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Rice—Rampsberger—Kassel-Marcus (RRKM) theory calculates
an energy-dependent microcanonical unimolecular rate constant
for a chemical reaction from a sum and density of vibrational
quantum states. This article demonstrates how to program the
Beyer—Swinehart direct count of the sum and density of states
for harmonic oscillators, as well as the Stein—Rabinovitch
extension for anharmonic oscillators. Microcanonical rate
constants are calculated for the decomposition of vinyl cyanide
(C3 H3z N) into HCN, HNC and HCCH as an example.

H 1. Introduction

The essential framework for our understanding of unimolecular reaction rates was
developed largely in the first half of the twentieth century [1]. The Lindemann—Hin-
shelwood mechanism, proposed in 1922 by Lindemann and later expanded upon by Hin-
shelwood [2], posited that the gas phase unimolecular reactions were initiated by
bimolecular collisions. This allowed the rate of the reaction to be calculated as a function
of internal energy, regardless of the method of activation. Later that decade, Rice and
Ramsperger and, independently, Kassel developed an improvement on the model known
as the Rice—Ramsperger—Kassel (RRK) model [3, 4]. The RRK model viewed the
molecule as a system of identical harmonic oscillators and introduced the idea of acti-
vation energy: that sufficient energy must be deposited into specific modes of motion in
order for the reaction to occur. In 1952, Rice and Marcus extended this into what is now
known as Rice—Rampsberger—Kassel-Marcus theory (RRKM), which incorporates a more
complete quantum mechanical description of the molecule and utilizes the concept of the
transition state, a specific conformation that the molecule must adopt in order for the
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reaction to proceed [5]. The RRKM model remains the prevailing scientific description of
unimolecular chemical kinetics to this day.

Chemical transformations require bonds to break in the reactants and new bonds to form as
products are generated. The potential energy associated with these transformations defines
an n-dimensional potential energy surface (PES), where n is the number of atoms [6]. The
reaction pathway is a one-dimensional cross section of the PES composed of the precursor,
intermediates, transition states and products of a particular reaction [6]. Reactants and inter-
mediates of a reaction correspond to minima, whereas transition states are located at max-
ima along the reaction pathway.

The rate of the reaction depends on the probability of the molecule adopting the conforma-
tions along the reaction pathway, which, in turn, stems from the probability that a sufficient
amount of energy is partitioned into the necessary modes of motion. The RRKM formalism
assumes that: (1) once the molecule adopts the transition state orientation, the reaction pro-
ceeds to products; and (2) the internal vibrational energy redistribution (IVR) is fast with
respect to the timescale of the reaction. Under these constraints, the RRKM microcanonical
rate constant, k(E), is given by
o NHE - Ey)
kKE)= ———, (1
h p(E)

where E is the internal energy of the system, Ey is the activation energy for the reaction,
N*(E — Ep) is the sum of states of the transition state from Ey to E, p(E) is the density of
states of the precursor at energy E, & is Planck’s constant, and o is the degeneracy of the
reaction pathway [3, 4, 5]. A state is defined as any unique vibrational configuration that
determines the internal energy of the molecule. The sum of states, N(E), is the total
number of states within a specific energy range [6]. The density of states is the number of
states per energy level. Equivalently, the density of states is the derivative of the sum of
states with respect to energy [6]. The density is expressed in units of inverse energy (E~1),
while the sum of states is a dimensionless quantity. Thus, the microcanonical rate constant
of equation (1) has units s~!.

There are 3 n— 6 vibrational frequencies for nonlinear polyatomic molecules and 3n —7
vibrational frequencies for the corresponding transition state. It is the values of these fre-
quencies, which typically range from 50-3500 cm™!, that dictate how the internal energy
is distributed in the molecule. The calculation for the sum and density of states depends
on these frequencies, which can be measured or looked up in standard data tables.
However, for transition states, these values must be estimated or, more likely, calculated
using theoretical packages.

