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Inversive Geometry

Part 2: Concyclic Points, Tangents, the
Riemann Sphere, Rings of Four Circles and
the Sierpinski Sieve

Jaime Rangel-Mondragén

This series of articles showcases a variety of applications
around the theme of inversion, which constitutes a strategic way
of manipulating configurations of circles and lines in the plane.
This article includes the Riemann sphere, rings of four tangent
circles, and inverting the Sierpinski sieve.

B Introduction

The story of inversion, propelled by the study of conic sections and stereographic projec-
tion, is quite complex [1]. Although Vietd (1540-1603) already spoke of mutually inverted
points, the proper development started with a plethora of notable geometers including
L’Huilier (1750-1840), Dandelin (1794-1847), Quetelet (1796-1874), Steiner
(1796-1863), Magnus (1790-1861), Pliicker (1801-1868), Bellavitis (1803-1880), and
Simpson (1849-1924). Steiner, in a manuscript published in 1913, is considered to have
been the first to formulate inversion as a method to systematically simplify the study of com
plex geometric figures where circles play a prominent role. This work culminated in 1855
with the studies of Mobius (1790-1868) (hence the choice of the letter M for the inversive
circle in this article) [2]. Peaucellier (1832—-1913) also applied inversion to his famous link-
age [3], and Lord Kelvin (1824-1907) applied inversion to elasticity.

Let AB denote either the line or the segment from A to B, depending on the context. The
length of the segment AB is denoted by | AB|. The circle with center G and radius p > 0
is denoted by O(G, p). Denote by A' the inverse of A in the current circle of inversion
M = ©(y, p), where v is either a symbolic point or often (0, 0); in Manipulate results,
M is often shown as a red dashed circle.
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2 Jaime Rangel-Mondragon

The following functions encapsulate the basic properties of inversive geometry developed
in the first part of this series [4].

The function squareDistance computes the square of the Euclidean distance between
two given points. (It is more convenient to use the following definition than the built-in
Mathematica function SquaredEuclideanDistance.)

squareDistance[h_, k_] :=Chop[(h-k).(h-k)]

The function collinearQ tests whether three given points are collinear. When exactly
two of them are equal, it gives True, and when all three are equal, it gives False,
because there is no unique line through them.

collinearQ[{a_, b_, c_}] :=
(Chop [Det [Append [#, 1] & /@ {a, b, c}]] == 0)

collinearQ[{a_, a_, a_}] = False;

The function circleABC[a, b, c] computes the circle passing through the points a,
b, and c. If the points are collinear, it gives the line through them; if all three points are the
same, it returns an error message, as there is no meaningful definition of inversion in a
circle of zero radius.

circleABC[{a_, a_, a_}] :=
Return|
"Three coincident points do not define a circle
of positive radius."]

circleABC[{a_, b_, c_}] :=
Line[Take[Union[{a, b, c¢}], 2]] /; collinearQ[{a, b, c}]

circleABC[{a_, b_, c_}] :=Module[{center, x, y},
center =
First][
{x, vy} /.

Quiet[If[And @@ NumericQ /@Flatten[{a, b, c}],
NSolve, Solve] [squareDistance[{x, y}, a] =
squareDistance[{x, y}, b] ==
squareDistance[{x, vy}, c], {x, ¥}111;

Circle[center, Norm[center -a]]l] /;
Not@collinearQ[{a, b, c}]
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Inversive Geometry 3

The function invert [M, p] computes the inverse of p in the circle M = O(y, p). The
object p can be a point (including the special point co that inverts to the center y of M),
a circle, or a line (specified by two points).

invert[Circle[y_, _]1, ¥v_] :=

invert[Circle[y_, _], ©] =¥

P? (p-Y)
squareDistance[p, ¥]

invert[Circle[y_, p_ 1, P:{_, _}] :=v+

invert[M: Circle[y_, p_], Circle[cV_, rV_]] := Module[

{n = chop[squareDistance[cV, ¥] - rV?], h, k},

If[n =0,
h = invert[M, cV+rV Normalize[cV-y]];
k={{0, -1}, {1, O0}}.Normalize[cV-Y];
InfiniteLine[{h+k, h-k}],
Circle[7+ (cV -¥) pz/n, rv pz/Abs [n] ]

]

]

invert[M: Circle[y_, _], Line[{a_, b_}]] :=
If[Chop[Det[{y-a, ¥-b}]] =0,
InfiniteLine[a, b],
Chop[circleABC[{y, invert[M, a], invert[M, b]}]1]]

invert[M_, InfiniteLine[{a_, b_}]] := invert[M, Line[{a, b}]]
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Here is an example.

Jaime Rangel-Mondragon

invert[Circle[{2.5, 0}, 1.5], Line[{{5, 1}, {5, -1}}1]

Circle[{2.95, 0}, 0.45]

Module[{c, 1},

Graphics|[ {{Dashed, Red, c}, 1, invert[c, 1]}, Axes -» True]

c =Circle[{2.5, 0}, 1.5];
1 =1InfiniteLine[{{5, 1}, {5, -1}}1;
1
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Inversive Geometry 5

Since a circle can be inverted into a line, define a generalized circle to be either an ordinary
circle or a line, as in the first article in this series. A consequence of theorem 2 in the next
section is that the set of generalized circles is closed under inversion in a circle. The follow-
ing Manipulate shows that as r — oo, the circle M = ©((—r, 0), r) tends to the line
x = 0, and the inverse of the circle ®((—1, 0), 1 /2) tends to its reflection in the line x = 0,
the circle ©((1,0), 1/2).

