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Polynomial L? Approximation

Relating Orthonormal Polynomials,
Gram—Schmidt Orthonormalization,
OR Factorization, Normal Equations
and Vandermonde and Hilbert Matrices

Gottlob Gienger

This didactic synthesis compares three solution methods for
polynomial L? approximation and systematically presents their
common characteristics and their close interrelations:

1. Classical Gram—Schmidt orthonormalization and Fourier
approximation in L*(a, b)
2. Linear least-squares solution via QR factorization on an
equally spaced grid in [a, b]
3. Linear least-squares solution via the normal equations
method in L?(a, b) and on an equally spaced grid in [a, b]
The first two methods are linear least-squares systems with
Vandermonde matrices V; the normal equations contain
matrices of Hilbert type H = V' V. The solutions on equally
spaced grids in [a, b] converge to the solutions in L?(a, b). All

solution characteristics and their relations are illustrated by
symbolic or numeric examples and graphs.

Definitions and Notation

Let —co < a < b < co. Consider the Hilbert space of real-valued square integrable func-
tions L2([a, b]) (or L2(a, b), for short), equipped with Lebesgue measure and scalar product

b
> @lab :=ff(x)g(x)dx (1)
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2 Gottlob Gienger

and the corresponding L?-norm

A2 001 = A > Pas) -

L? scalar products can be approximated by scalar products on discrete grids in [a, b] based
on Riemann sums and similarly for norms.

Partition the finite interval [a, b] into m € N subintervals by the points
a=& <& < <ép=b

and set
2:=1{4,i=0,1,...,m}.

Suppose that f(x) is a bounded function on [a, b]. Let x; be any point in the subinterval
&i-1 < x; < & and define the grid

X:={x,i=1,...,m}.

The Riemann sums on the partition 2 and grid X are defined by

R(f, 5, %) = 2(& g ) f), o
R(f,5) = 2(& &) fE), G)
R(f,5) = 2(&- &) @), @
M, 5) = Z(&- —fl-_nf(g" f"‘l | )

Equation (3) is called the left-hand Riemann sum, (4) the right-hand Riemann sum and (5)
the (composite) midpoint rule.

For an equally spaced partition, the step size is

b-a
h = =§i—§i_1,i:1,...,m.
m

The m + 1 equally spaced partition points are
&i=a+hii=0,1,...,mé& =a, &, =),

and the equally spaced grid of length m (excluding the endpoint b) is

b—-a

grid(a, b, m) := {a+ i,i:O,l,...,m—l}.

m

It is also possible to use the grid points or grid shifted by an amount s &, where 0 < s < 1
sothat0 <sh < h,as

Xigg :=X;+sh,i=0,1,...,m—1.
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Polynomial L? Approximation 3

Let
G = grid(a, b, m, s) := grid(a, b, m) + s h. (6)

For equally spaced grids, the Riemann sums simplify to

m=1
R(f,G) = h Y flxisy). 0
i=0

Setting s =0, s =1/2 and s = 1 gives the left-hand Riemann sum, the composite mid-
point rule and the right-hand Riemann sum, respectively. The error of the Riemann sums
is defined as

b
E(f,G) := f f(x)dx - R(f, G).

The set of continuous real-valued functions C[a, b] forms a dense subspace of L2(a, b),
[1], Theorem (13.21). For f, g € Cla, b], the restrictions f|; and g|s to this grid are well-
defined. Define the m-dimensional scalar product on this grid:

m—1
(.86 = R G) = ) flxivy) 8lxiss). ®)
i=0

The m-dimensional 2-norm is

Wl2.6 == > g -

The factor & = (b — a) / m ensures that the norms of constant functions agree:

(L, Digpy =1, )g =b—a.
Denote the linear space of polynomials with real coefficients of degree at most n — 1 by
I1,,_, and define the polynomial p € I1,,_; by

n—1
p(co, C1, +*, Cpo1, X) 1= ZC/'X]-
£

~

The polynomial can be written as a scalar product (or dot product) of two n-tuples, the
monomials up to degree n — 1 and the n coefficients:

p(co, c1, oy Cpmt, x) = (1,2, -, X7 < (co, €1, o, Cami)
Introducing the 1 X n Vandermonde matrix

V(n,x): R* - I1,_;,
V(n, x) := (1x---x"1), 9

every polynomial of degree n — 1 can be written as the product of a matrix and a vector as

€0
) n—1
V(n,x)c:(lx---x”‘l) .| =) ¥ =plco, cr, ey cmts X).
: =
Cn-1
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4 Gottlob Gienger

The product of a 1 X n matrix and an n-vector is regarded as a 1-vector, not a scalar, as in
Mathematica.

Restricting the Vandermonde matrix to the interval [a, b] gives an operator mapping into
12(a, b):

V(a,b,n,x): R* - L*(a, b),

V(Cl, b, n, X) = V(l’l, X |[a,b])- (10)

Whereas V(n, x) is an unbounded operator, V(a, b, n, x) is a bounded operator with respect
to the 2-norms on R” and L2(a, b).
The polynomial p approximates f in the L2-norm, as measured by

min [|p(co, ¢+, Cp-1, %) = fOOIl2 fa - (1)
ceR”

In matrix-vector notation, this constitutes a linear least-squares problem for the coeffi-

cients (cg, €1, *+» Cpe1):
min [|V(a, b, n, x) c — fOl2ap)» (12)
ceR”
where
€o
c
C = :1 e R".
Cn—1

Now take a discrete grid
Xi={x,i=1,...,m}

and sample f on this discrete grid:
fXO ={ftx), i=1,....m}.

The polynomial p of degree n — 1 approximates f in the 2-norm on this grid as measured by
min ||p(co, 1, *++, cp1, X) = fX]2. (13)
ceR”

In matrix-vector notation, this constitutes a linear least-squares problem for the coeffi-

cients (cg, 1, ***, Cp_1):
min [[V(n, X) ¢ = fOl, (14)
ceR”

where
-1
I xp - x}

|
Vin,X):=[1, X, -, X! ]= 1 2 . e g, (15)

1 Xm ot x;’ln_l

A rectangular or square matrix of this form is called a Vandermonde matrix.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.



Polynomial L? Approximation 5

Let H;, H, be Hilbert spaces with scalar products (-, -);, (-, -), and let A: H; - H, be
a bounded linear operator defined everywhere on H. Then the adjoint operator A* of A is
defined by the identity ([2], p. 196, Definition 1)

A*  Hy > Hy,
(x,A*y); :=(Ax,y ) forallx € H,,y € H,.

For Hilbert spaces H;, H, over the reals, one writes A" instead of A*.

(16)

B Theorems and Properties for Later Use

o Simple Quadrature Formula
All Riemann sums integrate constant functions exactly on any grid, since
m b
RUEX)= Y6601 = 6a-bo=b-a= [ lax
i=1 a

If f is bounded on
integral. Consult [3

a, b] and continuous except for finitely many points, it has a Riemann
, Chapter 2, for proofs and further references on quadrature formulas.

[
]
Theorem 1

If f' (x) exists and is bounded and integrable over [a, b], then the errors of the right-
hand Riemann sums satisfy

b
lim m E(f, grid(a, b, m, 1)) = Ta[f(a) - f(b)]. (17)

A similar result holds for the left-hand Riemann sums (with s = 0).

