The Mathematica® Journal

Rubik’s 4-Cube

Takashi Yoshino

Rubik’s cube has a natural extension to four-dimensional space.
This article constructs the basic concepts of the puzzle and
implements it in a program. The well-known three-dimensional
Rubik’s cube R3 consists of 27 unit subcubes. Each face F of R;
determines a set S of nine subcubes that have a face in the same
plane as F. The set S can be rotated around the normal through
the center of F. Rubik’s 4-cube (or 4D hypercube) R4 consists of
81 unit 4-subcubes, each containing eight 3D subcubes. Each
3-face G of R4 determines a set T of 27 4-subcubes that have a
cube in the same hyperplane as G. The set T can be rotated
around the normal (a plane) through the center of G. Projecting
the whole 4D configuration to 3D exhibits Rubik’s 4-cube as a
four-dimensional extension of Rubik’s cube. Starting from a
random coloring of the 4-cube, the goal of the puzzle is to return
to the initial coloring of the 3-faces.

Basic Concepts

Hypercubes in Low Dimensions

To understand the 4D hypercube, it helps to first see how its lower-dimensional analogs
relate to each other. The zero-dimensional hypercube (or O-cube) is a point, with one vertex.
The 1D hypercube (or 1-cube) is a segment, with two vertices and one edge. The 2D
hypercube (or 2-cube) is a square, with four vertices, four edges and one face (the square
including its interior). The 3D hypercube is a cube (or 3-cube), with eight vertices, 12 edges,
six square faces and one volume. Going up a dimension doubles the number of vertices.
More generally, the number of d-cubes (points, segments, squares, ...) in an n-cube,

. n—2 n
O<d=<n,is2 (d)

Table[2” (n-d) Binomial[n, d], {n, 0, 3}, {d, 0, n}]

{{1}, {2, 1}, {4, 4, 1}, {8, 12, 6, 1}}

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

2 Takashi Yoshino

The 3D cube can be represented in a 2D plane using central projection, defined by taking

the intersection of the plane z =0 with the line joining the two points (0,0, a) and
a-z
a

(x,y, z). This projection maps the point (x, y, z) to (x,y). Choose a = —2 to obtain the

projection shown on the right in Figure 1. Five of the faces overlap with a sixth face, the
price to pay for the loss of one dimension.

To2DFrom3D[{x_, yv_, z_}] :=(2+2) /2 {x, y}

Module[{vertices3D, faces3D},
vertices3D = Tuples[{-1, 1}, 3];
faces3Dp = {{1, 2, 4, 3}, {1, 2, 6, 5}, {1, 3, 7, 5},
{2, 4,8, 6}, {4,3,7,8}, {5,7,8, 6}};
Grid[
{{Graphics3D|[
{GraphicsComplex[vertices3D,

{Thick, Blue, Tube[{1l, 3, 7, 5, 1}], Red,
Tube[{2, 4, 8, 6, 2}], Green, Tube[{1, 2}],
Tube[{3, 4}], Tube[{7, 8}], Tube[{5, 6}],
White, Opacity[0.2], Polygon /@ faces3D}]},

Boxed - False],
Spacer[40],
Graphics [GraphicsComplex [To2DFrom3D /@ vertices3D,
{Thick, Blue, Line[{1, 3, 7, 5, 1}], Red,
Line[{2, 4, 8, 6, 2}], Green, Line[{1, 2}],
Line[{3, 4}], Line[{7, 8}], Line[{5, 6}]}1]1}}

A Figure 1. A cube and its image under a central projection.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 3

o 4-Cube

Overall, the 4D Rubik puzzle is a 4-cube [1] (or 4D hypercube or tesseract), with 16
vertices, 32 edges, 24 squares, eight cubes and one 4-cube. The eight cubes are called cells,
which are like the six square faces of a 3D cube. The proper faces of the 4-cube are its
vertices, edges, squares and cells.

With[{n = 4}, Table[2" (n-d) Binomial[n, d], {d, 0, n-1}]]

(16, 32, 24, 8}

Each point of a proper face is on the 3D hypersurface of the 4-cube. No point of a proper
face is strictly in the interior of the 4-cube; that is, a hypersphere at such a point contains
points inside and points outside the 4-cube. In particular, no interior point of a cell as a
3D object is in the interior of the hypercube; all the points of a cell are on the boundary
of the 4-cube.

