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An Algorithm for
Trigonometric-Logarithmic

Definite Integrals

John M. Campbell

We present a Mathematica implementation of an algorithm for
computing new closed-form evaluations for classes of trig-
logarithmic and hyperbolic-logarithmic definite integrals based
on the substitution of logarithmic functions into the Maclaurin
series expansions of trigonometric and hyperbolic functions.
Using this algorithm, we offer new closed-form evaluations for
a variety of trig-logarithmic integrals that state-of-the-art
computer algebra systems cannot evaluate directly. We also
show how this algorithm may be used to evaluate interesting
infinite series and products.

1. Introduction

Although there are many well-known techniques for the symbolic evaluation of definite
integrals, such as Slater’s convolution method, there are many open issues concerning
symbolic definite integration using computer algebra systems [1-4]. Computing a closed-
form expression for a definite integral often easily reduces to the evaluation of the corre-
sponding indefinite integral, but there are many natural definite integrals of elementary
functions that cannot be directly evaluated following that procedure [5]. This article
considers the general problem of the symbolic computation of trig-logarithmic and
hyperbolic-logarithmic definite integrals. Integrals of this form are interesting in part
because they often have surprising, simple and elegant closed-form evaluations involving
special functions such as the gamma function and the generalized Riemann zeta function.
They may also be used to evaluate infinite series:
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) (_ 1)n+1

n=l \/8n3+(4n2+ 1y’?+2n

11 1 1 1
51(5(2’“2)_4(2’1_2)_ﬁ§(2’1+4)+ﬁ§(2’1_4))~
0.161257 ...

In this article, we are primarily concerned with the evaluation of integrals involving an
expression of the form ¢; = cos(c log(x)) or ¢, = sin(c log(x)), where ¢ is a complex number
and x is a variable. Integrals of this form emerge in a natural context within physics and engi-
neering, since the Cauchy—Euler differential equation x2 ¢" +x¢' + ¢ ¢ = 0 yields the basic
solutions ¢; and ¢,. For example, there are applications based on integrals involving these
basic solutions related to the Einstein—Barber field equations [6, 7].

Integrals with an integrand involving a trigonometric function composed with a logarith-
mic function as a factor are also interesting because there are many integrals of this form

that cannot be directly evaluated by state-of-the-art computer algebra systems. For exam-
ple, consider the definite integral f 01 % dx. Mathematica 11.2 is not able to directly
evaluate this definite integral nor the underlying indefinite integral.

Here is a numerical approximation.

Sin[Log[x]]
(x+1) Log[x]

NIntegrate[ , {x, 0, 1}]

0.506671

A natural way to evaluate the symbolic definite integral would be to expand the integrand
by substituting log x into the Maclaurin series for the sine function and then use Mathemat-
ica to evaluate the corresponding infinite series.

log"(x)

. 1
Evaluate the expression [

dx using Mathematica. This integral would occur in the

term-by-term expansion.

1Log[x]"

J g[x] dx

o x+1
ConditionalExpression
1

75] (-1+2") Gamma[l +n] Zeta[l+n], Re[n] > -1
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The Maclaurin series substitution technique applied to this integral gives the series

o @=1)ZQ2n+1)

il (Cayansn - Hereis a numerical approximation.

2 (4" -1) Zeta[2n +1]
N L 2], 6
[Z (-4)" (2n+1) +Log (2] ]

n=1

0.506671+0.x107 1

Mathematica is able to evaluate the series involving the Riemann zeta function, leading to

the elegant closed-form evaluation for the definite integral f Lo

0 G (logn) dx that we have

previously noted [8].

© (4"-1) Zeta[2n+1]
(-4)® (2n+1)

+Log[2]

n=1

Log[2] +§ [—JT+2 JlLog{Gamma[l— %H -2 JiLog[—Gamma{lJr %H -

1 Log[Gamma[l - 1]] +JiLog[—Gamma[l+i]])

In this article, we generalize the strategy illustrated using a Mathematica program for a
function TIntegrate that extends the built-in Wolfram Language Integrate function
with respect to definite integrals so as to be able to find new evaluations for a large variety
of trig-logarithmic and hyperbolic-logarithmic integrals that Mathematica 11.2 is not able
to directly evaluate otherwise. The underlying algorithm of the TIntegrate function is
based on the substitution of logarithmic functions into the Maclaurin series expansions of
certain trigonometric/hyperbolic expressions within numerators of integrands, as illustrated
in the preceding example. Since Mathematica is able to evaluate a large variety of integrals
involving powers of logarithmic functions, the TIntegrate function is able to evaluate a
large variety of interesting and natural definite integrals. Also, the TIntegrate function
may be used to prove new evaluations for interesting infinite series:
o (2 1-i)-t1+i
: =- (1= =45 1+1) ~ 1.54655 ...