If f € C?[a, b], the error term of the elementary midpoint formula is given in [3], (2.6.5):

a+h h 1
f f(x)dx—hf(a+—)=—h3f”(§),a<§<a+h. (18)
a 2 24
Therefore the error of the composite midpoint formula can be bounded by
\E(f. grid(a, b, m. 1/ )] < — > max |f" (€)] = —— k? max |f" (€) (19)
, grid(a, b, m, < — h° max |f" = max |f" .
(/. grid(@. b, m 24 [a.b] fr € 24 [a.b] /e

o Convergence of Discrete to L2 Scalar Products

By Theorem 1, for functions f, g € C'[a,b] and s =0, 1, the discrete scalar product
(f> &)arid(abms) converges at least as fast as m~! to the L? scalar product:

J(a) gla) - f(b) g(b)
(f’ g)[a,b] = <f’ g)grid(a,b,m,s) +h = <fv g)grid(a,b,m,s) + O(m_l),

2
s=0,1.
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By equation (19), for functions f, g € C?[a, b], the discrete scalar product (f, &) grid(abym,1/2)
converges at least as fast as m~2 to the L? scalar product:

(s ap) = {f+ & erid(@pm,1/2) + constant B2 = (f, Qeridapm1/2) + O(m2).

Singular Value Decomposition

See [4], sections 2.4 and 2.6.
Theorem 2

If A is a real m X n matrix, then there exist orthogonal matrices

U=[u;, -, up]€R™andV =[v{, -+, v, ] € RP>"
such that
U'AV =X =diag(oy, -, 0p)€R™" p=min(m,n),

where oy = --- =2 0, 2 0.
The equivalence
U'AV=2=A=UZV'

is called the full singular value decomposition (SVD).

Matrix Properties from SVD

AT=VETU", A"A=VEZ U ULV = VI ZV". (20)
Define r to be the index of the last positive singular value

01 = 20;,>0p4 ==0,=0.
Then

rank(A) = rank(X) = r, rank(A") = rank(Z") = r,

rank(A" A) = rank(S' %) = r. 2D

The condition number of a rectangular matrix A with full column rank with respect to the
2-norm (in short, the 2-condition number) is defined as the quotient of its largest to its
smallest singular value ([4], equation (2.6.5)):

Omax(A)
Ky (A) := . (22)
O_min(A)
By equation (20), the 2-condition number has the properties
K2(AT) = Ka(A), (23)
k(AT A) = K (A)°. 24)
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Polynomial L? Approximation 7

If A is an invertible n X n matrix, oy = --- = 0, > 0. The SVD of A~! is obtained from the
SVD of A as

Al =Vvdiag(1l/o,, -, 1/op)U", (25)
k(A1) = Ka(A). (26)
If Q is a real m X n matrix with orthonormal columns [g;, -+, g, € R™"], it can be com-

pleted to an orthogonal matrix U = [q1, -+, qn, Ups1, ***» Um] € R™_ Therefore the SVD
of Qis

0= WU luxn luxn'). 27
The 2-condition number of Q is
k2(Q) = 1. (28)

o Adjoint Linear Operators

See [2], sections VII.1 and VII.2.
Theorem 3

If A:Hy > H, is a bounded linear operator, defined everywhere on H;, then
A H, —» H, is a bounded linear operator defined everywhere on H, and ||A|| = ||A*||.

o Finite-Dimensional Linear Operators
For H; = R” and a subset {¢1, ..., ¢,} C H>, linear combinations from the subset define a
finite-dimensional linear operator

®:R" > H,,
dc:= Z:;l:l Cj (]5]

Obviously, rank(®) < n and rank(®) = » if and only if {¢, ..., ¢,} is linearly independent.

(29)

® is bounded and has the matrix representation

1
Oc = (¢ ¢n)[ ]

Cn

Apply the definition of the adjoint operator ®* and notice that the first scalar product is
that of R”, {c, d )gp» = ¢ " d; then

" (@ ) ={c, D" fHrn = (Dc, ) = ch (@j, la=c"

J=1

<¢1’f>2
: forall c € R",

<¢n’f>2
f € 7‘{2.
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8 Gottlob Gienger

Therefore the adjoint operator ®* is
o H, -» R”,
(D*fz[@l,sﬂz]’ (30)
(@n, )2
and rank(®*) = rank(®).
Substituting f = ® ¢ into the preceding equation gives the representation of ®* ® as an
n X n matrix (note the scalar products are taken in H>):

o P:R” - R7,

@1,01)2 ... (P1,0n)2
q)*q):[ : . : J (31)

Gua b2 e (B b0

Here ®* ® is Hermitian positive semidefinite if H, is over the complex numbers, and sym-
metric positive semidefinite if H, is over the reals, and

rank(®* @) = rank(®).

o Properties of Vandermonde Matrices

A polynomial of degree n has at most n distinct zeros, therefore the set of monomials
{1, x, ---, x""1} is a linearly independent subset of L2(a, b) and
rank(V(a, b, n, x)") =

rank(V(a, b, n, x)" V(a, b, n, x)) = rank(V(a, b, n, x)) = n. (32)

By [5], the determinant of the n X n Vandermonde matrix is the product

-1
1 x; - xf
n—1 n
1 oxy - X l_l(x‘ _x)
Lo : : - l j/
H : : i
1 x xn—l >
n n

Therefore, the rectangular m X n Vandermonde matrix (15) has full rank » = max(m, n) if
and only if the points x; are pairwise disjoint.
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Polynomial L? Approximation 9

® Mathematica Definitions for Polynomial L?> Approximation

Names are chosen according to previous notation and terminology.

This defines the 2-condition number.

ConditionNumber2[mat_?MatrixQ] :=
With[{oc = SingularValueList[mat]}, First[o] / Last[o]]

This defines symbolic integration with time constrained to 10 seconds.

sIntegrate[f_, a_, b_] :=
TimeConstrained[Integrate[f[x], {x, a, b},
Assumptions » a <b], 10] /; Not [NumericQ[a] && NumericQ[b]]

This defines numerical integration.

nIntegrate[f_, a_, b_] :=
Module[ {x, symbint, resint},
symbint = TimeConstrained[Integrate[f[x], {x, a, b}],
5 (*Secondsx*) ];

If [symbint === $Aborted | | Head[symbint] === Integrate | |
Head[symbint] === List &&
Head[First[symbint]] === Integrate,

resint = NIntegrate[f[x], {x, a, b}], resint = symbint];
resint] /; NumericQ[a] && NumericQ[b]

The function wIntegrate (which is Listable) first attempts symbolic integration; if
that is unsuccessful or takes too long, it performs numerical integration.

wIntegrate[f_, a_, b_] :=
Simplify[If[NumericQ[a] && NumericQ[b], nIntegrate[f, a, b],
sIntegrate[f, a, b]], a < b]

This defines the scalar product in L%(a, b).

scalarproductL2[f_, g_, a_, b_] :=
wIntegrate[f[#] g[#] &, a, b]

Since scalarproductL? is listable in £ and g, it also implements the adjoint operator
for a set of functions according to equation (32).

This defines the norm in L2(a, b).
normL2[f , a_, b_] := Sqrt[scalarproductL2[f, £, a, b]]
This defines functions for discrete grids.

stepsizeh[a_, b_, m_?IntegerQ /;m>0] := (b-a)/m

grid[a_, b_, m_, s_:0] :=
If[0<s <1,
Simplify[a + stepsizeh[a, b, m] (Range[0, m-1] +s)], {}]

riemannsum[f_, a_, b_, m_, s_: 0] :=
stepsizeh[a, b, m] Total[Map[f, grid[a, b, m, s]]]
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scalarproductgrid[f , g ,a_, b_, m_, s_:0] :=
riemannsum[f[#] g[#] &, a, b, m, s]

norm2grid[f_, a_, b_, m_, s_: 0] :=
Sqgrt[scalarproductgrid[f, £, a, b, m, s]]

If a,b or s is a machine number, the functions grid, riemannsum, scalarprod-
uctgrid and norm2grid return machine numbers.