The 16 vertices of a 4-cube can be defined as lists of length four of all possible combina-
tions of —1 and 1.

vertices = Tuples[{-1, 1}, 4]

{{_11 _11 _11 _1}1 {_11 _ll _11 1}! {_11 _11 1! _1}1

{-1, -1, 1, 1}, {-1, 1, -1, -1}, {-1, 1, -1, 1},

{_11 1! lr _l}l {_11 11 1! l}r {11 _11 _11 _l}l

{11 _ll _11 1}! {11 _ll 11 _1}1 {11 _11 11 1}1

{, 1, -1, -1}, {1, 1, -1, 1}, {1, 1,1, -1}, {1, 1, 1, 1}}

The 24 squares of the 4-cube are described in terms of their vertex indices.

faces = {{1, 2, 4, 3}, {1, 2, 6, 5}, {1, 2, 10, 9},
{1, 3, 7, 5}, {1, 3, 11, 9}, {1, 5, 13, 9}, {2, 4, 8, 6},
{2, 4, 12, 10}, {2, 6, 14, 10}, {3, 4, 8, 7},
(3, 4, 12, 11}, {3, 7, 15, 11}, {4, 8, 16, 12},
{5, 6, 8,7}, {5, 6, 14, 13}, {5, 7, 15, 13},
{6, 8, 16, 14}, {7, 8, 16, 15}, {9, 10, 12, 11},
{9, 10, 14, 13}, {9, 11, 15, 13}, {10, 12, 16, 14},
{11, 12, 16, 15}, {13, 14, 16, 15}};

Besides the 4-cube, there are five other regular polytopes in four dimensions. The .csv and
.1m files containing information for these polytopes are provided at [2]: the positions of the
vertices, vertex indices for the proper faces and which faces are neighbors.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

4 Takashi Yoshino

To display the 4-cube in 3D, central projection from 4D to 3D is analogous to central projec-
tion from 3D to 2D; the function To3DFrom4D is the natural extension of To2DFrom3D;
see Figure 2.

To3DFrom4D[{x_, y_, z_, w_}] :={x, v, 2} ((w+2)) /2

Graphics3D[
{Opacity[0.5], GraphicsComplex[To3DFrom4D /@ vertices,
Polygon /@ faces]}, Boxed - False]

A Figure 2. Projected image of a 4-cube by means of center projection. The larger outer cube is one
of the cells of the 4-cube.

O Rotation

An axis of rotation in 3D is a fixed line. In 4D, an axis of rotation in four dimensions is a
fixed plane [3]. For example, the rotation matrix about the x-y plane R,,(6) is defined by:

10 0 0
01 0 0

Ry(0) = 0 0 cosf —sinf M
0 0 sin€ cosd

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 5

There are six planes of rotation spanned by pairs of coordinate axes, namely x-y, x-z, x-w,
y-Z, Y'W, -w.

rotateXy[o_] := {{1, O, O, O}, {O, 1, O, O},
{0, 0, Cos[6], -Sin[6]}, {0, O, Sin[6], Cos[O]}};

rotatexz[6_] := {{1, 0, O, O}, {0, Cos[©®], O, -Sin[6]},
{o, o, 1, 0}, {0, sin[®], O, Cos[O]}};

rotatexw[oe_] := {{1, 0, O, O}, {0, Cos[®], -Sin[6], O},
{0, sin[®], Cos[6], 0}, {0, O, O, 1}};

rotateYz[6_] := {{Cos[®], O, O, -Sin[©]}, {O, 1, O, O},
{o, o, 1, 0}, {Sin[®], 0, 0, Cos[O]}};

rotate¥YW[6_] := {{Cos[®], O, -Sin[6], O}, {O, 1, O, O},
{sin[®], O, Cos[®], O}, {O, O, O, 1}};

rotateZW[6_] := {{Cos[6], -Sin[6], O, O},
{sin[©], Cos[6], O, O}, {O, O, 1, O}, {0, O, O, 1}};

Here is the first one, for example, which leaves points in the x-y plane fixed.
rotateXY[©6] // MatrixForm

0 0

0 0
Cos[©] -8in[O]
Sin[6] Cos[O]

O OO
O OO

This animation shows two successive rotations of the 4-cube projected to 3D.

