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Scattering and Gradient
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Sphere
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The derivation of the scattering force and the gradient force on a
spherical particle due to an electromagnetic wave often invokes
the Clausius—Mossotti factor, based on an ad hoc physical
model. In this article, we derive the expressions including the
Clausius—Mossotti factor directly from the fundamental
equations of classical electromagnetism. Starting from an
analytic expression for the force on a spherical particle in a
vacuum using the Maxwell stress tensor, as well as the Mie
solution for the response of dielectric particles to an
electromagnetic plane wave, we derive the scattering and
gradient forces. In both cases, the Clausius—Mossotti factor
arises rigorously from the derivation without any physical
argumentation. The limits agree with expressions in the literature.

1. Overview

Recently, we made a theoretical study of a system to sort submicrometer dielectric spheres
in the interference field of a laser in slowly flowing air [1, 2]. In the course of that project,
we derived the scattering and gradient forces rigorously from Maxwell’s equations. The
derivation was too detailed for that article, so we are presenting it here. The results agree
with expressions from Harada and Asakura [3], as we show in the Appendix. In addition,
we present the code we used to derive the force on a spherical particle used in [1, 2].
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In this article, we develop code to generate the Mie scattering coefficients and the stress
tensor formulas, and we combine them to form first the scattering force and then the gradi-
ent force. The scattering force comes first because it requires an incident plane wave,
whereas the gradient force requires an incident standing wave that is a little more difficult
to set up.

The solution for the response of a spherical dielectric particle in a vacuum was given more
than 100 years ago [4]. The problem has been studied extensively by Bohren and Huffman
[5]. Our formulation follows the textbook of Zangwill [6]. Since the problem is so well
studied, we go directly to the solution. We omit an implicit time dependence exp(—i w t)
in the plane wave traveling in the positive z direction with the electric field linearly polar-
ized in the x direction. The electric field E and magnetic field B are thereby given by

E=—k'Vx(kru)+ik2Vx[Vx(krw)l, (1)
cB=k'Vx(krw)+ik2Vx[Vx(kru)], )

where u and w are scalar functions related to the transverse electric and transverse magnetic
parts of the solution, respectively, c is the speed of light, k = w ¢~! and r is a point in space.
The International System of Units (SI) is used; in these units ¢ B has the same dimensions as
E. Compared to the equations in Zangwill, the overall sign differs here, and we have
inserted a factor of k=1 k to simplify the implementation. We can obtain ¢ B from E by the
substitution (u, w) - (—w, u); we will use this relationship later to simplify the calculation.
The scalar function u is given by
S, 20+1

u=E Zﬂ’ D fi(k r) Pl(cos 0) sin ¢. 3)

=1

Here, 6 and ¢ are the usual spherical coordinates, and the P} are associated Legendre polyno-
mials. If fi(kr) = j(kr), where j,(kr) is a spherical Bessel function, the expressions
describe the incident fields for a plane wave in the case of an incident plane wave with
spatial dependence exp(i k z). The sum of the incident and scattered fields is given by

fokr) = jekr) +a h{V(k r) 4

for u, where V(kr) is a spherical Hankel function. For w, we substitute a, — b, and
sin ¢ — cos ¢ in the previous two expressions.

Explicit forms for the Mie coefficients a, and b, are given here for a particle with index of
refraction n and radius a. We restrict attention to the case of a nonmagnetic dielectric

sphere:
Jjenka)S,' (ka)— jeka)Se' (nka)
arka) = — _ , 3)
jenka) &k a) — BV (k a) Sy(nk a)
betka) = — jetka)S,' (nka)—n? j(nka)S,' (ka) ©

nka)S, (nka)—n? junka)Sy' (ka)
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where Sy(x) = x jy(x) and &.(x) = x AP (x) are Riccati-Bessel functions; a prime denotes
differentiation with respect to the argument. The total scattering cross section is given by

O Mie 2

Dt @e+1)([a P+ 1), @)

ra® (ka5

written here in dimensionless form by incorporating the geometric cross section of the
spherical particle; this form is commonly denoted by Qgca-

o 1.1 Mie Coefficients and Cross Sections

The function abCoefficients calculates the Mie coefficients a, and b, using equations
(5) and (6); the table of those coefficients is abTable. The functions DxSpherical-
BesselJ and DxSphericalHankelH1 are S; and &, respectively. The variable / (with
maximum value /Max) is an index used for Legendre coefficients in physics. The variable
ka is k a, the product of the wavevector k and the particle radius a; ka ranges from kaMin
to kaMax with step size dka. The function MieCrossSection returns a list pairing ka
with the cross section normalized to the geometry. A simpler three-argument function calls
a five-argument function. The parameter convergenceFactor helps to tell how many
terms to calculate to achieve convergence; 1.5 seems to work well, but the reader may wish
to test this.

