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Manipulating Subgroups of
the Modular Group

Daniel Schultz

We describe efficient algorithms for working with subgroups of
PSL,(Z). Operations discussed include join and meet, congruence
testing, congruence closure, subgroup testing, cusp enumeration,
supergroup lattice, generators and coset enumeration, and
constructing a group from a list of generators.

Introduction

The set of linear fractional transformations of the form

az+b
7 wherea, b,c,d € R, (D

f(@) =

cz+
known as Mobius transformations, has several interesting properties. First, the composition
of functions of this form is still of the same form, as

ap z+by

a czz+d2+bl (@ay+bicy)z+a br+byd;

c M_Fd (d2C1+C2d1)Z+b2C1+d1d2
162Z+d2 1

Since the coefficients appearing in the composition are exactly those of the product of the

. a, b a by . . . .
two matrices o d and o d ) it is most convenient to represent transformations of
1 1 2 2

the form (1) by the matrix (601 Z) A matrix and any nonzero scalar multiple of itself rep-

resent the same Mobius transformation, so we can consider only matrices with determinant
1 without loss of generality. Since the product of two matrices with determinant 1 also has
determinant 1, such a set of matrices (or Mobius transformations) forms a group, where the
group operation is matrix multiplication (or composition). If we further restrict the coeffi-
cients a, b, ¢, and d in (1) to be integers, the resulting group is known as SL,(Z). Now, if
. (a bY. . a b). .

the matrix (c d) is in SL,(Z), then —( c d) is also in SL,(Z) and represents the same
Mobius transformation. For this reason, we consider PSL,(Z), known as the modular
group, which is SL,(Z) with each matrix identified with its negative. That is,
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a,b,c,d e Z, ad—bc=1}.

PSLﬂZ):{i(? Z)

It is possible to show that every transformation in the modular group can be obtained as a
combination of the two fundamental transformations

1
Sz)=—-—andT(z) = z+1,
Z

with corresponding matrices S = i((l) _01 ) and T = J_r( (1) } ) Another way of stating
this fact is that PSL,(Z) is generated by S and 7.

For example, the matrix ( ; (1) ) may be obtained as the product TSTTST.
With[{s = {{0, -1}, {1, O}}, T = {{1, 1}, {0, 1}}},
MatrixForm[T.S.T.T.S.T]]

57

The modular group is important because of the existence of modular functions, which are
functions that have simple transformation laws under the action of the modular group. A
prototypical modular function is the modular discriminant function, which may be defined
for Im z > 0 by
A7) = e2miz l_l(l _ e2ﬂinz)24.
n=1

Since this product has zeros at every rational number, the real axis becomes a natural
boundary of the domain H of A(z). Using the methods of analysis, it is possible to show that

b
A(a“ )= (cz+d)2AR) ®)

cz+d

. (a bY. . . .
for every matrix ¢ g)m the modular group. Two observations are in order concerning

the transformation formula (2). First, as
(az+b) (ad—bc)Im(z) Im(z)
Im| = =
cz+d

lcz+d]? lez+d?

we see that the transformed value of z still has a positive imaginary part, so it still lies in
the domain of A(z). Second, the values of A(z) where z ranges over the whole upper half-
plane H are related to the values of A (z) where z is restricted to the region shaded blue here.
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This region is known as the fundamental domain for PSL,(Z). This is because the transfor-
mations S and 7 can be used to bring any point in H into this region, and no two points in-
side it differ by a Mobius transformation in PSL;(Z). The transformation 7 pairs the left
edge with the right edge, while the transformation S pairs the arc from i to 27/ with the
arc from i to €273,

B Subgroups of the Modular Group

In the theory of modular functions one often wants to know what transformations leave a
given function unchanged. For example,

A(52)
A(z)

will not be unchanged by all the transformations in PSL,(Z), since the numerator A(5 z)
does not have a transformation formula under all elements of PSL,(Z). However, if

flz) =

(? Z ) is in PSL(Z) and c is divisible by 5, then

A(5 az+b) i A((ZA/S%) (/5 (B+d)? MG AGD)

cz+d _ _
AlfE) a(e (cz+d)?AQR) AG)

Thus, we are naturally led to the subgroup of PSL,(Z) given by

o2 )

The package ModularSubgroups.m addresses the computational problem of working with
such subgroups of the modular group. However, only certain subgroups of PSL,(Z) can
be identified by congruence conditions on their entries, as is the case with I'¢(5). Such sub-
groups are called congruence subgroups and are discussed more later. For this reason, we
need a better way to represent subgroups. The key to this lies in the matrices S and
O =TS. Since S and T generate PSL,(Z), S and O are also generators. However, it can be

a,b,c,d €eZ,ad-bc=1, CEO(mOdS)}.
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shown that PSL,(Z) is the free product of {/, S} and {/, O, O O}; that is, every matrix in
PSL,(Z) can be written uniquely as a word in S and O as long as no two consecutive S’s
appear and no three consecutive O’s appear in the word. This last condition is necessary

because of the relations $2 = O3 = +1, where I = ( (1) (1)) (the identity matrix) should be

thought of as the empty word.