This article is divided into the following sections: In Section 2, the sum and density of
states for vinyl cyanide (C; H3 N) are determined through a direct count method analo-
gous to that developed by Beyer and Swinehart [7]. In Section 3, the method is extended
to anharmonic oscillators using the Stein—Rabinovitch algorithm [8]. In Section 4, the
RRKM microcanonical rate constants are calculated for the unimolecular dissociation of
vinyl cyanide and are used to predict various dynamic properties of the chemical reaction.
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H 2. Direct Count for Harmonic Oscillators: The Beyer—
Swinehart Algorithm

Beyer and Swinehart (BS) developed a surprisingly simple yet computationally intensive
direct count method to calculate the sum and density of states at defined energies of a har-
monic oscillator [7]. The advantage of conducting such calculations in Mathematica is that
the user can leverage high-quality numerical ODE solvers and interactive graphical features
to visualize dynamic properties of the chemical reaction. This is demonstrated in Section 4,
where the temporal development of nine different species is plotted and automatically
updated as the user sets the internal energy of the system with a slider. All of this can be
done in real time after some initial computations that are exact with Mathematica.

There are a number of equivalent ways to implement the BS direct count of states. To ease
the exposition, we first illustrate the task with a Do loop. The sum and density of states
are determined by the vibrational frequencies of the species of interest, which we define in
the list vList. In more complex situations, such as biomolecules or reactions at very
high energies, to lessen the computational burden it may be necessary to divide the value
of the total energy into larger packets and modify the vibrational frequencies to be multi-
ples of the new packet size [8]. In this case, the packet size is 1 cm~! and the vibrational
frequencies for vinyl cyanide are taken from reference [9].

ChemicalData["VinylCyanide", "MoleculePlot"]

¢

vList = {235, 344, 570, 696, 872, 980, 1005, 1118, 1331,
1467, 1689, 2322, 3173, 3214, 3271};
nFreqs = Length[vList];
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The final result for the sum or density of states is a list with energy + 1 elements. For the
sum of states, this list is initialized with all values set to 1. The sum of states can then be
calculated using a nested (or doubly indexed) Do loop.

energy = 100000;

sumOfStates = Table[1l, energy +1];
Do [
Do [
sumOfStates[[w+ 1]] += sumOfStates[[w+1-VvList[[j]]]],
{w, VList[[j]], energy}
1,
{j, nFreqgs}
1i

Because the density of states is the derivative of the sum of states, the density of states can
also be determined from the sum of states table by setting the i element of the density of

states to the difference between the i™ and (i — 1) elements of the sum of states table. Alter-
natively and equivalently, this can be done to the initial sum of states table to derive the ini-
tial density of states table, which is a list with energy + 1 elements with the initial element
set to 1 and all other elements set to 0. This can be conveniently done with PadRight.

densityOfStates = PadRight[{1}, energy +1];
Do|[
Do[
densityOfStates[[w+1]] +=
densityOfStates[[w+1-vList[[j]]1]],
{w, vList[[j]], energy}
1,
{j, nFregs}
1;

A visual comparison of the sum and density of states, calculated for vinyl cyanide
(C3 H3 N), shows the behavior of the two quantities over the 0—100000 cm~! energy
range. As the general trend of the graphic is clear, we subsample the lists of values to
avoid plotting millions of points, needlessly increasing file size.

takeEvery[nth_] :=
Function[list,
list[ [Round@Subdivide[l, Length[list], nth]]]]
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Show[

ListLogPlot [takeEvery[2000] @sumOfStates, PlotStyle -» Red],
ListLogPlot [takeEvery[2000] @densityOfStates],
Frame - True,
FrameLabel - {"Energy (em )",
"Sum of States (unitless)\n and Density of States
(/em™) "}
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Thus, when vinyl cyanide has an internal energy of 100000 cm~!, the sum and density of
quantum states are approximately 10'7 and 104 / wavenumber.