This defines the functions monomials, polynomial, vandermonde and vander
mondegrid.

monomials[degree_?IntegerQ, x_] :=
x “Range[0, degree] /. Indeterminate » 1

polynomial [coefficients_?VectorQ, x_] :=
FromDigits[Reverse[coefficients], x]

vandermonde[n_, x_?AtomQ] := {monomials[n-1, x]}

vandermonde[n_, grid_?VectorQ] :=
Quiet [Outer[Power, grid, Range[0, n-1]] /. Indeterminate » 1]

vandermondegrid[n_, a_, b_, m_, s_:0] :=
vandermonde [n, grid[a, b, m, s]]

To avoid potential clashes with predefined values for the variables a, b and x, the script
letters a, b and x are used for symbolic results.

These sample functions are used in the Manipulate commands.

sin(z%" + ;—) 1. no even/odd symmetry
over the intervals [-1, 1] and [0, 1]
sin(7T x) 2. periodic, smooth and antisymmetric
sgn(x) 3. antisymmetric; discontinuous
| X 4. symmetric; discontinuous first derivative
-2x-2 X<-3
2x _;_ <x< ;_ 5. antisymmetric; discontinuous first derivative
2-2x True
% 6. antisymmetric; discontinuous second derivative
m 7. first derivative is singular at 0
| x| 32 8. second derivative is singular at 0
@SN 9. too demanding for symbolic integration
(%) 10. symbolic integration not

possible, uses numerical integration
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Polynomial L? Approximation 11

B Linear Least-Squares Solution via QR Factorization

Let m, n € N. Given a rectangular data matrix and an observation vector f,
AeR™" mz=n, and f € R, (33)
the linear least-squares (LS) problem is to find:
in ||A ¢ — fll,.
min lA ¢ = fll2 (34)

A comprehensive description of the QR factorization of an m X n matrix via Householder,
Givens, fast Givens, classical Gram—Schmidt and modified Gram—Schmidt methods is
given in [4], section 5.2. Here only the essential steps are presented.

o Principle of QR Factorization

Let Q be an orthogonal matrix. Such a matrix preserves lengths of vectors:

10zl =V 0" 0z =Vz'z =|[zll.
Given the real m X n matrix A, m = n, the goal is to construct an orthogonal m X m matrix
0 such that

A=0R,

where R is an m X n upper-triangular matrix of the form
R = ( g ) where R has n rows and there are m — n rows of zeros,
iy =0 Tin

andi?:[ :

0 - Tyn

= RHXI’L .

Obviously

rank(A) = rank(R) = rank(i?).

o Linear Least-Squares Solution by “Thin” QR Factorization
The Mathematica function QRDecomposition deviates from the full QR factorization
as follows:
A=Q"R.
Q is output as an n X m matrix. The rows of Q are orthonormal. Only the upper-triangular

n X n submatrix R is output.

Then the unique solution of the n X n upper-triangular system is straightforward:

RCQR:QJC-
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It gives the unique solution of the full-rank linear least-squares problem (34):

~—1 ~
cqr=R QOfF.
Since multiplication with an orthogonal matrix does not change the singular values, the
condition numbers do not change either:

K2(A) = K(R) = k(R). (35)
This holds in particular for the Vandermonde matrices, both in the discrete and continuous
case.

o Mathematica Definitions for QR Orthonormalization
This defines grDecompositionSolution and grPolynomialgrid.

qrDecompositionSolution[amat_?MatrixQ, rhs_?VectorQ] :=
Module[ {gqTmat, rmat, grsol},
{qTmat, rmat} = QRDecomposition[amat];
qrsol = LinearSolve[rmat, qTmat.rhs];
{Transpose[gTmat], rmat, qrsol}]

qrPolynomialgrid[f_, a_, b_, n_, x_, m_, s_: 0] :=
polynomial [
Last [grDecompositionSolution|[
vandermondegrid[n, a, b, m, s],
Map[f, grid[a, b, m, s]]1]], x]

B Classical Gram-Schmidt Orthonormalization

o Polynomial Approximation via Classical Gram—-Schmidt
Orthonormalization

Applying the classical Gram—Schmidt orthonormalization process in a pre-Hilbert space,
described in [2], p. 88 ff., to the monomials {1, x, ---, x"~1} in L2?(a, b) gives an orthonor-
mal system of n polynomials

P(a, b, n,x) :=1{pa,b,0,x),pa,b,1,x), -, pla, b,n—-1,x)} (36)
that satisfy
degree(p(a, b, j,x))=j, j=0,1,...,n—1. 37
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The Fourier coefficients of any function f € L%(a, b) with respect to this orthonormal sys-
tem are defined according to [2], p. 86, equation (1) (the dot here denotes the placeholder
for the integration argument in the scalar product):

b
fi:=<pla,b, j, ), Niap :f pla,b,j,nfnd, j=0,1,...,n-1.
a

The best L? approximation to f is given as the Fourier sum of n terms:

n=1
s = ) fipla, b, j, ).
J=0

o Mathematica Definitions for Classical Gram-Schmidt
Orthonormalization

The orthonormal system of polynomials #(a, b, n, x) is given by the function ortho-
normalP. The functions fourierCoefficient and fourierPolynomial are
also defined.

orthonormalP[a_, b_, degree_?IntegerQ, x_] :=
orthonormalP[a, b, degree, x] =
FullSimplify[Orthogonalize [monomials[degree, x],
Integrate[#1l #2, {x, a, b}, Assumptions » a < b] &,
Method -» "GramSchmidt"], a < b]

fourierCoefficient[f , a_, b_, n_] :=
scalarproductL2 [orthonormalP[a, b, n-1, #] &, £, a, b]

fourierPolynomial[f_, a_, b_, n_, x_] :=
Simplify[Dot[fourierCoefficient[f, a, b, n],
orthonormalP[a, b, n-1, x]], a<b]
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o Example Interval [-1, 1]: Fourier Approximation by Legendre
Polynomials

This defines the polynomials legendreP.

legendreP[degree_, x_] := orthonormalP[-1, 1, degree, x]

These polynomials differ from the classical Legendre polynomials LegendreP built into
Mathematica only by normalization factors.

With[{degree = 3},
TraditionalForm[Table[LegendreP[j, x], {j, O, degree}]]]

1 1
{1,x, 5(3)(2— 1), 5(52(3—3/\’)}
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Polynomial L? Approximation 15

This shows the Fourier approximation of a sample set of functions.

f | 4. symmetric; discontinuous first derivative fill M

Fourier approximation in L?(—1,1) of |x|

12 C
\ Y,
0‘8;
ol
().4}

0.2 =

. . . . . h . . . . 1 . . . . .
-10 -0.5 L 05 10

021

—— function approximation residual

approximation = 0.9375 x2+0.1875

o The Classical Gram—-Schmidt Orthonormalization Interpreted as
QR Factorization

Proposition 1

Define C(a, b, n) as the matrix of the monomial coefficients of the polynomials
#(a, b, n, x) of equation (36). Then C(a, b, n) is an invertible lower-triangular nxXn ma-

trix and
1 pa, b, 0, x)
Cabmy| T |=| P@bbY | (38)
x".‘l pla, b, n -1,%)
{Lx, -, x "} Cla, b,n)" = {p(a, b,0,x), pla, b, 1,x), -, pla,b,n—1,x)}. (39)
Proof

The Gram—Schmidt orthonormalization is an invertible linear mapping of I1,_; from
the basis of monomials to the orthonormal basis P(a, b, n, x), representable by a real n X n
matrix C(a, b, n). By (37), the matrix is lower triangular. Transposing (38) gives (39).

