],
PlotStyle » Red, DisplayFunction » Identity];
p4b =
ListPlot[randomSample [
dat[ iObsOfClust[ Round[nClust /2] ] ], mSample],
PlotStyle -» Green, DisplayFunction - Identity];
pédc =
ListPlot[randomSample [
dat[ iObsOfClust[ Round[nClust /2] +1] ], mSample],
PlotStyle -» Blue, DisplayFunction -» Identity];
p4 = Show[p4c, p4b, p4da,
FrameLabel -» {"Time (input units)",
"Voltage (input units)"},
PlotLabel -» ToString[mSample] <>
" traces for three clusters n=" <>
ToString[nPhotonOfClust[[Round [nClust / 2] - 1] ] <>
" (red) to n="<>
ToString[nPhotonOfClust[Round[nClust / 2] + 1] ] <>
" (blue)",
DisplayFunction -» $DisplayFunction,
ImageSize » outputImageSize];
printSp[iNPhotonAvgList, "Sample Traces",
"Before optimization:"];
outputAdd[p4, iNPhotonAvgList, "Sample Traces"];

)
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Here we graph the average waveform of each cluster.

graphClusterMeans|[] :=
p6 = ListPlot [clustMeanTrace,
PlotStyle -» Green,
PlotLabel -» "Cluster mean traces",
FrameLabel -» {"Time (input units)",
"Voltage (input units)"},
ImageSize » outputImageSize];
printSp[iNPhotonAvgList, "Cluster Means",
"Before optimization:"];
outputAdd[p6, iNPhotonAvgList, "Cluster Means"];

)

The initial, unoptimized value of the objective function, from equation (4) above, is

Okpc = # Ok + Opc. Here, sqgDevO£fClust is a table containing the square deviation

of each cluster from its own mean (each element is ¢, Nl— >y [V,»(t) - \7,1(t)]2 for cluster

C,), so the table’s sum is Ok, the K-means term of the objective function. nOfClust is a
list of cluster sizes, and logLikeProb is Opc, the Poisson-combinatorial term.
sigmaObjFtn is o, the regularization parameter for the objective function based on the
deviations of the initial clusters (unlike Ok, o does not change as the objective function is
minimized).

findInitialObjectiveFunction[] :=

sqDevOfClust = getSqgDevOfClust[dat, iObsOfClust,
clustMeanTrace];

nOfClust = Map[Length, iObsOfClust];

logLikeProb = probComboLogLikelihood [nPhotonOfClust,
nOfClust, nPhotonAvg];

. . Total [sqDevOfClust]
sigmaObjFtn = // N;
nObs

print [iNPhotonAvgList, "PIKA: sigmaObjFtn ",
sigmaObjFtn];
sigmaObjFtn = Table[sigmaObjFtn, {nClust}];

objFtn = getObjFtn[sgDevOfClust, sigmaObjFtn,
logLikeProb] ;

printSp[iNPhotonAvgList,
"Initial objective function: ", objFtn];
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This graphs the root mean square (RMS) deviations of each cluster to its mean.

graphClusterDeviationsFromMean[] :=

sgDevOfClust ]

p7 = ListPlot [pair[nPhotonOfClust, \/
nOfClust

AxesOrigin-»{

Floor [Min[nPhotonOfClust], 10],

. sqDevOfClust
Floor[Mln[ ], 10]
nOfClust
}e

Joined - False,
PlotStyle » PointSize[0.015],
FrameLabel -» {"Number of photons n",
"RMS deviation (Voltage input units)"},
PlotLabel -»
"RMS deviations of clusters to their means",
ImageSize » outputImageSize

E
printSp[iNPhotonAvgList, "Cluster Deviations",

"Before optimization:"];
outputAdd[p7, iNPhotonAvgList, "Cluster Deviations"];

The optimization loop (Loop 2) is now ready to begin, apart from a few organizational
tasks. First, since the optimization moves waveforms between clusters many times, we
need a more convenient way to keep track of the clusters. getIClustO£fObs converts
iObsOfClust, a list of lists, into iClustOfObs, a one-dimensional list, each element
of which corresponds to an observation in dat and gives the index of the cluster to which
that observation belongs.

Next, for each cluster, neighborOfClust lists the acceptable clusters to transfer to dur-
ing the optimization loop. By default, the neighbors for cluster n are the clusters n + 1 and
n—1, since the initial clustering (from the dot-product method or the previous round of
PIKA) is expected to be at least a somewhat accurate arrangement, and so long-distance
transfers should not be necessary.

Finally, a system for keeping track of transfer history lets us reduce unnecessary computa-
tion. kMove counts the number of transfers that have been made in the loop. birthOf-
Clust is a table that records the move number when each cluster was last changed, and
birthOfObsClust is a two-dimensional table that records, for each observation-clus-
ter pair, the last time that the deviation from the observation to the cluster mean was calcu-
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lated. sgDevOfObsClust is a table with the same dimensions that records the actual
deviations so that they can be used later in the loop if they are still up to date.

prepareOptimizationLoop[] :=

If[Sort[Flatten[iObsOfClust]] != Range[Length[dat]],
print [iNPhotonAvgList,
"PIKA: WARNING: iObsOfClust does not map each
observation to a cluster"]
1;
iClustOfObs = getIClustOfObs [iObsOfClust];
If[Min[iClustOfObs] <= O,
print [iNPhotonAvgList,
"PIKA: WARNING: iClustOfObs does not map each
observation to a cluster"]

neighborOfClust = pair[Range[nClust] -1,
Range[nClust] +1];

neighborOfClust[1] = Drop [neighborOfClust[ 1], 1];

neighborOfClust[-1] = Drop[neighborOfClust[-1], -1];

kMove = 0; (*# count of moves made =x)
birthOfClust = Table[0, {nClust}];
birthOfObsClust = Table[-1, {nObs}, {nClust}];
(# older than birthOfClust =x)
sgDevOfObsClust = birthOfObsClust

(# dummy array of correct shape *)

o 4.3. Optimization Loop (Loop 2)

Loop 2, nested inside Loop 1, begins here. Its index, iCoo1l, specifies how many rounds of
optimization have already passed. The optimization loop runs for a preset number of itera-
tions (given by nCool in the initial setup), the first nGreedy of which employs the greedy
algorithm. The remaining iterations are run with the simulated annealing algorithm. By
default, nGreedy is equal to nCool, so all of the iterations use the greedy algorithm (i.e.
simulated annealing is never used).

The bulk of Loop 2 is contained in the nested Loop 3, the waveform transfer loop that
passes over all of the observations in dat and decides whether to move them to neighbor-
ing clusters. Before starting Loop 3, we randomly order the indices in dat of the wave-
forms upon which Loop 3 is to operate, so that the original ordering of the data does not
bias the algorithm in any systematic way.
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prepareSubLoop[] :=
iObsAll = RandomSample [Range [nObs]];
printSp[iNPhotonAvgList, "Detailed Log", "Mean ",
iNPhotonAvgList, ", round ", iCool,
": kMove ", kMove, " logLikeProb ", logLikeProb,
" objFtn ", objFtn, " TimeUsed ", TimeUsed[] - tStart];

= 4.3.1. Waveform Transfer Loop (Loop 3)

The index of Loop 3, jObs, is the current position of the loop in i0bsAl1l, the random
permutation of the observation indices. 1Obs is then set to the index of the observation
itself, rather than the index of the index. iClust is the index of the associated cluster. If
the cluster has only one observation then we skip to the next iteration of Loop 3, since no
cluster is allowed to become empty. We then randomly pick a cluster jClust from the
list of neighbors, and we consider moving the waveform from its current cluster to the
new one.

getClusterAndNeighbors[] :=
iObs = iObsAll[[jObs];
iClust = iClustOfObs [ iObs J;
If[nOfClust[[iClust] <= 1, Continue[]];
neighbor = neighborOfClust[ iClust ];
jClust = neighbor[ RandomInteger[{1l, Length[neighbor]}] ]
)

To reduce the computation time, birthOfObsClust and birthOfClust record the
“ages” of observation-to-mean deviation calculations and changes to cluster contents,
respectively, so this step checks whether iClust and jClust have been modified since
we last calculated the deviation of iObs from their means. If they are unchanged, then
sgDevOfObsClust is up to date; this condition becomes increasingly common as the
calculation approaches convergence. If they are changed, we need to recalculate one or
both deviations and store them in sqDevOfObsClust.