ListAnimate][
With[{n =50},
Join|[
Table|
Graphics3D[{Opacity[0.5],
GraphicsComplex [
To3DFrom4D /@ (rotateXY[©] .# & /@vertices),
Polygon /@ faces]}, Boxed -» False],
{6, 0, Pi-2Pi/n, 2Pi/n}],
Table|[
Graphics3D[{Opacity[0.5],
GraphicsComplex [
To3DFrom4D /@ (rotateYZ[6] .# & /@vertices),
Polygon /@ faces] }, Boxed -» False],
{6, 0, Pi-2Pi/n, 2Pi/n}]]
], AnimationRunning -» False

]

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Takashi Yoshino

ol 2| al¥| =]

B Implementing Rubik’s 4-Cube

o Dividing the 4-Cube

Consider a 3 x 3 X 3 X 3 4-cube with center at the origin (0, 0, 0, 0), side length 3, and with
all proper faces of positive dimension parallel to the coordinate axes. Then its 16 vertices are:

3 3 3 3
(i——,i—,i——,i—). @
2 2 2 2

The eight cells of the initial 4-cube are colored differently. The word “initial” means that
no rotations have been applied. The coloring touches every point of a cell, including its

3D interior points.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 7

Just as the faces of Rubik’s cube Rj3 are divided into nine squares by dividing each edge
into three, the edges of Rubik’s 4-cube R4 are also divided into three. Then the initial 4-
cube is divided into 81 = 3* small 4-cubes, each with edge length 1. The boundary (a hy-
persurface) of a small 4-cube contains eight small cubes, its cells.

The Rubik 3-cube has 27 subcubes in Rj3; no square of the center cube is colored and some
squares of other cubes are colored. These 26 subcubes are classified into three types ac-
cording to whether they are at a corner, at an edge or at the center of a face of the larger
cube. Figure 3 shows one of each type.

Module[{cube = Cuboid[{-1, -1, -1}, {1, 1, 1}1},
Graphics3D[{{Opacity[.2], Scale[cube, 1.001]},
Translate[Scale[cube, 1/3], {0, O, 2/3}],
Translate[Scale[cube, 1/3], {0, -2/3, 2/3}],
Translate[Scale[cube, 1/3], {2/3, -2/3, 2/3}]1},
Boxed -» False]]

A Figure 3. Three types of small cubes: in the center of a square face, at an edge and at a vertex,
with one, two or three colored squares.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

8 Takashi Yoshino

Analogously, the 81 small 4-cubes of R, include the uncolored one at the center and 80 par-
tially colored small 4-cubes. These are classified into four types according to the dimension
of their intersection with R4. The type of a small 4-cube does not change after rotation.
Table 1 summarizes the numbers for each type for R; and Ry.

Rubik’s Cube Rubik’s 4-Cube
type colored small squares colored small cells
per small cube small cubes per small 4-cube small 4-cubes

cell — — 1 8
face 1 6 2 24
edge 2 12 3 32
vertex 3 8 4 16
total - 26 - 80

A Table 1. Numbers of colored small squares for R; and small cubes for R4 for each type of small
cube or cell.

The number of colored small squares for Rubik’s cube is calculated using the data in
Table 1:
6X1+12x2+8%x3=54.

Another way is to count the number of faces times the number of squares per face:
6x9 =54.

The small 4-cubes with nonzero coordinates form the hypersurface of R4. In particular, a
small 4-cube with center given by four nonzero coordinates contains a vertex of R4. Again
from Table 1, the number of colored small cells is:

8Xx1+24x2+32%x3+16x4 =216.
This number can also be obtained as the number of cells of R4 times the number of small

cells per cell of R4: 8 X 27 = 216.

We define several global variables to be used here and later. Figure 4 shows the divided 4-
cube with 216 colored small cells.

centersOfAllSmall4Cubes =
Flatten[Table[{i, j, k, 1}, {i, -1, 1}, {j, -1, 1},
{kl _11 1}! {ll _11 1}]! 3];

verticesOfAllSmall4Cubes =
Table[(centersOfAllSmall4Cubes[[i]] +#) & /@ (vertices / 2),
{i, 81}];

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 9

Graphics3D|[
{Opacity[0.5],
Table[GraphicsComplex [
To3DFrom4D /@ verticesOfAllSmall4Cubes|[[i]],
Polygon /@ faces],
{i, Length[verticesOfAllSmall4Cubes]}]}, Boxed -» False]

A Figure 4. Center projection of a hypercube consisting of 216 colored small cells.