O
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Theorem 4

The classical Gram—Schmidt orthonormalization applied to the monomials

{1, x, .-, x*"1} is equivalent to the QR factorization of the Vandermonde operator
V(a, b, n, x) : R" - [*(a, b);

V(a,b,n,x)C(a,b,n)" = Q(a, b, n, x),
V(a,b,n,x) = Q(a, b, n,x) (Cla, b, )")™" = Q(a, b, n, x) R(a, b, n),
where Q(a, b, n, x) is the n-dimensional operator with orthonormal columns
Q(a, b, n,x):L*(a, b) » R",
Qa,b,n,x) := (pla,b,0,x),pa,b,1,x), -, pla, b,n—1,x)).
Proof

This follows from Proposition 1 by interpreting matrices as operators.
O

For this QR factorization, the inverse of the upper-triangular n X n matrix R is already cal-
culated by the Gram—Schmidt process:

R(a,b,n)"" = C(a, b, n)".

Equations (26), (28) and (35) give the relations on the 2-condition numbers of the opera-
tors or matrices:

Corollary 1
k(Q(a,b,n,x) =1,
ko(V(a, b, n, x)) = ko(C(a, b, n)) = k2(R(a, b, n)).

The numerical instability of the classical Gram—Schmidt process in machine arithmetic is
discussed in [4], section 5.2.8. However, since the Gram—Schmidt orthonormalization of
the monomials with respect to the scalar product (f, g);,5) can be performed by symbolic
calculations, numerical algorithm stability is not an issue here, contrary to the m-dimen-
sional scalar product {f, &) erid(abm.s)-
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o Mathematica Definitions: Gram-Schmidt Orthonormalization as
QR Factorization

This defines the Gram—Schmidt coefficient matrix C(a, b, n).
gramschmidtC[a_, b_, n_] :=
Simplify|[
PadRight [CoefficientList[orthonormalP[a, b, n-1, x], x],
{n, n}], a<b]

This defines the lower- and upper-triangular matrices of QR decomposition.

gramschmidtL[a_, b_, n_] :=
FullSimplify[Inverse[gramschmidtC[a, b, n]], a<b]

gramschmidtR[a_, b_, n_] := Transpose[gramschmidtL[a, b, n]]
This defines the orthogonal matrix Q (a, b, n, x).

orthonormalQ[a_, b_, n_, x_] := {orthonormalP[a, b, n-1, x]}

o lllustrating Proposition 1 and Theorem 4 for an Arbitrary Interval
Here is a set of orthonormal polynomials (n = 3, degree = n—1 = 2).

orthonormalP[a, b, 2, x]

{ 1 3 (a+b-2x) \/5—(a2+4ab+b2—6(a+b)x+6x2)}
Voarb  (carp)3? ] (-a+b)3/?

This gives the Gram—Schmidt coefficient matrix C(a, b, n), with n = 3.

gramschmidtC[a, b, 3] // MatrixForm

0 0
3 (a+b) 23
- - , 0
(-a+b)3/2 (-a+b)3/2
\/? (a2+4 ab+b2> _ 6 \/5_ (a+b) 6 \/?
(—a+b)5’/2 (—a+b)5’/2 (—a+b)5/2
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Multiply the matrix of monomials from the right or left.

Simplify[gramschmidtC[a, b, 3] .monomials[2, x]]

4 I
\V—a+b (~a+bp)32 (~a+b)°2

{ 1 V3 (a+bh-2x) \/?(a2+4ab+b276ax76b»<+6x2)}

Simplify[monomials[2, x].Transpose[gramschmidtC[a, b, 3]]]

4 4

{ 1 V3 (a+bh-2x) \/?(a2+4ab+b2—6ax—6bx+6x2)}
\V-a+b (-a+b)3/? (-a+b)>'?
This reproduces orthogonal matrix Q (a, b, n, x).

MatrixForm[orthonormalQ[a, b, 3, x]]

1 V3 (a+b-2x) /5 (aP+dabib?-6 (a+h) x+6 %)

b (—a+b)3/? (-a+b)5/2

By construction, the polynomials contained in the matrix columns are orthonormal with
respect to the scalar product in L?(a, b).

MatrixForm|[
Simplify[
wIntegrate|
Function[x, Transpose[orthonormalQ[a, b, 3, x]].
orthonormalQfa, b, 3, x]], a, b]]1]

010

[100
0 01
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This verifies the QR decomposition V(a, b, n, x) = Q(a, b, n, x) R(a, b, n), as in Theorem 4.

With[
{n =23},
TraditionalForm@Column [
Riffle[
Map [MatrixForm,
{
vandermonde[n, x],
orthonormalQ[a, b, n, x],
gramschmidtR[a, b, n],
Simplify[orthonormalQ[a, b, n, x].
gramschmidtR[a, b, n]]

(1 x x?)

1 V3 @b2x) V5 (@6x(@rb)+dab+b’+6 )
ba (b-a)? b-a)?

Vb-a sVb-a @a+b) ;Vb-a (@+ab+P?)

0 (b-a)? (b-a)*? (a+b)
2V3 2V3
5/2
0 0 i i
6V5
( 1 x x2 )

With[{n = 3},
vandermonde[n, x] ==

Simplify[orthonormalQ[a, b, n, x].gramschmidtR[a, b, n]]

True
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o Correspondence between Gram—-Schmidt Orthonormalization
and QR Factorization Interpretation

Select one of the sample functions and compare the results from the Gram—Schmidt
orthonormalization and QR factorization interpretation.

f 1. no even/odd symmetry over the intervals [-1, 1] and [0, 1]

o7 ]l

L (2rx 1
sm(—+ 7)
3 3

Gram-Schmidt orthogonalization
and Fourier approximation

QR factorization interpretation
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orthonormal polynomials in L3(-1., 1): Q-1.,1,1, %)=
{0.707107} {0.707107}
Fourier coefficients of f: Q-1.,1,1,x)"f=
{0.191334} {0.191334}

{0.135294}

coefficients with respect to monomials:

R=1, 1, 1) Q=1 1,1, %) f=
{0.135294}

Fourier approximation to f:
0.135294

QR polynomial:
0.135294
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o Examples: Condition Numbers of Vandermonde Matrices

For the continuous case, because Q(a, b, n, x)" Q(a, b, n, x) = 1,x,, the singular values of
V(a, b, n, x) equal the singular values of R(a, b, n).

Wwith[{a=0, b=1},
Table[SingularValueList [N[gramschmidtR[a, b, n]]],
{n, 5}] // TableForm]

1.
1.12587 0.256401

1.18673 0.349753 0.0518396

1.22483 0.411268 0.082087 0.00983373

1.25182 0.456655 0.106806 0.0174899 0.00181326

With[{a=0, b=1},
Table[ConditionNumber2 [N[gramschmidtR[a, b, n]]], {n, 8}]]

{1., 4.39107, 22.8923, 124.554,
690.367, 3866.66, 21802.9, 123522.}

Here is the case of a discrete grid.