Manipulate][
Module[
{c, 4},
c =Circle[{-r, 0}, r];
d = Circle[{-1, 0}, 1/2];
Graphics|[{
{Dashed, Red, c},
d, invert[c, d]
}, PlotRange -» 2, Axes - True]
1/
{{r, 20}, 1, 50, Appearance -» "Labeled"},
SaveDefinitions -» True

]
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Therefore, it makes sense to define inversion in a line to be reflection.

invert[Line[{w_, z_}], p: {_, _}] := Module|[
{nz = Normalize[z -w]},
2 (Ww+nz.(p-w) nz) -p
1

invert[l : Line[_], Circle[y_, p_]] :=Circle[invert[l, ¥], P]

invert[l : Line[_], Line[{p_, g_}]1] :=
Line[{invert[l, p], invert[l, q]}]

invert[l : InfiniteLine[_], x_] := invert[Line@@l, x]
Here is an example.

Module[{1l, c},
1 =InfiniteLine[{{O0, O}, {2, 1}}];
c = Circle[{3, 1}, 1/ 3];
Graphics[{{Red, Dashed, 1}, ¢, invert[l, c]},
Axes - True, ImageSize -» 250]

05l o

The function squareDistanceToLine computes the square of the distance of a given
point p to a given line.

squareDistanceToLine[p_ , Line[{a_, b_}]] :=
squareDistance[p - a,
(p-a).(b-a) (b-a) / squareDistance[a, b]]

squareDistanceToLine[p_, InfiniteLine[{a_, b_}]] :=
squareDistanceToLine[p, Line[{a, b}]]
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Inversive Geometry 7

The function exCircles computes the four circles tangent to the lines forming the sides
of a triangle having given vertices.

exCircles[{a_, b_, c_}] :=Module[{p, X, y, r2},
P={x, ¥};

Circle[p, '\/E] /.

Quiet@NSolve[r2 == squareDistanceToLine[p, Line[{a, b}]] ==
squareDistanceToLine[p, Line[{b, c}]] ==

squareDistanceToLine[p, Line[{c, a}]1], {x, v, r2}]]

The function inCircle computes the incircle of a triangle having given vertices as the
excircle of smallest radius.

inCircle[{a_, b_, c_}] :=
First[Sort[exCircles[{a, b, c}], Last[#1] < Last[#2] &]]

The function redPoint is used to mark a given point in red.
redPoint[p_, r_] := {EdgeForm[Thin], Red, Disk[p, r]}

The function angle[a, b, ¢, r] draws an arc of radius r and center b from the line
ab to the line bc.

angle[a_, b_, ¢_, r_] :=Module[{a, B},
{a, B} =Sort[1l. {ArcTan@@ (c-b), ArcTan@@ (a-b)}];
If[B>a+m,
{a, B} = {B, B+ArcCos[Normalize[a-b].Normalize[c-b]]}];
{EdgeForm[Thin], Disk[b, r, {a, B}]}]

The function intersections computes the possible points of intersection of a given
line and circle. (There may be zero, one, or two points.)

intersections[Line[{a_, b_}], Circle[q_, r_]] :=
Module[{sol, x, v},

sol = NSolve[{squareDistance[q, {x, y}] = r?,
Chop[Det[{{x, y}-a, b-a}]] =0}, {x, vy}, Reals];
If[sol = {}, {}, {x, y} /. sol]]

intersections[InfiniteLine[{a_, b_}], Circle[q_, r_]] :=
intersections[Line[{a, b}], Circle[q, r]]
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8 Jaime Rangel-Mondragon

The following Manipulate shows several of the functions introduced so far.

Manipulate[
Module[{a, b, c},
{a, b, ¢} =tri;
Graphics[{ColorData[2, 6], EdgeForm[Thin],
angle[b, a, ¢, 0.5], EdgeForm[Thick], ColorData[2, 5],
Polygon[tri], Gray, InfiniteLine[{a, b}],
InfiniteLine[{b, c}], InfiniteLine[{a, c}], Black,
exCircles[tri], Blue, circleABC[tri], Red,
redPoint[#, .08] & /@tri},
PlotRange -» {{-5.2, 2.85}, {-5, 3.1}}, ImageSize - 400]
1,
"Drag the red points.",
{{tri, 1. {{-1, -1}, {1, O}, {O, 1}}}, Locator,
Appearance - None}, SaveDefinitions -» True

Drag the red points.
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Inversive Geometry 9

B First Properties

The concept of orthogonality between circles plays an important role in inversive geometry.
Two intersecting circles are orthogonal if they have perpendicular tangents at either point of
intersection. It is rather amusing to consider orthogonality of circles without mentioning any
notion of perpendicularity [3, 4], as is done in the following definition.

Definition

Two intersecting circles H and K are orthogonal if one of them (say H) belongs to a
set of three mutually tangent circles that touch each other at three distinct points of K.

The following Manipulate shows the central circle is orthogonal to the black one by
showing the other two circles (blue). Some values of the positions of the black circle or
the radii of the blue circles make it impossible to close the three circles, so adjustments to
close them are done on the fly.