Each edge is divided into three parts, so that the length of the 4-subcubes is 1. Consider
a 4-subcube with center at (p,q,r,s). Then, the vertices of the 4-subcube are
px1/2,g+1/2,r+1/2,s+1/2). The coordinates of the center of each 4-subcube are
a combination of one of —1,0 and + 1. When the value is nonzero (—1 or +1), the 4-sub-
cubes face outward in the corresponding directions. In other words, the nonzero values in
coordinates denote the outward-facing 4-subcubes.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

10 Takashi Yoshino

o0 The 216 Colored Small Cells and Initial State

For the initial state, the colors of the cells are set according to the coordinates of their centers:

center coordinate - —1 1
X pink purple
y orange red
z green blue
w white yellow

For example, in the small 4-cube with center (1,0, —1, 0), the two small cells with ver-
tices 3/2,+1/2,-1+x1/2,+1/2)and (1+1/2,+1/2,-3/2,+1/2) are colored be-
cause both the x and z coordinate values are nonzero.

colors = {Pink, Purple, Orange, Red, Green, Blue, White,
Yellow};

The geometry of the 216 small colored cells is used to manage the puzzle. Each element
of the datasets consists of four elements: (1) the vertices of six squares; (2) the location of
the center of the small 4-cube to which the small cell belongs; (3) color; and (4) the loca-
tion of the center of the small cell. The vertices of the six squares are used for drawing the
subcubes, and the locations of the centers of the subcubes are used to judge the complete-
ness of the puzzle. The dataset of the initial state is obtained by the following procedures.
First, the vertex numbers of the squares making up each small cell are defined.

squaresOf4CubeCells = {
{{1I 2’ 4[3}’ {11 2[6' 5}' {11 3' 7l 5}' {21 4’ 8l 6}’
{3, 4, 8,7}, {5,6,8,17}},
{{9, 10, 12, 11}, {9, 10, 14, 13}, {9, 11, 15, 13},
{10, 12, 16, 14}, {11, 12, 16, 15}, {13, 14, 16, 15}},
{{1, 2, 4, 3}, {1, 2, 10, 9}, {1, 3, 11, 9}, {2, 4, 12, 10},
{3, 4, 12, 11}, {9, 10, 12, 11}},

{{5, 6,8, 7}, {5,6, 14, 13}, {5, 7, 15, 13},
{6, 8, 16, 14}, {7, 8, 16, 15}, {13, 14, 16, 15}},

{{1, 2, 6, 5}, {1, 2, 10, 9}, (1, 5, 13, 9}, {2, 6, 14, 10},
{5, 6, 14, 13}, {9, 10, 14, 13}},

({3, &4, 8, 7}, {3, 4, 12, 11}, {3, 7, 15, 11},
{4, 8, 16, 12}, {7, 8, 16, 15}, {11, 12, 16, 15}},

{{1, 3, 7, 5}, {1, 3, 11, 9}, {1, 5, 13, 9}, {3, 7, 15, 11},
{5, 7, 15, 13}, {9, 11, 15, 13}},

{{2, 4, 8, 6}, {2, 4, 12, 10}, {2, 6, 14, 10},
{4, 8, 16, 12}, {6, 8, 16, 14}, {10, 12, 16, 14}}

}i

Next, the 216 small cells are selected by checking all possible 81 X 8 = 648 small cells.

818
648

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 11

ColoredSmallCells =
Module[{surCubes},
surCubes = {};
Do[
If[centersOfAllSmall4Cubes[[j, i]] =2k +1,
surCubes = Append [surCubes ,
{Map[verticesOfAllSmall4Cubes[[j]][[#]] &,
squaresOf4CubeCells[[2i+k]], {2}],
centersOfAllSmall4Cubes[[j]], colors[[21i+k]],
Mean [Flatten[Map[verticesOfAllSmall4Cubes[[j]][[#]] &,
squaresOf4CubeCells[[2i+k]], {2}], 1]11}11,
{k, -1, 0}, {i, 4}, {j, 81}];
surCubes

1;

This list contains 216 entries and each entry contains four components corresponding to a
small cell.

Dimensions[ColoredSmallCells]
(216, 4}

For example, here is entry 123 of ColoredSmallCells. The components for this
small cell are its six square faces, center, color and current position.