With[{a=0, b=1, m=10, s=1.},
Table[SingularValuelList [N[vandermondegrid[n, a, b, m, s]]],
{n, 5}] // TableForm]

3.16228

3.63679 0.789785

3.88628 1.12125 0.151463

4.05784 1.35331 0.251982 0.026508

4.19169 1.53348 0.338647 0.0499783 0.00432751

With[{a=0, b=1, m=10, s=1.},
Table[ConditionNumber2 [N[vandermondegrid[n, a, b, m, s]]],
{n, 8}]]

{1., 4.60479, 25.6582, 153.08,
968.615, 6561.32, 48523.3, 404846.}
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o Example Interval [0, 1]: Relation to Hilbert Matrices

Obviously, gramschmidtL[0, 1, n] is the lower-triangular Cholesky factor of the
HilbertMatrix[n].

matrices0l = Module[
{n=4, gsol},
gs0l = gramschmidtL[0, 1, n];
{gs01, gsO0l.Transpose[gs01], HilbertMatrix[n],
Transpose [CholeskyDecomposition[HilbertMatrix[n]]]}];

Map [MatrixForm, matrices01]

1 0 0 0 1 L L1
1 1 2 3 a4
= 0 0
2 243 11 1 1
2 3 4 5
1 1 1
{ 3 2v3 645 0 ! 1111 !
3 4 5 6
1 343 1 1 11 1 1
4 20 4+/5 204/7 4 5 6 17
; L 11 1 0 0 0
2 3 4 1 1
1111 2 25 0 0
2 3 4 5
1 1 1
111 1|y NG 0 }
3 4 5 6
1 1 1 1 1 343 1 1
4 5 6 17 4 20 44/5 20+/7

Consequently, the 2-condition number of the Vandermonde matrix of size n on [0, 1] is
the square root of the 2-condition number of HilbertMatrix[n].

Map [ConditionNumber2, N[matrices01]]

{124.554, 15513.7, 15513.7, 124.554}
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B Summary of Results for Orthogonalization Methods

This gives summary results.

f | 4. symmetric; discontinuous first derivative

o o]ef7 ]

Gram—Schmidt Orthonormalization Methods

Vandermonde | orthogonal upper-triangular | right-hand || plots
matrix V matrix Q matrix R side
f(X) = | x|
—— function
approximation Vandermonde |orthogonal approximation
space matrix V matrix Q residual
2-condition 2-condition 2-norm
number number residual
2, +h2+6 X2-6 (a+
L2(a, b) (1 x «2) 1 s ey 5 (Earentioroen not shown
o (b-a)/2 (b-a)?
N/A N/A N/A
0.9375 4% +0.1875
12
\ I
cenn (e ) (F B ;(3x2_1)) \ .
2 K
-0 05 o3¢
3.75889 1 0.102062
—2.38781 x 10715 42 + 1..x — 5.0899 x 10716
10
038
06
L%0, 1) (1 x2) {1 3 @x-1) 5 Gx-1x+1) -
02
Y02 04 06 08 10
22.8923 1 1.48649 x 1071°
real-valued
functions on
grid
lL.x+0.
10
0.1 1. 04 0.01)\|(-0.447214  -0.632456  0.534522 08 o
0.3 1. 0.3 0.09 -0.447214 -0.316228 -0.267261 06 .
0.5 1. 05 0.25 —0.447214 6.09362x 1077 -0.534522 0'4 o
0.7 1. 0.7 049 -0.447214 0.316228 -0.267261 ’ .
0.9 1. 09 081/ |\-0447214 0632456  0.534522 02¢ |
Y02 04 06 08 10
25.4183 1 0.
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o Characterizing Orthogonalization Solutions
1. The system matrix V is a Vandermonde matrix of dimension 1 X n in the continu-
ous setting and m X n in the discrete setting.

2. V has full rank in the continuous and discrete settings.

3. The discrete case is solved by the QR factorization of V,,x, into an orthogonal matrix
Omxn and an upper-triangular matrix R,x;,.

4. In the continuous case, the Gram—Schmidt orthonormalization applied to the mono-
mials in L?(a, b) reads in matrix vector notation as {1, x, ---,x" 1} C(a, b,n)" =
{p(as b’ 0’x)9p(a9 bv 1’-x)a “.’p(as b’n_ 1’x)}'

5. This is reformulated as QR factorization of the 1 xn Vandermonde matrix:
Via,b,n,x) = (1 x---x"1) = O(a, b, n, x) R(a, b, n).

6. Consequently, the 2-condition number of V(a, b, n, x) equals the 2-condition num-
ber of the n X n upper-triangular matrix R(a, b, n):

a. For intervals symmetric around zero, [—b, b], the columns of V(-b, b, n, x) are
alternating orthogonal. Therefore the 2-condition number is much smaller than
for [0, b].

b. The minimum condition number is achieved for interval [—1, 1].

c. Therefore, to obtain the most precise numeric results, the approximation inter-
val [a, b] should be linearly mapped onto [—1, 1].

d. V(a, b, n, x) is well-conditioned (i.e. less than about 10,000) for the interval
[0,1]and n < 6.

e. V(a, b, n, x) is ill-conditioned for the interval [0, 1], n > 6, and generally for
intervals [a, a+ 1],a > 0.

m The Normal Equations Method

o The Normal Equations Method for Finite Dimensions

The approach for deriving the normal equations for the m X n least-squares problem (34)
is described in [4], section 5.3, for example. Define

1
o(c) = E(Ac—f,Ac—f),

Vo(c) =AT(Ac—f).
A necessary condition for a minimum is V¢ (c¢) = 0, or equivalently,

ATAc=A"f. (40)
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These are called the normal equations. The minimum is unique if the n X n Hessian ma-
trix H := AT A has full rank n. Then there is a unique solution ¢y g of the linear least-
squares problem (34) or (40):

cis = (ATA) AT F 41)

For an equally spaced grid(a, b, m, s), defined as in equation (5), the m X n Vandermonde

matrix V(grid(a, b, m, s), n) has full rank, so the Hessian matrix for polynomial approxima-

tion has full rank as well.

If A is rank deficient (rank (A) < min (m, n)), then there are an infinite number of solutions
to the least-squares problem. There is still a unique solution with minimum 2-norm, which
can be written with the pseudo-inverse matrix ([4], section 5.5):

cs = AT f.
For full rank, A* = (A" A)~! A",

The Normal Equations Algorithm for the m x n Case
Suppose A € R™" with rank(A) = n (see [4] section 5.3.1). Then this algorithm computes
the unique solution c to the linear least-squares problem (34):

e Compute the lower-triangular portion of C = AT A.

e Compute d = A" f.

e Compute the Cholesky factorization C = LL" (or C = U" U via CholeskyDe"
composition).

o Solve the triangular systems Ly =dand L"c=y(or U'y =dand Uc = y).