DxSphericalBesselJd[/_, x_] :=
Module[{y}, D[y SphericalBesselJd[?, yv], v] /. {y ~» x}]

DxSphericalHankelH1l[/_, x_] :=
Module[{y}, D[y SphericalHankelHl[/, y], y] /. {y = x}]

abCoefficients[/_, nn_, ka_] := Module]|
{nka, aCoeff, bCoeff}
, nka = nn ka

14
acCoeff =
- (SphericalBesselJd[/, nka] DxSphericalBesselJ[/, ka] -
SphericalBesselJ [/, ka] DxSphericalBesselJd [/, nka]) /
(SphericalBesselJ [/, nka] DxSphericalHankelHl [/, ka] -
SphericalHankelHl [/, ka] DxSphericalBesselJ [/, nka])

I

bCoeff =
- (SphericalBesselJ[/, ka] DxSphericalBesselJ[/, nka] -
nn "2 SphericalBesselJ[/, nka]
DxSphericalBesselJd [/, ka]) /
(SphericalHankelH1 [/, ka] DxSphericalBesselJ[/, nka] -
nn”" 2 SphericalBesselJ[/, nka]
DxSphericalHankelH1l [/, ka])
; {aCoeff, bCoeff}
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MieCrossSection[kaMin_?NumericQ, kaMax_? NumericQ,
dka_?NumericQ , nn_?NumericQ,
convergenceFactor_? NumericQ] := Module][

{fMax, abTable, ka}
, Table][

fMax = Ceiling[convergenceFactor nn kaMax]

; abTable = abCoefficients[Range[/Max], nn, ka]

4
{ka,
(2/ka"2)
Total[ (Re[abTable] “2 + Im[abTable] " 2).

(2 Range[/Max] +1)]} (» dot sums over a and b %)
, {ka, kaMin, kaMax, dka}

]
]

MieCrossSection[kaMax_? NumericQ, dka_? NumericQ,
nn_? NumericQ] :=
Prepend [MieCrossSection[dka, kaMax, dka, nn, 1.5], {0, 0}]

Next, we plot the Mie cross section, similar to the one found in Zangwill [6] and Bohren and
Huffman [5]. This is slow: it took 442 seconds on a 3.7 GHz personal computer. The code
could be written to run significantly faster, but it would become more cryptic. The main
point here is to verify the correctness of the code and to clarify the exposition. The red line
is the asymptotic value for large k a, a dimensionless parameter comparing the particle size
to the wavelength. The fact that this value is exactly twice the geometric cross section is dis-
cussed in [3, 4].

Module|
{
kaMax = 80. (* Use 80 to match Zangwill's plot =),
dka =0.2 (* step size %),
nn =1.33 (* index of refraction of water %)

Y
ListLinePlot[
MieCrossSection[kaMax, dka, nn]
, FrameLabel - {
ka,
Row[{Subscript["o", "Mie"], " / #", az}]

, FrameStyle - Thick
, PlotRange -» {0, 4}
, PlotStyle -» {Black}
, Epilog - {
Inset [Row[{Style["n", Italic], " = ", nn}], {60, 3}],
Red, Line[{{0, 2}, {kaMax, 2}}]
}

]
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A Figure 1. Mie cross section for a sphere of radius a and wavevector k compared to the geometric
cross section and its large k a limit, in red. For the physical significance of the sharp peaks, see [7].

o 1.2 Expansion of Mie Coefficients for Small k a

Here we develop the Taylor expansion of the Mie coefficients for small & a. This subsection
confirms equations (8—11). The results are used in Section 5.