Manipulate [

Module[{rc, p, 49, ¥, s, x, ¥, d, e, re},

If[c.c<1l, ¢c=1.001Normalize[c]];

rc=vVc.c-1;
{p, q} =
{x, v} /.
Simplify[
Quiete@
NSolve[{x2 +y? =1, squareDistance[c, {x, y}] = rc?},

{x, v}¥]]:
d = p+rdNormalize[p-c];
{r, s} =
{x, vy} /.
Simplify|
Quiete@
NSolve[{x?+y® == 1, squareDistance[d, {x, y}] = rd’},

{x, Y]‘] ] 7
{r} = Complement[{r, s}, {p, 4},
SameTest » (Norm[#1 - #2] < 0.001 &) ];

Norm[q - r]
re = .
Norm[Normalize[r - d] - Normalize[q-c]] !

e =q+reNormalize[qg-c];

Graphics[{Circle[{O, 0}, 1], Circle[c, rc], Blue,
Circle[d, rd], Circle[e, re], Red,
Disk[#, 0.06] & /@ {p, q, r}},

PlotRange -» {{-4, 4}, {-4, 4}}]]:
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10 Jaime Rangel-Mondragon

{{c, {-2., 1}}, Locator},
{{rd, 1.5, "radius of blue circles"}, 0.01, 5,
Appearance - "Labeled"},

Style["Drag the locator.", 10], SaveDefinitions - True

]

radius of blue circles

c

Drag the locator.

Theorems 1-11 review the basic properties of inversion and introduce some of its remark-
able properties. Consider all inversions to be with respect to the circle M = O(y, p).

Theorem 1

Two pairs of inverse points are either collinear with 'y or concyclic on a circle orthog-
onal to M.

The following Manipulate illustrates this property and shows that triangles QBA and
QA'B' are similar. The gray circle is orthogonal to M.
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Inversive Geometry 11

Manipulate[
Quiet@Module[{y = {0, 0}, a, ad, b, bd},
{a, b} =u;
If[Chop[Norm[a]] < 0.001, a=0.001 {1, 1}];
{ad, bd} = invert[Circle[y, r], #] & /@ {a, b};
Graphics[{{Dashed, Red, Circle[y, r]}, Black,

Line[{y, ad, bd, ¥, a}], Line[{a, b}], Gray,

circleABC[{a, b, bd}], ColorData[2, 5],

{Opacity[.7], angle[y, a, b, .2], angle[y, bd, ad,

ColorData[2, 6], angle[y, b, a, .15],
angle[bd, ad, vy, .15]},

Style[{TeXt[")’"I Y {ol 2'5}]1 TeXt["A“I a, {31 _1}]I
Text["A'", ad, {-3, 0.7}], Text["B", b, {1, 2}],
Text["B'", bd, {0, -3}]}, 15, Black],

redPoint[#, 0.02] & /@ {y, a, b, ad, bd}},

PlotRange » {{-0.2, 1.65}, {-.7, .87}}, ImageSize - 400]

1,

{{r, 1, "radius of inversion"}, 0.01, 1.5,

-2],

Appearance - "Labeled"},

"Drag points A or B.",
{{u, {{.6, .6}, {.55, -.2}}}, {-.02, -.7}, {1.65, .87},
Locator, Appearance - None}, SaveDefinitions - True

I

radius of inversion

Drag points A or B.

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.



12 Jaime Rangel-Mondragon

The following interesting variation of theorem 1 was presented at the Swiss Mathematical
Contest in 1999 [5, 6]:

Two circles intersect in points D and E. An arbitrary point A of the first circle,
which is not D or E, is joined to D and E, and the straight lines AD and AE inter-

sect the second circle again in the points B and C. Prove that the tangent to the
first circle at A is parallel to the straight line BC.

Manipulate[Module[{h, a, b, c, d, e, ok},

h=(x*-r?+1) /(2x);
ok = (Abs[h] < 1);

If[ok, {d, e} = {{h m} {h, _m}}]

a = {Cos[a], Sin[a]};
ok = ok A (Chop[Norm[a-d]] > 0.001) A
(Chop[Norm[a-e]] > 0.001);
If[ok,
b = Select[intersections[Line[{a, d}], Circle[{x, 0}, r]],
Norm[# -d] > 0.001 &];
b=1If[b={}, d, First[b]];
c = Select[intersections[Line[{a, e}], Circle[{x, O}, r]l],

Norm[#-e] > 0.001 &];

c=If[c=={}, e, First[c]]];
Graphics[{Thick, Circle[], Circle[{x, 0}, r],
If[ok, {Thin, Line[{a, 4, b}], Line[{a, e, c}],

Line[{d, e}], Line[{b, c}],

redPoint [#, 0.05] & /@{a, b, ¢, d, e},

InfinitelLine[{a, a+b-c}],

{ColorData[2, 6], Opacity[.7], angle[d, a, a+b-c, .4],

angle[a, e, d, .4], angle[c, b, 4, .4],
ColorData[2, 5], angle[e, 4, a, .4],
angle[e, ¢, b, .41},

Style[{Text["A", a, {3, 0}], Text["B", b, {0, -2}],
Text["C", ¢, {-4, 0}], Text["E", e, {0, 3}],
TeXt['vD'II dl {OI _3}]}1 12! Black]}, {}]}I

PlotRange -» {{-1.5, 4}, {-2.5, 2.5}}, ImageSize —» 400]
B
{{x, 2, "position of right circle"}, 0.01, 3,
Appearance - "Labeled"},
{{r, 1.5, "radius of right circle"}, 0, 2,
Appearance - "Labeled"},
{{a, 1. 7, "position of point A"}, 0, 2. x,
Appearance - "Labeled"}, SaveDefinitions -» True
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Inversive Geometry 13

position of right circle

)

radius of right circle

()
o

position of point A 3.14159

M
UJ

Theorem 2

The inverse of a circle not passing through vy is also a circle not passing through .
(In this case, the images of concyclic points are concyclic.) The inverse of a circle passing
through vy is a straight line not passing through . (In this case, the images of concyclic
points are collinear.)

For instance, invert the circle ©((x, 0), r) in M = ©((0, 0), p).