updateRelevantDeviations[] :=
If[birthOfObsClust[[iObs, iClust] < birthOfClust[iClust],
sgqDevOfObsClust[[iObs, iClust] =
meanSquare[dat[[iObs] - clustMeanTrace[iClust]];
birthOfObsClust[[iObs, iClust] = kMove
1;
If[birthOfObsClust[[iObs, jClust] < birthOfClust[jClust],
sgDevOfObsClust[[iObs, jClust] =
meanSquare[dat[[iObs] - clustMeanTrace[jClust]];
birthOfObsClust[iObs, jClust] = kMove
1
)
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We need to know how a proposed move would change the objective function before decid-
ing whether to accept it. Section 5 gives more detail on the functions called here that effi-
ciently compute the change in the objective function.

findChangeInObjectiveFunction[] :=

deltalI = deltaKMeansDel [nOfClust[iClust],
sgDevOfObsClust[[iObs, iClust]];

deltaJ = deltaKMeansAdd [nOfClust[jClust],
sgDevOfObsClust[[iObs, jClust]];

deltad
deltaKMeansScaled = -

2 x sigmaObjFtn[jClust]?

deltal

2 » sigmaObjFtn[iClust]? ’
deltaProb = If[jClust < iClust,
deltaPoissonDn[nPhotonOfClust[[iClust], nOfClust[jClust],
nOfClust[[iClust], nPhotonAvg],
deltaPoissonUp [nPhotonOfClust[[iClust], nOfClust[jClust],
nOfClust[[iClust], nPhotonAvg]
1:
deltaObjFtn = deltaKMeansScaled - deltaProb;

If the transfer would decrease the objective function, we automatically accept it, and if we
use the greedy algorithm, we reject any transfer that does not decrease the objective function.
If we use simulated annealing, however, we may accept a transfer that increases the objective
function for the purpose of exploring a greater number of assignments and possibly avoiding
local minima that would trap the greedy algorithm. In simulated annealing, it grows harder
for a disadvantageous transfer to occur as time goes on and the “temperature” drops.

decideWhetherToMove[] :=
acceptMove = If[deltaObjFtn < O,

True,

If[iCool > nGreedy,
RandomReal[] < Exp[-deltaObjFtn / tAnneal],
False

]

]
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If the move is accepted, then we need to move the observation from one cluster to the
other and update the clusters’ deviations and mean traces. Both clusters have been
changed in this move, so we update birthOfClust accordingly.

updateIfMoving[] :=

If [acceptMove, (* transfer a trace from cluster i
to cluster j *)

printSp[iNPhotonAvgList, "Detailed Log", Round ",
iCool, ", observation ", iObs, ": deltaObjFtn ",
deltaObjFtn, " from ", iClust, " to ", jClust];

kMove ++;

birthOfClust[iClust] = kMove;

clustMeanTrace[iClust] =
newMeanTraceDel [nOfClust[[iClust],

clustMeanTrace[[iClust], dat[iObs]];

nOfClust[iClust] --;

birthOfClust[jClust] = kMove;

clustMeanTrace[[jClust] =
newMeanTraceAdd [nOfClust[jClust],

clustMeanTrace[jClust], dat[[iObs]];

nOfClust[[jClust] ++;

iClustOfObs[[iObs] = jClust;

sqDevOfClust[[iClust] -= deltaI;
sgDevOfClust[[jClust] += deltadJ;

objFtn += deltaObjFtn;

]

)

After making a transfer or deciding not to, Loop 3 moves to the next waveform in the ran-
domly ordered list or finishes if there is none.

® 4.3.2. Annealing Update and End of Loop 2

Loop 3 is now over, after examining all of the observations and moving some to neigh-
boring clusters. If we use the simulated annealing algorithm, the annealing temperature
decreases after Loop 3, making it more difficult for a move that increases the objective
function to be accepted.

updateAnnealingTemperature[] :=
tAnneal *= coolConst

)

Loop 2 repeats a preset number of times, randomly ordering the waveforms, running Loop
3 on each one, and then decreasing the annealing temperature in each iteration.
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o 4.4. Data Analysis and Output (Loop 1)

When Loop 2 is finished, PIKA has run for many rounds on the data and the observations
should be arranged into optimal clusters. This subsection concerns itself primarily with cre-
ating graphical and numerical outputs to understand and visualize the clustering. Now that
the optimization is finished, iObsOfClust (the list of lists) is a more useful format than
iClustO£fO0bs (the simple list). In order to compare the new clustering to the old, we gen-
erate iObsOfClustNew from iClustOfObs, which reflects the optimized clusters,
and simply copy i0bsOfClustOld from iObsOfClust, which has not been changed
since before Loop 2. fregNew and freq0Old are lists of the new and old cluster sizes,
respectively, and nPhotonAvgNew is an estimate of the actual mean photon number
based on the results of PIKA.

prepareAnalysisAndOutput[] := (

print [iNPhotonAvgList, "final ", nCool, kMove ",
kMove, " logLikeProb ", logLikeProb, " objFtn ",
objFtn, " TimeUsed ", TimeUsed[] - tStart];

iObsOfClustNew = getIObsOfClust [iClustOfObs];

iObsOfClustOld = iObsOfClust;

(* not changed since before the optimization loop =*)

fregNew = Map [Length, iObsOfClustNew];

freqold = Map [Length, iObsOfClust01d];

nPhotonOfClust. fregNew
nPhotonAvgNew = // N;
Total [ freqNew]
print [iNPhotonAvgList, "nPhotonAvg

nPhotonAvgNew ", nPhotonAvgNew] ;

printSp[iNPhotonAvgList, "",
"Optimized mean photon number:

printSp[iNPhotonAvgList, ’
"Optimized objective function: ", objFtn];

As before, we graph some sample waveforms from middle clusters.

, nPhotonAvg,

, nPhotonAvgNew] ;

graphNewSampleMiddleClusters[] :=
p8a = ListPlot[
randomSample[dat[ iObsOfClustNew[] Round[nClust /2] -1]1],
mSample],
PlotStyle -» Red,
DisplayFunction -» Identity];
p8b = ListPlot[
randomSample [dat[ iObsOfClustNew[] Round[nClust /2] ] 1,
mSample],
PlotStyle -» Green,
DisplayFunction -» Identity];
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p8c = ListPlot|[
randomSample [dat[ iObsOfClustNew[] Round[nClust /2] +1] ],
mSample],
PlotStyle -» Blue,
DisplayFunction -» Identity];
p8 = Show[p8c, p8b, p8a,
PlotLabel -» ToString[mSample] <>

" traces for three clusters n=" <>

ToString[nPhotonOfClust[[Round [nClust / 2] - 1]] <>

" (red) to n="<>

ToString[nPhotonOfClust[[Round [nClust / 2] + 1] ] <>

" (blue)",

FrameLabel -» {"Time (input units)",
"Voltage (input units)"},
DisplayFunction » $DisplayFunction,
ImageSize » outputImageSize];
printSp[iNPhotonAvgList, "Sample Traces",

"After optimization:"];
outputAdd[p8, iNPhotonAvgList, "Sample Traces"];
)

Here we numerically output and then graph the optimized cluster mean waveforms, with a
graph of both the optimized and initial means as well.

graphNewClusterMeans[] :=

clustFreq = pair[nPhotonOfClust, freqNew];
printSp[iNPhotonAvgList, "Numerical Cluster Means",
"After optimization,
{nPhotonAvgNew, clustFreq,clustMeanTrace}="];
outputAdd[ {nPhotonAvgNew, clustFreq, clustMeanTrace},
iNPhotonAvgList, "Numerical Cluster Means"];

p9a = ListPlot [clustMeanTrace, DisplayFunction » Identity,
PlotStyle -» Blue,
PlotLabel -» "Optimized cluster mean traces",
ImageSize -» outputImageSize];
p9 = Show[p6, p9a, DisplayFunction » $DisplayFunction,
PlotLabel -»
"Initial (green) and optimized (blue) cluster
mean traces"];
printSp[iNPhotonAvgList, "Cluster Means",
"After optimization:"];
outputAdd[p9a, iNPhotonAvgList, "Cluster Means"];
outputAdd[p9, iNPhotonAvgList, "Cluster Means"];
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This graph compares the initial and final cluster counts to a Poisson distribution.