A subgroup I' of the modular group PSL,(Z) is said to have finite index (in PSL,(2)) if
PSL,(Z) can be written as a disjoint union

PSL,(Z) =g TUgTU---Ug.T

of left cosets g; I', where the left coset g I' is defined as g; I' = {g; 1| h € I'}. In this way,
the group PSL,(Z) is partitioned into several “copies” of I', and the number of copies of I'
that fit inside PSL,(Z) is called the index u. If T is a finite index subgroup of PSL,(Z)
with index u and left cosets g; I', ..., g, I' (with a distinguished coset g; I' = I'), the matri-
ces S and O permute the left cosets when acting by multiplication on the left; that is, we
have equations

Sgil =gspl
0gil'=goyT
where S and O should be viewed as some permutations of the set {1,2, ..., u}, that is,

elements of the symmetric group Sym,,.

This identification of the matrices S and O as permutations gives rise to the permutation rep-
resentation of I', which we use to represent any subgroup of PSL,(Z) with finite index.
Specifically, a subgroup I is identified by: (1) its index yu; (2) the permutation S € Sym,,;
and (3) the permutation O € Sym,,. The permutations S and O are not arbitrary. The fol-
lowing two conditions are necessary and sufficient for a given S, O € Sym,, to appear as the
representation of some group I'.

(1)$?=03=id in Sym,,, where id is the identity in Sym,,. This condition arises from the
fact that as matrices, we have S? = O3 = +1.

(2) S and O generate a transitive subgroup of Sym,,, or equivalently, the Schreier cosets
graph discussed later is connected. This condition arises because the matrix
g g7! € PSLy(Z) sends the coset g; I' to the coset g; I, hence the action of PSL,(Z) on the
left cosets “connects” all of the cosets together.

If these two conditions are satisfied, the group I' may be identified as
I' = {wordswin S and O |w(1) = 1}, where the condition w (1) = 1 needs to be evaluated

after thinking of w as a permutation by converting S and O into their corresponding
permutations.
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Since our representation of I' by two permutations S and O involves an arbitrary ordering
of the nontrivial cosets g, I',..., g, I, two different representations (u,S;, O;) and
(4, S», O,) represent the same group precisely when there is a relabeling of the indices
2, ..., in the permutations of Sym, that simultaneously converts §; into S, and Oy into

0,. For, example the two representations

Nh=4,5={1-2,2-1,3-3,4-4,0={1-1,2-3,3-54,4-2})
In=4,S5={1-2,2-1,3-3,4-4,0={1-1,2-4,4-53,3->12})

represent the same group, as the relabeling {2 — 2,3 — 4,4 — 3} converts '} to I'5.

Another important combinatorial object attached to a subgroup I' of finite index is the
Farey symbol for I', as described in [1]. This symbol directly encodes a fundamental
domain for I' as well as the edge-pairing matrices for this fundamental domain. Equiva-
lently, it encodes independent generators for I". However, since the equivalence of two
representations of I' by two different Farey symbols is not as straightforward to detect, the
permutation representation as described was chosen for the underlying representation for I'.

B Congruence Subgroups

A subgroup I' of PSL,(Z) is called a congruence subgroup if it contains the principal con-
gruence subgroup of level N,

I'(N) = {ME PSLZ(Z)‘ME i((l) ?)(modN)},

for some natural number N. If this is the case, we can describe I' as those matrices whose
entries satisfy certain congruences modulo N. For example, two families of congruence
subgroups are ['o(N) and I['{(V), which are defined as

+

T (V) = {M e PSLZ(Z)‘M = _((1) T)(modN)},

+

To(N) = {M = PSLZ(Z)‘M = _(S : )(modN)}.