HZI\/(n2+1)(\/n2+l +n) \a

We begin by offering a variety of illustrations of applications of this algorithm. The inte-
gration results given in this article are new in the sense that Mathematica 11.2 is not
able to evaluate the definite integrals. The TIntegrate function is documented in the
Mathematica package corresponding to this article.

Get["TIntegratePackage.m"]
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In Section 4, we discuss some nuances concerning TIntegrate. In Section 5, we summa-
rize the main capabilities of this function. In Section 6, we discuss some avenues for future
research related to the TIntegrate function.

In this article, Mathematica 11.2 was used to generate results; earlier versions may be
too slow.

B 2. Integrands Involving the Sine Function Composed
with Logarithmic Functions

Given an integral involving an expression of the form sin(clogx), where ¢ is a complex
number, the TIntegrate function generalizes the strategy outlined in Section 1 to attempt
to evaluate the corresponding integral. The TIntegrate function uses the Maclaurin
series for the sine function, substitutes a logarithmic function into this power series and inte-
grates it term by term. The resulting infinite series often involves the generalized Riemann

22+ x +2) sin(log x)
Jimalic) L SN

zeta function. For example, consider the definite integral f

0 (x+1)logx
2+Vx +x2) Sin[Log[x]]
Integrate[ , {x, 0, 1}]
(1 +x) Log[x]
1 <2+\/?+x2> Sin[Log[x]]
J dx
0 (1+x) Log[x]

(2+1/;+x2) Sin[Log[x]]
TIntegrate[ » {x, 0, 1}]
(1+x) Log[x]

% [2 ArcCot[2] +Log[1l6] -

i Log[Gamma{%— %H —Log[Gamma{EJr %H -
5Log[Gamma[1 - %H +5Log{Gamma[l + %H +
2Log[Gamma[l-1i]] -2 Log[Gamma [l +1]] -
Log[Gamma{i— jl— ] +Log[Gamma[i+ j— ] +

3 s 3 s
Log[Gamma{Ef EH fLog[Gamma[5+ EH))
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The TIntegrate function is also able to compute new evaluations of integrals involv-

ing expressions such as 4/ log x .
x1/3 (V Log[x] —Log[x]2/3) Sin[Log[x]]

l+x

Integrate ’

{x, 0, 1}]

1x1/3 (VLog[x] -Log[x]??) sin[Log[x]]
dx

Jo 1+x

x1/3 (W/Log[x] —Log[x]2/3) Sin[Log[x]]

TIntegrate ’
1+x
{x, 0, 1]
3 2 1
—(x/2ﬂ 7Zeta[—,—f—}+
2 3 2
2 1 3 7 1 7 i
Zeta[—, —+—]+Zeta{—, ———} - eta[—, —+—] .
3 2 2 6 2
5 2 1 5 2 1
2 <-1>1/621/3Gamma{—} Zeta{—, ———] —Zeta[—, —+—] -
3 3 2 3 3 2
5 7 1 5 7 1
Zeta[—, —f—]+Zeta{—, —+—”)
3 6 2 3 6 2

TIntegrate is also able to compute new evaluations of integrals involving a factor
such as log x — 2 sin(1 /2 log x).

. Log[x
Log[x] - 2 SJ.n[ °2 ])

x (
Integrate[ , {x, 0, 1}]
(-1+x) Log[x]
1x (Log[x] -2 Sin[Logz[X] ])
J dx
0 (-1+x) Log[x]

Log[x] - 2 Sin[%])

, {x, 0, 1}]
(-1+x) Log[x]

!

TIntegrate

1 - EulerGamma - 2 ArcCot[2] -

jLog{Gamma[l— %H +J'1Log{Gamma[1+ %H
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o 2.1. Related Series Results

Integration results such as those in Section 2 may be used to prove interesting infinite
series formulas using this identity:

1 x" sin(log x) 1
f —gdx:tan‘l( ) (1)
0 log x n+1

This elegant infinite series formula is easily verified using equation (1) together with the
TIntegrate function:

| r(i- 27 ra+n)"”

i(— )" tan“(—) = log|2 — . (2)
=0 n+l I(1+ %) (=)

To prove it, use (1) with the Maclaurin series expansion of the expression xi—l within the

. i
integrand of f 01 ﬁ%ﬁg dx. Tt is known that %, (—1)"*! tan—l(;—) = log(2) - Arg(( ;_ ))

[9], and several elegant proofs of this formula are given in [9]. Similar formulas, such as
the following new infinite series formulas, may be proven similarly.

