The Mathematica® Journal

Symbolic Solutions of
Simultaneous First-Order

PDEs in One Unknown

Célestin Wafo Soh

We propose and implement an algorithm for solving an
overdetermined system of partial differential equations in one
unknown. Our approach relies on the Bour—Mayer method to
determine compatibility conditions via Jacobi—Mayer brackets.
We solve compatible systems recursively by imitating what one
would do with pen and paper: Solve one equation, substitute its
solution into the remaining equations, and iterate the process
until the equations of the system are exhausted. The method we
employ for assessing the consistency of the underlying system
differs from the traditional use of differential Grébner bases, yet
seems more efficient and straightforward to implement.

B Introduction

The search of solutions of many problems leads to overdetermined systems of partial
differential equations (PDEs). These problems comprise the computation of discrete
symmetries of differential equations [1], the calculation of differential invariants [2] and the
determination of generalized Casimir operators of a finite-dimensional Lie algebra [3]. In
this article, we focus solely on the integration of simultaneous systems of scalar first-order
PDE:s; that is, our systems have at least two equations, one dependent variable (the unknown
function) and several independent variables. Our ultimate goal is to automate the search of
general symbolic solutions of these systems. The approach we adopt uses the Bour—Mayer
method [4] to find compatibility conditions (i.e. obstructions to the integrability) of the
underlying system of PDEs and to iteratively prepend these compatibility conditions to the
system until a consistent or an inconsistent system is found. This differs from the traditional
approach, which uses differential Grobner bases [5] to discover compatibility conditions.
When applicable, it has the advantage of being easy to implement and efficient. Recently,
using machinery from differential geometry, Kruglikov and Lychagin [6] have extended the
Bour-Mayer method to systems of PDEs in several dependent and independent variables of
mixed orders (i.e. the orders of the individual equations in the system can be different). In

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

2 Célestin Wafo Soh

our approach, for the situation where the completion process leads to a consistent system,
we solve the latter by imitating what one would do with pen and paper: Solve one equation,
substitute it into the next equation, and continue the process until the equations of the
system are exhausted.

To fix ideas, consider a system of PDEs
Fi(x19-x2’ ""xn’zap]aPQ’ ---’pl’l) = Oa l: 19 ~~-7m9 (1)

where x; to x, are the independent variables, p;, is the partial derivative of the unknown

function z with respect to xi, and the rank of the Jacobian matrix J = [%] is m. In the sequel,
J

we will say that a property holds locally if it is true on an open ball of its domain of validity.
The system of equations (1) is integrable (i.e. admits a locally smooth solution) provided the
expressions p; to p, derived from it locally satisfy the conditions

dp; dp;
PPz, n 2)
de dxi

To see this, consider a solution z of the system of equations (1). Then, locally,
dz = Y, pi dx;. Thus, the latter differential form is locally exact. So, in particular, it is
locally closed. Therefore, its exterior differential vanishes; that is, d(}}/- p; dx;) = 0, or

equivalently, after some calculations, ’;; (% - Z—ZL) dx; A dx; = 0, which implies (2).
Conversely, if the system of equations (2) is locally satisfied, then the differential form
>, dx; p; is locally closed and by Poincaré's lemma, it is also locally exact. Hence,
dz = du(xy, x5, ..., x,,z) for some locally smooth function u. Therefore z is locally

defined by z — u(xy, x5, ..., X, 2) = ¢, where c is an arbitrary constant.

Bour and Mayer (see e.g. [4]) showed that (1), subject to the condition on the Jacobian
matrix of the F; with respect to the p;, is integrable if and only if the Jacobi-Mayer

n OF; OF; OF; OF,

[Fi, Fj] == =0,i<j=1,....,m, 3)

= 0x Opr Oxi Opy
whenever (1) is satisfied. From now on, abbreviate the phrase “[F;, F;] = 0 whenever (1)
is satisfied” to [F;, Fj] |1y = 0.

For a given system of equations (1) satisfying the nondegeneracy condition mentioned,
four cases arise.

The first case is when m = n and all the Jacobi—-Mayer brackets vanish whenever (1) is
satisfied. In this case, we can solve (1) for p; to p,. The solution of the system is then
obtained by integrating the exact differential form dz — >\, p; dx;.