Recently in [2], Hsu gave a simple test for determining if a given subgroup of PSL,(Z) is a
congruence subgroup, based on a presentation for PSL,(Z /N Z). This algorithm is imple-
mented here and generalized to compute the congruence closure of a subgroup I', which is
the smallest congruence subgroup that contains I.
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B Schreier Cosets Graphs

The Schreier cosets graph of I is of fundamental importance to several of the algorithms
in the package. Given a subgroup I' with index p and permutations S and O, the Schreier
coset graph is the connected graph with u vertices 1, ..., u and 2 u labeled edges

1S S, et S S, 15 o), ....u S o).

Such a graph has the property of being folded. A graph is said to be folded if every vertex
has at most one edge of a given orientation and label incident with it. If there is a vertex
with two or more edges of the same label and orientation, then the graph is said to be
unfolded. One property of the Schreier cosets graph is that the subgroup I' of the modular
group consists of all words w in S and O such that, when starting at vertex 1, the path that
follows word w must terminate at vertex 1. For example, take the subgroup I'" with the fol-
lowing Schreier cosets graph.

GraphPlot[{{1 -2, "0"}, {23, "0"}, {31, "0"},

{1-1, "s"}, {22, "s"}, {33, "s"}},
DirectedEdges -» True, VertexLabeling - True]

gD
\
®

The word w = O S O O, which corresponds to the matrix

-1 2
0S00 = i(—l 1),
is in I" as the path traced out by w is given by 1 L2835 35 (w must be read
right to left since we are dealing with left cosets). Since the graph is folded, the process of
tracing a path given by a word in S and O is deterministic. The group I' corresponding to
this Schreier cosets graph turns out to be a congruence subgroup, and its defining congru-
ences are given in Example 1.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.
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B Examples

All of these examples were tested in Mathematica 10.

Set the directory to be able to load the package and then evaluate the Needs.
Needs [ "ModularSubgroups™ "]

Subgroups of the modular group are maintained in the container mGroup (., S, O],
and the names of the functions that operate on these groups start with a lower case “m” in
order to avoid possible conflicts with built-in symbols. The matrices mS, mO, mT, mR of
the package are set as follows.

MatrixForm /@ {mS, mO, mT, mR}
{0 (1o (o) (12}

o Example 1: Describing Congruence Subgroups

Here is the group I' from the section on Schreier cosets graphs. The permutations are
listed so that S(i) = S[i] and O(@i)) = O[], where S and O are the last two arguments of the
mGroup container.

T =mGroup([3, {1, 2, 3}, {2, 3, 1}];

This group turns out to be a congruence subgroup of level 3, and it consists of those matri-
ces that are congruent modulo 3 to one of the following matrices.

{mLevel[I'], MatrixForm /@mCongruenceImage[I']}

Bl o) (25) (o1l

ol 22l (G 2] (T 1) (2 )]
So, for example, the group I" has the description

bl

ad-bc=1, ab+cd50(mod3)}.
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o Example 2: Congruence Subgroups from Generating Sets

The group generated by 7" and § is of finite index only for n = +1, +2. Similarly, the
group generated by 7" and O is of finite index only forn = +1, £2, +3.

{{"n", "¢CTTn, s ), "C(Tn, O )"}}~Join~Table[{n,
mFromGenerators [ {MatrixPower [mT, n], mS}],
mFromGenerators [ {MatrixPower [mT, n], mO}]

}, {n, -6, 6}] // TableForm

n ( T"n , S ) ( T"n , O )

-6 $InfiniteIndex SInfiniteIndex
-5 $InfiniteIndex $InfiniteIndex
-4 $InfiniteIndex $InfiniteIndex

-3 $InfiniteIndex

-2 mGroup[3, {11 3! 2}! {21 3! 1}]
-1 mGroup[1l, {1}, {1}]
$InfiniteIndex

mGroup([1l, {1}, {1}]

mGroup (3, {1, 3, 2}, {2, 3, 1}]

mGroup [4, {2, 1, 4, 3},
mGroup[2, {2, 1}, {1, 2}
mGroup[1l, {1}, {1}]
$InfiniteIndex
mGroup[1l, {1}, {1}]
mGroup([2, {2, 1}, {1, 2}

$InfiniteIndex mGroup[4, {2, 1, 4, 3},
$InfiniteIndex $InfiniteIndex
$InfiniteIndex $InfiniteIndex
$InfiniteIndex SInfiniteIndex

o Example 3: Subgroups of Index 7

There are two conjugacy classes of congruence subgroups of index 7, which we define
here by their generators.

In the printed form of the group I':
1. u is the index of I in PSL,(Z).
. g is the genus of the compact surface (H |J Q) /T.