ColoredSmallCells|[[123]]

3 1 1 1 3 1 1 3
{{{{_I I A 4 _}I {_I —r T _}I
2 2 2 2 2 2 2 2
3 1 1 3 3 1 1 1 3 1 1 1
{71 S A / *} {7I - 7}}’ {{7I I A 4 7}’
2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 3 3 1 1 3 3 1 1 1
{_I - T _}r {_I —r _}I {_I i i _}}I
2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 3 1 1 1 31 1 1
{{_I I A 4 _}I {_I —r 7 _}I {_I —r T (7
2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 3 1 1 3 3 1 1 3
{7I —r T 7}}! {{7I - _r *}r {7I - 7}’
2 2 2 2 2 2 2 2 2 2 2
3 1 1 3 3 1 1 3 3 1 1 1
{_I —r _}r {_I —r T _}}I {{_r - _}I
2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 3 31 1 3 3 1 1 1
{_I - _}r {_I —r _}I {_I —r _}}I
2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 3 1 1 3 3 1 1 3
{{7I —r T 7}! {7I —r T 7}’ {7I —r 7}!
2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 3
oo = 2 a0 01, m {5, 0,0, 1
2 2 2 2

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

12 Takashi Yoshino

draw4Cube sets up a 4-cube for drawing.

draw4Cube[{vertices_, _, color_, _}] :=
Prepend[Map[Polygon, Map[To3DFrom4D, vertices, {2}]], color]

Here is an example.

Graphics3D[draw4Cube@ColoredSmallCells[[123]]]

drawCell sets up a cell (with 27 4-cubes) for drawing.

drawCell[sc_, xwzw_, pm_] :=
Prepend [
Map [Polygon, Map[Delete[#, xwzw] &, ®#[[1]], {2}]1],
#[[3]]] & /@Select[sc, #[[4, xwzw]] ==pm3 /2 &

Length@drawCell [ColoredSmallCells, 1, -1]

27

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 13

Figure 5 shows the initial state of Rubik’s 4-cube.

Figure5Aux [graphics3D_] :=
Graphics3D[{Opacity[0.3], graphics3D}, Boxed » False,
Lighting » "Neutral"]

Row [{
Graphics3D[{Opacity[0.3], draw4Cube /@ ColoredSmallCells},

Boxed -» False, ImageSize -» 160, Lighting -» "Neutral"],
Spacer[40],
Grid[{
{

Figure5Aux@drawCell [ColoredSmallCells, 1, -1],
Figure5Aux@drawCell [ColoredSmallCells, 2, -1],
Figure5Aux@drawCell [ColoredSmallCells, 3, -1],
Figure5Aux@drawCell [ColoredSmallCells, 4, -1]

b

{
Figure5Aux@drawCell [ColoredSmallCells,

Figure5Aux@drawCell [ColoredSmallCells,

¢ 11,
11,

1

2
Figure5Aux@drawCell [ColoredSmallCells, 3, 1],
Figure5Aux@drawCell [ColoredSmallCells, 4

r 1]

AN

N
:“SA
SV,
S
Y
oy,

Vi
AN/

/‘v
NN
A,
AN,

&

A Figure 5. Center projection of initial state of the Rubik 4-cube with its eight cells.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

14 Takashi Yoshino

In the 3D case of Rubik’s cube R3, a block is a set of nine small cubes whose centers have
one coordinate that is constant, —1, 0 or 1. There are nine blocks, three per coordinate
axis. A natural technique to rotate a middle block, for example, the one cut by the z =0
plane by 7 /2, is to rotate the block above by — /2, the block below by —m /2, and then
the whole cube by 7 /2.

In the 4D case, a block is a set of 27 small 4-cubes whose centers have one coordinate that
is constant. There are 12 blocks, four per axis and three per choice of constant coordinate
—1,0 or 1. Under a rotation, the small 4-cubes in a block change position simultaneously.
Each block is a four-dimensional hyperprism with height 1.

Figure 6 shows an example of the block y = —1; the cell opposite the orange cell is
not colored.

Figure6Aux[graphics3D_] :=
Framed@Graphics3D[{Opacity[0.3], graphics3D},
Boxed - False, Lighting » "Neutral"]

Module[{c2},
c2 = Select[ColoredSmallCells, #[[2, 2]] == -1 &];
Row [{
Graphics3D[{Opacity[0.3], draw4Cube /@c2}, Boxed - False,
ImageSize » 160, Lighting » "Neutral"],
Spacer[40],

Grid[{
{
Figure6Aux@drawCell[c2, 1, -1],
Figure6Aux@drawCell[c2, 2, -1],
Figure6Aux@drawCell[c2, 3, -1],
Figure6Aux@drawCell[c2, 4, -1]
T,
{

Figure6Aux@drawCell[c2, 1, 1],
Figure6Aux@drawCell[c2, 2, 1],
Figure6Aux@drawCell[c2, 3, 1],
Figure6Aux@drawCell[c2, 4, 1]

}
}]
H

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 15

A Figure 6. Example of a block of 27 small 4-cubes (orange, y = —1).