The second case is when there are distinct indices a and b such that [Fg, Fp]|q) =
d(x1,x2, ..., Xy, 2) ¥ 0. Then (1) is incompatible and there are no solutions.

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown 3

In the third case, m < n, and all the Jacobi—-Mayer brackets vanish in (1). We must
supplement (1) with additional equations until we get to the first or second case. These
equations are obtained by solving the system of linear first-order PDEs [F,, F,] =0,
where A=1,...,n and u=m+1,...,n. For example, we get the additional equation
F,.+1 = a;, where a; is an arbitrary constant, by solving the system of linear first-order
PDEs [F;, F,,4+1]1 =0, where i = 1, ..., m. The solution of the completed system depends
on m—n+ 1 arbitrary constants. We obtain the general solution of the initial system of
equations (1) by expressing one of the arbitrary constants as a function of the remaining
ones, then eliminating the remaining constant between the resulting equations and their
first-order partial derivatives with respect to the arbitrary constants.

In the fourth and final case, some brackets are zero in (1) and other brackets have the form
[Fa, Fplla) = Yap(X1, X2, ..., Xn, 2, P15 P2, ---» Pn), Where the Y, depend at least on some
p;. In this case, we must prepend the equations ¥ ,,(x1, X2, ..., Xn, 2, P1> P25 ---» Pn) = 0 tO
the equations in (1) and proceed as in the third case.

The procedure just described is the essence of the Bour—Mayer approach to the solution of
(1). One has to solve overdetermined systems of linear scalar PDEs and ensure that the
equations one adds to the initial system are compatible with them and that the equations of
the resulting systems are linearly independent. In our implementation of the Bour—-Mayer
approach, we complete the initial system of equations (1) by prepending to it the appro-
priate compatibility constraints prescribed by Jacobi-Mayer brackets until we obtain
either a compatible or an incompatible system. Starting from compatibility constraints, we
iteratively solve the compatible system obtained by using the built-in function DSolve.
The remainder of this article is devoted to the implementation and testing of this approach.

B Implementation and Tests

Here we focus on the coding of the algorithm described in the introduction. Specifically,
we start by iteratively solving a system of consistent first-order PDEs in one dependent
variable. Then we implement the test of consistency of a system of first-order PDEs in one
unknown. Finally, we couple the last two programs in such a way that a single function is
used to compute the general solution of the input system when it exists or to indicate that it
is inconsistent.

o lterative Solution of a Consistent System of First-Order PDEs in
a Single Unknown

Our program for iteratively solving a compatible system of scalar first-order PDEs is
made of the main function solveCompatiblePDEs and three helper functions,
PDEsToRules, rulesToSolution and functionFromExpression.

PDEsToRules is a recursive function that takes as input the system system to be solved,
the dependent variable unknown, the list of independent variables xs, a container
solutions for the list of successive solutions, a list of equations unsolvedEquations

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

4 Célestin Wafo Soh

that could not be solved, a string symbol that is used as a root to form the names of interme-
diate dependent variables, and a variable count that is used to count and name inter-
mediate dependent variables. The output of PDEsToRules is a list of rules and a list of
unsolved equations.

The function PDEsToRules mimics what one would do by hand when solving a system
of first-order PDEs in one unknown: Solve an equation, substitute its solution into the
remaining equations, and continue as long as possible. At each stage, the number of
independent variables is reduced by one and it is necessary to rename the variables before
proceeding. Also, the dependent variables are curried functions that must be undone to
ensure that the chain rule is applied properly during substitution into the remaining PDEs.
This is perhaps the trickiest part of our implementation.

The function rulesToSolution takes the output of PDEsToRules and converts it
into the solution of the system to be solved. The helper function functionForm-
Expression converts an expression expr depending on several variables vars into a
pure function of these variables. Finally, the function solveCompatiblePDEs com-
poses PDEsToRules and rulesToSolution to solve a compatible system of scalar
PDE:s. Its inputs are like those of PDEsToRules and its output is formatted like that of
rulesToSolution.