Notice that the Do loops for computing the sum and density of states perform the same
basic process—the BS direct count method—on different initial lists. As we proceed,
adopting a functional programming approach eases the exposition and vastly improves
code clarity. We do this by introducing two new functions, bsFrequencyUpdate and
bsDirectCount. The first updates the lists of sums and densities for a single vibra-
tional frequency, and the second uses Fold to iteratively update for each of the vibra-
tional frequencies in the table.

bsFrequencyUpdate[stateList_, v_] :=
Block[{out = stateList, k},
For[k=v+1l, k <Length[out], k++, out[[k]] +=out[[k-Vv]]];
out

]

bsDirectCount [stateList_, vList_] :=
Fold[bsFrequencyUpdate, stateList, vList]
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We then use these to create the two functions bsComputeSumOfStates and bsComp -
puteDensityOfStates, which take a frequency list and total energy as arguments and
do just as their names imply. The last argument to these functions, relEnergy, is used in
Section 4.

bsComputeSumOfStates[vList_, energy_, relEnergy_: 0] :=
bsDirectCount [Table[1l, energy - relEnergy + 1], vList]

bsComputeDensityOfStates[vList_, energy_, relEnergy_: 0] :=
bsDirectCount [PadRight[{1}, energy - relEnergy + 1], vList]

For completeness, we recompute the sum and density of states using these functions to illus-
trate how that can be done. It is readily verified that these compute the same quantities.

bsSumOfStates = bsComputeSumOfStates[vList, energy];
bsDensityOfStates = bsComputeDensityOfStates[vList, energy];

B 3. Direct Count for Anharmonic Oscillators: The Stein—
Rabinovitch Extension

The harmonic oscillator model assumes that the difference between successive vibrational
energy levels remains constant. In real oscillators, this difference decreases as the vibra-
tional excitation increases. These anharmonic effects increase both the sum and density of
states and thus often cancel when taking the ratio to determine the RRKM rate constant in
equation (1). However, there are some cases where this effect does not completely cancel
or where highly resolved measurements necessitate a more accurate description of the
vibrational energy.

The Stein—Rabinovitch (SR) algorithm extends the BS method to incorporate the effects of
anharmonicity into the RRKM rate constant [8]. Following [10], the anharmonic effects
are incorporated into the energy level expression through the equation

1 1)?
E(n) = ve(n + 5) — Ve xe(n + 5) s

n=0,1,2, ...,

where E(n) is the energy of the n'" vibrational level, v, is the vibrational frequency, and x.
is the anharmonicity constant. The subscript e stands for equilibrium. It is chosen because
this would be the vibrational frequency if the oscillator vibrated harmonically about its
equilibrium position (the minimum in the well). The SR extension counts each energy
level of the anharmonic model to calculate the sum and density of states in a way that is
functionally similar to the BS method; however, the input table is modified to include the
anharmonicity constant for each vibrational mode. For this example, we have organized
the anharmonicity constants, x;, into the table xList. Using the vibrational frequencies
of vinyl cyanide from [9], and assigning 0.01 as the anharmonicity constant for each vibra-
tion, the energy for each level of each mode can be calculated.

2)
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xList = Table[1 /100, {i, nFreqs}];

vEnergies[vList_, xList_] :=
Block[{nFreqs = Length[vList], i, n},
Round@Table [
{v, x} = {vList[[i]], xList[[i]]};
v+vn (l1-nx),

1 1
{i, nFregs}, {nl 0, — [—‘1)}
2 \xList[[i]]

]

With these we can calculate the sum and density of states, initializing the lists in the same
manner as the BS method (a list of 1s for the sum of states, and a 1 followed by Os for the
density of states). The process is functionally similar to that used to calculate the sum and
density of states for a set of harmonic oscillators. In the BS method, the elements of a sin-
gle table are modified with each iteration of the inner loop. By contrast, in the SR exten-

sion, the elements of the table are updated through separable computations combined after
each complete loop for each oscillator.

srShift[stateList_, v_] :=
Table[0, v] ~Join~Drop[stateList, -v]

srShiftListTotal [stateList_, vList_] :=
Total@ParallelMap[srShift[stateList, #] &,
Prepend[vList, 0]]

srCount [stateList_, listOfvLists_] :=
Fold[srShiftListTotal, stateList, listOfvLists]

The implementations can be verified by replicating the calculations in the appendix of [8],
which shows the calculation of the density of states up to 10 units of energy for a model
system with two oscillators. The energies of the first oscillator are {2, 2, 4, 7} and the ener-
gies of the second are {0, 0, 2, 5}.