graphProbabilityDistribution[] :=
pl0 = ListPlot[

{pair [nPhotonOfClust, freqold],
pair[nPhotonOfClust, fregNew],
pair[prob[All, 1], prob[All, 2] *nObs]},

PlotStyle » {Green, Red, Black},

Joined -» {False, False, True},

PlotLabel -

"Initial (green) and final (red) cluster
frequencies; " <>probDistName <>
" distribution (black)",
FrameLabel -» {"Number of photons n", "Frequencies"},
ImageSize -» outputImageSize
1i
outputAdd[pl0, iNPhotonAvgList, probDistName];
)

sgDevClustClust[i, j] is the average mean square deviation of the observations
in cluster i to the mean waveform in cluster j. This graph is of the RMS deviations of the
traces in clusters to adjacent means.

graphNewClusterToMeanDeviations[] := (

sgDevClustClust = getSgDevClustClust[dat, iObsOfClustNew,
clustMeanTrace];

sqrtsdccDiag = Table[

{nPhotonOfClust [iClust],

v/sqDevClustClust[iClust, iClust] },
{iClust, nClust}];
sqrtsdccUDiag = Table [

{nPhotonOfClustﬂiClust],

V' sqDevClustClust[iClust, iClust + 1] },
{iClust, nClust-—l}];
sqgrtsdccLDiag = Table[

{nPhotonOfClust [iClust],

VquevClustClust[[iClust, iClust - 1] },

{iClust, 2, nClust}];
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pl3 = ListPlot[{sqrtsdccDiag, sqrtsdcclDiag,
sqgrtsdccUDiag}, PlotStyle -» {Red, Green, Blue},
Joined -» True, Frame - True,
PlotLabel -
"RMS deviation of cluster traces to means of
clusters: R: same; G: +1; B: -1",
FrameLabel -
{"Cluster", "RMS deviation (input voltage units)"},
ImageSize » outputImageSize
1:
printSp[iNPhotonAvgList, "Cluster Deviations",
"After optimization:"];
outputAdd[pl3, iNPhotonAvgList, "Cluster Deviations"];

)

sgDevMeanMean[i, j] is the mean square deviation of the mean of cluster i to that
of cluster j. This graph is of the RMS deviations of cluster means to means one, two, and
three clusters away.

graphNewMeanToMeanDeviations[] := (

sgDevMeanMean = getSqDevClustObs [clustMeanTrace,
clustMeanTrace];

sqrtsdmmDiagl = Table[

{nPhotonOfClust [iClust],

\/quevMeanMean [iClust, iClust + 1] },
{iClust, nClust - 1}] ;
sqrtsdmmDiag2 = Table[

{nPhotonOfClust [iClust],

4/ sqDevMeanMean[iClust, iClust + 2] },
{iClust, nClust - z}] ;
sqgrtsdmmDiag3 = Table[

{nPhotonOfClust [iClust],

'\/quevMeanMean[[iCIust, iClust + 3] },

{iClust, nClust - 3}] ;
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pl5 = ListPlot [ {sqrtsdmmDiagl, sqrtsdmmDiag2,
sqrtsdmmDiag3},
PlotStyle » {Red, Green, Blue},
Joined - True,
Frame - True,
PlotLabel -
"RMS deviation of cluster means to each other,
R: +1 G: +2 B: +3",
FrameLabel -
{"Cluster", "RMS deviation (voltage input units)"},
ImageSize » outputImageSize
1i
outputAdd[pl5, iNPhotonAvgList, "Cluster Deviations"];

)

nPhotonEff lists the effective photon number of each observation (getNPhotonEff
is implemented in Section 7.2). The rest of this code creates a histogram of nPhotonEf £
with bin widths of binFract: binEdge specifies where the edges of the bins should
be, binCnt counts the number of waveforms in each bin, and binCtr lists the centers
of the bins.

graphNewEffectivePhotonNumber[] := (

nPhotonEff = getNPhotonEff[dat, nPhotonOfClust,
clustMeanTrace] ;

binEdge::Table[nEff,

{nEff,
Min[nPhotonEff] 1 .
(Floor[ ]— —) * binFract,
binFract 2
L. Max [nPhotonEff] 1 .
Celllng[ ] + —| *binFract,
binFract 2
binFract}

E
binCnt.=BinCounts[nPhotonEff,

Min[nPhotonEff] 1 .
{(Floor[ ]— —] * binFract,

2
1 .

]1——) * binFract,
2

binFract
Max [nPhotonEff]

(Ceiling[
binFract
binFract}

E

Most [binEdge] + Rest[binEdge]
4

binCtr =

2
pairCnt = pair[binCtr, binCnt];
pairCntPlot =

pair[binCtr, Table[If[binCnt[i]] < 0.5, 0.5, binCnt[i]],
{i, Length[binCnt]}]1];
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PlotLabel -»
"Effective photon number histogram (bin width " <>
TextString[binFract] <>")",
FrameLabel -» {"Photon number", "counts"},
ImageSize » outputImageSize
1i
outputAdd[pl7, iNPhotonAvgList,
"Effective Photon Numbers"];

printSp[iNPhotonAvgList, "Numerical n.¢s Bin Counts”,
"First element is bin center; second is bin count."];
outputAdd[pairCnt, iNPhotonAvgList,
"Numerical ng¢s Bin Counts"];
printSp[iNPhotonAvgList, "Numerical ngss",
"Effective photon number for each observation:"];
outputAdd [nPhotonEff, iNPhotonAvgList, "Numerical ngs"];

Loop 1 runs PIKA on the data once with each mean photon number in nPhotonAvg-
List and then exits.

o 4.5. Show Output

After Loop 1 finishes, the algorithm outputs the computation time used and displays the
output from PIKA.

showOutput[] :=
tEnd = TimeUsed[];
print [0, "PIKA: time used: ", tEnd - tStart, " s"];
outputShowTabView]| ]

)

B 5. Updates to the Objective Function

A naive implementation of the transfer of waveforms between clusters would recalculate
the various components of the objective function from scratch with each change, resulting
in a computationally expensive process whose running time would depend on the size of
the clusters in question. We can avoid this excessive calculation by noticing that, given
some basic summary information about the clusters and waveform to which a given trans-
fer pertains, the changes to the objective function and the cluster means are very easy to
compute without any knowledge of the other waveforms in the clusters. The running
times of the updates in this section are independent of cluster size.
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o 5.1. Updating the K-Means Objective Function

From equation (1), we can decompose the K-means term of the objective function as

no+K—1

Ok= D I, 8)
where
1 = 2
Jn = - Vl' - Vn .
z; N Z[ (t) (t)] ©)

If we transfer a waveform j into the cluster n = a, the new cluster members form the set
Ct = C, U {j}. It can be shown that

a 1 _
I :Ja+( " )—Z[vj(z)—va(t)]z. (10)

mg + 1/ N, t 7
If we transfer a waveform j out of the cluster n = b, the new cluster members form the set

Cy = Cy - j}), with

1 _
J,;:Jb—( i );Z[VJ(I)—V;,O‘)]Q. (11)
roy

m;,—l

In equations (10) and (11), V,(f) and V() refer to the original clusters C, and Cj,, before
the transfer of j. See below for a proof that these equations indeed give the proper changes
in cluster deviation. Equation (11) corrects equation (A4) in [1]. After the transfer, the clus-
ter means for n = a and n = b become

‘_/n(t) — M’ (12)

m, +1

with plus signs for n = a and minus signs for n = b. No cluster is ever allowed to become
empty (in such a case we would have not K but K — 1 means), so the denominator never
becomes zero. Therefore, we can determine the appropriate change to the means and
square deviations of the clusters between which the transfer takes place.

deltaKMeansAdd [
freq_, (» size of the cluster to be added to %)
meanSquareDiff (x mean square of the difference
between the waveform to be transferred and the
cluster mean waveform =)
] :=
( freq

) * meanSquareDiff
freq+1
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deltaKMeansDel [
freq_, (* size of the cluster to be removed from %)
meanSquareDiff (» mean square of the difference
between the waveform to be transferred and the
cluster mean waveform =x)
] :=
( freq