PDEsToRules[system_, unknown_, xs_, solutions_: {},
unsolvedEquations_: {}, symbol : "x", count_: 0] :=
Module[{currentSol, newIndepVars = {}, newSyst,
nameUnknown = "", temp, newUnsolvedEqs, f},
If[system == {}, {solutions, unsolvedEquations},
If[First@system === False, {{}, unsolvedEquations},
If [Head[DSolveValue[First@system, unknown, xs]] ===
DSolveValue, PDEsToRules[Rest[system], unknown,
xs, solutions, Append[unsolvedEquations,
First@system], symbol, count +1],
currentSol = DSolveValue[First@system, unknown,
xs, GeneratedParameters -» (C[H#+count] &)];
£=#/.{Clz_][t__1[y__]1=C[z]ee{t, y}} &;
FixedPoint[f, currentSole@xs] /.
C[_1[z__] » (newIndepVars = {z});
currentSol@@xs /. {C[z_] :» (nameUnknown = C[z]) };
currentSol = FixedPoint [f, currentSol];
newSyst = Rest[system] /. {unknown » currentSol};
newUnsolvedEqs = unsolvedEquations /.
unknown -» currentSol;
newSyst = Select [newSyst, # =!= True &];
If [newIndepVars # {},
temp = First@Solve[# == Unique[symbol] & /@ newIndepVars,
xs];
{newIndepVars, newSyst, newUnsolvedEqgs} =
Map[Simplify[# /. temp,
TransformationFunctions -
{Automatic, PowerExpand}] &,

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown 5

{newIndepVars, newSyst, newUnsolvedEqs}], #H &];
currentSol = Append[solutions, unknown -» currentSol];
PDEsToRules [newSyst, nameUnknown, newIndepVars,

currentSol, newUnsolvedEqgs, symbol, count +1]]]]]

functionFromExpression[expr_, vars_] :=
Function@expr /. MapIndexed[#l » Slot@@H2 &, vars]

rulesToSolution[list_, unknown_, xs_] :=
Module[{s = First@list, templ, temp2, count = 0},
If[s === {}, {},
templ = functionFromExpression [
Fold[#1 /. #2 &, Values[First@s] @@xs, Rest@s], xs]];
temp2 = First@Rest@list /. unknown -> templ;
{unknown @@ xs -> templ @@ xs, temp2}]

solveCompatiblePDEs[system_, unknown_, xs_, solutions_: {},
constraints_: {}, symbol : "x"] :=
rulesToSolution[PDEsToRules[system, unknown, xs,
solutions, constraints, symbol], unknown, xs]

o Compatibility Test and Completion

This subsection implements the compatibility test provided by the Bour—Mayer method as
described in the introduction using compatibilityQ. The input to compati-
bilityQ is the underlying system of PDEs system, the dependent variable ys and the
list of independent variables xs; compatibilityQ outputs a pair: the first element indi-
cates whether the system is compatible and the second element gives the completed system.

The function mayerBracketsSystem computes the pairwise Jacobi—-Mayer brackets
of a system of PDEs according to equation (3) and in these brackets replaces some first-or-
der partial derivatives of the unknown function obtained from the underlying system of
PDEs. The function derivativeQ checks whether an expression contains a derivative
of the unknown function.

mayerBrackets[f_, g_, ys_, xs_] :=
Module[{p =D[ys@@xs, H#] & /@xs,
h = Function[{x, y}, D[x, #] & /@y]},
h[f, p].h[g, xs] -h[g, p].h[f, xs] // Simplify]

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Célestin Wafo Soh

mayerBracketsSystem[system_, ys_, xs_] :=
Module[{p = Solve[# == 0 & /@system, D[ys@@xs, H] & /@xs]},
If[p = {}, {},
Flatten]|
Table[Table [mayerBrackets[system[[i]], system[[]j]],
ys, xs], {i, 1, j-1}1, {j, 1, Length[system]}]] /.
First@p // Simplify]]

derivativeQ[expr_, ys_, xs_] :=
Module[{temp =0}, expr /. D[__][ys] @@xs :» (temp = temp +1;);
temp > 0]

compatibilityQ[system_, ys_, xs_] :=
Module[{brackets = mayerBracketsSystem[system, ys, xs],

temp},
If[brackets == {}, {False, {}},
brackets = Select [brackets, Not[# === 0] &];

If [brackets == {}, {True, system},
temp = Select [brackets, ! derivativeQ[#, ys, xs] &];
If[temp == {} & Length[system] + Length[brackets] <=
Length[xs],
compatibilityQ[Join[brackets, system], ys, xs],