FoldList[
srShiftListTotal,
{1, o, 0, 0, 0, O, O, O, O, O, O},
{{2, 2, 4, 7}, {0, O, 2, 5}}
] // TableForm

1 0 0 0 0 0 0 0 0
0 2 0

3 0 7 0 5 1 1 5 0 2 0

o
o

=
=
o
o
=
o
o
o
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With these, we can define SR analogs to bsComputeSumOfStates and bsComp-
puteDensityOfStates.

srComputeSumOfStates[vList_, xList_, energy_,
relEnergy_: 0] :=
srCount [Table[1l, energy - relEnergy + 1],
vEnergies[vList, xList]]

srComputeDensitiesOfStates[vList_, xList_, energy_,
relEnergy_: 0] :=
srCount [PadRight[{1}, energy - relEnergy +1],
vEnergies[vList, xList]]

We can then use them to compute the SR sum and density of states.

srSumOfStates = srComputeDensitiesOfStates[vList,
xList, energy];

srDensityOfStates = srComputeDensitiesOfStates[vList,
xList, energy];

Here are two plots comparing the harmonic and anharmonic models for the density and
sum of states calculated for vinyl cyanide.

Show |
ListLogPlot [takeEvery[2000] @bsDensityOfStates,
PlotStyle » Red],
ListLogPlot [takeEvery[2000] @srDensityOfStates],
Frame - True,
FrameLabel - {"Energy (em )", "Density of States (/cm™!) "}

]
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Show[

ListLogPlot [takeEvery[2000] @bsSumOfStates,
PlotStyle » Red],

ListLogPlot [takeEvery[2000] @srSumOfStates],

Frame -» True,

FrameLabel - {"Energy (cm™1)

]
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B 4. Dissociation of Vinyl Cyanide C; H; N
As a more substantive example, we calculate rate constants for the decomposition of vinyl
cyanide VC (CH, CHCN) into hydrogen cyanide (HCN), hydrogen isocyanide (HNC) and
acetylene (C, H,), compare them to published values, and interactively visualize the tempo-
ral dependence of the various species. In [9], Homayoon and colleagues considered the fol-

lowing kinetic model that involved seven different paths, three different intermediates, 13
rate constants and three different products:

Path I VvC &% HCCH + HCON

Path I VvC % HCCH + HCN

k
Path III VC k: Intly; 8 HCCH + HCN
4

ke ki
Path IV vC ;\—‘ Intl;y = HCCH + HNC
7
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ki

ki
Path V VC 2 Intly Y HCCH + HCN

kio
Path VI Intly Y% HCCH + HNC

Path VIl  Intly % HCCH + HNC

Each step of each path passes through a transition state to yield either an intermediate or a
final product. The following differential rate equations characterize the temporal depen-
dence of the amounts of each species:

d

d_ VC = —(ky + ky + ks + kg + ko) VC(t) + ky Int1 1 (2) + k7 Intlyy (f) + kyo Intly(2),
t

d

0 Intlyy = k3 VC(2) — k4 Intlyy(7) — ks Intlyy — ko Intly(2) — ky3 Intl(2),
t

d

d_ Intly = k6 VC(t) - k7 Intly () — kg Intly(2),
t

d

d_ Intly = kg VC(¢) — k1o Intly(2) — kyy Intly(2),
t

d

d_ HCN = (k| + kp) VC(¥) + ks Int1(2),
t

d
d_ HNC = kg Intly () + kll Intly(7) + kyp Intlygp(7) + kg3 Int1g(2),
t

d
d_ HCCH = k, VC(¥) + ks Int11(¢) + kg Int11y(£) +
t

k13 Intl(9) + k1 VC() + k3 Intly(7) + k1o Intly (7).