Simplify[invert[Circle[{O, O}, p], Circle[{x, 0}, r]],
x > 0]

. x p? r p? 2 2
CJ_rcleH—ﬂ:2+X2 ’ 0}, abs [ x| ] r‘ +#x

r+x

InfiniteLineH{%, 1}, {DZ , —1}” True

The Mathematica Journal 18 © 2016 Wolfram Media, Inc.



14

Jaime Rangel-Mondragon

The set of circles and lines, called generalized circles, is therefore closed under inversion.
Theorem 3

A straight line passing through vy is self-inverse. The inverse of a straight line not
through vy is a circle through y.

Theorem 4

Any circle through a pair of inverse points is orthogonal to the circle of inversion.
Conversely, any circle cutting the circle of inversion orthogonally and passing through a
point P also passes through the inverse P' [7].

Theorem 5

(The effect of inversion on angles.) The angle of intersection of two circles is the
same as that of their inverse circles. This is also true for any intersecting curve, that is,
inversion is conformal.

Theorem 6

(The effect of inversion on length.) If inversion sends point A to A" and point B to
B!, then

ol | AB | r?
‘ ‘_IVAIIVBI’
L | AB | 2
‘_ |yAl1yB 1|

Proof
By the definition of inversion, [yA||yA'|=|yB|lyB'|=r?. Then |A'B'|/|AB|=
|yB'| / | YA . Since |yB'| = r2/|yB |, the result follows. O

Theorem 7

(The effect of inversion on the size of circles.) If the circle T'(G, a) inverts into a
circle of radius 3, then

E__ ¢

a  |a2-A2|

where A = | yG |, the distance between the centers of M and I.
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To verify this result, notice that A2 = (G —7)-(G —1y) in the following expression (the
condition implies I" does not pass through Q and thus I' indeed inverts into a circle).

Last@FullSimplify[invert[Circle[7, p]l, Circlel[G, a]],
o # (6-7)-(G-v)]

a p?

Abs[o? - (G-v).(G-Y) |

Theorem 8
Two circles of radii « and 8 touching externally at the point vy invert into two paral-

: ; r(L, 1
lel lines separated by the distance =3 (a + ﬁ)'

Subtracting the first points of the following lines obtained by inversion gives the result.

Pl = Simplify[invert[Circle[{x, O}, p], Circle[{x-a, O}, all,
a> 0]

p? o?
InfiniteLineH{x— —y —l}, {x— —y I}H
2 a 2a

P2 = Simplify[invert[Circle[{x, O}, p], Circle[{x+f, 0}, Bl]1,
B> 0]

InfiniteLineH{X+ﬁr 1}' {x+ - ’ 71}}]

Simplify[P2[[1, 1, 1]]-P1[[1, 1, 1]1]]

(a+B) p?
2af3

15
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Theorem 9

If the circle A of radius « inverts into a circle A' of radius ', then

o' £

@ p
where t is the length of the tangent from y to A' [8].

B

2

The following Manipulate shows the terms mentioned in theorem 9.

Manipulate [

Module[{M:Circle[{O, 0}, 1], h, hl, a, b, ad, bd, B,

x2, x3, y3, x4, y4},

h = Circle[{pc, 0}, al;

hl = invert[M, h];

B=hl[[-1]];

x2=h1[[1, 1]];

{a, b, ad, bd} = {{Pc_al 0}, {PC*'OC: 0}, {x2+pB, 0},
{x2-8, 0}};

x3 = (x2% - B%) /x2;

y3 ‘\/ x22% - B2 -x32% ;

x4 = (pc? - a?) / pc;

v4 = \pc? -a? -x4? ;

Graphics[{{Thick, h, hl},
redPoint [#, .025] & /@ {a, b, bd, ad}, Gray,
Line[{{O, O}, {3, 0}, {0, O}, {x3, y3}, {x2, 0},
{pc, 0}, {x4, v4}}],
Style[{Text["y", {0, -0.08}], Text["A", {pc, -a-0.08}],
Text["A'", {h1l[[1, 1]], -B-0.08}],
Text[Style["t", Italic], ({x3+x4, y3+y4}) /2,
{0, -1}], Text["A", a, {1, 1.5}],
Text["B", b, {-1.5, 1.5}], Text["B'", bd, {2, 1.5}],
Text["A'", ad, {-2, 1.5}],
Text["a", ({pc, O} + {x4, y4}) /2, {-2, 0}],
Text["a'", ({x2, 0} +{x3, y3}) /2, {-2, 0}1},
12, Black], Red, Dashed, M},
PlotRange -» {{-.1, 3}, {-1, 1}}, ImageSize —» 400]

I,

{{pc, 0.6, "position of circle A"}, 0.49, 1,
Appearance - "Labeled"},

{{a, 0.2, "radius of circle A"}, 0.1, 0.8,
Appearance - "Labeled"}, SaveDefinitions -» True

]
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Inversive Geometry 17

position of circle A 0.6

(]

radius of circle A 0.2

M
[

Proof

Let A and B be the ends of the diameter of A shown in the figure above. The point vy is out-
side the segment AB, as otherwise ¢ would not be defined. Then

_ _ _ 2t P(yAl-|yB') _ _r*2a
2a= |7B‘ |7/A| ~ |yB [yA'l = |yA'llyB'| T |yA'l|yB'|’
and the result follows. O

For instance, consider inverting ®((1/2,0), 1/3) in ©((0, 0), 2).

invert[Circle[{0, 0}, 2], Circle[{1/2, 0}, 1/ 3]]
) 72 48
ClrcleH?, 0}, —}

Then 8 = %, a=-,12 )2, r = 2, which we verify as follows.

1
—~~
~
u-lN
S—
o

|
—
u-lg

L
3’
48 /5 (72/5)%- (48/5)2
1/3 22

True
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18 Jaime Rangel-Mondragon

In the case of theorem 7, this is the corresponding comparison.