Proposition 1

i (—1)'1(\/n2+1 +2n)
" \/(n2+1)3 (Ww)

1 ((3 i 3 i 3 . 3 A
Ez(g(z,uz)—g(z,l—2)+\/7(§(2,1—1)—§(2,1+1)))~ 0.583937 ....

Proof

Begin by evaluating f 01 Llogx sindlog 1) dx.

x+1

Y Log[x] Sin[Log[x]]

l+x

TIntegrate[ , {x, 0, 1}]

l\/?(\/2_Zeta[i, 1—]1—]—
8 2

2

3 i 3
2 Zeta[;, 1+5] —ZZeta[E, 1-1i

3
+2Zeta[—, 1+]1”
2
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1 . . . . ){ log x sin(log x)
Expand the factor —- in the integrand as a Maclaurin series, £ T e

® o (=1)"x" 4/ log x sin(logx). The desired result follows by integrating both sides of

this equality using the evaluation and simplifying the resultant summand. O
Proposition 2
= 2\ 2 rQ2-2i)\:
Z(tan‘l(—) - —) = —2y+2+log (—) ~ —0.391226 ...
P n n re+2i
Proof

1 sin(log x)—log x
0 (\/;—1) log x

First evaluate

-Log[x] +Sin[Log[x]]

(—1+'\/;) Log[x]

TIntegrate[ , {x, O, 1}]

1
2 EulerGamma + 5 i (41+Log[Gamma[2-21i]] -Log[Gamma[2+21]])

. _ 2 (g _ . . .
We have that Sndeex-losx _ yoo - x(inognogn) 10 0rating both sides of this equal-

(\/?—l)logx T &n=0 log x
ity using the evaluation may be used to finish the proof. O

Proposition 3

. 1 . 1 .
% 1 S, 1=i)=4(5, 1+
Z = _1(4(2 :)/_5(2 ) ~ 154655 ...
= 2
" \/(n2+1)(\/n2+1 +n)
Proof
Evaluate [ Snlos-lozx 7,

0 (x—1)4/ logx

TIntegrate[_LOQ[x] +Sin[Log[x]] , {x, 0, 1}]

(-1+x) VLog[x]

1
v

. 3 1 . 1 )
nzeta[—] —Zeta[—, 1—1] +Zeta{—, 1+]1”
2 2 2

To evaluate the preceding infinite series, expand the factor xi—l within the integrand, inte-

grate the resultant summand and use the evaluation of the integral. O
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Proposition 4
i (_1)n+1
n=l \/8n3+(4n2+1)3/2+2n
1 1 i 1 i 1 i 1 i
—i —,1+—)— (—,1——)—ﬁ (—,1+—)+ﬁ (—,1-—)%
2 (§(2 2 d 2 2 d 2 4 ¢ 2 4
0.161257 ....

Proof

- (logx
Evaluate folﬂLde.

(x+1) 4/ logx
Sin[ledlxl]
TIntegrate , {x, 0, 1}]

(1+x) VLog[x]
(V2 zeta] 1]
2 2

4

1 i 1 i 1 i
V2 Zeta[—, 1+—] +Zeta[—, 1-—] —Zeta{—, 1+_H
2 4 2 2 2 2

Expand the factor Jlr— and follow the technique used in the previous proofs.

x+1

B 3. Integrands Involving the Cosine Function Composed
with Logarithmic Functions

The TIntegrate function is able to evaluate a variety of definite integrals involving
expressions of the form cos(c log x), where c is a complex number.

-1+Cos[Log[x]]
(1 +x) Log[x]

Integrate[  {x, 0, 1}]

dx

Jl -1+ Cos[Log[x]]
0 (1+x) Log[x]

-1+ Cos[Log[x]]
(1 +x) Log[x]

TIntegrate[ , {x, 0, 1}]

i

tog[Gamna 1~ ]] + Tog[camma[1+ ] -

1 1
ELog[Gamma[lfj]] - ELog[Gamma[lJrJl]]
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The evaluation of this trig-logarithmic integral involves Catalan’s constant.

-1+Cos[Log[x]]

Integrate[ , {x, 0, 1}]

(1 +x2) Log[x]?2

dx

Jl—l + Cos [Log[x] ]
0 (1+x?) Log[x]?