) * meanSquareDiff
freq-1

newMeanTraceAdd[freq_ , oldMeanTrace_, transferTrace_] :=
freq » oldMeanTrace + transferTrace

freq+1

newMeanTraceDel [freq_, oldMeanTrace_, transferTrace_] :=
freq » oldMeanTrace - transferTrace

freq-1

= 5.1.1. Example: The K-Means Update

Suppose that cluster a has nine waveforms and cluster b has 14 (and each has some mean
waveform in addition), and we want to move a waveform from b to a. When we make this
transfer, Ok changes by the following amount.

freqAddA = 9;
freqDelA = 14;

meanTraceAdd = {1.1, 2.9, 8.9, 9.0, 6.1, 4.3};
meanTraceDel = {0.9, 1.7, 4.0, 8.8, 5.2, 3.3};
transferTrace = {1.2, 3.1, 8.9, 9.5, 8.1, 5.2};

deltaKMeansAdd|[freqAddA,
meanSquare [meanTraceAdd - transferTrace]] -
deltaKMeansDel [ freqDelAa,
meanSquare [meanTraceDel - transferTrace] ]
-6.15632
The mean waveforms of clusters @ and b become the following.

newMeanTraceAdd[freqAddA, meanTraceAdd, transferTrace]

{1.11, 2.92, 8.9, 9.05, 6.3, 4.39}

newMeanTraceDel [freqDelA, meanTraceDel, transferTrace]

{0.876923, 1.59231, 3.62308, 8.74615, 4.97692, 3.15385}

Of course, the cluster sizes change as well: @ now has 10 waveforms, while b has 13.
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= 5.1.2. Derivation of the Update Formulas

The derivation for equations (10) and (11) is slightly involved and requires some prelimi-
naries. Voltage signals are considered as vectors for the derivation, denoted V;, where the
discrete time index ¢ is not given explicitly in this section.

Lemma:

Let V; be the signal vector of the i observation, and V, and J,, be the cluster mean
vector and sum of deviations, respectively, for cluster C,. Then,

_Z IIV Vall? Z IV =V,
2 m, N; '

ieCy ijeC,
Proof:

The first expression for J,, is merely the definition; we now show that the second ex-
pression is equivalent.

Z IV, = V;I?
i, 2m, N;

= S| LIVl = D 2V Vi D IV P

2m, N,

ieCp ijeCn jeCn
|
= — ViI?-V;-V,
N ,-ezc;,(” I )
_ L D IVie(Vi-V,)
- Nt & i i n
1 _ _
= — Vi=V,)-(Vi=V,),
N EZC”( ) ( )

which is equivalent to the first expression. (The final step is valid because
Yiee, (Vi=V,)=0)0

Lemma:

LetV;, V,, J,, and C, be as before. Then,

Vi = Vol +

_ 1
“2Vi-Vur — DIV

My ny ieCy

Proof:

IVi=V, 2 = I VI?P =2V, -V, +— ZV V.

mn ijeCy

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.



The Poisson-Influenced K-Means Algorithm

From the proof of the previous lemma, we have

Zuvu— >ViV;

ieC, my, ijeCy

l

and thus
— Z VieVi= > Vil =N, J.
My ijeCy ieC,

Finally,

IVi=VullP = [ VilP? =2V V, + — (Z Vil =N, n],

ieCy
and the lemma follows. O
Now we can prove that equations (10) and (11) hold true.
Theorem:

Suppose we add or remove a waveform V, to or from a cluster C,, forming a cluster
C, ' Then,

my |1V, =V, |
Jy =T, + " #’
my, Nt

with m,,'=m, £ 1. (Throughout this theorem, the top symbol of a plus-or-minus sign indi-
cates the addition of V,, to Cy,, and the bottom symbol indicates removal.)

Proof:
By the first lemma,
V= V;|?
Jn’ = Z ‘ / .
ijec,  2ma'N;

(Note the summation over C,', not C,.) Since V,, is the observation to add to or remove
from C,,, we can write

T =
(va VilP £ > 11V, = V1P Y IV =V, [P+ 1V, =V, |7
2 my N ijeCp jeCy ieC,
m
= — = D Vo= ViIP
my' my' jec
m
=—Jy % IV, P =2V, V, + — vau2
my my" N; My jec,
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By the second lemma, we have

my my — N: J,
= s — (||Vp—v,,||2+ )
my my Nt my
my 1 my V _Vn 2
=( SR P 1, =V P
m," my,' my' N;

and the theorem follows. O

5.2. Updating the Poisson Log-Likelihood

From equation (2), the Poisson log-likelihood is

no+K—1

In Lp(mg, ...,Mg, ooy Mp, ooy My g_15 1) = =t M+ Z my[nlny —In(n')], (13)

n=ngo
where M = Y m,. If some waveform is transferred from the n = b to the n = a cluster, then
the change in the objective function consists of a term from the Poisson factor and a term
from the combinatorial factor from equation (3). The term due to the Poisson factor is
All’l.[:p = lIl.Lp(mo, eamg+1, ..., my — 1, ..., mn0+[(_1;/.l) -
In Lp(mg, ..., Mg, ...y Mp, oo, My yx—13 1) = (14)
(a-b)Inu—In(a!) +In(b!).

(The notation suggests b > a, but the same formula applies for the b < a case.)

The combinatorial factor’s treatment is similar. The logarithm of the factor is

no+K-1

In L = In(M!) - Z In(my ). (15)

n=ng

M does not change with a transfer, so only the second term contributes to the change:

mp

Aln L = ln( ) (16)
my+1

The algorithm only considers moves to adjacent clusters, so we only need to calculate the

change due to transfers to immediately preceding and succeeding clusters. These two func-

tions give the change in the probabilistic/combinatorial component of the objective function

for moves to higher and lower photon numbers.

(* from n to n+l %)
deltaPoissonUp==Compi1e[{

{nDel, _Integer}, (* cluster number from which to
remove the waveform =)

{freqAdd, _Integer},

(» size of the cluster to be added to x*)
{fregDel, _Integer},
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(# size of the cluster to be removed from =*)
{mu, Real} (* mean photon number =x)

b

Log|
E

(# from n to n-1 x)

mu * freqDel ]
(nDel +1) » (freqAdd + 1)

deltaPoissonDn = Compile [ {

{nDel, _Integer},
{freqAdd, _Integer},
{fregDel, _Integer},
{mu, _Real}

b

Log[

E

Bear in mind that the term that Lp¢ contributes to the overall objective function is the nega-
tion of its logarithm, so a positive Aln £p¢ decreases Okpc.

nDel » freqDel ]
mu * (freqAdd + 1)

= 5.2.1. Example: The Poisson Update

Suppose we have a set of clusters, among them an n = 2 cluster with five waveforms and
an n = 3 cluster with seven waveforms, with a mean of 4.4 photons. We are interested in
moving a waveform from the n = 2 cluster to the n = 3 cluster. Then the change in the
Poisson log-likelihood is given by deltaPoissonUp.

mu-=4.4;
nAdd = 3;
nDel = 2;

freqAdd = 7; (* size of the cluster before the
transfer =*)

fregDel = 5;

deltaPoissonUp[nDel, freqAdd, fregDel, mu]

-0.0870114
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7. Appendix: Function Definitions

The functions in this section either are used often, and so are given their own names, or
perform very particular procedures (such as data reading) whose implementation details
are tangential to the core operation of the algorithm, and so have been separated from the
main body of the code.

7.1. General Purpose
boundIList confines the elements of a list between two inclusive bounds.

boundList[list_, min_, max_] :=
Module[{i}, Table[Median[{list[i]], min, max}],
{i, Length[list]}]]

getDotToIdeal takes a single trace or a set of traces and finds its or their dot product
with an ideal trace, normalized by the square of the ideal trace’s magnitude. If the func-
tion is given a single trace as its first argument, the operation in the numerator is a simple
dot product; if it is given a list of traces, the operation is matrix-vector multiplication,
which returns a list of dot products.

traces.idealTrace

getDotToIdeal [traces_, idealTrace_] :=
idealTrace.idealTrace

getMeanOfEachTime averages all of the traces in dat at each time point, returning
the overall mean waveform.

getMeanOfEachTime[dat_] := Map[Mean, Transpose[dat]]

getSquareDiff returns a table that lists the squared magnitude of the difference between
each observation and each cluster mean.

getSquareDiff[dat_, clustMeanTrace_] :=
Module[{iClust, iObs, x},
Table[x = dat[[iObs] - clustMeanTrace[iClust]; x.x,
{iObs, Length[dat]}, {iClust, Length[clustMeanTrace]}]

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.