The determination of the sum and density of states requires the vibrational frequencies for
each species located at minima and maxima along the reaction pathway. For the decompo-
sition reaction of vinyl cyanide, there are six minima (the geometry of VC along with
each intermediate) and 11 maxima (each unique transition state). These 17 sets of frequen-
cies are taken from reference [9] and are provided in Table 1. In the following definitions,
we have chosen the same notation as in reference [9]. TS indicates a transition state, the
particular path is indicated by a Roman numeral, and the minimum energy of each species
relative to the minimum energy of vinyl cyanide has the prefix re.
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Species Frequencies (cm™')

235, 344, 570, 696, 872, 980, 1005, 1118,

Ve 1331, 1467, 1689, 2322, 3173, 3214, 3271
TSI -1 127, 184,276, 521, 596, 778, 898, 953,
1353, 1615, 2187, 2272, 3153, 3271
TS1-11 49,106,301, 384, 627, 696, 760, 790,
907, 1853, 2085, 2168, 3353, 3427
TSI - I 237,413, 604, 685, 958, 1013, 1044,
1303, 1415, 1652, 1979, 3175, 3264, 3280
Intl — T 192, 237, 520, 707, 893, 942, 988, 1141,
1345, 1458, 1698, 2208, 3182, 3230, 3284
TS2 - III 124, 253, 338, 405, 600, 678, 891,
900, 976, 1759, 1877, 2123, 3303, 3403
TSI -1V 411, 469, 570, 597, 753, 954, 970,
1076, 1272, 1365, 1778, 2120, 3047, 3211
INTI - IV 452, 457, 713, 844, 845, 890, 930, 1048,
1146, 1281, 1576, 1832, 3245, 3281, 3516
TS2 - IV 346, 392, 503, 633, 715, 917, 989,
1088, 1278, 1444, 2113, 3050, 3124, 3718
INT2 - IV 229, 344, 516, 591, 670, 739, 941, 990,
1156, 1254, 1414, 2122, 2981, 3116, 3692
TS3 -1V 78, 282, 525, 630, 632, 687, 871, 882,
1156, 1708, 1837, 3320, 3364, 3625
TS1-V 208, 255, 428, 584, 718, 881, 972,
1081, 1481, 1686, 1974, 2338, 3126, 3220
Intl - V 162, 221, 379, 589, 866, 904, 953, 1073,
1147, 1489, 1707, 2206, 3132, 3214, 3498
TS2-V 84, 115, 272, 401, 436, 474, 664, 803,
1289, 1651, 2113, 3128, 3284, 3839
INT2 - V 74, 76, 148, 157, 164, 436, 743, 772,
779, 1258, 1704, 2093, 3137, 3230, 3579
TS1 - VI 111, 150, 210, 447, 466, 835, 853,
920, 1308, 1624, 2053, 2176, 3143, 3260
TS1 - VII 40, 132, 330, 395, 615, 682, 855,

877, 935, 1813, 2060, 2097, 3329, 3409

A Table 1. Vibrational frequencies for vinyl cyanide and each intermediate and transition state (each
with one imaginary frequency) in the decomposition reaction. Values taken from [9].
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We now turn to the calculation of the sum and density of states and then use the values to
calculate each rate constant. We begin by defining the vibrational constants.

vVC = {235, 344, 570, 696, 872, 980, 1005, 1118, 1331,
1467, 1689, 2322, 3173, 3214, 3271};

(* Path I =)
vTsSl; = {127, 184, 276, 521, 596, 778, 898, 953, 1353,
1615, 2187, 2272, 3153, 3271};

(* Path II »)
vTS1l;; = {49, 106, 301, 384, 627, 696, 760, 790, 907,
1853, 2085, 2168, 3353, 3427};