2
3. €., is the number of cusps of I', namely, the size of Q. /T
4. €, is the number of fixed points of order 2 of I'inH /T.

5

. €3 is the number of fixed points of order 3 of I'inH /T.
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These numbers are related by 12g =12+ u -3¢ —4 €3 — 6 €.

gl = mFromGenerators[{mS,
MatrixPower [mT, 4] .mS.MatrixPower [mT, -4],
MatrixPower [mT, 5] .mS.MatrixPower [mT, -5],
MatrixPower [mT, 2] .mS.MatrixPower [mT, -1]}];
g2 = mFromGenerators|[{mS,

MatrixPower [mT, 2] .mS.MatrixPower [mT, -2],
MatrixPower [mT, 3] .mS.MatrixPower [mT, -3],
MatrixPower [mT, 6] .mS.MatrixPower [mT, -5]}];

{Most /@mPrint[gl], Most /@mPrint[g2]}

us 7 g: 0 €w: 1 €2: 3 €3: 1
{S: (1) (2.5) (3.4) (6) (7)

O0: (1.2.3)(4)(5.6.7) !
T: (1.2.6.7.5.3.4)

u: 7 g: 0 €ew: 1 €2: 3 €3: 1
S: (1) (2.7)(3.4) (5) (6) }
O0: (1.2.3)(4.5.6) (7)

T: (1.2.7.3.5.6.4)

They are indeed not conjugate.
mConjugateQ[gl, g2]

False

The intersection of these two groups turns out to have index 28, while the group generated

by these two groups turns out to be the full modular group.

mMeet [gl, g2]

mGroup[28, {1, 3, 2, 4, 17, 20, 18, 19, 16, 13, 14, 15, 10,
11, 12, 9,5, 7, 8, 6, 21, 24, 23, 22, 28, 27, 26, 25},
(6,5,8,7,9, 10, 11, 12, 2, 1, 4, 3, 14, 15, 13,
16, 22, 21, 23, 24, 25, 26, 27, 28, 18, 17, 19, 20}]

mJoin[gl, g2]

mGroup[1l, {1}, {1}]
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A fundamental domain may be obtained with mDomain.

Graphics [mDomain[mMeet [gl, g2]], Axes - True]

150

b ;4 between two rational numbers with the same integer label n are paired together,

while edges with the label @ or O are paired with themselves.

The edge pairings for this fundamental domain are given in the Farey symbol. Edges

mMeet [gl, g2] // mFareySymbol // mPrint

[ee]

01223301023112010111200
The matrices returned by mGenerators are the matrices responsible for pairing the
edges in this way.

Map [MatrixForm, mMeet[gl, g2] // mGenerators]

(220 127300 (3 %) (0 55),

2 -7 -7 18
3 el (31 05 ) [ 30
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o Example 4: Congruence Subgroups

The congruence closure of a subgroup I' is the smallest congruence subgroup that contains
I'. We first start with the congruence subgroup of index 7 from the previous example and
a non-congruence subgroup of index 9.

g = mFromGenerators [ {mS,
MatrixPower [mT, 4] .mS.MatrixPower [mT, -4],
MatrixPower [mT, 5] .mS.MatrixPower [mT, -5],
MatrixPower [mT, 2] .mS.MatrixPower [mT, -1]}]

mGroup[7l {ll 5’ 4’ 3’ 2’ 6’ 7}’ {2’ 3’ ll 4’ 6’ 7’ 5}}

h = mGroupsOfIndex[9] [5]

mGroup (9, {1, 9, 4, 3,8, 7, 6, 5, 2},
{2I 3’ 1’ 5’ 6’ 4’ 8’ 9’ 7}]

mCongruenceQ[h]

False

Its congruence closure is the theta subgroup.

hc = mCongruenceClosure[h]
mGroup (3, {1, 3, 2}, {2, 3, 1}]

One can also compute the congruence closure of a group by joining it with the principal
congruence subgroup of the same level, but the package uses a much more efficient
method. Membership in the groups I'(V), I'1(&V), and I'y(V) can be tested with mI' [N],
mI'l [N], and mI'0 [N], respectively. The function mFromMember constructs the inter-
nal representation of the group given the group’s membership function.

mSameQ[hc, mJoin[h, mFromMember [mI'[mLevel[h]]]]]

True

We also have the following property, since g itself is congruence.
mSameQ [mCongruenceClosure [mMeet[h, g]], mMeet[hc, g]]

True
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Next, we compute the congruence closure for the group given in Example 1.1 of [2]. It

turns out to be the full modular group.
g = mGroup[1l0, {2, 1, 4, 3, 6, 5, 8, 7, 10, 9},
4

3,6 '
{3,7,5,2,1,8, 4,9, 6, 10}];
mCongruenceClosure[g]

mGroup[1l, {1}, {1}]

o Example 5: Generators for I'(5)

First get the principal congruence subgroup of level 5, which has index 60.

g = mFromMember [mI'[5]];
mPrint [g][1, -1]
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Generators may be computed quickly from this permutation representation, and we can
also efficiently reconstruct the group from a list of generators.