The Normal Equations Method on L2(a, b)

The approach for deriving the normal equations for the m X n case applies with one modifi-
cation to the continuous least-squares approximation equation (12) (see [6]):

1
o(c) = 5 Va,b,n,x)c—f,V(a,b,n,x)c— ap-
The matrix transpose AT:R™ — R” has to be replaced by the adjoint operator
V(a, b, n, x)": L%(a, b) - R™:
Vo(c) = V(a, b,n,x)" V(a, b, n,x)c—f).
A necessary condition for a minimum is V¢(c) = 0, or equivalently,

Via,b,n,x)"V(a,b,n,x)c =V(a,b,n,x)" f. 42)

25
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26 Gottlob Gienger

These are called the normal equations.
H(a,b,n) :=V(a,b,n,x)" V(a, b, n, x) (43)

is called the n x n Hessian matrix. The minimum is unique if H(a, b, n) has full rank n.
The elements can be calculated via equation (31):

b piti-1 _ gi+i-1
H(a, b, n);; = (x'=1, ¥ = f Xt 2dy = ——— i, j=1,...,n,
ij < >[a,b] ; i+i-1
-1
(L Dy (LXpapy - (12 >[a’h]
x, Dap X, Djapy - (x, x”_1>[a’b]

H(a,b,n) :=

<xn—1 > 1>[a,b] <xn_l > x>[a,b] "' <xn_1 ’ X! >[a»b]

Obviously, the Hessian matrix is symmetric and positive semidefinite. Since V(a, b, n, x)
has full rank for any nonzero interval [a, b], then V(a, b, n, x)* V(a, b, n, x) has full rank n
(as well by equation (32)) and is therefore positive definite. Then there exists a unique solu-
tion c g of equations (42) and (12).

Finally, calculate the elements on the right-hand side of V(a, b, n, x)" f via equation (30):

b
(V(a,b,n,x)" f); = <xi‘1,f>[a’b] = f X fx)dx, i=1,...,n.

o Convergence of Discrete Approximations to Continuous
Approximations

This subsection investigates under which conditions and how fast the polynomial approxi-
mations on discrete grids converge to the continuous polynomial approximation in L2(a, b).

For an equally spaced X := grid(a, b, m, s), the normal equations, multiplied by the step
size h = (b—a)/m,read

AV, X)"Vin,X)c = hVn, X)' f(X). 44)
Define
H(a,b,n,m,s) := -4 V(n, X)' V(n, X); 45)
m

then by equation (7), the matrix elements of H(a, b, m, n, s) are just the Riemann sums for
the matrix elements (integrals) of H(a, b, n). Therefore, the Hessian matrices on the dis-
crete grid converge to the continuous Hessian matrix in any matrix norm according to:

lim ”H(Cl, b’ n) _H(a’ b’ n,m, S)” =

m—o0

{ O(m‘l) for Riemann sums,

O(m‘z) for the composite midpoint rule.
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Define

b _
ths(a, b, n, m, s) := . Vin, X)" f(X); (46)
m

then by equation (7), the elements of rhs(a, b, n, m, s) are just the Riemann sums for the
elements of V(x, a, b, n)" f, the moments of f. Therefore, the right-hand side of the normal
equations on the discrete grid converge to the right-hand side of the continuous normal
equations in any vector norm according to:

lim ”V(Cl, b’ n, x)Tf_ rhs(aa ba n,m, S)” =
m—-o00
O(m~') for Riemann sums and f € C'[a, b], 47)
O(m~2) for the composite midpoint rule and f € C?[a, b].
Proposition 2

The polynomial approximations on the discrete grids converge to the continuous poly-
nomial approximation with the same order as the Riemann sums.

Proof
From equation (42), the solution of the polynomial approximation in L%(a, b) is
Clap) = H(a, b, n)~' Via, b, n,x)" f.
From equation (44), the solution for the discrete grid is
cs = H(a,b,n,m,s)"' ths(a, b, n,m, s). (48)
For the matrix inverses

lim ||H (a, b, )™ — H(a, b, n,m, s)™"|| =

m—o00
{ O(m‘l) for Riemann sums,

O(m‘z) for the composite midpoint rule.
Expanding the difference of the solution coefficient vectors completes the proof:

Clap) —CLs = [H(a, b,n)™ —H(a, b, n,m,s)”"| V(a, b, n,x)" f +
H(a,b,n,m,s)"'[V(a, b,n,x)" f—ths(a, b, n, m, s)].
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o The Relation of the Normal Equations Method to Gram—-Schmidt
Orthonormalization on L2(a, b)

Theorem 5

The n xn Hessian matrix of the normal equations on L*(a, b) is related to the lower-trian-
gular Gram—Schmidt coefficient matrix C(a, b, n) from Proposition 1 and the upper-trian-
gular matrix R (a, b, n) from Theorem 4 by

H(a,b,n) = C(a,b,n)™" (C(a, b,m)™")" = R(a, b, n)" R(a, b, n).

Equivalently, C(a, b, n)™! is the lower-triangular Cholesky factor and R (a, b, n) the upper-
triangular Cholesky factor of the symmetric positive-definite Hessian matrix of the normal
equations method.

Proof
From Theorem 4 and because Q(a, b, n, x)" O(a, b, n, x) = 1,x,,
H(a,b,n) =V(a,b,n,x)"V(a, b,n,x) =
Cla,b,n)™' Q(a, b,n,x)" Qa, b, n,x)(C(a,b,n)")" =
C(a, b,n)™" (C(a, b, m)™")" = R(a, b, n)" R(a, b, n).

By [4], Theorem 4.2.7, the Cholesky decomposition of a symmetric positive-definite
square matrix is unique.

O
Equations (24) and (26) give the relation for the 2-condition numbers of the matrices.

Corollary 2
ka(H(a, b, n)) = ko(C(a, b, n))* = ka(R(a, b, n))?.

o Definitions to Solve Normal Equations
This defines the continuous and discrete Hessian matrices.

hessian[a_, b_, n_] :=
Simplify[
wIntegrate|
Function[x, Outer[Times, monomials[n-1, x],
monomials[n-1, x]]], a, b], a<b]

hessiangrid[a_, b_, n_, m_, s_: 0] :=
stepsizeh[a, b, m] With[{v = vandermondegrid[n, a, b, m, s]},
Transpose|[v] .Vv]
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These are the right-hand sides of the continuous and discrete normal equations.

normalrhs[f_, a_, b_, n_] :=
scalarproductL2 [monomials[n-1, #] &, £, a, b]

normalrhsgrid[f , a_, b_, n_, m_, s_:0] :=
stepsizeh[a, b, m] With[{gr = grid[a, b, m, s]},
Transpose [vandermonde[n, gr]] .Map[f, gr]]

This gives the solution of the normal equations system.

normalDecompositionSolution[ata_?MatrixQ, rhs_?VectorQ] :=
Module[
{umat, y, normalcoeff},
umat = Simplify[CholeskyDecomposition[ata]];
y = Simplify[LinearSolve[Transpose[umat], rhs]];
normalcoeff = Simplify[LinearSolve[umat, y]];
{umat, normalcoeff}

]

This gives the approximation polynomials for the continuous and discrete cases.

normalPolynomial[f_, a_, b_, n_, x_] :=
Simplify[
polynomial [
Last [normalDecompositionSolution[hessian[a, b, n],
normalrhs[f, a, b, n]]], x], a<b]

normalPolynomialgrid[f ,a ,b_,n_, x ,m_, s _:0] :=
polynomial [
Last [normalDecompositionSolution|[
hessiangrid[a, b, n, m, s],
normalrhsgrid[f, a, b, n, m, s]]], x]
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o lllustrating Theorem 4 for the General Interval [a, b]

This gives the Gram—Schmidt coefficient matrix, its inverse and inverse transpose.

With[{n =3},
TraditionalForme
Column [
Riffle[Map[MatrixForm,
{gramschmidtC[a, b, n], gramschmidtL[ae, b, n],
gramschmidtR[a, b, n]}], ""11]

1
0 0
Vb-a
_ V3 (@th) 243 0
(b-a)*? (b-a)*?

V5 (@+4ab+l?)  6V5 @th) 65

(b—a)? (b-a)>? (b-a)>?