A block is rotated by /2, m or —m /2 around an axis, which is a fixed plane. Therefore, the
information needed for an action on the Rubik 4-cube is (1) the block to be rotated; (2) the
axis of rotation; and (3) the angle. For Rubik’s cube Rj3, the axis of rotation is automatically
determined by selecting a block. But for R4, two coordinate axes must be chosen to
determine the fixed plane. One is the constant coordinate axis used to select the block, and
the other must be chosen from the remaining three coordinate axes. There are 108 possible
actions on R4: 12 choices of block, three choices for the second coordinate axis and three
choices of angle: 12 x 3 X3 = 108. Therefore, 108 buttons are required for the rotations in
the Rubik 4-cube computer program. Table 2 lists the properties of Rubik’s cube and
Rubik’s 4-cube.

Rubik’s cube Rubik’s 4-cube
2-faces (number of colors) 6 3-faces (number of colors) 8
small cubes 27 =33 small 4-cubes 81 =3*
divided 2-faces 54 = 6x32 divided 3-faces 216 = 8x33
squares to color 54 squares to color 1296 =216x6

A Table 2. Properties of Rubik’s cube and Rubik’s 4-cube.

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

16

Takashi Yoshino

o Final Form

The program to realize Rubik’s 4-cube in 3D relies on central projection of a hypercube
and rotation matrices in 4D. The program is shown in the next section.

Implementing an interface consists of three parts: constructing the buttons for the rota-
tions, displaying the current state and judging whether the puzzle is complete.

The buttons for the rotations are placed in grids. The player can rotate a block by clicking
one of the buttons. The rows correspond to the selection of the axis of the coordinates of
the block and the columns correspond to the coordinate values for that axis. The player
can select a block by choosing one of the rows and one of the columns. For example, click-
ing the button where row z crosses column —1 chooses the block on z = —1. For each
block, the other three axes are listed. Then, the selection of the second axis is required to
verify the rotational plane. Finally, one of the three buttons (up, diagonal and down) must
be chosen to determine the rotation angle of 7/2 (A), 7 (m) and —7/2 (V). (The 0 rows
can be ignored—the player can perform an equivalent pair of actions instead in the paral-
lel blocks.)

When the colors of the 27 subcubes on a cell are all the same, that cell is complete. The
puzzle is solved when all the cells are complete.

B Program

GridAux[graphics3D_] :=
Graphics3D[{Opacity[1l], graphics3D}, Background - Black,
SphericalRegion » True, Boxed » False, ImageSize - 150,
Lighting -» "Neutral"];

Module[{reset, surfaceCubeRotate, randomize, rX¥m,
rXYo, rXYp, rXZm, rXZo, rXZp, rXWm, rXWo, rXWp,
rYZm, rYZo, rY¥Zp, r¥Wm, r¥Wo, r¥Wp, rZWm, rZWo, rZWp,
rmtx},
Panel [
DynamicModule [
{initialSurfaceCubes},

{rX¥m, rXYo, rX¥p, rXZm, rXZo, rXZp, rXWm, rXWo, rXWp,
r¥Zm, rYZo, rY¥Zp, r¥Wm, r¥Wo, r¥YWp, rZWm, rZWo, rZWp} = {

{1, o, o, 0}, {0, 1, 0, 0}, {0, O, O, 1}, {O, O, -1, O}},
{1, o, o, o}, {0, 1, O, O}, {0, O, -1, O},

{ol ol OI _1}}1
{1, o, o, 0}, {0, 1, 0, 0}, {0, O, O, -1}, {O, O, 1, O}},
{1, o, o, 0}, {0, 0, 0, 1}, {0, O, 1, O}, {0, -1, O, O}},
{1, o, o, 0}, {0, -1, 0, 0}, {0, O, 1, O},

{ol OI ol _1}}1
{1, o, o, o}, {0, O, O, -1}, {O, O, 1, O}, {O, 1, O, O}},
{1, o, o, 0}, {0, 0, 1, O}, {O, -1, O, O}, {O, O, O, 1}}
{{11 ol ol O}I {ol _ll ol o}l {ol ol ‘11 o}l