Map [MatrixForm, gens = mGenerators[g]]

(o ) (s ) (5 750

(76 75>,(11 720),(714 725>,(9 75),

5 4 5 -9 -5 -9 20 -11
(25 xale (035 390 (750 “as)r (25 50

mSameQ[g, mFromGenerators[gens] ]

True

o Example 6: Supergroup Lattice

We will graph the supergroup lattice for the principal congruence subgroup of level 4. The
mSupergroups function is used to make the supergroup lattice. The index of each group
(in PSL,(2)) is displayed in the lattice, and the actual group is displayed as a tooltip. Every
subgroup of PSL,(Z) whose matrices can be described by congruence conditions modulo 4
appears somewhere on this lattice.

g = mFromMember [mI'[4]];
sg = mSupergroups [g] ;
m = DirectedEdge @@@ Position[Outer [mLessQ, sg, sg], True];
edges = Cases[m, i_ — j_ /; Not[MatchQ[m,
{___/k_>o3d, __,i—=k_, ___}111;
Graph [Table[
Tooltip[Labeled[i, Placed[sg[[i, 1], Center]], sg[i]],
{i, 1, Length[sg]}],
edges, VertexSize » 0.75, VertexStyle -» White]
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o Example 7: Cusps for a Subgroup

If ' is a subgroup of the modular group, then every matrix in I" acts on Q. (the set of
rational numbers with oo included) and partitions Q. into equivalence classes. We say
that two rational numbers x; and x, are equivalent under I if there is an element of I" that
sends x; to x;. The set of equivalence classes of Q. under the action of I" is known as the
cusps for I', and there are finitely many cusps if I" has finite index in the modular group.
The width of a cusp x with respect to I' is defined to be the index of the I' stabilizer of x
inside the PSL,(Z) stabilizer of x.

Let g and h be the subgroups

~{=( )

7\ e g

a b

r={+(¢ 4)

gmem[{{a_, b_}, {c_, d_}}] :=And[EvenQ[ab], EvenQ[cd]];
hmem([{{a_, b_}, {c_, d_}}] :=

And [Mod[c, 5] ==0, Mod[d, 5] ==1, EvenQ[b+c]];

g = mFromMember [gmem] ;
h = mFromMember [hmem] ;

ab=0(mod?2), cd=0(mod 2)},

c=0(mod5), d=1(mod)5), b+CEO(mOd2)}.

Here is a list of inequivalent cusps of h and their widths.

mCusps [h]

{{oo, 2}, {0, 10}, {% 10}, {g 2}}

Here we reduce a list of random cusps to one of these four. The frequency of each cusp in
the list should be proportional to its width.

mCuspReduce[h, RandomInteger[ {1, 20}, 20] /
RandomInteger[ {1, 20}, 20]]

1 1 2
{oo, o, 0, 0, EI -0, =y = = =y = 0, 0, —, 0, gr 0, 0, 0}
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Manipulating Subgroups of the Modular Group 15

The intersection of g and h may be computed.

mPrint[
gh = mFromMember [ (mMemberQ[g, #] && mMemberQ[h, #]) &]] //
First // Last

Of course, the implementation in the package is more efficient.
mSameQ[gh, mMeet[g, h]]

True

o Example 8: Non-congruence Subgroups from Caranica

If a, denotes the total number of subgroups of the modular group of index n, then with
Xf(x)/f(x)=Dapx" =x+x>+4x3+8x*+ ... sothat f(x) = 1 +x+5x%/2+... it is pos-
sible to show that
(3 =1) )+ (427 +2x7 =420 = 2x* =453 + 1) f(x) +
(228 +2x0 -4 +x* -4 —4x2 —x - 1) f(x) = 0,
and that

1 1 1
an ~ (12 71@1/2)_1/2 exp(g nlog(n) — . n+n'24+n3 4+ 5 log(n)).
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Since the radius of convergence of the power series Y a, x" is zero, this differential equa-
tion must be treated formally as a recurrence relation for the coefficients of f(x). See Sec-
tion 1 of [3] for details.