We start with a simplification.
refine[expr_] := Refine[expr, {ka >0, n> 0}]
The following definitions are motivated by equations (5) and (6).

aNumerator[/_, n_, ka_] :=
- (SphericalBesselJ[/, n ka] DxSphericalBesselJd[/, ka] -
SphericalBesselJd [/, ka] DxSphericalBesselJ[/, nka]) //
Simplify

aDenominator[/_, n_, ka_] :=
(SphericalBesselJ[/, n ka] DxSphericalHankelH1l[/, ka] -
SphericalHankelHl [/, ka] DxSphericalBesselJ[/, nka]) //
Simplify

bNumerator([/_, n_, ka_] :=
- (SphericalBesselJ[/, ka] DxSphericalBesselJ[/, nka] -
n” 2 SphericalBesselJ [/, nka]
DxSphericalBesselJ[/, ka]) // Simplify
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bDenominator[/_, n_, ka_] :=
(SphericalHankelHl1l [/, ka] DxSphericalBesselJ[/, nka] -
n”" 2 SphericalBesselJ[/, n ka]
DxSphericalHankelHl1l [/, ka]) // Simplify

Later, we will find we need these for # = 1, 2. The index of refraction is n.

al = aNumerator[1l, n, ka] / aDenominator[1l, n, ka] //
FullSimplify;

bl = bNumerator[1l, n, ka] / bDenominator[1l, n, ka] //
FullSimplify;

a2 = aNumerator[2, n, ka] / aDenominator[2, n, ka] //
FullSimplify;

b2 = bNumerator[2, n, ka] / bDenominator[2, n, ka] //
FullSimplify;

The Taylor series is taken next. A high order is necessary even for the small ka limit. In
many cases, the spherical Neumann function enters the calculation, which leads to diver-
ergence in this limit. The real and imaginary parts are represented by the suffixes 1 or 2 in
the variable names. The series expansions are chosen so as to include terms to the lowest
nonvanishing order.

(% £=1 =)
alSeries =
Simplify|[
Normal [Series[al, {ka, O, 10},
Assumptions » {ka>0, n>0}]11];
blSeries =
Simplify|[
Normal [Series[bl, {ka, O, 6},
Assumptions » {ka>0, n>0}]1];

alRe = Normal [Series[refine[Re[alSeries]], {ka, 0, 10},
Assumptions » {ka>0, n>0}]];

alIm = Normal [Series[refine[Im[alSeries]], {ka, O, 5},
Assumptions » {ka>0, n>0}]];

blRe = Normal [Series[refine[Re[blSeries]], {ka, 0, 6},
Assumptions » {ka>0, n>0}]];

blIm = Normal [Series[refine[Im[blSeries]], {ka, O, 3},
Assumptions » {ka>0, n>0}]];
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(* =2 x)
a2Series =
Simplify|[
Normal [Series[a2, {ka, 0, 14},
Assumptions » {ka>0, n>0}]11];
b2Series =
Simplify|[
Normal [Series[b2, {ka, O, 10},
Assumptions » {ka >0, n>0}]]1];

a2Re = Normal [Series[refine[Re[a2Series]], {ka, 0, 14},
Assumptions » {ka>0, n>0}]];

a2Im = Normal [Series[refine[Im[a2Series]], {ka, 0, 7},
Assumptions » {ka>0, n>0}]];

b2Re = Normal[Series[refine[Re[b2Series]], {ka, 0, 10},
Assumptions » {ka >0, n>0}]];

b2Im = Normal [Series[refine[Im[b2Series]], {ka, O, 5},
Assumptions » {ka>0, n>0}]];

TraditionalForm@TableForme {

{Row[{"alRe = ", alRe}], Row[{"alIm = ", alIm}]}
{Row[{"blRe = ", blRe}], Row[{"blIm = ", blIm}]}
{Row[{"a2Re = ", a2Re}], Row[{"a2Im = ", a2Im}]}

{Row[{"b2Re ;, b2Re}], Row[{"b2Im ;, b2Im}]}

N NN

2 2
alRe = — (21 allm = %ka5 (nz— l)

2025

bIRe = _4kal (n2-1)° bllm = 2ka® (n?-1)

9 (n2+2) 3(n242)
_ k(1) _ka’ (-1
a2Re = 2480625 a2lm = 1575
kal® (n2—1)? ka’ (n2—1
b2Re = _A"_Lo b2Im = ke’ (-1)
225(2n2+3)° 15(2n2+3)

The results are given here as mathematical formulas, which should agree with results in
the cell above. Superscripts 1 and 2 refer to real and imaginary parts.