Vb-a 0 0

‘Vb-a @+b —(Z‘\/)T/ 0
I 2 2\ -0l @+h)  (b-0)?
ng—a(a +ab+b) e =
-a ~Vb-a (@a+bh) -Vb-a (a*+ab+
Vb-a Vb-a@+b) Vb-a (@+ab+P?
0 (b—a)’? (b—a)’? (a+b)
2V3 2V3
0 0 e
6V5

The matrix gramschmidtL[a, b, n] times its transpose equals the Hessian matrix of
the normal equations.

Module[{n = 3, gsL, hess},

gsL = gramschmidtL[a, b, n];

hess = hessian[a, b, n];

TraditionalForme@

Column [
Riffle[Map[MatrixForm,
{FullSimplify[gsL.Transpose[gsL]], hess,
Simplify[gsL.Transpose[gsL] -hess]}], ""111]
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b-a ;—(b—a)(a+b) ;—(b3—a3)
Sh-a@+b)  (BP-a) (b -a)
L ea)  Hpea) L)
b—a ;—(bz—az) ;—(b3—a3)
1 1 1
;P -a) (B -a) (v -at)
1 1 1
s -a) st -at) (¥ -a)
00O
000
000
Equivalently, gramschmidtL[a, b, n] is the lower-triangular and gram-

schmidtR[a, b, n] is the upper-triangular Cholesky factor of the Hessian matrix

H(a, b, n).

Module[{n = 3, gsR, umat},
gsR = gramschmidtR[a, b, n];
umat = FullSimplify[CholeskyDecomposition[hessian[a, b, n]],
a<bl;
TraditionalForme
Column [
Riffle[Map[MatrixForm,
{gsR, umat, Simplify[gsR-umat, a<b]}], ""]111]

Vb-a Nb-a @+b) Vb-a (@+ab+P?)
0 (b—a)*? (b—a)*? (a+b)
243 2v3
0 0 (boay?
6vV5
h—a p—g? P
2V b-a 3V b-a
0 (b—a)’>  (b—-a)*? (a+b)
243 23
0 (b-a)’?
65
000
000
000
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o Special Case: The Interval [0, 1] for Hilbert Matrices

For [a, b] = [0, 1], the Hessian matrix H(a, b, n) is identical to the Hilbert matrix H, of
dimension n X n:

1
HO, 1,n)ij=Hypij=—"—,i,j=1,....n,
1+

1 1/2 ... 1/(n-1)
H, = 1{2 1{3 l{n
1/(n=1) 1/n ... 1/2n-1)

With[{n = 3}, {MatrixForm[hessian[0, 1, n]],
MatrixForm[HilbertMatrix[n]]}]

——
WlEN|= =
B Wk N
UlR &P W
~
WlEN|= =
B Wk N
R P W
——

Hilbert matrices are ill-conditioned already for dimensions n = 4 (i.e. have condition num-
bers greater than about 10,000) and soon reach the limits of 64-bit IEEE arithmetic.

Table[SingularValueList [N[HilbertMatrix[n]]], {n, 5}] //

TableForm
1.
1.26759 0.0657415
1.40832 0.122327 0.00268734
1.50021 0.169141 0.00673827 0.0000967023
1.56705 0.208534 0.0114075 0.000305898 3.28793x10°°¢

Table[ConditionNumber2 [N[HilbertMatrix[n]]], {n, 8}]

{1., 19.2815, 524.057, 15513.7, 476607.,
1.49511x107, 4.75367 x 108, 1.52576x101°}
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o Summary of Results for the Normal Equations Method

Here are the summary results. It takes some time for n > 2.

Normal Equations Methods

f 4. symmetric; discontinuous first derivative
7[v 2] 4]s]
Hessian Cholesky right-hand | plots
matrix H factor U side
flx) = | x|
—— function
approximation Hessian Cholesky [right-hand approximation
space matrix H factor U side residual
2-condition | 2-condition 2-norm
number number residual
L%(a, b) (b-a) ( [b-a ) not shown | not shown
N/A N/A N/A
0.5
\ 10} /
05F
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o Characterization of the Normal Equations Solution

1.

Continuous case: The n X n Hessian matrix H(a, b, n) originates from the full-rank
Vandermonde matrix V(a, b, n,x) of the orthogonalization solutions by taking
V(a,b,n,x)" V(a, b, n, x).

. Discrete case: The nxn Hessian matrix Hyq (a, b, n,m, s) comes from the full-

rank Vandermonde matrix Vgiq(n, a, b, m, s) of the orthogonalization solutions by
taking h Vyiq(n, a, b, m, )" Vyia(n, a, b, m, s).

. Consequently,

a. H has full rank.
b. H is positive definite.

c. The 2-condition number of H is the square of the 2-condition number of the
Vandermonde matrix V. This is the root cause of the inherent ill-conditioning
of the normal equations.

. la, b] = [0, 1] gives the exact Hilbert matrix of dimension #.

. For other intervals [a, b], the Hessian matrix H(a, b, n) is close to a Hilbert matrix

(“Hilbert-type matrix”).

. Hilbert matrices and Hilbert-type matrices are very ill-conditioned already for

dimensions greater than four and return extremely inaccurate numerical solutions.

. For intervals symmetric around zero, [—b, b], H(—b, b, n) has a chessboard pattern

of zeros, since the columns of V(- b, b, n, x) are alternating orthogonal.

. The normal equations are solved by Cholesky decomposition in the continuous

and discrete settings.

B Comparison of Solution Methods

o Gram-Schmidt Orthonormalization versus Normal Equations

This performs Gram—Schmidt orthonormalization for a special case. For other cases,
change the 6 in samplefunctions[6, 1] to an integer between 1 and 10.

f1 = samplefunctions[6, 1];
£1[x]

1
— x Abs [x]
2
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fp =With[{n = 2}, fourierPolynomial[fl, a, b, n, x]]

—2(a2+4ab+b2—6ax—6bx) a<0&&b0 =<0

%(—a2—4ab—b2+6ax+6bx) 2>0&8&b0>0
5_ 23,4 _ 4 _ 3 _ 3
a’>-8a® b>+a® (b-6 x)+b* (b 6)<)+4zz3b( 2b+3 x)+a b’ (b+12 x) True

12 (a-b)

Here are the results from the normal equations.

nep = With[{n = 2}, normalPolynomial[fl, &, b, n, x]]

1

H(a2+4ab+b276ax76bx) a<0&&bH<0

1
12
a®-8a? bP+a* (b-6 x)+b* (b-6x)+4a® b (-2 b+3 x)+a b (b+12 x)

12 (a-b)3

(-a?2-4ab-b*+6ax+6bx) a>0&&0>0

True

The two solutions agree both symbolically and in exact arithmetic.