(#+ Path III »)

vTS1l:yr = {237, 413, 604, 685, 958, 1013, 1044, 1303,
1415, 1652, 1979, 3175, 3264, 3280};

vIntly;r = {192, 237, 520, 707, 893, 942, 988, 1141, 1345,
1458, 1698, 2208, 3182, 3230, 3284};

vTS2:;; = {124, 253, 338, 405, 600, 678, 891, 900, 976,
1759, 1877, 2123, 3303, 3403};

(* Path IV %)

vTSl,y = {411, 469, 570, 597, 753, 954, 970, 1076, 1272,
1365, 1778, 2120, 3047, 3211};

vIintl;y = {452, 457, 713, 844, 845, 890, 930, 1048, 1146,
1281, 1576, 1832, 3245, 3281, 3516};

vTs2;y = {78, 282, 525, 630, 632, 687, 871, 882, 1156,
1708, 1837, 3320, 3364, 3625};

(* Path V #)

vTSly = {208, 255, 428, 584, 718, 881, 972, 1081, 1481,
1686, 1974, 2338, 3126, 3220};

vIntly = {162, 221, 379, 589, 866, 904, 953, 1073, 1147,
1489, 1707, 2206, 3132, 3214, 3498};

vIS2y = {84, 115, 272, 401, 436, 474, 664, 803, 1289,
1651, 2113, 3128, 3284, 3839};

(* Path VI x)
vTSlyr = {111, 150, 210, 447, 466, 835, 853, 920, 1308,
1624, 2053, 2176, 3143, 3260};

(* Path VII «)
vTS1lyyr = {40, 132, 330, 395, 615, 682, 855, 877, 935,
1813, 2060, 2097, 3329, 3409};
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Because the internal energy is defined relative to the well depth of vinyl cyanide, the sums
and densities of states for the other species must be calculated using energy adjusted by
the lowest energy of each species relative to the lowest energy of vinyl cyanide (peak
height for the transition states and well depth for the intermediates).

reVC = 0;

reTS1l; = 35185;
reTS1;; = 41271;
reTS1li;r = 20076;
reIntl;;; = 7380;
reTS2::; = 40327;
reTS1liy = 37 494;
reIntl;y = 17 418;
reTS2:y = 29939;
reTS1ly = 36 724;
reIntly = 13675;
reTS2y = 33 402;
reTS1ly; = 38508;
reTSlyrr = 40292;

o Beyer-Swinehart Sum and Density of States

Using bsComputeSumOfStates and bsComputeDensityOfStates from Section 1,
we can now compute the sums and densities of states in parallel.

sumsOfStates =
Parallelizee@
MapThread [bsComputeSumOfStates [#1l, energy, H#2] &, {
{vTS1l;, vTS1l;;, vTS1li1z, VTS2:11, VTS1liy, VIS2:y,
vTSly, vTS2y, vISlyr, vTSlyrr},
{reTS1l;, reTS1l;;, reTS1l;;;, reTS2;;1, reTSlyy,
reTS2;y, reTS1ly, reTS2y, reTSly;, reTSlyrr}

31;

densitiesOfStates =
Parallelizee@
MapThread [bsComputeDensityOfStates[#1l, energy, #2] &, {
{vVC, vIntl;;;, vIntl;y, vIntly},
{reVC, reIntl;;;, reIntl;y, reIntly}

11
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o Rate Constants

Using equation (1), we now compute the 13 rate constants, taking care to avoid indetermi-
nate values such as 0/0.

h=
QuantityMagnitude@
UnitConvert[Quantity[1l, "PlanckConstant"], "SIBase"] *
5.034 x 1022;
(* Multiplying by 5.034%10%?2 incorporates the
conversion of Wavenumbers to Joules into the rate
constant determination step. %)

ple[vec_] := PadLeft[vec, energy+1];
(» PadLeft to same length as energy =*)

paddedDivide[x_, y_] :=
Quiet[ple[x] / ple[y]] /. {ComplexInfinity -» 0}

{kl, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13} =
MapThread [paddedDivide, {
sumsOfstates|[[{1, 2, 3, 3, 4, 5, 5,6, 7,17, 8,9, 10}]11,
h densitiesOfStates[[{1, 1,1, 2, 2,1, 3, 3, 1, 4,
4, 2, 2}]]
3

The rate constants can now be visualized. Note that as energy increases, all the reaction
rates also increase.