(ka)'” 2
(D — 2 (2) _ 5(,2 _
a\’ = — n-—1 ka) (n (8)
! 2025 ( ) ( : ( )
4(ka)® (n2-1) 2 (ka)’
b(ll) __ Q b(12) ( ) 9)
9 nz+2 nz+2
(ka)'4 (ka)7
a) = - ———(n? - 1)2 a? = (n2-1) (10)
2480625 1575
ka0 ( m2—1 \2 ka)y -1
b = ke (T b = (kay (-1 (11)
225 \2n2+3 15 \2n?+3
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B 2. Maxwell Stress Tensor

For a harmonic electromagnetic field, the time-averaged electromagnetic force (F) on a
dielectric particle in a vacuum is given by [1, 2, 4]

(F) = 56d5~ (M, (12)

where the angle brackets mean the time average, dS is the differential of the surface
normal, and the integral is taken over any surface enclosing the particle. Thus the Maxwell
stress tensor is given by

T=Tg+Tp, (13)
where
E-E
T, = eO(E®E— Tz), (14)

and where ¢ is the electric constant, E® E is a dyadic, and I is the 3x3 identity matrix.
The companion matrix Tp is given by Tz with E — ¢ B. (The magnetic constant y used in

the references is related by ug! = € ¢?.)
Since the particle is spherical, it is natural to do the integral on the surface of a sphere at

radius R = a. Since we are in a vacuum, the electromagnetic field exhibits no force there.
Looking ahead, we will check to see that the result is independent of R. The direction of

dS is T, so it is sufficient to calculate a mixed-basis tensor component T,;, where r refers to
the component along r and i is a Cartesian direction. Rewriting equation (12) in spherical
coordinates leads to
2n b
(F;) = R? fd(p fd@ sin 6 (T, ;). (15)
0 0
We accept the complexity of the mixed-bases tensor T because the dot product leads to a
single component in spherical coordinates, but the integral requires coordinates that are in-
dependent of the point of integration. In practice, these are Cartesian. Looking ahead, we
will see that only the z component will be nonzero, which further motivates the choice.
The calculation will proceed by forming the electric field E in spherical coordinates and
making a row of (T, z), where the index R implies spherical coordinates. The vector will
be transformed to Cartesian coordinates by right-multiplying by a rotation matrix. (The
same process is used for the magnetic field ¢ B.)
The effect of the time average is the following: given E(r,?) = Re[E(r) exp(—iw1)],
(EQE) = i—[E(r)* Q@ E(r) + E(r) ® E(r)*]. The stress tensor will be computed from the

second term. The first term is included later by adding the complex conjugate.
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B 3. Scattering Force

For the scattering force, we take the incident electric field to be a plane wave traveling in
the positive z direction and linearly polarized in the x direction. Explicitly,

E(r, 1) = Eg Xexp(i k z) cos(w ?). (16)

o Code: Symbolic Algebra

As discussed, we need to transform a vector from spherical to Cartesian coordinates. We
give that function first.

CartesianFromSpherical[vec_] :=
vec.Transpose@ {
{Sin[©] Cos[¢], Cos[O] Cos[¢p], -Sin[¢]}
, {8in[6] Sin[¢], Cos[6] Sin[¢], Cos[¢]}
, {Cos[6], -Sin[6], 0}
}

The electric or magnetic stress tensor is computed from the following code. timeAverage
is a factor required for the time average.

timeAverage =1/ 4;
StressTensorRow[field_] :=
timeAverage
(First[field] conj[field] +
(field . conj[field]) {-1/2, 0, 0})

First[field] gets the r component, since the field components have the usual order (7,
0,¢); conj[field] is the complex conjugate, but we need to help the kernel find simplifi-
cations. (The magnetic part will be found by symbolic substitution.) The conjugation is per-
formed as follows.

conj[vec_] := Conjugate[vec] // conjugateExpand // reExpand //
Refine[#, {0 <6 <=Pi, Element[¢, Reals],
Element [kr, Reals]}] &

conjugateExpand[expr_] := Module][
{exprB, exprC}
; expr //. {
Conjugate[exprB_ + exprC_] :>
Conjugate[exprB] + Conjugate [exprC]
, Conjugate[exprB_ * exprC_] :>
Conjugate[exprB] * Conjugate [exprC]
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reExpand is used for real expansion.