Caranica [4, Table 3.1] has computed the conjugacy classes of non-congruence subgroups
of index 9. However, this table incorrectly claims that there are 11 conjugacy classes. In
fact, there are 108 non-congruence subgroups of index 9 and 12 conjugacy classes. Vidal
[5] has given a formula for the generating function of the total number of conjugacy
classes of subgroups (congruence or not) of a given index.

Length[
cclass = Select [mConjugacyClassesOfIndex[9],
Not [mCongruenceQ[#]] &]]

12

Fortunately, the Farey symbols for the claimed groups are provided by Caranica, so we
can recover the source of the error. First we verify that there are indeed 11 conjugacy
classes of non-congruence subgroups in the table.

fl = mFromFarey /@ {
mFarey[», -2, 0, -3,1/2, -3, 1, -3, ],
mFarey[w, -2, 0, -3, 1, -3, 2, -3, =],
mFarey[w, -2, 0, 1,1/2,2,2/3,1,1, 2, o],
mFarey[o», -2, 0, 1,1,1, 2, -2, 3, -2, o],
mFarey[w, 1, 0, -2, 1/3, -2,1/2,1,1, -2, o],
mFarey[o», -2, 0, 1,1,1, 2, 2, 3, 2, ],
mFarey[w, 1, 0, 2,1/3,2,1/2,1,1, -2, ©],
mFarey[w, -2, 0, -2, 1, -2, 2,1, 3, 1, ],
mFarey[o, 1, 0, 1,1, -2, 2, 2, 3, 2, o],
mFarey[w, 1, 0,1, 1, -2, 2, -2, 3, -2, o],
mFarey[w, -2, 0, 1,1/2,1,2/3,2,1, 2, @w]};

{

Length[DeleteDuplicates[fl, mConjugateQ]],

Length[Select[fl, Not[mCongruenceQ[H#]] &]]

}

(11, 11}

This is the group that is missing from the table.

Fold[Function[{c, f}, Select[c, Not[mConjugateQ[#l, f]] &]],
cclass, fl1]

{mGroup (9, {4, 7, 3,1, 9, 6, 2, 8, 5},
{2,3,1,5,6,4,8,9,7}]}
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o Example 9: Fundamental Domains and Univalent Functions

The Mathematica built-in function KleinInvariantJ is invariant under PSL,(Z) and
takes each complex value exactly once inside a fundamental domain for PSL,(Z). A plot
of this function and an outline of its fundamental domain are shown.

The upper half-plane, which is parameterized by z, has been mapped into the unit disk,
which is parameterized by w = x + i y, by the relation w = i (z — i) / (z + i).

The hue of the color plotted at a point in the w disk is the argument of the complex num-

ber f(z), where z is the point in the upper half-plane corresponding to w.

f[z_] := 1728 KleinInvariantJd[z];
im = ColorConvert[
Image[Table[If[x"2+y"2 >0.97, {0, 0, 1},
1 1 l-ix+y
{3roprelnle[ 5 e n]
2 2 -i+x+1y
{y, 1, -1, -1/200}, {x, -1, 1, 1/200}],

ColorSpace -» "HSB" |, "RGB" |;

ImageMultiply[im, Image[Graphics|[{
Line[{{0, -1}, {0, 1}}],
Circle[{2, -1}, 2, {Snxn/6, ©}],
Circle[{2, 1}, 2, {x, 77/ 6}]},

PlotRange -» {{-1, 1}, {-1, 1}}1,
ImageSize » ImageDimensions[im]]]
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Similarly, the built-in function DedekindEta can be used to construct such a function f(z)
for I'y(2), which is a congruence subgroup of PSL,(Z) of index 3. A plot of this function and
a fundamental domain for I'g(2) are shown next.

DedekindEta[z]?*
14
DedekindEta[2 z]2%*

fl[z_] :=
im = ColorConvert[
Image[Table[If[x"2+y"2 >0.99, {0, 0, 1},
11 1-1
{;+ S Arg N[f[——i+1xx++iyy]”’ 1, 1}],
{y, 1, -1, -1/200}, {x, -1, 1, 1/200}],

ColorSpace » "HSB" |, "RGB" |;

ImageMultiply[im, Image[Graphics]{
Line[{{O0, -1}, {0, 1}}],
Circle[{1, 1}, 1, {x, 37/ 2}],
CirCIe[{ll _1}1 1! {71'/2, ﬂ}]}l

PlotRange -» {{-1, 1}, {-1, 1}}],
ImageSize » ImageDimensions[im]]]
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Here is a similar construction for I'(2). This plots the fundamental domain for I'(2) in the z
half-plane.