{False, {}}111]

o Putting Everything Together

Here we use the functions defined so far to solve an overdetermined system of first-order
PDEs in one unknown. The function solveOverdeterminedScalarFirstOrder-
PDEs takes as arguments the system to be solved, system, and its dependent and indepen-
dent variables, ys and xs. The function solutionQ verifies whether a given rule
solutions gives a solution of a system of first-order PDEs system in one unknown.

solveOverdeterminedScalarFirstOrderPDEs [system_, ys_, xs_] :=
Module[
{cSyst = compatibilityQ[system /. a_==b_:a-b, ys, xs]},
If[First@cSyst, solveCompatiblePDEs [
#:==0& /@First@Rest@cSyst, ys, xs], {}11;

solutionQ[system_, ys_, xs_, solutions_] :=
SelectFirst[systen,
Not [
Simplify[
/. ys » functionFromExpression[Values@solutions,
xs]] === True] &] === Missing["NotFound"];

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown

o Tests

This subsection is chiefly concerned with examples taken from various specified sources.
For convenience, warnings are suppressed with the built-in function Quiet. Undefined
global variables (h, k, ht, etc.) are used, so make sure there are no conflicts from your
own session.

x Test1

The examples presented here arise in the search of differential invariants of hyperbolic
PDEs [2].

e Example 1

xs = {h, k, ht, hx, kt, kx};

ys = J@@XSs;

systeml = {
hD[ys, ht] +kD[ys, kt] =0,
hD[ys, hx] +kD[ys, kx] =0,
hD[ys, h] +kD[ys, k] +2htD[ys, ht] +hxD[ys, hx] +
2kt D[ys, kt] +kxD[ys, kx] == 0,
hD[ys, h] +kD[ys, k] +ht D[ys, ht] +2hxD[ys, hx] +
kt D[ys, kt] +2kxD[ys, kx] =0

solutionl =

solveOverdeterminedScalarFirstOrderPDEs [systeml, J, xs] //
Quiet

{J[h, k, ht, hx, kt, kx] -

k (-htk+hkt) (-hxk+hkx)

[, . . 0)

Except for example 9, solutionQ gives True for all systems, so it is only shown once here.
solutionQ[systeml, J, xs, First@solutionl]

True

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Célestin Wafo Soh

e Example 2

With[
{xs = {h, k, ht, hx, kt, kx, htt, htx, hxx, ktt, ktx, kxx}},
ys =J@ee@exs;
solveOverdeterminedScalarFirstOrderPDEs [
{
kD[ys, kxx] +hD[ys, hxx] == 0,
kD[ys, ktt] +hD[ys, htt] == 0,
kD[ys, kx] +hD[ys, hx] + 3 kxD[ys, kxx] +
kt D[ys, ktx] + 3 hxD[ys, hxx] + ht D[ys, htx] == 0,
kD[ys, kt] +hD[ys, ht] +kxD[ys, ktx] + 3kt D[ys, ktt] +
hxD[ys, htx] + 3 ht D[ys, htt] == 0,
kxx D[ys, kxx] + 2 ktxD[ys, ktx] + 3 ktt D[ys, ktt] +
hxx D[ys, hxx] +2htxD[ys, htx] + 3 htt D[ys, htt] +
kxD[ys, kx] +2kt D[ys, kt] + hxD[ys, hx] +
2htD[ys, ht] +kD[ys, k] +hD[ys, h] =0,
3kxx D[ys, kxx] + 2ktxD[ys, ktx] + ktt D[ys, ktt] +
3hxxD[ys, hxx] +2 htxD[ys, htx] + htt D[ys, htt] +
2kxD[ys, kx] +kt D[ys, kt] +2 hxD[ys, hx] +
ht D[ys, ht] +kD[ys, k] +hDJ[ys, h] =
e
J, Xs

1
1 // Quiet

{J[h, k, ht, hx, kt, kx, htt, htx, hxx, ktt, ktx, kxx] >

ht (hxk-hk
k -hhtx+hthx hxkt-hktx- X0
crel|=, - ;- :
h h3 h3
h (-3hx*k+3hhxkx-h (-hxxk+hkxx))
(hx k - h kx) 2 '
(ht k-hkt) (hx k- hkx)
h’ '
(-3ht?’k+3hhtkt-h (-httk+hktt)) (hxk-hkx)?
- | 0}
h9