reExpand[expr_] :=
Module[
{exprB, exprC}
, expr //. {
Re[exprB_ + exprC_] :> Re[exprB] + Re[exprC]
; Re[exprB_ x exprC_] :> Re[exprB] * Re[exprC]
}
1

Following are some additional simplifications that we will use. We operate in the dimen-
sionless radial variable called kx, which is kr (i.e. k times r), where k and r do not enter the
calculation independently. The assumptions are made because of the range of integration.

assumptions = {0 <6 <=Pi, Im[¢] == 0, kr > 0};
simplify[expr_ ] := Simplify[expr, Assumptions -» assumptions]

We introduced extra factors of k into equations (1) and (2) because we implement k= V x
rather than V x to enable the use of kr. The operation k~! V x is named kur1, the curl for
a dimensionless radial variable.

kurl[vec_] := Curl[vec, {kr, 6, ¢}, "Spherical"]

Next we define a function to create the electric and magnetic fields (“em”), omitting the
prefactor E,. Before the final answer for the force is obtained, the factor will be reintro-
duced as the variable EO.

emMie[/Max_, zDir_, useExt_, useInd_] := Module]
{uTot, wTot, flipY¥Z, rVecU, rVecW, curlRVecU,
curlRVecW, curlCurlRVecU, curlCurlRVecW}
, uTot = Total@Table[
simplify[I*? ((2¢+1)/ ((£ (£+1))))
(useExt j[?, kr] +useInda[/] hl[/, kr])
LegendreP[/, 1, Cos[O]] Sin[¢]]
, {¢, fMax}
1
wTot = uTot /. {a—» b, Sin[¢] -» Cos[d]}
If[zDir == -1
(» backward-going wave #*)
, £lip¥Z = {¢ » -¢, 6 » Pi -6}
(» 180 degree rotation about x in spherical
coordinates =)
uTot = uTot /. £f1lip¥Z
wTot = wTot /. £f1ipYZ

~e ~e

Ne  ~e

]

14

rVecU = {kr uTot, 0, 0}

(*# vector in spherical coordinates =)
; rVecW = {kr wTot, 0, O}

; curlRVecU = simplify[kurl[rVecU]]
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curlRVecW = simplify[kurl [rVecW] ]
curlCurlRVecU = simplify[kurl [curlRVecU]]
curlCurlRVecW = simplify[kurl[curlRVecW] ]

M~ Ne Ne Ne Ne

simplify[+curlRVecU - I curlCurlRVecW],
simplify[-curlRVecW - I curlCurlRVecU]

}
]

This gives a simplified interface for a positive z plane wave.
emMiePositiveZ[fMax_? IntegerQ] := emMie[/Max, 1, 1, 1]

It is sufficient to set /Max = 2 for both the scattering and gradient forces, since both occur
in the limit of small particles. Setting Max = 1 does not capture all contributing terms to
lowest order, and setting /Max = 3 or higher does not cause the limit to change. For the scat-
tering, we will have zDir = 1, which is for a plane wave going in the positive z direction.
For the gradient force where we have a standing wave, we decompose that into the sum of a
plane wave going toward +z and one going toward —z. The backward wave is still polarized
in the x direction, so we produce it by mapping (x, y, z) = (x, —y, —z). Flipping y is neces-
sary because the direction of travel is ExB; if we wish to preserve E, it is necessary to
change the sign of B. We will always set useExt = 1 and useInd = 1; these may be set
to zero to suppress the external field or the induced field, respectively.

We next determine the electric and magnetic fields. Although we could increase /Max, the
run time increases dramatically. For example, the case of fMax = 6 from [1, 2] was run
overnight.

For /Max, use 1 for a quick test, 2 to get the main results, and 3 or more to confirm that a
higher-order expansion does not change the limit. The run time increases rapidly as /Max
is increased. Run times can vary, but typically it is best to start the code and come back to
it after a few minutes to a couple of hours. The parameter /Max is used both here and for
the gradient force in Section 4.

fMax = 2;

Next, we make rows from the electric part and magnetic part (multiplied by c¢) of the
stress tensor in Cartesian coordinates.

{electricStressTensorRow, cMagneticStressTensorRow} =
simplify[CartesianFromSpherical [StressTensorRow[#]]] & /@
emMiePositiveZ [/Max];
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We do the integrals over ¢ next, yielding the three Cartesian components of the electric
part of the stress tensor, after azimuthal integration.