Graphics [mDomain [mFromMember [mI'[2]]], Axes - True]
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In the w disk, such a region becomes a diamond shape. A univalent function on H/I'(2)
must be invariant under the generators of I'(2); that is, f(z) = f(z+2) = f( —1) and such
a function is provided by the built-in function ModularLambda.

f[z_] := 16 /ModularLambda[z] - 8;

im = ColorConvert[

Image[Table[If[x"2+y"2 >0.99, {0, 0, 1},

et LU Eweye | IR I

-i+x+1y

{y, 1, -1, -1/200}, {x, -1, 1, 1/200}],

ColorSpace -» "HSB" [, "RGB"

ImageMultiply[im, Image[Graphics|[{
Ccircle[{-1, 1}, 1, {3n/2, 27}],
circle[{-1, -1}, 1, {0, n/2}]1,
Circle[{1, 1}, 1, {m, 37/ 2}],
Circle[{1, -1}, 1, {x/2, 7}]},

PlotRange » {{-1, 1}, {-1, 1}}],
ImageSize » ImageDimensions[im]]]

In this case, the zero of f(z) occurs on this diamond where the colors coalesce. In the previous
example, the zeros of f(z) are not visible in this way because they occur on the boundary of
the w disk.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.



Manipulating Subgroups of the Modular Group 21

B A Description of the Algorithms

Many operations on subgroups of the modular group depend on operations on graphs. Sev-
eral of the algorithms used here encounter unfolded graphs, and we use the efficient fold-
ing algorithm described in [6] to implement Stallings’s folding process, which converts
any graph to a folded graph.

As described in the introduction, it is straightforward to convert a group I' described by
the permutations S and O to the Schreier cosets graph. In order to reverse this procedure,
it is necessary that each edge labeled O either have the same initial and terminal vertex or
be part of a three-cycle. Similarly, each edge labeled S needs to occur in either a loop or a
two-cycle. All of the graphs used here have this property. However, when building a
group from a list of a generators, we may encounter a folded graph in which some vertex
does not have valence four. Such graphs do not correspond to subgroups of I" of finite in-
dex. Let us illustrate the folding procedure on the following graph.

S}
N

Such a graph represents the subgroup I' that is generated by the two words S and O SO S,
since, except for the trivial cycles induced by the relations S? = O3 = 1, these are the only
cycles in the graph. Whenever there are two edges v «— u and v «— w incident at the same
vertex with the same orientation and label, causing the graph to be unfolded, the edge
v «— w may be deleted and the vertex w may be merged with u without changing the sub-
group represented by the graph. The progression of the graph folding procedure shown is
left to right, top to bottom, with the edges to be deleted shown between graphs.
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7

4 2
9 bl
3
Sy 1
3 2
S
2
9
M

The subgroup of PSL,(Z) represented by the final folded graph has index three and is deter-
mined by the permutations S = (1) (23) and O = (132). This is also known as the theta sub-
group. The reader is urged to work through the folding process for the group generated by S
and OSOSOS to see that it does not have finite index in PSL,(Z). The starting graph is
shown here.

M

W
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It is useful to have a notion of a standard representation (in terms of the permutations §
and O) of a group I whereby two groups are the same if and only if their permutations §
and O are identical. This can be accomplished by visiting the coset I" first (denoted by the
index 1 in the permutations). Once we have visited a coset g; [', we then recursively visit
the coset O g; I' (assuming this has not been visited yet), and once this trip has returned to
the coset g; I', we visit the coset S g; I" (also assuming this coset has not been visited yet).
The standard labels for the indices 2, ..., u for the nontrivial cosets may then be deter-
mined by the order in which that coset was visited.

In the case of testing a matrix m for membership in a group I', write m~! as a word in §
and O, then set r=1 and check if m~!(r) =1. Specifically, for a given matrix
m € PSL,(Z) whose entries in the left column are non-negative, multiply m on the left by
the matrices

1 -1 1 -1
SOO—(O 1)orSO—(0 1)

until the left column contains a zero. The variable r holds the current coset, so every time
m is multiplied by S O O, for example, r needs to be updated to S(O(O(r))).