The Poisson-Influenced K-Means Algorithm 35

groupCommon is a small function that rearranges the result of GatherBy. It is best
understood from its definition.

groupCommon[x_] := {x[1, 2], x[All, 1]}

meanSquare takes a vector and returns its mean square (magnitude squared divided by
length).
X.X

meanSquare[x_] 1= —
Length[x]

pair takes two lists (of equal length) and pairs elements at the same position, returning a
list of pairs.

pair[x_, y_] := Transpose[{x, y}]

randomSample is a wrapper for RandomSample that returns a random sample of
some size from a list, reducing the sample size if it is greater than the length of the list.

randomSample[list_, m_] :=
RandomSample[list, Min[m, Length[list]]]

twoMin takes a list and returns the positions of the smallest and second-smallest ele-
ments, in that order.

twoMin[z_] := Ordering[z, 2]

o 7.2. Effective Photon Number

The three-argument version of getNPhotonEff takes a list of observations, a list of pho-
ton numbers associated with clusters, and a list of cluster means. It returns a list specifying
the effective photon number of each observation, found via a linear interpolation between
the two cluster means closest to a given observation.

alphaByClustPair is a list that gives the value of the interpolation parameter « for
each observation, organized by the two cluster means to which each observation is closest.
getNPhotonEff (the two-argument version) takes that information and finds the effec-
tive photon number for each observation.

getNPhotonEff[dat_, nPhotonList_, clustMeanTrace_] :=
Module[ {alphaByClustPair},
alphaByClustPair = getAlphaByClustPair[dat,
clustMeanTrace] ;
getNPhotonEff [alphaByClustPair, nPhotonList]

]
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getAlphaByClustPair returns a list of ordered triples that give the cluster means
closest to a group of observations and the alpha values for those observations. msDev -
[i, Jj] is the mean square deviation of observation i to cluster mean j, and
twoMinIndex[i] is a pair of indices giving the two cluster means with the lowest mean
square deviations to observation i (i.e. a pair of indices giving the two columns with the
smallest elements in row i of msDev). iObsTwoMinIndex pairs the relevant obser-
vation index with each pair in twoMinIndex. In the next line, the GatherBy groups the
elements of iObsTwoMinIndex by their lowest-deviation index pairs, so that each
element of i0bsTwoMinIndexGroup is a list of elements of 10bsTwoMinIndex that
all have the same pair of nearest cluster means. Mapping groupCommon onto each of
these lists in iObsTwoMinIndexGroup converts them into a more useful form; each
element of twoMinIndexIObsList is now a list of length two, with the first entry
being a pair of nearest-mean indices and the second being a list of observation indices
whose nearest two means correspond to the pair in the first entry. The output is a list with
an entry for each distinct ordered pair of nearest means. Each entry contains a pair of
nearest-mean indices, a list of observations whose nearest means are those two, and a list
giving the alpha value for each of those observations.

getAlphaByClustPair[dat_, idealTraceList_] :=
Module[ {iObsTwoMinIndex, iObsTwoMinIndexGroup, msDev,
nClustPair, nObs, twoMinIndex, twoMinIndexIObsList},
nObs = Length[dat];
msDev = getSquareDiff[dat, idealTraceList];
twoMinIndex = Map [twoMin, msDev];
iObsTwoMinIndex = pair [Range[nObs], twoMinIndex];
iObsTwoMinIndexGroup =
GatherBy[iObsTwoMinIndex, Last[#] &];
twoMinIndexIObsList =
Sort [Map [groupCommon, iObsTwoMinIndexGroup]];
nClustPair = Length[twoMinIndexIObsList];
Table|[
{twoMinIndexIObsList[ iClustPair, 1],
twoMinIndexIObsList[ iClustPair, 2],
getAlpha[dat[ twoMinIndexIObsList[ iClustPair, 2] 1,
idealTraceList[ twoMinIndexIObsList[[ iClustPair, 1] ]]

}
; {iClustPair, nClustPair}]

]

getAlpha takes a list of observations and a pair of ideal waveforms and finds the value
of alpha for each observation. Alpha for a waveform V; is the value «; that minimizes the

RMS deviations of (1 — ;) V,+a; V, from V;, where V, is the closest mean waveform

(the first entry in the second argument of getAlpha) and V, is the second closest.
V,=Vi) - (Va=Va

getAlpha finds the minimizing value @; = from equation (5) for each ob-

”‘_711_‘_711'”2
servation in traces. A value of 0 indicates perfect agreement with the first ideal trace,
and a value of 1 indicates perfect agreement with the second.
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getAlpha[traces_, idealTraceAB_] :=
Module[{alpha, diffIdealTrace, idealTraceA, nObs},
nObs = Length[traces];
diffIdealTrace = Apply[Subtract, idealTraceAB];
idealTraceA = First[idealTraceAB];
alpha = getDotToIdeal [
Table[idealTraceA - traces[[iObs], {iObs, nObs}],
diffIdealTrace]
1

The two-argument getNPhotonEff takes the formatted list of triples alphaBy-
ClustPair and a list of cluster photon numbers and determines the effective photon
number of each observation. alpha is a list of alpha values for the observations, iObs is
a list of observation indices corresponding to those alpha values, and clustPair is a list
of nearest-mean-index pairs for those observations. alpha and clustPair are in the
same order as iObs, but we want them in the same order as the waveforms from the
original dataset, so we reorder them with 1iObs. nPhotonPair takes the cluster indices
in clustPair and converts them to the actual photon numbers associated with those
clusters. The output is a list specifying the effective photon number for each observation,
derived from a linear interpolation between the closest (nPhotonPair[All, 1) and
second-closest (nPhotonPair[All, 2]) photon numbers.

getNPhotonEff [alphaByClustPair_, nPhotonList_] :=
Module[{alpha, clustPair, iiObs, iObs, nObs, nPhotonPair},
alpha = Flatten[alphaByClustPair[All, 3]];
iObs = Flatten[alphaByClustPair[All, 2]];
clustPair = Flatten|[
Table|[
Table[alphaByClustPair[iClustPair, 1],
{Length[alphaByClustPair[[iClustPair, 3]]}

1,
{iClustPair, Length[alphaByClustPair]}

1,

1

i
iiObs = Ordering[iObs];
alpha = alpha [ iiObs J;

clustPair = clustPair [ iiObs J;
nObs = Length[alpha];
nPhotonPair = Table[nPhotonList [ clustPair[[ jOobs ] ],
{jobs, nObs}];
(1 -alpha) * nPhotonPair[[All, 1] +
alpha * nPhotonPair[[All, 2]

37
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o 7.3. Background Rejection

If background rejection is enabled, get IObsKeep returns the indices of the observations
that should stay in the dataset, based on the preset parameters for rejection. peak-
PosList and peakValList are lists specifying the position and value of the
maximum in each waveform in dat. getIObsDrop returns the indices of the wave-
forms that should be removed because their peak positions and values exceed their
respective cutoff values, and getIObsDropA lists those whose endpoints are greater
than the value cutoff, indicating that the sensor was registering a background photon at the
beginning or end of the pulse. These two lists to remove are combined into iObsDrop.
Each element of datPeakLoc lists the positions of the local maxima of a waveform in
dat, datPeakLocVal pairs each of those positions with the waveform’s value there,
and datPeakLocValBig reduces datPeakLocVal to the maxima that exceed the
peak value cutoff. datPeakNum gives the number of maxima in each waveform, and
getIObsKeepA returns the indices that should stay in the dataset (i.e. those that are not
in 10bsDrop and that have fewer maxima than peakNumCut).

getIObsKeep[dat_, peakPosCut_, peakValCut_, peakNumCut_ ] :=
Module[ {datPeakLoc, iObsDropA, datPeakLocVal,
datPeakLocValBig, datPeakNum, iObsDrop, iObsKeep,
peakPosList, peakValList},
{peakPosList, peakValList} = getMaxAndPosList[dat];
(» peak position and value for each obs %)
iObsDrop = getIObsDrop [peakPosList, peakValList,
peakPosCut, peakValCut];
iObsDropA = getIObsDropA[dat, peakValCut];
iObsDrop = Union[iObsDrop, iObsDropA];
datPeakLoc = getDatPeakLoc[dat];
datPeakLocVal = getDatPeakLocVal [datPeakLoc, dat];
datPeakLocValBig = getDatPeakLocValBig[datPeakLocVal,
peakValCut];
datPeakNum =
Map [First, Map[Dimensions, datPeakLocValBig]];
iObsKeep = getIObsKeepA[datPeakNum, iObsDrop, peakNumCut]