48 /5 22

1/3  Abs[(1/3)%-(1/2)?]

True

In order to verify this result, assume that v = (0,0) and A = ®((x, 0), @), with x > 0 and
x # a (otherwise A' would not be a circle).

MOdUle[{API x, p, a, ap, t},

Ap = Simplify[invert[Circle[{O0, O}, p], Circle[{x, O}, a]],
x>a>0];
ap = Last [Ap];

t = Appi,1p? - ap? ;

Simplify[ap/a:: t?/p?, x >a>0]]
True

From this theorem, it follows that the product of the lengths of the tangents from y to
A and A' must be r2.

Theorem 10

(Ptolemy) Let A, B, C, and D be arbitrary points. Then | AC||BD|=<|AB |CD| +
|AD | [BC |, with equality if and only if the points are on a generalized circle.

Proof

Invert B, C, and D in the circle ©(A,a). Then |AB| = Izl;l and

CD| = r5&t557C'D'| (by theorem 6). Substituting this and similar results for AD,
BC, AC, and BD in the inequality gives

a? a?
|IB'D'| | <
|AC'| JU|AB'||AD'|

a? a? a? a?
|C'D'| |+ |IB'C'| |,
| AB'| |AC'||AD'| | AD'| |AB'|| AC'|

which reduces to |[B'D'| < |C'D'|+ | B'C'|; this always applies in the triangle B'C'D".
Equality holds if and only if the points B', C', and D' are collinear, that is, if and only if
points A, B, C, and D are concyclic or collinear. O
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Inversive Geometry 19

Ptolemy (circa 127 AD) compiled much of what today is the pseudoscience of astrology.
His Earth-centered universe held sway for 1500 years. In the words of Carl Sagan, in the
first episode of his TV series Cosmos, “... showing that intellectual brilliance is no guar-
antee against being dead wrong.” You can find fascinating applications of Ptolemy’s
theorem in [9, 10].

Theorem 11
(A fixed-point theorem.) Suppose two nonintersecting circles have centers A and B.

Any circle that cuts those two circles orthogonally passes through the same two points on
the line AB [10].

This result is useful when inverting to concentric circles elsewhere. In order to verify it,
assume without loss of generality that the two circles are ©((0,0),0;) and ©((u, 0), p2),
with u > p; + p,, and that the orthogonal circle is ®((x, y), p3). Then the following quantity
is independent of y, and it is equal to the position of one of the two fixed points mentioned.

Module[{Ql, 02, p3},

With[{X=xl Yy=y,u=u, pl =pl, p2 =p2},

91 = {x, v};
02 = {u, 0};
First@FullSimplify[

{x—\[p32—y2 , 0} /.
Solve[{Ql.0Q1 == p1% + p3%, (Q2-0Q1).(Q2-Q1) = p2? + p3%},
{x, p3}], u>pl+p2 >0]

1
{— (u?+p1% - p2% -
2u

V(u-pl-p2) (u+pl-p2) (u-pl+p2) (u+pl+p2) |, 0}
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B The Riemann Sphere and Inversion

The following provides a framework with which to interpret inversion. Consider a sphere
$? of unit radius centered at the origin. Draw a line / from the north pole N = (0,0, 1) to a
point P on the sphere. The point at which / intersects the x-y plane defines a one-to-one
correspondence & between points on the sphere and points in the plane; £ is called stereo-
graphic projection. The image of the south pole is the origin. The image of the north pole
N is not defined, but oo is introduced as a new point to serve as the image of N; this makes
the mapping ¢ continuous and one-to-one. In the context of stereographic projection, the
sphere is referred to as the Riemann sphere after the prominent mathematician Bernhard
Riemann (1826-1866), who studied under Steiner and earned his PhD degree under Gauss
[11,12].

Similar triangles give

(x,y)
Ex,y,2) = —,
1-z2
Q2x,2y,x2+y*-1)
ENx,y) = .
1 +x2+y2

By using these formulas, it is possible to prove that the stereographic projection of a circle
on S? is a generalized circle in the plane. (Circles through N go to lines and other circles
go to circles.) So inversion in the unit circle in the plane induces a map from circles to
circles on SZ.

This defines stereographic projection.
El{x_, y_}1 :={2%, 2x, x*+y* -1} / (1 +x +y?)
An inversive pair of points maps to points reflected in the x-y plane.
Module[{x, y, u, v},
{u, v} = {&[{x, y}], €[invert[Circle[{0, O}, 1], {x, ¥}]1};

Simplify[ (Take[u, 2] == Take[v, 2]) A (Last[u] == -Last[v])]]

True
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Moreover, as the following Manipulate shows, an inversive pair of generalized circles
maps to circles on S? that are reflections across the x-y plane. You can vary the radius and
center of the control circle y in the x-y plane. The circle y inverts to ¢ in the unit circle,
which is the equator of $%. You can show the stereographic cone joining N to y through its
stereographic projection I' and the stereographic cone joining N to ¢ through its stereo-
graphic projection A, which is the reflection of ¢ in the x-y plane [13].