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown 9

e Example 3

With[
{xs = {h, ht, hx, k, kt, kx, A, x}},
ys =J@ee@exs;
solveOverdeterminedScalarFirstOrderPDEs [
{
hD[ys, ht] +kD[ys, kt] == 0,
hD[ys, hx] +kD[ys, kx] == 0,
hD[ys, h] +kD[ys, k] +2htD[ys, ht] +hxD[ys, hx] +
2ktD[ys, kt] +kxD[ys, kx] -AD[ys, A] == 0,
hD[ys, h] +kD[ys, k] +htD[ys, ht] +2hxD[ys, hx] +
kt D[ys, kt] +2kxD[ys, kx] -xD[ys, k] == 0

b

J, Xs

1
1 // Quiet

{J[h, ht, hx, k, kt, kx, A, x] -

k ~htk+hkt (-hxk+hkx) x
C[4]{—,h}<x\, , } {}}
h h3 x h?
= Test2
e Example 4
With[
{xs = {t, x, v, 2}},
ys = feexs;
solveOverdeterminedScalarFirstOrderPDEs [
{
-yD[ys, x] +z"2DJ[ys, z] +3tzD[ys, t]-4zys-3at”2-=:
o,
-yD[ys, y] -zD[ys, z] -tD[ys, t] +ys =0,
-xD[ys, y] -D[ys, z] =0
e
f, xs
]
1 // Quiet
312 at?x t3/2 C[4]
{f[t, X, Y, 2] > - + ' {}}

\/2y72xz \/yfxz \/2y72xz

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

10 Célestin Wafo Soh

m Test3

Examples 5 and 6 come from Saltykow [7].

e Example 5

With[
{xs = {y1, v2, y3, v4}},
ys = feexs;
solveOverdeterminedScalarFirstOrderPDEs [

{

D[ys, y1] - (1/ (y3y4)) D[ys, y3] +(1/y3"2) D[ys, y4] ==
o,

D[ys, y2] + (1/y4) D[ys, y3] - (2/y3) D[ys, y4] =

3

f, xs

1
1 // Quiet

{£ly1l, y2, y3, y4] >C[2] [y2+y3y4, yl+y3?y4], {}}

e Example 6

With[
{xs = {y1, v2, y3, y4}},
ys = feexs;
solveOverdeterminedScalarFirstOrderPDEs [
{
2ylD[ys, y1] +3y2D[ys, y2] +4y3D[ys, y3] +
5y4DJ[ys, y4] =0,
D[ys, yl] +4yl1D[ys, y3] +5y2D[ys, y4] =0,
y2D[ys, y3] +2 (y3-2y172) D[ys, y4] =0
I
f, xs

1
] // Simplify // Quiet
{f[yl, y2, y3, y4] >
{—4yl4—5yly22+4y12 y3—y32+y2y4} {}}
14

5 \2/3
yly2* (3/31(3’2)

C[3]

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown 11

m Test4

The two systems of PDEs treated here are in Mansion [4].

e Example 7

With[
{xs = {y1, y2, y3, y4}},
ysS = v@e@xs;
solveOverdeterminedScalarFirstOrderPDEs [
{
2y2y4"2DJ[ys, yl] +y3"2y4D[ys, y4] -y3"2ys =0,
2y2D[ys, y2] -y4D[ys, y4] -ys =0,
y2y4°2D[ys, y3] +yly3y4D[ys, y4] -yly3ys ==
1,
v, XS
1
] // Quiet

{vivi, v2, v3, v41 >

V2 \y2 ~y2y4? cm[% (-viy3?+v2y4?)|, (3}

e Example 8

With[
{xs = {y1, v2, y3, y4}},
ys = z2@@xs;
solveOverdeterminedScalarFirstOrderPDEs [

{

y3D[ys, y1] +y4D[ys, y2] -y1D[ys, y3] -y2DJ[ys, y4] =
o,

yl1D[ys, yl] -y2D[ys, y2] +y3D[ys, y3] -y4D[ys, y4] =0

Y,

Z, XS

1
1 // Simplify // Quiet

{z1v1, v2, v3, v4) 5 cl2)