]

posMax returns the position of the first occurrence of a list’s maximum.
posMax[z_] := First[First[Position[z, Max[z]]]]

getMaxAndPosList returns two lists, the first giving the position of each waveform’s
maximum and the second giving the maxima themselves.

getMaxAndPosList[dat_] :=
Module[ {peakPosList, peakVallList},
peakPosList = Map [posMax, dat];
peakValList = Map[Max, dat];
{peakPosList, peakValList}

]
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getIObsDrop returns the indices of the waveforms whose peaks have values and posi-
tions greater than the cutoffs.

getIObsDrop[peakPosList_, peakValList_, peakPosCut_,
peakValCut_] :=
Module[ {iObsDrop, nObs},
nObs = Length[peakPosList];
iObsDrop = Pick [Range [nObs],
MapThread[And, {Thread[peakValList >= peakValCut],
Thread [peakPosList >= peakPosCut] }]

]

getIObsDropA returns the indices of the waveforms whose endpoints have values
greater than the cutoff, indicating that a background photon may have registered with the
sensor at the beginning or end of the pulse.

getIObsDropA[dat_, peakValCut_] :=

Module[ {nObs},
nObs = Length[dat];
Pick [Range [nObs], MapThread[Or,

{Thread[dat[All, +1] >= peakValCut],
Thread[dat[[All, -1] >= peakValCut]}]

]

1

peakList finds the local maxima of a list by comparing each element to the ones before
and after it.

peakList[f_] :=
Pick[Range[Length[f]],
MapThread[And,
{Thread[f >= RotateRight[f]],
Thread[f > RotateLeft[f]]}]

]

getDatPeakLoc takes a list of waveforms and returns the locations of the maxima for
each.

getDatPeakLoc[dat_] := Map[peakList, dat]

getDatPeakLocVal pairs each of the locations returned by getDatPeakLoc with
the value of the corresponding waveform at that point.

getDatPeakLocVal [datPeakLoc_, dat_] :=

Table|[
pair [datPeakLoc[iObs], dat[ iObs, datPeakLoc[iObs] J],

{iObs, Length[dat]}]
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getDatPeakLocValBig finds the maxima that exceed the cutoff among those returned
by getDatPeakLocVal.

getDatPeakLocValBig[datPeakLocVal_, peakValCut_] :=
Table|[
Select[datPeakLocVal[[iObs], Last[#] >= peakValCut &],
{iobs, Length[dat]}]

getIObsKeepA takes the list of waveforms rejected because of misplaced peaks and
too-large endpoints and combines that with the information on each waveform’s number
of maxima to return a list of the indices of all of the waveforms that should be rejected
due to background radiation.

getIObsKeepA[datPeakNum_, iObsDrop_ , datPeakNumCut ] :=
Complement [
Pick [Range [Length[datPeakNum] ],
Thread[datPeakNum < datPeakNumCut]],
iObsDrop]

7.4. Cluster Organization

These two functions convert between i0bsOfClust and iClustOfObs, two different
ways of organizing clusters of waveforms. iO0bsOfClust is a list of lists. Each sublist is
associated with a cluster and has the indices (in dat) of the traces in that cluster.
iClustOfObs is a simple list, each of whose entries corresponds to a trace and states
what cluster that trace is in (0 if the trace is not in any cluster). getIClustO£fObs takes
iObsOfClust and returns iClustOfObs, and getIObsOfClust is its inverse
function.

getIClustOfObs creates a table with an entry for each observation and then iterates
through the clusters. In the table, it assigns the contents of each cluster to the appropriate
cluster number.

getIClustOfObs [iObsOfClust_] :=
Module[ {iClustOfObs, nClust, nObs},
nClust = Length[iObsOfClust];
nObs = Max[Flatten[iObsOfClust]];
iClustOfObs = Table[0, {nObs}];
Do[iClustOfObs[iObsOfClust[iClust]]] = iClust,
{iClust, nClust}];

iClustOfObs

]

getIObsOfClust creates a list of observation number/cluster number pairs and then
applies a GatherBy to group waveforms in the same clusters together. Mapping
groupCommon onto the list creates a list of lists, each of whose first element is a cluster
number and each of whose second element is a list of the indices of the waveforms in that
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cluster. We then sort the overall list by cluster number and extract the second entries in
the sublists to create a list of lists of observation indices.

getIObsOfClust[iClustOfObs_] :=
Module[ {iObsGroup},
iObsGroup =
GatherBy [
Transpose [ {Range[Length[iClustOfObs]], iClustOfObs}],
Last[#] &];
Sort [Map [groupCommon, iObsGroup]] [All, 2]
1

groupProbability takes the data, the hypothesized mean photon number for the
current round, and the effective-photon-number ordering of the data, and returns a list of
four things: the Poisson probability distribution (ordered pairs of photon numbers and proba-
bilities), a list of photon numbers for the clustering it creates, a list of lists of constituent
waveforms’ indices for the clusters (10bsOfClust), and a list containing the average
waveform in each cluster. groupProbability finds the photon number/value pairs for
the Poisson distribution with the given mean photon number and then calls groupProb to
organize the clusters.

groupProbability[dat_, nPhotonAvg_, nPhotonEff , nSigma_] :=
Module[ {prob},
prob = poisson[nPhotonAvg, nSigma];
Prepend [groupProb[dat, prob, nPhotonEff], prob]
]

groupProb processes the data into clusters based on the given effective photon number
list and the Poisson distribution. First we find the proper ordering of the effective photon
numbers by size (nPhotonEffSortIndex); this will be needed once we have deter-
mined the sizes of the clusters to be created. The probability distribution prob is broken
up into its component parts: nPhoton lists photon numbers, and probList lists their
corresponding probabilities. probCum is the cumulative distribution function of
probList, which we normalize to ensure that the final element is one. probIn-
dexStart[i] gives the index (in the sorted list of effective photon numbers,
nPhotonEffSortIndex) where cluster i should start; probIndexStop[i] gives
the index where it should stop. Both indices are inclusive, which is why prob-
IndexStart is offset by one from probIndexStop. (boundList ensures that the
starting and stopping indices stay within the confines of the number of observations avail-
able to group.) keep weeds out the zero-length bins, and we use it to reduce nPhoton,
probIndexStart, and probIndexStop down to only the nontrivial clusters. We
then form iObsOfClust by finding the range of sorted effective photon numbers that
each cluster should encompass and then using nPhotonEffSortIndex to find the ob-
servation numbers to which that range corresponds. clustMeanTrace is formed by
taking the waveforms in dat of each cluster in iObsOfClust and averaging them.
We then return nPhotonUse (the photon numbers of the nonempty -clusters),
iObsOfClust, and clustMeanTrace.
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groupProb[dat_, prob_, nPhotonEff ] :=
Module[ {nPhotonEffSortIndex, keep, nObs, nPhoton,
nPhotonUse, probCum, probIndex, probIndexStart,
probIndexStop, probList, probNPhotonUse,
probIndexStartUse, probIndexStopUse},
nPhotonEffSortIndex = Ordering [nPhotonEff];
{nPhoton, probList} = Transpose[prob];
nObs = Length[dat];
probCum = Prepend [Accumulate [probList], 0];
probCum /= Last[probCum];
probIndexStart = boundList[1 + Round[Most [nObs * probCum]],
1, nObs +1];
probIndexStop = boundList [Round [Rest [nObs * probCum] ],
0, nObs];
keep = Thread [probIndexStart <= probIndexStop];
(* no zero length bins %)
nPhotonUse = Pick [nPhoton, keep];
probIndexStartUse = Pick [probIndexStart, keep];
probIndexStopUse = Pick[probIndexStop, keep];
nClust = Length[probIndexStartUse];
iObsOfClust = Table[nPhotonEffSortIndex[
Range [probIndexStartUse[iClust],
probIndexStopUse[iClust] ]
I,
{iClust, nClust}];
clustMeanTrace = Table[
getMeanOfEachTime [dat[ iObsOfClust[iClust] J],
{iClust, nClust}];
{nPhotonUse, iObsOfClust, clustMeanTrace}

]

o 7.5. Probability and Log-Likelihood

This is the combinatorial term of the log-likelihood objective function. From equation
(15) above, In L = In M! - Y Inm,!, where the m; are the cluster sizes and M = > m,,.

comboLogLikelihood[freqList_] :=
LogGamma [Total [freqList] +1.] -
Total [LogGamma [freqList +1.]]