Manipulate|[
Quiet@Module|[
{cx, ¢y, %, ¥, a, p1, p2, p3, u, r},
If [Norm[cxy] > 1, cxy = Normalize[cxy]];
If[Chop[Norm[cxy]] < 0.001, cxy = {0.01, 0.01}];
{ex, cy} = cxy;
Show [
Graphics3D[{Opacity[op], Sphere[],
POlngl’l[{{—s, _51 o}l {51 _51 0}, {51 5! 0},
{-5, 5, 0}}], Oopacity[1], Point[{cx, cy, 0}],
If[la, Style[{Text["y", {cx, cy, 0}],
Text["6", invertTo3D[cxy]], Text["I'", stereo[cxy]],
Text["A", stereo[invert[cxy]]]1}, 151, {}1},
PlotRange » 2, Boxed -» False, ImageSize - 400
1,
If[scl,
{pl, p2, p3} = {stereo[{cx+ra, cy}],
stereo[{cx, cy+ra}], stereo[{cx-ra, cy}]};
cone[Cross[p2 -pl, p3-pl], .5 (pl+p3), .5Norm[p3 -pl],
{0, 0, 1}1,
{}
1,
If[sc2,
{pl, p2, p3} = {invert[{cx +ra, cy}],
invert[{cx, cy+ra}], invert[{cx-ra, cy}l};
{u, r} =List@@circleABC[{pl, p2, p3}];
cone[{0, O, 1}, Join[u, {0}], r, {0, O, 1}],
{}
1/

ParametricPlot3D[x = cx+raCos[a];
y=cy+raSin[a];
{{x, v, 0}, {Cos[a], Sin[a], O}, invertTo3D[{x, y}1,
stereo[{x, y}], stereo[invert[{x, y}1]1}, {a, O, 27}
1,
ViewAngle - 17 Degree
1
1,
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Row [ {
Spacer[60],
Column [ {
Style["control circle y ", 9],
Controle{{cxy, {0.5, 0}, "center"}, {-1, -1},

{1, 1}3,
Control@e{{ra, .3, "radius"}, 0, 1, ImageSize - Tiny}
}, Alignment -» Right],
Spacer[30],
Column| {
Control@{{scl, False, "y-T' cone"}, {True, False}},
Control@{{sc2, False, "6-A cone"}, {True, False}}
I
Spacer[30],
Column [
{Control@{{op, .5, "opacity"}, 0, 1, ImageSize -» Tiny},

un
4

Control@{{la, False, "labels"}, {True, False}}

H
.

Initialization - (
invert[{O0, 0}] = {0, O};
invert[p_] :=p/ (P-P);
invertTo3D[p_] := Append[invert[p], O];
stereo[p: {x_, y_}] :={2%, 2y, -1+p.p}/ (1+p.pP);
cone[v: {vx_, vy_, vz_}, c_, r_, £ ] :=Module]|
{a, b, A, a},
a=If[(vk=0)A (vy=0), {1, 0, 0},
Normalize[{-vy, vx, 0}]1];
b = Normalize[Cross[a, Vv]];
ParametricPlot3D]|
Af+(1-A) c+r (1-1A) (Cos[a] a+Sin[a] b),
{a, 0, 27}, {A, O, 1}, Boxed -» False, Axes - False,
Mesh - False]
1), SaveDefinitions » True
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control circle y

center E}] y-T cone D opacity

A cone D labels D

radius =D=,

Amusing applications related to stereographic projection are found in [14, 15], and inter-
esting Demonstrations in [16-18].

B A Ring of Four Tangent Circles

Consider a ring of four cyclically externally tangent circles as in the following
Manipulate. The four points of tangency are concyclic (pink circle), even when some
of the circles are internally tangent. You can drag the four points around this circle to alter
the shape of the arrangement. To see many other similar patterns, see [19]. In contrast to
the case of three tangent circles, the circle through the points of tangency is not neces-
sarily orthogonal to the other four circles.
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The function perturb slightly varies three points that are coincident or collinear.

perturb[{a_, b_, c_}] :=If][
Chop[Det[{b-a, c-a}]] !=0,
{a, b, ¢},
{a, b, ¢} + RandomReal[{-0.01, 0.01}, {3, 2}]
1

getCircle[V_, A_, B_] := Module[{v, a, b, center},
{v, a, b} = perturb[{V, A, B}];
center = LinearSolve[{v-a, v-b}, {a.(v-a), b.(v-b)}];
Circle[center, Norm[center - a]]]

Manipulate[
Module[{a, b, c, d},
If[abcd # Normalize /@ abcd, abcd = Normalize /@ abcd];
{a, b, ¢, d} = abcd;
If[a==b, b=a+.01];
If[b==c, c=b+.01];
If[c==d,d=c+.01];
If[d==a, a=d-.01];
Graphics[{EdgeForm[Thin], ColorData[2, 5],
{Opacity[.5],
Disk @@ getCircle[{0, 0}, a, b],
Disk @@ getCircle[{0, 0}, b, c],
Disk @@ getCircle[{0, 0}, c, d],
Disk @@ getCircle[{0, 0}, a, d]
Ty
Pink, Circle[], Red, redPoint[#, 0.05] & /@ {a, b, c, d}},
PlotRange -» 3, ImageSize -» 400]
1,
"Drag the red points.",
{{abecd, {{O0, -2}, {2, 0}, {0, 2}, {-2, 0}}}, Locator,
Appearance -» None}, SaveDefinitions -» True
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Drag the red points.