Show
ListLinePlot@LoglO[takeEvery[2000] /@ {k1, k2}],
ImageSize -» 400, Frame - True,
FrameLabel - {"Energy (em™)", "k(E) (s!) "},
FrameTicks —»
{Automatic, {#, HoldForm[10%]} & /@ Range[0, 40, 2]}

]
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o Temporal Dependence of the Various Species

The temporal dependence of the relative concentrations of each stable species (precursor,
intermediates and products) can be determined using the rate equations and NDSolve.
The reaction dynamics of the decay of the precursor vinyl cyanide, the subsequent build
up and decay of the intermediates, and the formation of products, each normalized with re-
spect to VC, are plotted at a given internal energy determined by a variable slide bar.

Manipulate [
Plot[

Evaluate[

{VC[t] ’ IntlIII [t] ’ IntlIv[t] ’ Intlv[t] ’ HCN[t] ’
HNC[t], HCCH[t]} /.

NDSolve[{
VC'[t]
—— =-(k1[[p]] +k2[[p]] +k3[[p]] +k6[[P]] +kI[[P]])
VC[t] +k4[[p]] Intlyyr[t] +k7[[pP]] Intly[t] +
k10[[p]] Intly[t],

h™! Intlyy; ' [t] == k3[[p]] VC[t] -

(k4[[P]] +k5[[p]] +k12[[p]] +k13[[p]]) Intl;y[t],
h™! Intlyy '[t] = k6[[p]] VC[t] -

(k7[[P]] +k8[[p]]) Intlry[t],
h™! Intly'[t] =k9[[p]] VC[t] -

(k10[[p]] +k11[[p]]) Intly[t],

h"'HCN'[t] = (k1[[p]] +k2[[p]]) VC[t] +
k5[[p]] Intl;is[t],

h"!HNC'[t] == k8[[p]] Intlyy[t] +k11[[p]] Intly[t] +
(k12[[p]] +k13[[p]]) Intlyc[t],

h"' HCCH ' [t] == (k1[[p]] +k2[[p]]) VC[t] +
(k5[ [P]] +k12[[p]] +k13[[p]]) Intlyyr[t] +
k8[[p]] Intlyy[t] +k1l1[[p]] Intly[t],

VC[O0] ==1, Intl;;;[0] ==0, Intl;y[O] ==0, Intly[O] == O,
HCN[O] == 0, HNC[O] == 0, HCCH[O] ==

}, {VC, Intly;;, Intly, Intly, HCN, HNC, HCCH},
{t, 0, 2}
](* End NDSolve =)

], (* End Evaluate %)

{t, 0, 2}, PlotRange -» {{0, 1.5}, {-.05, 1.05}},

Frame - True,

FrameStyle -» Directive[l12, Thickness[.0025]],

PlotStyle » {{Red}, {Green}, {Blue}, {Black}, {Gray},
{Cyan}, {Magenta}},

FrameLabel » {Text@Style["Time (107'® s)", 12],
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Text@Style["Relative Abundance", 12] } ’

PlotLegends -»
LineLegend[{Red, Green, Blue, Black, Gray, Cyan, Magenta},
{llvcll, "IntlIII“, "Int]_IV", "Intlv", IIHCN", "HNC",
n HCCH n } ]

], (*+ End Plot )
{{p, 62500, Textestyle["Energy (cm!)", 12]}, 21000,

100000, 100},
Paneled -» False, SaveDefinitions -» True

]