2 2
ll+% v3 (yly2+y3y4d) 1+% v3 (y2y3-yly4)

' {3
V2 Ayl +y3? V2 Ay1®+y3? i

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

12 Célestin Wafo Soh

e Example 9

sol9 = With[
{xs = {y1, v2, y3, y4, y5}},
ys = feexs;
solveOverdeterminedScalarFirstOrderPDEs [

{

D[ys, yl1] D[ys, y5] -y2y4==0,
D[ys, y2] D[ys, y4] -yly5 ==
Y,

f, xs

1
] // Simplify // Quiet

{f[yl, v2, y3, v4, y5] -
yly4y5
Cl1][y3, y4, y5] + +y2C[2] [y3, y4, Y51,
Cl2] [y3, y4, ¥5]
x127yl
C[2][x126, x127, x128]
x127, x128] +y2C[2] %% %126, x127, x128] -
x127 x128y1C[2] (%1 [x126, x127, x128]
C[2][x126, x127, x128]?)J/
C[2][x126, x127, x128] =x127y2,
x127 x128y1C[2] (%10 [x126, x127, x128]
C[2][x126, x127, x128]
C[2][x126, x127, x128] (C[l] (0.1,0) 1x126, x127, x128] +

y2C[2] 919 [x126, x127, x128]>}}

x127 x128 +C[1](°0D %126,

{

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown 13

The second entry of so19 shows that there are two PDEs that were not solved. It is straight-
forward to separate these PDEs with respect to y1 and y2 to obtain new PDE:s that are easily
solved using the built-in function DSolve. The separation can be done automatically
through the following one-liner.

#=0&/@
Flatten]|
Values /@Map[CoefficientRules[#, {yl, y2}] &,
#/. (a_=b_)»a-b&/@sol9[[2]]]] // Simplify

x128C[2] (%01 [x126, x127, x128]
{x127 x128 | -1+ -0,
C[2][x126, x127, x128]
x128 c[2](®%1) [x126, %127, x128]
x127 |[-1+ -0,

C[2][x126, x127, x128]
x127 x128 Cc[1](% 01 [x126, x127, x128]
C[2][x126, x127, x128]
x127 x128 C[2] (%19 [x126, x127, x128]

C[2][x126, x127, x128]
C[2][x126, x127, x128] Cc[2](®/1:9 [x126, x127, x128] =0,

C[2][x126, x127, x128] Cc[1] (%10 [x126, x127, x128] == o}

== ’

m Testh

e Example 10

With[
{xs ={x, ¥y, 2, t}},
ys = f@@xs;
solveOverdeterminedScalarFirstOrderPDEs [
{
D[ys, t] + (1-x) D[ys, x]/t =0,
D[ys, z] + (Y- (x-1) t) D[ys, x] / (2t) =0,
D[ys, y] +D[ys, x] / t =
3
f, xs

1
1 // Quiet

{£(x, vy, 2, £] >C[3] [(-t (-1+x)+y) 2], {}}

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

14 Célestin Wafo Soh

e Example 11

With[
{xs = {x, y, 2}},
yS = u@e@exs;
solveOverdeterminedScalarFirstOrderPDEs [
{
D[ys, x] == 4Sin[y] Sin[y] Cos[z],
1/xD[ys, y] ==4Cos[z] Sin[2y],
1/ (xSin[y]) D[ys, 2] == -4 Sin[y] Sin[z]
Y,
u, Xs

1
1 // Quiet

{ulx, y, 2] >C[3] - xCos[2y-2z]+2xCos[z] -xCos[2y+2], {}}

e Example 12

With[
{xs = {x, ¥}},
ysS = z@@Xxs;
solveCompatiblePDEs [
{
D[ys, x] ==aE”" (y-ys),
D[ys, y] =bE" (y-ys) +1
1,
Z, XS
1
] // Quiet

{z[x, y] >Loglae¥x+be¥y+e¥C[2]], {}}

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown 15

The last example is due to Boole [8].

e Example 13

With[
{xs ={x, vy, 2, t}},
ys = p@@exs;
solveOverdeterminedScalarFirstOrderPDEs [

{

D[ys, x] + (t+xy+x2z)D[ys, z] + (y+2-3x) D[ys, t] =0,
D[ys, y]+(xzt+y-xy) D[ys, z] + (zt-y) D[ys, t] ==0
1,

P, Xs

1
] // Simplify // Quiet

{p[x, v, 2, t] > C[3] txx3y:+z}, {}}

B Conclusion

This article has introduced and implemented an algorithm based on the Bour—Mayer
method for solving an overdetermined system of PDEs in one unknown. We have demon-
strated the efficiency of our approach through the consideration of 13 examples.