-1+ Cos[Log[x]]

TIntegrate[ , {x, 0, 1}]
(1+x?) Log[x]?
1 1 1 1 i
— 2 |catalan + 7 |-Zeta(!r® {—1, — - —} - Zeta(tr® [—1, — —] +
T 4 4 4 4
3 1 3 1
Zeta(t® [71, - —} + Zeta (10 [71, —+ ]])
4 4 4 4
This one involves the Glaisher—Kinkelin constant.
Vx (-1+Cos[Log[x
Integrate[ ( h [Log(x]]) , {x, 0, 1}]
(1+'\/x ) Log[x]?
Jl\/x (-1+Cos[Log[x]]) q
X
0 (1+x/x)Log[x]2
VYx (-1+Cos[Log[x
TIntegrate[ ( h [Log[x]11) , {x, 0, 1}]

(1+«/¥) Log[x]2

1

24

(—67T—Log[2} +3 (-1+ 12 Log[Glaisher] +4 Zeta™® [-1, 1-1] +
4zeta™® (-1, 1+1] -42eta™V -1, —-i]| -

3
4 zetal® [-1, Z. j} ))
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Here c = 2/3.

Cos[%‘”ﬂ] V' x Log [x]

1-x

Integrate[ r {x, 0, 1}]

dx

Jl Cos [ ZLO;J[X} ] v X Log [x]

0 1-x

Cos[zﬁ?ﬂ-] v x Log [x]

TIntegrate[ , {x, 0, 1}]
1-x

1 3 3 21 3 3 21

— i/ Zeta[—, —7—] +Zeta{—, —+—]

4 2 2 3 2 2 3

o0 3.1. Related Series Results

We prove the following well-known infinite product formula following the strategy used

cos(log x)—1

. . 1
in Section 2.1: evaluate f 0 (I-x)logx

dx, substitute the Maclaurin series for ﬁ into this in-

tegral and integrate term by term.

o /n?+1 ~ / sinh(7r)
];[ n - T

Similarly, we prove the following new infinite series formulas.

Proposition 5

(11 i) (11 i) L((ll ) (11 D 0.598158
52’+2+§2’_2_\/7{2’ —l+{2, +i||~ —0.
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Proof

I _ cos(logx) dx.

0 (14x) 4/ logx

First evaluate

TIntegrate[ Cos[Log[x]] , {x, 0, 1}]

(1+x) V8Log[x]
ijl\/? (\/Z_Zeta[i, 1—£]+
2 2

2

1 i 1 1
V2 Zeta[—, 1+—] —Zeta[—, 1-]1] —Zeta{—, 1+11]
2 2 2 2

Expanding 11: in the preceding integrand,

i (—1)" x" cos(log x) B cos(log x)

n=0 \/ logx (1 +x)+/logx

Integrating both sides of this equation using the integral evaluation and simplifying yields
the desired result. O
Proposition 6

e cos cot 1(n)) 1(¢(5 _ 5 '
Y———= —(4(1,1—1)%(2,1“)) ~ 377106 ...

=GRS VA
Proof
1 ﬂ log x cos(log x)
Evaluate fo . dx.

Cos[Log[x]] Log[x]!/*
1-x

TIntegrate[  {x, 0, 1}]

(-1)1/4 Gamma[;

5 ) 5 )
Zeta{—, 1—1}+Zeta{—, 1+1H
4 4

N[ =

To evaluate the series, expand 11: in the integrand, integrate the resultant summand and

simplify, and use the integral evaluation. O
Proposition 7

e NVa4n2+1 +2n
(-D" =
,; 4n?+1

e P o -3

-0.537167 ....

11
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Proof
log x
cos| —/——
Evaluate f 01 e dx.

(x+1) 4/ logx

Cos[—qj—]-mzx ]
TIntegrate[ : {x, 0, 1}]
(1+x) V0Log[x]

1 1 i
— 1/ (\/2 Zeta[—, 1——]+
2 2 4
1 i 1 i 1 i
V2 Zeta[—, 1+—] —Zeta[—, 1——] —Zeta{—, 1+—”
2 4 2 2 2 2

The series may then be evaluated like the others. O

H 4. Discussion

As discussed in Section 1, the TIntegrate function is based on the substitution of loga-
rithmic functions into Maclaurin series. Our implementation is in many ways based on the
use of string manipulation through Wolfram Language string operations such as
StringCount. Given an integrand f [x] as input, the TIntegrate function converts
the numerator of f [x] to a string and determines whether the numerator of £ [x] contains
trigonometric, hyperbolic or logarithmic expressions. If £ [x] contains a suitable combi-
nation of functional expressions, such as a sine function and a logarithmic function,
TIntegrate uses string manipulation to determine whether Mathematica 11.2 is able to
evaluate a definite integral involving logarithmic powers that is needed to evaluate an
infinite series, following the technique described in Section 1. If Mathematica 11.2 is able
to compute a closed-form evaluation for this log-power integral, then the TIntegrate
function uses such an evaluation to evaluate the infinite series.