Let us apply inversion to deduce the concyclic property. Invert in a circle centered at one
of the tangent points, for instance, the red dashed circle in the following Manipulate.
That inversion transforms the circles centered at A and B into two parallel lines and two
circles in between these lines. These four inversions are sequentially tangent in three
points. The problem then reduces to show that the three points of tangency lie on the same
line (shown in blue).
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Manipulate[

Module[{a, b, ¢, d, M, ¢c1, ¢c2, ¢c3, c4, cl1, c21, c31, c41},
If[abcd # Normalize /@ abcd, abcd = Normalize /@ abcd] ;
{a, b, ¢, d} = abcd;

M = Circle[b, r];

{cl, c2, c3, c4} = {getCircle[{O0, 0}, a, b],
getCircle[{0, 0}, b, c], getCircle[{O, 0}, c, d],
getCircle[{0, 0}, a, d]};

{cl1l, c21, c31, c41} =

Map[invert[M, #] &, {cl, c2, c3, c4}];

Graphics|[{

{EdgeForm[Thin], ColorData[2, 5], Opacity[.5],
Diskeecl,
Diskeec2,
Diskeec3,
Disk @@ c4
Y
Brown, Circlel],
Blue, invert[M, Circle[{O0, 0}, 111,
Black, {cll1, c21, c31, c41},
Red, Dashed, M,
Black, Style[{
Text["A", First[cl]],
Text["B", First[c2]],
Text["C", First[c3]],
Text["D", First[c4]]
}, 151,
redPoint[#, 0.05] & /@ {a, b, ¢, d}
}, PlotRange -» 3, ImageSize - 400]

1,

{{abcd, {{0.5, -2}, {1.5, 0.5}, {0, 2}, {-2, 0}}},
Locator, Appearance - None},

{{r, 0.9, "radius of inversive circle"}, 0.01, 2,
Appearance - "Labeled"},

"Drag the red points.", SaveDefinitions - True
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0.9

radius of inversive circle

(]

Drag the red points.

Let us take a closer look at the arrangement formed by the inversion of the chain of circles,
starting from a different point of view. The following Manipulate shows an arrangement
of two parallel lines, one slanted line, and two circles with the tangencies indicated. The two
orange disks indicate adjustable tangency points A and B of the circles and the parallel lines.
It is easy to show that the slanted line always passes through the tangency point of the
circles regardless of the positions of A and B and the value of one of the radii, say, of the
lower circle. In fact, the sum of the radii remains constant for fixed positions of A and B.
For some values of the radii there exists a third circle also tangent to the parallel lines and
the circles. Selecting the appropriate option in the Manipulate, the radii are adjusted
according to the position of the slanted line for this third (blue) circle to exist. When the
slanted line is vertical and the circles are congruent, three of those third circles exist.
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Manipulate[
Module[{h, r2, c},
h=(1+(up-1p)?) /2;
If[rl > h&& Not@third, rl =h];
If[
third,
If[
Abs[up - 1p] < 0.005,
If[
Abs[rl-0.25] < 0.005,

c={up, up+1/'\/?, up—l/\/?},

c = {up}

]'
rl = (2h+Abs[up—lp] ’\/1+2h)/4;
c={(up+lp+sign[up—1p] V1+2h)/2}

]
|

r2=h-rl;

Graphics|[
{{Thick, InfiniteLine[{{-1, 1}, {1, 1}}1,

InfiniteLine[{{-1, 0}, {1, O}}1},

InfiniteLine[{{1p, 0}, {up, 1}}], Circle[{lp, rl}, rl],
Circle[{up, 1-r2}, r2],
If[third, {Blue, Circle[{#, 0.5}, 0.5] &/@c}, {}1]1,
Disk[{uprl+1lpr2, rl} /h, 0.015], Green,
Disk[{1lp, O}, 0.015], Disk[{up, 1}, 0.015]},

PlotRange » {{-1, 1}, {-0.3, 1.3}}, ImageSize->400]],

"position of tangent point",
{{up, 0.5, "upper"}, -1, 1, Appearance -» "Labeled"},
{{1p, O, "lower"}, -1, 1, Appearance - "Labeled"},

nn
4

PaneSelector|
{False -» Control@{{rl, 0.2, "radius of lower circle"},
0, 1, Enabled -» Not@third, Appearance - "Labeled"},
True -» Spacer[20]}, third],
{{third, False, "add third circle"}, {True, False}},
SaveDefinitions -» True

]
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position of tangent point

upper 0.5

(]

| M 0
ower U

radius of lower circle

add third circle D

)

0.2

The next Manipulate inverts the previous arrangement. It shows that the tangent points
of the set S of (blue) pairwise tangent circles are concyclic. It also shows that there exist
up to three circles tangent to the circles of S, and sets of up to four circles orthogonal to

the circles of S. You can vary the center of the inversive circle. Similar examples can be
found at [20, 21].

Manipulate [

Module[{h, r2, M, ¢, all, iall, all2, iall2, sl1l, alll, allc},
If[Last[ic] == 1, ic = {First[ic], 1.001}];
h=(1+(up-1p)?)/2;

If[third, If[Abs[up—lp] <0.01,
If[Abs[rl-o.zs] <0.01, c = {up, up+1/\/?, up-1/«/?},
c= {up}], rl = (2h+Abs[up—lp] Vi+2h )/4;
c= {(up+1p+sign[up—lp] V1+2h )/2}”,
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If[rl>h, rl1=h];
r2=h-rl;
M = Circle[ic, ric];
sl = InfiniteLine[{{1lp, 0}, {up, 1}}1;
alll = {InfiniteLine[{{-1, 1}, {1, 1}}],
InfiniteLine[{{-1, 0}, {1, O0}}1};
allc = {Circle[{1lp, r1}, rl1l], Circle[{up, 1-r2}, r2]};
iall = Join[Map[invert[M, #] &, alll],
Map[invert[M, #] &, allc]];
If[third, all2 = Circle[{#, 0.5}, 0.5] & /@c;
iall2 = Map[invert[M, #] &, all2]];
Graphics[{alll, allc, sl, invert[M, sl],
{EdgeForm[Thin], Lighter[Blue, .7], Opacity[0.7],
Diske@e@iall}, If[third, {Blue, all2, Brown, iall2}, {}],
iall, Disk[{uprl+1pr2, rl} /h, 0.02], Green,
Disk[{1lp, 0}, 0.02], Disk[{up, 1}, 0.02], Red, Dashed, M},
PlotRange -» {{-2, 1}, {-1, 2}}, ImageSize - 400]
1,
{{ic, {-1, 0.5}}, Locator},
Grid[{
{"position of upper tangent point", Spacer[30], ""},
{Control@{{up, 0.5, ""}, -2, 1, ImageSize - 150,
Appearance - "Labeled"}, Spacer[30], ""},
{"“I ""l ""}I
{"position of lower tangent point", Spacer[30],
"radius of lower circle"},
{Controle{{lp, O, ""}, -2, 1, ImageSize - 150,
Appearance - "Labeled"}, Spacer[30],
Controle{{rl, 0.2, ""}, 0, 1, ImageSize - 150,
Appearance - "Labeled"}},
{""I ""l "“}I
{"radius of inversion circle", Spacer[30],
"add third circle(s)"},
{Controle{{ric, 0.7, ""}, 0, 1, ImageSize - 150,
Appearance - "Labeled"}, Spacer[30],
Controle{{third, False, ""}, {True, False}}}
}, Alignment -» Left],
ControlPlacement -» Top