The azimuthal integrals of the x and y components of the electric part of the stress tensor
are zero, as they should be. The z component is nonzero in general and will be used later.

Integrate[Expand[electricStressTensorRow[1]],
{¢, 0, 2Pi}]

Integrate[Expand[electricStressTensorRow[2]],
{¢, 0, 2Pi}]

¢ElectricIntegralZ =
Integrate[Expand[electricStressTensorRow[3]],
{¢, 0, 2Pi}] // simplify;

The magnetic terms are similar.

Integrate [Expand[cMagneticStressTensorRow[1]],
{¢, 0, 2Pi}]

Integrate [Expand[cMagneticStressTensorRow[2] ],
{¢, 0, 2Pi}]

¢cMagneticIntegralZ =
Integrate[Expand[cMagneticStressTensorRow[3]],
{¢, 0, 2Pi}] // simplify;

The integral over 6 is done next. Although these variables contain the word Force, they
lack some constant factors to be forces, hence the prefix pre. These factors will be included
after a few manipulations. The notation ending with Z is for the z component. The succes-
sive variables preForceZ lack the constant, but the final result Force?Z is the force.

preElectricForceZ[1l] =
Integrate[Expand[Sin[6] ¢ElectricIntegralz], {6, 0, Pi},
Assumptions -» assumptions] // simplify;

precMagneticForceZz[1] =

Integrate[Expand[Sin[6] ¢cMagneticIntegralZ],
{6, 0, Pi}, Assumptions -» assumptions] // simplify;
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Combining the electric and magnetic terms into a total force at this point leads to some
cancellations, so it is convenient to do it next.

preForceZ[1l] = preElectricForceZ[1] + precMagneticForceZ[1] //
simplify;

Up to this point, we have done the manipulations without telling the kernel that j and h1 are,

in fact, spherical Bessel functions j, and HY. Moreover, we use hY") = j,+iy, (a complex
function of real arguments) because we will be obtaining real and imaginary parts shortly.

j[¢_, kr_] := SphericalBesselJ[?, kr]

hl[/_, kr_] := SphericalBesselJ[?, kr] +
I SphericalBesselY [/, kr]

preForceZ[2] = preForceZ[1l] // conjugateExpand // simplify;

As discussed previously, we have calculated only one of two terms in the force. Next, we
add the complex conjugate.

preForceZ[3] =
(preForceZ[2] + Conjugate[preForceZ[2]]) //
conjugateExpand // simplify;

We introduce real and imaginary parts for the Mie coefficients.

preForceZ[4] = preForceZz[3] /.

{
a[f/_] »aRe[/] +I aIm[/]
; b[/_] > bRe[f/] + I bIm[/]

} // conjugateExpand // Refine[#, {
Element[aRe[/_], Reals]
, Element[aIm[/_], Reals]
, Element [bRe[/_], Reals]
;, Element [bIm[/_], Reals]}] & // simplify;

The expression is still quite complicated. However, FullSimplify knows (for ¢ < 9)
that the Wronskian of the spherical Bessel functions W(j,, y,) = (k )72 [8]. We will see
that the force does not depend on the radius r of the integration sphere, as long as r = a.
We expect this on physical grounds: there should be no force on the vacuum region sur-

rounding the physical sphere. Mathematically, the Wronskian plays a key role in achiev-
ing this condition.

preForceZ[5] = preForceZ[4] // FullSimplify;
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We next include some constant prefactors, namely €, E§ and r2. The factors €, and Ej arise
from the definition of the stress tensor. The factor 2 comes from the fact that when we per-
formed the two angular integrals over the sphere, we did not yet include the dimensional
constant associated with the area element. This extra factor of r? is the only exception to
the radius appearing in the dimensioness variable k r. The substitution allows powers of kr
to be canceled.

forceZ = e€0EO0"2 r "2 preForceZ[5] /. {r » kr / k}

1
3k?
E027me0 (7aRe[2] +9aIm[1l] (aIm[2] +bIm[1]) +5aIm[2] bIm[2] +
9bIm[l] bIm[2] +9bRe[l] +9 aRe[l] (1+aRe[2] +bRe[1l]) +
(7+5aRe[2] +9bRe[1]) bRe[2])

The real and imaginary parts of the Mie coefficient a, are aRe [/] and aIm[/], respec-
tively, and similarly, for b, they are bRe [¢] and bIm[/].