B Acknowledgments

I gratefully acknowledge partial financial support from the DST-NRF Centre of Excellence
in Mathematical and Statistical Sciences, School of Computer Science and Applied Mathe-
matics, University of the Witwatersrand, Johannesburg, South Africa. I thank Prof. F. M.
Mahomed for securing the necessary funds and his team for the hospitality during my visit
last summer. This article is dedicated to my daughter Katlego on her sixteenth birthday.

B References

[1] P. E. Hydon, “How to Construct the Discrete Symmetries of Partial Differential Equations,”
European Journal of Applied Mathematics, 11(5), 2000 pp. 515-527.

[2] 1. K. Johnpillai, F. M. Mahomed and C. Wafo Soh, “Basis of Joint Invariants for (1 + 1) Linear
Hyperbolic Equations,” Journal of Nonlinear Mathematical Physics, 9(Supplement 2), 2002
pp. 49-59. doi:10.2991/jnmp.2002.9.s2.5.

[38] J. C. Ndogmo and P. Winternitz, “Generalized Casimir Operators of Solvable Lie Algebras
with Abelian Nilradicals,” Journal of Physics A: Mathematical and General, 27(8), 1994
pp. 2787-2800. iopscience.iop.org/article/10.1088/0305-4470/27/8/016/meta.

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

https://doi.org/10.2991/jnmp.2002.9.s2.5
http://iopscience.iop.org/article/10.1088/0305-4470/27/8/016/meta

16 Célestin Wafo Soh

[4] P. Mansion, Théorie des équations aux dérivées partielles du premier ordre, Paris: Gauthier-
Villars, 1875.

[5] B. Buchberger and F. Winkler, Grébner Bases and Applications, Cambridge: Cambridge
University Press, 1998.

[6] B. Kruglikov and V. Lychagin, “Compatibility, Multi-brackets and Integrability of Systems of
PDEs,” Acta Applicandse Mathematicae, 109(1), 2010 pp. 151-196.
doi:10.1007/s10440-009-9446-0.

[7]1 N. Saltykow, “Méthodes classiques d’intégration des équations aux dérivées partielles du
premier ordre a une fonction inconnu,” Mémorial des sciences mathématiques, 50, 1931
pp. 1-72. www.numdam.org/item?id=MSM_ 1931__ 50__ 1_0.

[8] G. Boole, “On Simultaneous Differential Equations of the First Order in Which the Number
of the Variables Exceeds by More Than One the Number of the Equations,” Philosophical
Transactions of the Royal Society of London, 152(5), 1862 pp. 437—454.
doi:10.1098/rstl.1862.0023.

C. W. Soh, “Symbolic Solutions of Simultaneous First-Order PDEs in One Unknown,” The Mathematica
Journal, 2018. dx.doi.org/doi:10.3888/tmj.20-2.

About the Author

Dr. C. Wafo Soh is currently an associate professor of mathematics at Jackson State
University and a visiting associate professor of applied mathematics at the University of
the Witwatersrand. He is the cofounder of the South African startup Recursive Thinking
Consulting, which specializes in process mining.

Célestin Wafo Soh -2

1 Department of Mathematics and Statistical Science
JSU Box 1760, Jackson State University

1400 JR Lynch Street

Jackson, MS 39217

Celestin.Wafo_Soh@jsums.edu

2 DST-NRF Centre of Excellence in Mathematical and Statistical Sciences
School of Computer Science and Applied Mathematics, University of the Witwatersrand
Johannesburg, Wits 2050, South Africa

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.

https://doi.org/10.1007/s10440-009-9446-0
http://www.numdam.org/item?id=MSM_1931__50__1_0
http://dx.doi.org/10.1098/rstl.1862.0023
mailto:Celestin.Wafo_Soh@jsums.edu