]
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The quadrilateral joining the centers of the circles forming the ring has an inscribed circle.
This is easily seen using Pitot’s theorem (1695-1771): a convex quadrilateral with consec-
utive side lengths a, b, ¢, d is tangential, that is, it has an inscribed circle, if and only if
a+c=>b+d. Oddly enough, in the case of the quadrilateral, its incircle does not neces-
sarily coincide with the circle passing through the four points of tangency, as the following
result shows.

Module[{a, b, ¢, d, ab, bc, cd, ad, ra, r2, r3, r4, ci},

{a, b, ¢, d} = {{-2.36, -2.33}, {1.11, -2.62},

{1.14, 0.67}, {-2.36, 1.44}};

{ab, bc, cd, ad} =Norm/@{b-a, ¢c-b, d-c, d-a};

ra=2.3;

r2 = Abs[ab-ra];

r3 = Abs[bc -r2];

r4 = Abs[ad -ra];

Chop[{Abs[r3 +r4-cd], Abs[r3-r4-cd], Abs[r4-r3-cd]}];

ci =circleABC[{(rab+r2a) /ab, (r2c+r3b) /bc,

(r3d+ré4c) /cd}];

Graphics[{EdgeForm[Thin], ColorData[2, 5], Disk[a, ra],
Disk[b, r2], Disk[c, r3], Disk[d, r4], Brown, ci,
Blue, Line[{a, b, ¢, 4, a}], Red,

Circle[{-0.616, -0.726}, 1.74]}, ImageSize - 400]]
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B Inverting the Sierpinski Sieve

The Sierpinski sieve (or Sierpinski gasket, or Sierpinski triangle) [5, 6], named after the
prolific Polish mathematician Waclaw Sierpinski (1882—-1969), is a self-similar subdivi-
sion of a triangle [22, XXX]. The function Sierpinski constructs the nt iteration corre-
sponding to the recursive definition of this subdivision.

Sierpinski[n_] :=Module[{s, a, b, c},
Nest [
(#/.s[{a_, b_, c_}] = {s[{a, (a+b) /2, (a+c)/2}],
s[{b, (b+c) /2, (a+b)/2}],
s[{c, (a+c) /2, (b+c)/2}]}) &,
s[Map[{Cos[#], Sin[#]} &, 2. v/ 3 Range[3]]], n] /.
s » Polygon]

Graphics[Sierpinski[5]]

A
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Inverting the vertices of the triangles from the first four iterations in the unit circle gives
rise to stunning patterns.

gr = GraphicsGrid[
Partition|[
Table|
Graphics[Sierpinski[n] /.
Polygon[pts_] =
Polygon[invert[Circle[{O, O}, 1], #] & /@pts]],
{n, 2, 5}1, 2]]
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gr /. Polygon - Line
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The following Manipulate lets you vary the radius and center of the inverting circle,
the number of iterations, and the type of transformation applied to the vertices forming the
triangles forming the Sierpinski sieve.

Manipulate[
Module[ {Mm},
Mm = Circle[y, p];
Graphics[{EdgeForm[Thin], {Red, Dashed, Mm},
Sierpinski[n] /.
Polygon[pts_] :»
Switch[tr, 1, Polygon, 2, Line, 3, triad, 4, Mo, 5, 2] [
invert[Mm, #] & /@pts]},
PlotRange » {{-1.5, 1.5}, {-1, 1}},
ImageSize -» {450, 300}]],

{{¥, {0.0, -0.01}}, Locator},
{{p, 0.5, "radius of inversive circle"}, 0.2, 0.7,
Appearance - "Labeled"},
Row | {
Control[{{n, 5, "iteration"}, Range[2, 6], Setter}],
Spacer[200],
Style["Drag the locator.", 10]
1y
{{tr, 2, "transformation"},
{1 - "polygon", 2 » "line", 3 » "triad", 4-> "M",
5 » "subtriangle"}, Setter},
Initialization »
(triad[pts_] :=
pts/. {a_, b_, c_}
Line[{a, (a+b+c) /3, b, (a+b+c) /3, c}];
Mo[pts_] :=
pts/. {a_, b_, c_}»
Polygon[{a, (a+b) /2, (a+c) /2, (b+c) /2, c}];
Z[pts_] :=
pts/. {a_, b_, c_} » {Line[{a, b, ¢, a}], Lighter@Blue,
Polygon[{c+2a, b+2c¢c, a+2b}/3]}),
SaveDefinitions - True

]
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