The Poisson log-likelihood term is In Lp = —uM + > m,[n In u — In(n!)].
poissonLogLikelihood[nList_, freqList_, mu_] :=

-mu * Total[freqList] + nList.freqList * Log[mu] -
freqList .LogGamma [nList + 1.]
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probComboLogLikelihood finds the Poisson/combinatorial log-likelihood term of
the objective function.

probComboLogLikelihood[nList_, freqList_, mu_] :=
poissonLogLikelihood [nList, freqList, mu] +
comboLogLikelihood[freqList]

poisson generates about nSigma standard deviations of a Poisson distribution on either
side of the given mean. The output is a list of ordered pairs of photon numbers and associ-
ated values of the Poisson probability mass function. The output is normalized so that it
sums to one.

poisson[mu_, nSigma_] := Module|[
{sigma, tab},
sigma = Sqrt[mu];
tab = Table[{n, (N[Exp[-mu]] *mu”n) /n!},
{n, Max[Floor[mu - sigma * nSigma], 0],
Ceiling[mu + sigma * nSigma]}];
Map[{First[#], Last[#] / Total[tab[[All, 2]]]} &, tab]

7.6. Deviation and Objective Function Measurement

getSgDevClustObs takes a list of observation traces and a list of cluster mean traces
and returns a table whose element in position [i, j] is the mean square deviation of
observation j from the mean trace of cluster i.

getSqDevClustObs[dat_, clustMeanTrace_] :=
Table|[
meanSquare [dat [i0Obs] - clustMeanTrace[[jClust]],
{jClust, Length[clustMeanTrace]}, {iObs, Length[dat]}
1

getSgDevClustClust returns a table whose element in position [i, j] is the aver-
age of the mean square deviations of the traces in cluster i from the mean trace of cluster j.

getSgDevClustClust[dat_, iObsOfClust_, clustMeanTrace_] :=
Map [Mean,
Table|
getSqDevClustObs [dat[ iObsOfClust[ iClust ] ],
clustMeanTrace],
{iClust, Length[iObsOfClust]}
]I
{2}
1

43
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getObjFtn takes a list of each cluster’s square deviation from its mean, the constant o
relating the K-means and probabilistic components of the objective function (which can
be a scalar or a list that takes on a different value for each cluster), and the log-likelihood
of the Poisson distribution (with the combinatorial term included). It returns the value of
the objective function.

getObjFtn[sqDevOfClust_, sigmaObjFtn_, logLikeProb ] :=
sqDevOfClust

Total [ ] - logLikeProb

2 * sigmaObjFtn2

getSgDevInClust takes a list of observations and a mean waveform and totals
up the mean square deviations of the observations to the mean. (It returns J, =

DieC, Nl— >y [Vi(t) - V,,(t)]z, where C,, is the list of observations, N; is the number of time

points, the V; are the observations, and V, is the mean.)

getSqgDevInClust[datInClust_, meanTraceInClust_] :=
Total|[
Table[meanSquare[datInClust[jObs] - meanTraceInClust],
{jobs, Length[datInClust]}]

]

getSgDevInClust returns a list that gives J,, the total mean square deviation of a clus-
ter to its mean, for each cluster n. The list returned becomes the first argument of
getObjFtn.

getSgDevOfClust[dat_, iObsOfClust_, clustMeanTrace_] :=
Table|[
getSgDevInClust[dat[ iObsOfClust[ iClust] 1,
clustMeanTrace[ iClust]],
{iClust, Length[clustMeanTrace]}]

7.7. Reading and Filtering Data

readTES reads in the data from a set of files specified in the options, returning dat, a
table whose rows give the values of particular waveforms at regular time intervals.
readTES assumes that several different datasets may share a directory and that each
dataset is split over some number of files, each of which consists of an equal number of
unsigned 16-bit integers concatenated together in string form. iNPhoton gives the
numeric label of the dataset to read (it is not equal to the mean photon number of the
dataset). iDataSet lists the indices of the particular files in the dataset that should be
read in. fileInfo is a list of three things: f£ileNamePart, a list of two strings that
combine with the dataset label and the file index to create the whole filename; nSample-
PerTrace, the number of time points in each waveform; and nTracePerFile, the
number of waveforms in each file of the dataset.
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For example, if iNPhoton were 7, iDataSet were {2, 6, 20}, and fileInfo
were {{" [directory]/TES ", ".daq "}, 200, 512}, then we would be look-
ing for the files TES7.dag02, TES7.daq06, and TES7.dag20 in [directory],
with 200 time points in each waveform and 512 waveforms in each of the three files.

For each file, we import the data as a list of samples, organize the samples into sublists
(waveforms) of length nSamplePerTrace, and assign the list of waveforms to the appro-
priate section of dat. When all of the files have been read, dat is full and properly

formatted.

readTES [iNPhoton_, iDataSet_, fileInfo_ ] :=
Module[ {fileNameA, nSamplePerTrace, nFile, fileNamePart,
nTracePerFile, nTrace, dat, serialNumber, fileName,
dim, datImport},
{fileNamePart, nSamplePerTrace, nTracePerFile} = fileInfo;
fileNameA = fileNamePart[1l] <> IntegerString[iNPhoton] <>
fileNamePart[2];
nFile = Length[iDataSet];
nTrace = nTracePerFile x nFile;
dat = ConstantArray[{}, nTrace];
Do [
serialNumber = IntegerString[iDataSet[iFile], 10, 2];
(*» padding to ensure 2 digits =*)
fileName = fileNameA <> serialNumber;
If[Not[FileExistsQ[fileName]],
Print["readTESdata: " <> fileName <> " does not exist"];
Abort[]
1;
datImport =
Partition[Import[fileName, "UnsignedIntegerl6"],
nSamplePerTrace];
dat[[(iFile - 1) * nTracePerFile +1 ;; iFile » nTracePerFile] =
datImport,
{iFile, nFile}
1;
dim = Dimensions[dat];
If[dim # {nTrace, nSamplePerTrace},
Print["readTESdata: unexpected values for dim", dim];
Print["readTESdata: expected ",
{nTrace, nSamplePerTrace}];
Abort[]
1i
dat
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We can also filter the data as we read it in. readTES applies a “short” filter to a list, one
that omits half of the frequency domain.

applyFilterShort[x_, filterShort_ ] :=
Module[{ft, ftShort, nFT},
ft = Fourier[x, FourierParameters -» {1, 1}];
nFT = Length[ft];
ftShort = Flatten[
{Take[ft, nFT/ 4],
0,
Take[ft, {(3/4) *nFT+2, nFT}]}
1:
Chop[InverseFourier [ftShort * filterShort,
FourierParameters -» {1, 1}] / 2]

]

This generates a Hanning filter of a given length.