Given the membership function on matrices for a group, we construct the group coset by
coset. Assume that I" has index at least three in PSL,(Z). If O € T', start with the four
cosets L={I', ST, OST, OOST};, otherwise, start with the three cosets
L={T, OT, OOT}. Proceed by adding either one or three cosets to L at a time. If
gi T € Lis such that:

1.SgiT'+mland OSg; I = Sg; T, then add the coset S g; " to L.
2.5giT¢Land OSg, T + Sg; ', then add the cosets Sg; [,OSg; I, OO Sg; ' to L.

Where there is no such coset g; I satisfying either of these conditions, we have found all
of the cosets of I'. A naive implementation of this procedure would have worst-case run-
ning time O(u3), where u is the index of the resulting group. The worst-case running time
may be reduced to O(u2) by keeping track of which cosets actually need to be checked.

We may compute coset representatives, generators, and a Farey symbol in O(u) operations
for a subgroup I of index u. This works as follows. Let G be the graph corresponding to a
subgroup of index u. First, the graph is cut into a tree so that the coset labeled i is given
by the resulting unique path from the vertex 1 to the vertex i. Any time a cut is made or a
fixed point is encountered, the corresponding matrix is added to the list of generators.
Finally, after the cosets and generators are computed and the cuts have been recorded, the
Farey symbol is computed by a clockwise traversal of the tree.

The cusps of a given subgroup I' are also important. The action of PSL,(Z) on the upper
half-plane is given by

az+b

a b
(C d)ePSLQ(Z). zZ

and this action extends to Q. = Q | {co}. The equivalence classes of Q. under the action
of I', namely Q., /I, are finite, and we may choose a representative for each one as follows.

b
cz+d
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The stabilizer of co in PSL,(Z) is generated by O S (or T). Therefore, any two cusps (say
m7!(c0) and m;!(co) for my, my € PSL,(Z)) are equivalent under I' whenever there is an in-
teger n such that (O S)* m; I' = m, I'; that is, m; I and m, I" belong to the same cycle of the
permutation O S. The width of a cusp m7!(c0) can then be defined as the length of the cycle
(of O S) that contains the coset m; I'.

Joining and intersecting two groups is surprisingly simple. To compute the group that is
generated by I'; and I',, we can form the graph G for I'y. Then, for each generator g of I',,
merge the vertices in G corresponding to the cosets I'; and g I'y. This will in general result
in a unfolded graph, which we can then fold and convert back to a permutation represen-
tation. In order to compute the permutation representations for the intersection of I'; and
I[',, first find the orbit of I'; () I'; under the action of § and O in terms of cosets of the
form m; T’y (1m, T'». A permutation representation of I'y ()T, may then be obtained by
the action of S and O on the cosets in this orbit of 'y () T',.

It is also straightforward to check if two groups are the same or conjugate, or if one group
is contained in another. To test if two groups I'; and I'; are the same, we employ a strategy
similar to the process for standardizing the representation. The cosets of I'; and I', are vis-
ited simultaneously, starting with the pair (I'y, ;). If we are currently visiting the pair
(my I'y,my ), then we visit the pairs (Omy[{,0myI,) and (SmyI'{,Smy ;) as
described in the standardization process. If the two paths ever become out of sync, that is,
if cosets are visited in a different order, then we know the groups are not the same; other-
wise the two paths will return back to (I';, I';) and we know that I'; and I', are the same.
Checking if I'; and I'; are conjugate can be accomplished by the same procedure. We need
to check if the path stays in sync when starting at some pair (g 'y, [';) for g € PSL,(Z) /T';.

The congruence functions use the list of relations of Hsu [2]. Recall that the congruence
closure I'¢ of a group I is the smallest congruence subgroup that contains I'. We compute
the congruence closure of I as follows. Hsu gives a list of relations x = y that are satisfied
if and only if I is a congruence subgroup. Let L be the list of the permutations x y~! where
x =y is a relation in Hsu’s list. If L contains a non-identity permutation p, this represents
an obstacle to I" being a congruence subgroup. Let N denote the level of I', which is de-
fined as the order of the permutation O S. As it is known that I'¢ contains I" (V), the set of
relations for I is also satisfied by I'. Let p be any permutation in L and i an index of any
coset in I'. Since p must act trivially on the cosets of I'“ and I' is a subgroup of I'¢, the
group obtained from I' by merging cosets i and p (i) must also be contained in I'¢. There-
fore, merging the cosets i and p (i) of I for all p and i must give I'°.
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B Conclusion

We have described an efficient package for manipulating and constructing subgroups of
the modular group. It is hoped that this will further interest in these groups and facilitate
research dealing with these subgroups.
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