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 17

{0, 0, 0, 1}},
{1, o, o, o}, {0, O, -1, O}, {O, 1, O, O}, {O, O, O, 1}},
{{o, o, o, 1}, {0, 1, 0, O}, {0, O, 1, O}, {-1,0
{{-1, o, o, o}, {0, 1, 0, 0}, {0, O, 1, O},
{0, 0, 0, -1}},
{{o, o, o, -1}, {0, 1, O, O}, {0, 0, 1, O}, {1, 0
{{o, o, 1, 0}, {0, 1, 0, 0}, {-1, O, O, O}, {O, O, O, 1}},
{{'lr ol ol o}l {ol 1/ ol o}l {ol ol '11 o}l
{0, 0, 0, 1}},
{{o, o, -1, 0}, {0, 1, 0, 0}, {1, O, O, O}, {0, O, O, 1}},
{{o, 1, o, 0}, {-1, O, O, O}, {0, O, 1, O}, {O, 0
{{-1, o, o, o}, {0, -1, O, O}, {0, O, 1, O},
{0, 0, 0, 1}},
{{o, -1, o, o0}, {1, 0, 0, 0}, {0, O, 1, O}, {O, O, O, 1}}

}i
rmtx[1l, 2, 1] := rXY¥p;
rmtx[1l, 2, 0] := rXYo;
rmtx[1l, 2, -1] := rX¥m;
rmtx[1l, 3, 1] := rXZp;
rmtx[1l, 3, 0] := rXZo;
rmtx[1l, 3, -1] := rXZm;
rmtx[1l, 4, 1] := rXWp;
rmtx[1l, 4, 0] := rXWo;
rmtx[1l, 4, -1] := rXWm;
rmtx[2, 1, 1] := rX¥m;
rmtx[2, 1, 0] := rXYo;
rmtx[2, 1, -1] := rX¥p;
rmtx[2, 3, 1] := rY¥Zp;
rmtx[2, 3, 0] :=rYZo;
rmtx[2, 3, -1] := r¥Zm;
rmtx[2, 4, 1] := rY¥Wp;
rmtx[2, 4, 0] := r¥Wo;
rmtx[2, 4, -1] := rYWm;
rmtx[3, 1, 1] := rXZm;
rmtx[3, 1, 0] := rXZo;
rmtx[3, 1, -1] := rXZp;
rmtx[3, 2, 1] := r¥Zm;
rmtx[3, 2, 0] :=rYZo;
rmtx[3, 2, -1] := rY¥Zp;
rmtx[3, 4, 1] := rZWp;
rmtx[3, 4, 0] := rZWo;
rmtx[3, 4, -1] := rZWm;
rmtx[4, 1, 1] := rXWm;
rmtx[4, 1, 0] := rXWo;
rmtx[4, 1, -1] := rXWp;
rmtx[4, 2, 1] := r¥YWm;
rmtx[4, 2, 0] := r¥Wo;
rmtx[4, 2, -1] := rYWp;
rmtx[4, 3, 1] := rZWm;
rmtx[4, 3, 0] := rZWo;
rmtx[4, 3, -1] := rZWp;

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

18 Takashi Yoshino

initialSurfaceCubes = ColoredSmallCells;
reset[] := surfaceCubes = initialSurfaceCubes;
reset[];

surfaceCubeRotate[sc_, xyzw_, loc_, ax_, pm_] :=
Module[{tmp},
tmp =
(If[#[[2, xyzw]] == loc,
tmp = {Map[(rmtx[xyzw, ax, pm].#) &, #[[1]], {2}],
rmtx [xyzw, ax, pm].#[[2]], #[[3]],
rmtx [xyzw, ax, pm] .H#[[4]]}, #] & /@sc);
tmp
1i

randomize[sc_] := Module[{xyzw, pos, planeNo, direc},
xyzw = RandomInteger[{1l, 4}];
pos = RandomInteger[{-1, 1}];
planeNo = xyzw;
While[planeNo == xyzw,
planeNo = RandomInteger[{1l, 4}]];
direc = 2 RandomInteger[{0, 1}] -1;
surfaceCubeRotate[sc, xyzw, pos, planeNo, direc]

1:

Buttons[q_] := {ToString[q],
Grid[{
{"y",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 2, 1]],
Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 2, 0]],
Button[¥Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 2, -1]1},
{"z",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 3, 111,
Button[H®, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 3, 0]],
Button[V¥Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 3, -1]11},
{"w",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 4, 1]],
Button[®, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 4, 0]],
Button[VY, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 1, q, 4, -1]11}}],
Grid[{
{"x",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 1, 1]],
Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 1, 0]],
Button[Y, surfaceCubes =