N[Pi Range[0, n-1 2
hanningFilter[n_] :=Chop[Cos[ [P1] gel0, ] ] ]
n

readTESandFilter reads in the dataset, applying a filter to each file’s data before it is
stored. This halves the memory consumption of the reading process, since filtration
reduces the amount of information to store by half.

readTESandFilter [iNPhoton_, iDataSet_, nTime_, fileInfo_] :=
Module[ {datUse, dat, datFilt, nTimeUse, nSamplePerTrace,
nTracePerFile, nFile},
{nSamplePerTrace, nTracePerFile} = fileInfo[[{2, 3}];
nFile = Length[iDataSet];
datUse = ConstantArray[{}, nTracePerFile * nFile];
Do [
dat = readTES[iNPhoton, {iDataSet[iFile]}, fileInfo];
hanning = hanningFilter[Last [Dimensions[dat]] / 2];
datFilt = Map[applyFilterShort[#, hanning] &, dat];
nTimeUse = Min[nTime, Length[hanning]];
datUse[[(iFile - 1) * nTracePerFile+1 ;;
iFile * nTracePerFile] = datFilt[ Al1l, Range[nTimeUse] ]
14
{iFile, nFile}
1;
datUse -= Mean[datUse[All, 10]]
(» zeroes the signal at an early point,
before any photons have arrived =)

]
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o 7.8. Output Organization

outputCreateTabs creates several list structures (global variables) of the appropriate
dimensions to accommodate output from the specified number of runs of PIKA. The
output is organized into a TabView, with each run receiving a tab that contains a nested
view with graphical and textual output. outputNameList stores the names of the
labels in the subview (which are the same for all runs), and outputContentTable
stores the output content for each run and sublabel. (Content is stored as a list that later
becomes a Column.) Each run’s tab also has a space above its subview for other infor-
mation, which is stored in outputTopList. Finally, there is another tab on the level of
the runs with general textual (outputGeneralLog) and graphical (outputGener:-
alGraphics) information about the data read in.

outputCreateTabs[nRuns_] :=
outputContentTable = ConstantArray[{}, nRuns];
outputNameList = {};
outputTopList = ConstantArray[{}, nRuns];
outputGenerallog = {};
outputGeneralGraphics = {};

)

outputAdd adds some expression to the content list for a particular name and run, creat-
ing the name’s content list if it has no content already. A run number of 0 indicates output to
the general information tab, and a blank name indicates output to the top space of a run’s tab.

outputAdd[expr_, iRun_, name_] := Module[ {iName},
If[iRun =0,
If [name == "Log",
outputGenerallog = Append [outputGenerallog, expr];
14
outputGeneralGraphics =
Append [outputGeneralGraphics, expr];

]

4
nn

If[name == '
outputTopList[iRun] = Append [outputTopList[iRun], expr];

14
If [MemberQ[outputNameList, name],
iName = First[First[Position[outputNameList, name]]];
outputContentTable[[iRun, iName] =
Append [outputContentTable[[iRun, iName], expr];
14
outputNameList = Append [outputNameList, name];
outputContentTable =
Map[Append[{}], outputContentTable];
outputContentTable[[iRun, -1] = {expr};
]
1

]
] (# end Module =*)
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outputShowTabView is called at the end of PIKA, taking the name and content lists
and formatting them into a nested TabView.

outputShowTabView[] :=
Module[ {columnsNames, labelTableNames, viewsRuns,
columnsRuns, labelTableRuns, generalTabView,
labelTableRunsGeneral},
columnsNames = Map [Column, outputContentTable, {2}];
labelTableNames =
Table[outputNameList[[jName] » columnsNames[jRun, jName],
{jRun, Length[outputContentTable]},
{jName, Length[outputNameList]}];
viewsRuns =
Map [TabView[#, Appearance -» {"Limited", 5},
ImageSize -» Automatic] &, labelTableNames];
columnsRuns =
Map[Column, MapThread[Append,
{outputTopList, viewsRuns}]];
labelTableRuns =
Table["Run " <> ToString[jRun] » columnsRuns[jRun],
{jRun, Length[outputContentTable]}];
generalTabView =
TabView[{"Log" -» Column[outputGenerallog],
"Graphics" -» Column[outputGeneralGraphics],
"Options" -
TableForm|[
Table[{varNames[i]], If[varNames[i] == "tAnneal”,
tAnnealOrig, ToExpression[varNames[i]]]},
{i, Length[varNames]}]]},
Appearance - {"Limited", 15}, ImageSize - Automatic];
labelTableRunsGeneral =
Prepend[labelTableRuns, "General" - generalTabView];
TabView[labelTableRunsGeneral,
Appearance - {"Limited", 15}, ImageSize -» Automatic]

]

print takes any number of arguments (args), turns them into strings, concatenates
them, and prints the result to the log. printSp prints to an arbitrary section of output,
not just the log. iRun and name indicate the run number and tab name, respectively, to
which to print.

print[iRun_, args__] :=
outputAdd[OutputForm[StringJoin[Map[ToString, {args}]]],
iRun, "Log"]

printSp[iRun_, name_, args__] :=
outputAdd[OutputForm[StringJoin[Map[ToString, {args}]]],
iRun, name]
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o 7.9. Form Input and Runner

pika creates a form with a field for each constant and option that needs to be set for
PIKA to run. It then uses runFromAssociation to assign the proper values to the
proper variables and run PIKA.

pika[] := Module[{form},
form = FormObject[{
Style["General", Bold],
makeField["iNPhoton", "Integer",

"Index of the dataset to read in", 16],
makeField["iDataSet", ToExpression,

"Parts of dataset to use", {0, 1, 2, 3},

"Help" -

"Normal expressions (e.g., Range[0,3]) will
work here"],

makeField["nTime", "Integer",

"Number of time points after filtration", 512],
makeField["mSample", "Integer",

"Number of traces to randomly sample", 100,

"Help" -

"Actually a maximum number to sample, only
reached if the population is large
enough"],

makeField["nDatUse", "Integer",

"Number of traces to use (if 0, use all)", 0],
Style["\nBackground Radiation Rejection", Bold],
makeField["backgroundReject", "Boolean",

"Reject background traces", False],
makeField["peakValCut", "Integer", "Voltage cutoff",

2751,
makeField["peakPosCut", "Integer", "Time cutoff", 17],
makeField["peakNumCut", "Integer",

"Cutoff for number of peaks", 2],
Style["\nIteration and Simulated Annealing", Bold],
makeField["nCool", "Integer",

"Total number of optimization rounds", 60,

"Help" -»

"Includes both greedy and simulated annealing
rounds"],

makeField["nGreedy", "Integer",

"Number of greedy rounds", 60,

"Help" -»

"Greedy rounds come before simulated annealing;
simulated annealing will not run
if nCool-=:nGreedy"],

makeField["coolConst", "Number",

"Simulated annealing cooling constant", 0.99],

makeField["tAnneal", "Number",
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"Simulated annealing starting temperature", 0.02],
Style["\nProbability", Bold],
makeField["probDistName", "String",

"Name of the probability distribution", "Poisson"],
makeField["nSigma", "Integer",

"Extent of probability distribution", 10,

"Help" -»

"Number of standard deviations away from the
mean to generate"],
Style["\nOutput", Bold],
makeField["binFract", "Number",

"Histogram bin width (fraction of a photon)", 0.05],
makeField["outputImageSize", "Integer",

"Default image size for plots", 400],
Style["\nInput", Bold],
makeField["nPhotonAvgList", ToExpression,

"List of mean photon numbers to test", {1.49608}],
"The data filenames should be of the form

data-1.daqg0l, with the \"data-\" and
\".daqg\" being an arbitrary prefix and
file extension, the first number being
iNPhoton, and the second number being
a two-digit form of iDataSet.",
makeField["partialFilePath", "String",
"Path to data files", "[directory] \\TES_E0019-",
"Help" -
"Should include the first (generic) part of
the filenames of the data files,
without iNPhoton or iDataSet
specifications"],
makeField["fileExt", "String",

"File extension of data files", ".daq",

"Help" -

"Should not include iDataSet specification"],
makeField["nSamplePerTrace", "Integer",

"Number of samples per trace", 8192],
makeField["nTracePerFile", "Integer",

"Number of traces per file", 512],
makeField["useInputFile", "Boolean",

"Use separate input file", False],
makeField["pikaInput", "String", "Separate input file",

"", "Control" -

(FileNameSetter[#, "Open",
{"Mathematica packages" -» {"*.m"}}] &),

"Required" - False]

1

FormFunction[form, runFromAssociation][]
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makeField creates a rule that, when used in a FormObject, generates a field to set
the variable with name name and type type to the entered value, with descriptive text
labelPart and default value defaultContents. args takes optional extra argu-
ments that specify additional options for the field.

makeField[name_ , type_ , labelPart_, defaultContents_,
args___] := name - <|
"Interpreter"” -» type,
"Label" -» Overlay[{name, "\t\t | " <>1labelPart}],
"Input" » defaultContents,
args
| >

runFromAssociation takes an association between variable names (strings) and the
values that should be assigned to them and assigns the proper value to the symbolic variable
associated with each name. It then runs PIKA (using the main function from Section 3) with
those global variables set.

runFromAssociation[formAssoc_] := (

varNames = Keys [formAssoc];

varValues = Values[formAssoc];

Do [
Clear [Evaluate[varNames[iVar]]];
Evaluate[ToExpression[varNames[iVar]]] =

varValues[ivar],

{ivar, Length[varNames]}

1i

runPIKA[]

)
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