B 4. Gradient Force

In the previous section, we used the general form for the electric and magnetic fields for the
Mie expansion as input to the Maxwell stress tensor to derive the force on a particle. We do
the same in this section, borrowing from the previous section to the extent possible. How-
ever, the spherical particle is in a standing wave field instead of a plane wave traveling in the
+z direction. The standing wave is a linear superposition of two plane waves going toward
+z and toward —z, so we need a solution from the latter field. We obtain this by symmetry
from the existing solution. Sending (x, y, 7) = (x, —y, —z) does what is needed: the polariza-

tion of E is unchanged, but the direction of propagation ExB changes sign. This is imple-
mented with the wrapper to the function emMie described in Section 3.

emMieNegativeZ[/Max_? IntegerQ] := emMie[/Max, -1, 1, 1]

Although the standing wave is the sum of two plane waves, more precisely, a phased sum
is required. Although we do not show it here, the answer is proportional to
Sin[2 phase]. This is because the dielectric sphere is located at the coordinate origin,
and we need to have a maximum of the electric field there. We do this as follows. (In the
variable names, V stands for gradient.)

phase = Pi/ 4;

{ElectricVv, cMagneticVv} =
Apart[emMiePositiveZ [/Max] Exp[I phase]] +
Apart[emMieNegativeZ [/Max] Exp[-I phase]];
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From here, the manipulation is the same as for the scattering force, so the code is written
without further explanation. Certain terms integrate to zero.

First, the electric terms in the stress tensor are calculated. As previously, the x and y com-
ponents are 0.

electricStressTensorV =
CartesianFromSpherical[StressTensorRow[Electricv]] //
simplify;

cMagneticStressTensorV =
CartesianFromSpherical [StressTensorRow[cMagneticVv]] //
simplify;

Integrate[Expand[electricStressTensorVv[1]], {¢, O, 2 Pi}]

0

Integrate[Expand[electricStressTensorVv[2]], {¢, O, 2 Pi}]
0
¢ElectricIntegralzv =

Integrate[Expand[electricStressTensorv[3]], {¢, O, 2Pi}] //
simplify;

precMagneticForceZV[1l] =
Integrate[Expand[Sin[6] ¢ElectricIntegralzv],
{6, 0, Pi}, Assumptions -» assumptions] // simplify;

Second, the magnetic terms in the stress tensor are calculated. Again, the x and y compo-
nents are 0 and the z component is nonzero in general.

Integrate[Expand[cMagneticStressTensorV[1l]], {¢, O, 2Pi}]

0

Integrate [Expand [cMagneticStressTensorV[2]], {¢, O, 2Pi}]

0

¢cMagneticIntegralzv =
Integrate[Expand [cMagneticStressTensorV[3]],
{¢, 0, 2Pi}] // simplify;

cMagneticStressTensorV =
Integrate[Expand[Sin[6] ¢cMagneticIntegralzv],
{6, 0, Pi}, Assumptions » assumptions] // simplify;
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Finally, the electric and magnetic terms are combined and the force is found.

preForceZVv[1l] =

precMagneticForceZV[1l] + cMagneticStressTensorV // simplify;

preForceZv[2] = preForceZV[1l] // conjugateExpand // simplify;

preForcezv[3] =

(preForcezv[2] + Conjugate [preForcezv[2]]) //
conjugateExpand // simplify;

preForceZv[4] = preForceZv[3] /.
{a[f/_] » aRe[?] + I aIm[/]
, b[/_] > bRe[f/] + I bIm[/]
} // conjugateExpand // Refine[#, {
Element[aRe[/_], Reals]
, Element[aIm[/_], Reals]
, Element [bRe[/_], Reals]

;, Element [bIm[/_], Reals]}] & // simplify;
preForcezv[5] = preForceZv[4] // FullSimplify;
forcezZv = e€0E0"2 r" 2 preForceZvV[5] /. {r » kr / k}

1
— _2E0%7e0
3 k?