The TIntegrate function is an extension of the Integrate function in terms of def-
inite integrals, in the sense that if the Integrate function is able to evaluate a definite
integral, then TIntegrate returns the same evaluation. However, TIntegrate does
not extend Integrate with respect to indefinite integrals. Also, there are certain classes
of definite integrals that neither the Integrate function nor TIntegrate can
evaluate (as an infinite series or otherwise).

Log[l-x] (Log[x] -3 Sinh[*edlxl])

Integrate[ , {x, 0, 1}]

Log[x]

Log [X]
& ” dx

Jl Log[l - x] (Log[x] -3 Sinh[

0 Log[x]
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Log[1l - x] (Log[x] -3 Sinh[L—°9315]-])

TIntegrate[ , {x, 0, 1}]

Log[x]

Log3[x] } )

1Log[1-x] (Log[x] -3 Sinh|
J dx

0 Log[x]

B 5. Summary

The TIntegrate function is able to directly compute new evaluations for a variety of
integrals of the following forms that cannot be directly computed by state-of-the-art com-
puter algebra systems (here ¢, ai, a;, etc. denote complex numbers).

I'sin(c log x
[rameion g,
0

1+x"

I'sin(c log x) — clog x
f = d p(x) dx,
0 1+x"
Lcos(clogx
[leloen g,
o lxx
Lcos(clogx)—1
f —gP(X) dx,
0 1+£x"
I'sinh(c log x)
f —gP(X) dx,
0 1+x"

I'sinh(c log x) — clog x
f J d p) dx,
0

1+xh

where
px) = (a1 XM + ar x2 + ... + a, x™) (bl log(x)?' + by log(x)?? + ... + by, log(x)ﬁm).

We have shown how TIntegrate may be used to construct new evaluations of a vari-
ety of interesting infinite series, such as series involving the inverse tangent function.
TIntegrate is also able to directly compute closed-form evaluations of definite inte-
grals involving products of trig-logarithmic and hyperbolic-logarithmic expressions.
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B 6. Conclusion

We currently leave it as an open problem to generalize TIntegrate. There are many
natural ways to generalize it. Many definite integrals have an integrand with a factor
consisting of the composition of two elementary transcendental functions that may be eval-
uated using Maclaurin series, but that cannot be directly evaluated using state-of-the-art
computer algebra systems. For example, Mathematica 11.2 is not able to compute the
following integral.

, {x, 0, Infinity}]

ArcSin[Sin[x]]2 Sin[x]
Integrate[

X

ArcSin[Sin[x]]? Sin[x]
Jm dx
0

X

Using the Maclaurin series for the square of the inverse sine, it is easily seen that

o sin~!(sin(x))? sin(x) 3
f dx=—~=1.29193....

0 X 4
Implementing a generalization of this strategy to evaluate foooisin‘l(sin(x))2 sin(x) dx

using Mathematica may be difficult, since Mathematica 11.2 is not able to compute inte-

sa2n+l
grals such as [* %’ﬁl dx

We currently leave it as an open problem to construct an analog of the TIntegrate
function that is able to directly evaluate infinite series such as the summation

00 1 evaluated in Section 2.

n=1
(n2+1)(\/nzT+n)

A natural way to generalize the TIntegrate function would be to construct a program
for directly evaluating more general classes of logarithmic-power integrals. For example,
these logarithmic-power integrals have simple closed-form evaluations, but Mathematica
11.2 is not able to directly evaluate general formulas for these integrals.

Log[x]"

(1+x)2 r {x, 0, 1}]

Integrate[

JiLog[xridx

0 (1+x)?

Log[x]™
Integrate[L, {x, O, 1}]

1+xt

1Log[x]™
J gl ‘] dx
o 1+x?t
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The

TIntegrate function is designed to evaluate definite integrals with an integrand

with a factor in the form of a trig-logarithmic or hyperbolic-logarithmic function.
However, it is clear that the general strategy outlined in the Section 1 may be applied
more generally. That is, this technique may be applied to certain types of definite integrals
with factors different than cos(log x) or sin(log x) — log x. We currently leave it as an open
problem to generalize the TIntegrate function so as to be able to apply this Maclaurin
series substitution technique to integrands without such factors.
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List of Additional Material

Additional electronic files:

1. TIntegratePackage.m

Available at: www.mathematica-journal.com/data/uploads/2017/10/TIntegratePackage.m
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