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

Rubik’s 4-Cube 19

surfaceCubeRotate[surfaceCubes, 2, q, 1, -1]1},
{"z",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 3, 1]],
Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 3, 0]],
Button[Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 3, -1]1},
{"w",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 4, 1]],
Button[®, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 4, 0]],
Button[Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 2, q, 4, -1]1}}1.,
Grid[{
{"x",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 1, 1]],
Button[R, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 1, 0]],
Button[Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 1, -1]1},
{"y",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 2, 1]],
Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 2, 0]],
Button[V¥Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 2, -1]1},
{"w",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 4, 1]1],
Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 4, 0]],
Button|[VY, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 3, q, 4, -1]11}}1,
Grid[{
{"x",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 1, 111,
Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 1, 0]],
Button[V¥, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 1, -1]1},
{"y",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 2, 1]],
Button[®, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 2, 0]],
Button[Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 2, -1]1},
{"z",
Button[A, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 3, 1]],

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

20 Takashi Yoshino

Button[B, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 3, 0]],

Button[Y, surfaceCubes =
surfaceCubeRotate[surfaceCubes, 4, q, 3, -1]11}}]

}i

Column | {
Dynamic [Graphics3D[
{Opacity[0.3], draw4Cube /@ surfaceCubes},
Background -» Black, SphericalRegion - True,
Boxed -» False, ImageSize - 360,
Lighting » "Neutral”]],

un
4

Grid[{
{
Dynamic [GridAux [drawCell [surfaceCubes, 1,
Dynamic [GridAux [drawCell [surfaceCubes, 2,
Dynamic [GridAux [drawCell [surfaceCubes, 3, -1]
Dynamic [GridAux [drawCell [surfaceCubes, 4,
}s
{

Dynamic[GridAux [drawCell [surfaceCubes, 1, 1
Dynamic [GridAux [drawCell [surfaceCubes, 2, 1
Dynamic[GridAux[drawCell [surfaceCubes, 3, 1
Dynamic[GridAux[drawCell [surfaceCubes, 4, 1
}

.

Grid[{{
Button["Reset", reset[]],
Button["Randomize",
surfaceCubes = Nest [randomize, surfaceCubes,

2011311,

Grid[
Transpose®@ {
{""I "x"I "Y" ’ "z"I "w"}l
Buttons[-1],
Buttons[0],
Buttons[1]
}
, Frame -» All]
}, Alignment - Center],
SaveDefinitions - True
1
1
1

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

21

Rubik’s 4-Cube

Randomize

Reset

w

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

22

Takashi Yoshino

B Discussion

Although we succeeded in implementing Rubik’s 4-cube, some problems remain to be
addressed. We aimed for ease of implementation rather than efficiency. Therefore, in the
future, we should consider enhancing the application to get a more effective visualization
method and an intuitive interface.

The program redraws 1,296 squares after each rotation, so that efficient coding is impor-
tant. There is a great deal of redundancy in calculating the vertices of the 4-subcubes for
each rotation. The most effective method for handling the vertices using subcubes or 4-sub-
cubes remains to be clarified. Note that we must transfer the vertices of the 4-subcubes to
those of the subcubes when we handle the vertices of 4-subcubes as a dataset rather than
handling them as subcubes.

Effective visualization is a common problem for four-dimensional geometry. In this arti-
cle, we used central projection to represent 4-cubes. However, the proposed projection
does not completely represent the features of the puzzle. Although there are other projec-
tions for representing a 4-cube, the most suitable method is not yet clear.

Another possible improvement would be to animate the rotation. The animation of the
rotation of the colored small 4-cubes would help the player intuitively understand their
rearrangement.

An intuitive interface is important for playing this puzzle. The interface and visualization
issues are related, and their development may provide a new method for understanding
four-dimensional space.

References

[1] H. S. M. Coxeter, Introduction to Geometry, 2nd ed., Hoboken: Wiley, 1989.

[2] T. Yoshino. “Activities of Dr. Takashi Yoshino.” (Dec 11, 2017)
takashiyoshino.random-walk.org/basic-data-of-4d-regular-polytopes.

[38] K. Miyazaki, M. Ishii and S. Yamaguchi, Science of Higher-Dimensional Shape and Symmetry,
Kyoto: Kyoto University Press, 2005 (In Japanese).

T. Yoshino, “Rubik’s 4-Cube,” The Mathematica Journal, 2017. dx.doi.org/doi:10.3888/tmj.19-8.

About the Author

Profession: Science of Form. Fields of interest: skeletal structure of plankton, non-Euclidean
geometry, hyperspace, pattern formation.

Takashi Yoshino

Toyo University,

Kujirai 2100, Kawagoe, 350-8585, JAPAN
tyoshino@toyo jp

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.

http://takashiyoshino.random-walk.org/basic-data-of-4d-regular-polytopes/
mailto:tyoshino@toyo.jp