(9aIm[1l] (1+aRe[2] +bRe[1]) +bIm[2] (7+5aRe[2] +9bRe[1]) -
9bIm[1l] (1+aRe[l] +bRe[2]) -
aIm[2] (7+9aRe[1l] +5bRe[2]))
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B 5. Forces in the Limit of Small k a

Our next task is to determine the scattering and gradient forces on spheres up to the leading
order in ka < 1. Physically, these are spheres that are small compared to a wavelength.
We combine the results of Section 3 for the scattering force and Section 4 for the gradient
force with those of Section 2 for the Mie coefficients. In Section 1.2, we showed that

aV~kn', aP~kry, bV~ kS, bP ~kr)}, ai ~kn', af ~kr), b~k ) and
bP ~(kr)’ using superscripts (1) and (2) for the real and imaginary parts, respectively.
Therefore, the scattering force, to lowest order in & r, retains only the terms in b(ll), and for

the gradient force, the lowest-order coefficient is 5{?). The terms were given in equation

(9). The key point is that the Clausius—Mossotti factor 21

n2+2

appears with the second and

first powers in the two terms. The result falls out of a Taylor expansion without any appeal
to physical arguments about the response of dipoles. All of the terms are proportional to
n? — 1, leading to the physically required result that if the sphere in fact contains a vacuum
(n = 1), there is no electromagnetic response and thus no force. However, the denominator
n? + 2 is characteristic only of the terms giving the lowest-order response. Higher terms
2_
2nn2+13 ’
The gradient and scattering forces properly exist only in the limit of small k a.

have different dependencies on the index of refraction n, such as as seen previously.

Having selected the lowest-order terms for the two force expansions, these are the forces
to lowest order in k a.

3mey E3 ArneE2 (n2—1Y
F(scat):_%b(ll)z 3]:2 0( 2+2) (ka)°, (17)
n
2_
F(grad):_MbQ):‘lﬂeOE% " ! (ka)3, (18)
1
k2 k2 n*+2

These formulas agree with those given by Harada and Asakura [3], as shown in the Appendix.

B Summary

Our goal was to derive the scattering force and the gradient force rigorously from the Mie
solution and the Maxwell stress tensor. We began by presenting the Mie solution for a plane
wave incident on a dielectric sphere in a vacuum and showing that our implementation
matches a figure from a textbook. We then presented the formula for the force in terms of a
surface integral of the Maxwell stress tensor, which we take on a sphere of arbitrary radius
centered on and including the whole dielectric sphere. We analyzed the scattering force first,
giving a formula for the force in terms of the Mie coefficients and then taking the limit as
the radius of the sphere tends to zero. This yields agreement with the usual formula for the
scattering force in a vacuum. The forces were reformulated for a standing wave, and a
similar program was carried out, leading to agreement for the gradient force.
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B Conclusion

The Claussius—Mossotti term that appears in expressions for the scattering force and the
gradient force is seen to be implicit in the rigorous Mie solutions to Maxwell’s equations.
By finding the Maxwell stress tensor for a plane wave or a standing wave acting on a
dielectric sphere, we are able to show the response in lowest order is in agreement with a
widely used formula for the scattering force and the gradient force, respectively. Since
part of the derivation includes a tenth-order Taylor expansion of special functions, it is
difficult to see how the result could be obtained without computer-assisted algebra.

Appendix: Reconciling the Harada—Asakura Formulas
with the Present Results

First, we wish to match equation (17) to the scattering force as given in equation (12) of
[3], hereafter called equation (HA12). Variables with superscript (HA) are from the refer-

ence. We consider only the case of the external medium being a vacuum, so n§™ = 1.

This implies mHA) = p;(HA) = p_the index in the sphere, so that the Clausius—Mossotti fac-
tor is present in both our equation (17) and equation (HA12). The same holds for equation
(18) and equation (HA16). Next, [3] considers a Gaussian beam profile, so we simply pick
2 pHA)
(o)
sity at the center of the beam /. The beam intensity is related to the electrical field by

f = ;—eo E}. Given these expressions, all the factors can be matched by inspection.

the point in the middle, setting #HA) = §HA) = §HA) — (0 The factor is the inten-

Next, we wish to match equation (18) to the gradient force given in equation (HA16). The
one additional equation to note is that i—VI(HA)(r) =2 %eo E§ 2 ksin(2kz) | z=n/a. The fac-

tor of 2 occurs in the numerator because, by our definition, E, represents the field of one
of the two interfering beams. The 2 in the denominator appears in the intensity-field con-
version equation. The twos in 2 ksin(2 kz) are due to the physical fact that a standing
plane wave interference pattern is periodic with half the wavelength of the electric fields
of the plane waves of which the interference pattern is composed. Again, a match can be
made by inspection.
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