FullSimplify[fp - nep, a < b]

But there are numeric differences in IEEE 758 machine arithmetic.
With[{a=0, b=1, n=3},
Simplify[fourierPolynomial[fl, a, b, n, x] -

fourierPolynomial[fl, N@a, N@b, n, x]]]

5.68989x 10716 -3.66374x107 1% x+3.71925x 1071 42

With[{a=0, b=1, n= 3},
Simplify[fourierPolynomial[fl, a, b, n, x] -
normalPolynomial[fl, N@a, N@b, n, x]]]

7.40149x10717 - 4.44089x1071% x+4.44089 x10716 42
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These differences come from the lower error amplification expressed in a lower 2-condi-
tion number,
Module[ {cvandermonde, chessian},
with[{a=0, b=1, n=3},
cvandermonde = ConditionNumber2 [N[gramschmidtR[a, b, n]]];
chessian = ConditionNumber2 [N[hessian[a, b, n]]];
{cvandermonde, chessian, Chop[chessian - cvandermonde " 2]}

]
]

{22.8923, 524.057, 0}

The numerical solution via the Gram—-Schmidt orthonormalization solution is usually
more accurate than the normal equations solution.

o QR Factorization versus Normal Equations on an Equally
Spaced Grid

Here is the QR factorization. Again, for other cases, change the 3 in samplefunc-
tions[3, 1] to an integer between 1 and 10.

f2 = samplefunctions[3, 1];
£2[x]

Sign[x]

qrpg = With[{a=0, b=1, m=5, s=0.5, n= 3},
qgrPolynomialgrid[f2, a, b, n, x, m, s]]

1.+5.26625x 1071 x
Normal equations.

nepg = With[{a=0, b=1, m=5, s=0.5, n=3},
normalPolynomialgrid[f2, a, b, n, x, m, s]]

The difference between the numerical solutions is due to the difference in how their round-
ing errors propagate.

qrpg - nepg

-4.44089%x1071%+5.26625x 10 1% x
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Because of the lower error amplification expressed in a lower 2-condition number, the nu-
merical solution via QR factorization is more accurate than the normal equations solution.

Module[ {cvandermonde, chessian},
with[{a=0,b=1, m=5, s=0.5, n=3},
{
cvandermonde = ConditionNumber2 [
N[vandermondegrid[n, a, b, m, s]]],
chessian = ConditionNumber2 [
N[hessiangrid[a, b, n, m, s]]],
Chop[chessian - cvandermonde "~ 2]}
1
1

(25.4183, 646.092, 0}

o Convergence of the Right-Hand Sides of Normal Equations
This calculates the convergence order for grids of powers of 2.

convergenceorder [errors_?MatrixQ] := If[
Last [Dimensions[errors]] == 2,
Transpose[{errors|[[2 ;;, 1]],

-Log[2, Quiet[Ratios[errors[ ;; , 2]]111}1]
]

Choose problem parameters. Yet again, for other cases, change the 7 in samplefunc:
tions[7, 1] to an integer between 1 and 10.

£3 = samplefunctions[7, 1];
£3[x]

\/Abs [x]

Here are the approximation errors for grids of powers of 2.

errors3 = With[{a=-1, b=1], n=3, s=0.5},
Table|[
{k, Norm[normalrhs[£f3, a, b, n] -
normalrhsgrid[£f3, a, b, n, 2"k, s]]1}, {k, 0, 10}]]

({0, 1.45062}, {1, 0.232403}, {2, 0.0623052},

{3, 0.0182}, {4, 0.00574758}, {5, 0.00192125},

{6, 0.000663999}, {7, 0.000233287}, {8, 0.0000825335},
{9, 0.0000292681}, {10, 0.0000103829}}
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Here is the convergence order. To see the result for another function, select another sam-
ple function in errors3. Zero errors are suppressed.

- 12
e 41
L [ ]
0.100
E °
I [ ]
0010 L
£ °
r [ ]
0.001 L
£ °
L °
1074 & °
i L]
| | | | | 'S
0 2 4 6 8 10
k
¢ ||normalrhs(f3, a, b, n) - normalrhsgrid(f3, a, b, 2%, s, )| calculated convergence order

For case 3, all but the first two elements of errors3 are zero. For case 5, all but the first
element of errors3 are zero; therefore the logarithmic plots look incomplete.

Sample functions 3, 4, 5, 6 have discontinuities in the zeroth, first or second derivative; 7
and 8 have singularities in the first or second derivative. These sample functions and
X f(x) do not satisfy all the assumptions of Theorem 1. Therefore the convergence order
of the right-hand side can be lower than 1 (respectively 2) as predicted by equation (47).
Sample functions 1, 2, 9, 10 are infinitely often continuously differentiable; therefore they
have maximum convergence order 1 (respectively 2) according to equation (47).

o Convergence of the Normal Equations Solution

These are the approximation errors for grids of powers of 2.

f4 = samplefunctions[9, 1];
f4[x]

eSln [t x]

This takes a few minutes.

errors4 =With[{a=-1., b=1., n=3, s=0.5},
Table[{k, Max[Abs|[

Map [

normalPolynomial[f4, a, b, n, #] -
normalPolynomialgrid[f4, a, b, n, #, 2"k, s] &,

grid[a, b, 2"k, s]

1

11}, {k, 2, 6}11;
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This plots the convergence order.

42
1E -1
0.500
[ [ )
0.100 |-
0050 [
r [ )
0010 °
0.005 |
[ °
0.001 |
E 1 1 1 &
2 3 4 5 6
k
e max-norm of continuous-discrete normal equation solution, m = 2% calculated convergence order

B Relations between Solution Methods

Analyzing polynomial L? approximation, this article has systematically worked out the
close relations between the solutions obtained by:

1. Gram—Schmidt orthonormalization and Fourier approximation
2. QR factorization
3. Normal equations

The interrelations are:

1. The Gram-Schmidt orthonormalization applied to the monomials {1, x, ---, x"~1}
on [a, b] is reformulated as QR factorization of the 1 X n Vandermonde matrix
V(a,b,n,x) = (1x--x"1) |jap) = Oa, b, n, x) R(a, b, n) with the following one-
to-one correspondences.

a. The n columns of the matrix Q(a, b, n, x) are the orthonormal polynomials
on [a, b].

b. The n X n upper-triangular matrix R(a, b, n) is the transpose inverse of the coef-
ficient matrix of the orthonormal polynomials C(a, b, n).

¢. The numerical condition number of V(a, b, n, x) equals the numerical condi-
tion number of C(a, b, n) with respect to the 2-norm.

d. The elements of Q(a,b,n,x)'f are the Fourier coefficients f;, where
Q(a, b, n,x)": L*(a, b) > R"is the transpose operator.

e. The elements of ¢ =R(a,b,n)"' Q(a,b,n,x)" f are the coefficients of the
Fourier polynomial expanded into monomials.
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2. For [a, b] = [-1, 1], Gram—Schmidt orthonormalization returns scalar multiples of
the classical Legendre polynomials.

3. The n x n Hessian matrix H in the normal equations originates from the full-rank
Vandermonde matrix V of the orthogonalization solutions by taking V' V.

4. The 2-condition number of H is the square of the 2-condition number of the
Vandermonde matrix V.

5. The upper Cholesky factor of H is identical to the upper-triangular n X n matrix R
of the QR factorization of V in both the continuous and discrete cases.

6. H is identical to R™ R of the QR factorization in both the continuous and discrete
cases.

7. The QR and normal equations solutions on an equally spaced grid of m points in
the interval [a, b] converge to the solution in L%(a, b) with the same order as the
error of the quadrature formulas.

H Summary

This article has analyzed the polynomial approximation of a real-valued function f with
respect to the least-squares norm in different settings:

e [2(a,b),—c0o<a<b< o
o [2(—1,1)
e [2(0,1)
e 2-norm on an equally spaced grid of m points in the interval [a, b]
Three different solution methods for this least-squares problem have been compared:
1. The orthogonalization solutions
a. The Gram—Schmidt orthonormalization in the continuous setting
b. The matrix QR factorization in the discrete setting
2. The normal equations solution in the continuous and discrete settings
All definitions and solution methods were implemented in Mathematica 11.1.

All solution characteristics and their relations were illustrated by symbolic or numeric
examples and graphs.
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