Energy (cm™) G

10
q') ,
% 0.8} — \VC
© Int1y,
S 0.6
2 — Int1)y
.g 04t 1 = Intly
© [ — HCN
g 02t 1

[ HNC
0.0 EE—— = T — HCCH

00 02 04 06 08 10 12 14
Time (10713 s)

A number of qualitative and quantitative results can be gleaned by simple inspection of
this dynamic plot. One example is the amount of time it takes for the reaction to run to
completion as energy increases. The plot also indicates that there is never a significant
amount of any intermediate apart from that in path III. This is not surprising, given the sig-
nificantly lower energy for the first transition state in path III relative to the first transition
state in pathways IV and V, and given that three pathways share Int1yy;.
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A final element determined from this analysis is the exit channel ratios (or product distri-
bution ratios) determined at reaction completion and for a specific system internal energy.
This is important because many experimental measurements are only capable of measuring
product ratios as a function of precursor internal energy. Thus, experimental scientists
require such an RRKM analysis to provide a dynamic and atomistic picture of the chemical
reaction. The following code determines and plots the final HNC to HCN ratio at internal

energies up to 100000 cm™!.

Do[mechanismp =
NDSolve[{
h-lvc'[t] ==
-(k1[[p]] +k2[[p]] +k3[[p]] +k6[[P]] +k9[[P]]) VC[t] +
k4[[p]] Intlyrz[t] +k7[[p]] Intlgy[t] +
k10[[p]] Intly[t],
h™!Intly;; ' [t] =
k3[[pllVvC[t] - (k&[[p]] +k5[[p]] +k12[[p]] +Kk13[[pP]])
Intlyrr[t],
h™! Intlyy ' [t] =
k6[[pl]l VvC[t] - (k7[[p]] +k8[[p]]) Intlyy[t],
h-!Intly'[t] == k9[[p]] VC[t] -
(k10[[p]] +k11[[p]]) Intly[t],
h"'HCN'[t] = (k1[[p]] +k2[[p]]) VC[t] +
k5[ [p]] Intly;i[t],
h"!HNC'[t] == k8[[p]] Intlyy[t] +k11[[p]] Intly[t] +
(k12[[p]] +k13[[p]]) Intlysz[t],
h-!HCCH'[t] = (k1[[p]] +k2[[p]]) VC[t] +
(k5[[p]] +k12[[p]] +k13[[p]]) Intlrrs[t] +
k8[[p]] Intlyy[t] +k11[[p]] Intly[t],
VC[0] == 1, Intl;;;[0] =0, Intlyy[0] =0, Intly[O] =0,
HCN[O] == 0, HNC[O] == 0, HCCH[O] ==
}+ {vC, Intlyy, Intly, Intly, HCN, HNC, HCCH}, {t, 10'%}],
{p, 21000, 100000, 100}]
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productRatios =
Table[{p, First@Quiet[HNC[1013] /HCN[1013] /. mechanismp]},

{p, 21000, 100000, 1000}] /. {Indeterminate -» 0};

ListLinePlot[

productRatios,
AxesOrigin -» {0, 0}, Frame - True,
FrameLabel—»{"Energy (ecm )",

Row[{"HNC:HCN at ", Style["t", Italic], " = 1s"}]}

0.7

0.6

0.5

04

03

HNC:HCN att = 1s

02

0.1

0.0

20000 40000 60000 80000 100000

(=]

Energy (cm™)
This determines the energy at which HNC reaches its maximum relative abundance.

SortBy[productRatios, Last] // Last

{59000, 0.707044}

The last plot indicates that HCN production is favored at all system internal energies. Iso-
cyanide (HNC) only becomes a noticeable product at a system internal energy above 30000
cm~!. This is due to paths IV-VII becoming competitive with path I at higher energies. Sur-
prisingly, the product ratio reduces at energies greater than 58 800 cm~! (equivalently, there
is a maximum in the product distribution curve). This result would be difficult to predict,
even qualitatively, with just the calculated rate constants, demonstrating the usefulness of
the powerful tools available in Mathematica.
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