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The Modular Group

A Finitely Generated Group with
Interesting Subgroups

Paul R. McCreary
Teri Jo Murphy
Christan Carter

The action of Mobius transformations with real coefficients
preserves the hyperbolic metric in the upper half-plane model of
the hyperbolic plane. The modular group is an interesting group of
hyperbolic isometries generated by two Mdébius transformations,
namely, an order-two element g»(z) = —1/z and an element of
infinite order g.(z) = z+ 1. Viewing the action of the group
elements on a model of the hyperbolic plane provides insight into
the structure of hyperbolic 2-space. Animations provide dynamic
illustrations of this action.

This article updates an earlier article [1].

1. Introduction

Transformations of spaces have long been objects of study. Many of the early examples of
formal group theory were the transformations of spaces. Among the most important transfor-
mations are the isometries, those transformations that preserve lengths. Euclidean isometries
are translations, rotations and reflections. The groups and subgroups of Euclidean isometries
of the plane are so familiar to us that we may not think of them as revealing much about the
space they transform. In hyperbolic space, however, light traveling or even a person travel-
ing on a hyperbolic shortest-distance path tends to veer away from the boundary. Thus, the
geometry is unusual enough so that viewing the actions of isometries of hyperbolic 2-space
reveals some of the shape of that space. Two-dimensional hyperbolic space is referred to as
the hyperbolic plane.
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Here are graphic building blocks used for all of the animations.

RightTriangle = Module[ {arc, center, start, end},
arc = Table[center + Cos[start + (end-start) n/21.] +
ISin[start + (end-start) n/21.], {n, 21}];
Join]|[
arc /. {center » 1, start - Pi, end > 2Pi/ 3},
arc /. {center » 0, start - Pi/ 3, end > Pi/ 2},
Table[I (1-n/21), {n, 21-1}],
{.0011}

N~ L

-1
VerticalStrip = ;
RightTriangle

LeftTriangle = -Conjugate@RightTriangle;

-1
RightVerticalStrip = 7
LeftTriangle

Figure 1 shows four cyan and white regions, each bounded by some combination of three
arcs or rays. Any two adjacent regions make up a fundamental region. The two fundamen-
tal regions shown on either side of the y axis (each with one white and one cyan half) are
related by the function —1/z, which is an inversion over the unit circle composed with a
reflection in the y axis.

Graphics | {

Circle[],
EdgeForm[Black],
White, Polygon@*ReIm@LeftTriangle,
Polygon@xReIm@RightVerticalStrip,
Cyan, Polygon@xReIm@RightTriangle,
Polygon@xReIm@VerticalStrip

}s

PlotRange -» {{-1, 1}, {0, 2}}, ImageSize -» 200 {1, 1},

Background -» LightGray]

A Figure 1. Two fundamental domains on either side of the y axis.
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The Modular Group

This article examines how elements of the modular group rearrange the triangular-shaped
regions shown in Figure 2. The curved paths are arcs of circles orthogonal to the x axis.
Arcs on these circles are hyperbolic geodesics, that is, shortest-distance paths in hyperbolic
2-space. In Euclidean space, the shortest-distance paths lie on straight lines. In hyperbolic
space, shortest paths lie on circles that intersect the boundary of the space at right angles.
Hyperbolic distances are computed as if there is a penalty to pay for traveling near to the
plane’s boundary. Thus, the shortest-distance paths between two points must bend away
from the boundary.

Graphics [{

Cyan, EdgeForm|[Black],

Polygon@ReIm@Flatten [

1,

Table [j -

1

1
n+VerticalStrip

{n, -2, 3}], 2

r {3, -2, 2}, {k, -4, 4},

PlotRange » {{-1.5, 1.505}, {-.2, 2}}, ImageSize—>450]

)

)

)

J>

N

)

J

)

!
J

)

)>
K
W

)
i

&
V/

)
¥

A Figure 2. The upper half-plane model of the hyperbolic plane.
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In the animations that follow, it is instructive to focus on the action that a transformation
takes on the family of circles that meet the x axis at right angles. The transformations that
we consider, namely members of the modular group, preserve this family of circles. The cir-
cles in the family are shuffled onto different members in the family, but no new circles are
created and none are taken away. One could say that in the context of hyperbolic geometry,
the transformations preserve the family of all shortest-distance paths. Indeed this is an excel-
lent thing for an isometry to do!

The context of this article can be found described in Chapter 2 of [2]. In this small text,

one can find illustrations that inspired our animations. The formulas, which made coding
the animations much simpler than one might expect, are given and justified in detail.

B 2. Mobius Transformations

First consider a class of functions known as Mobius transformations. These transformations
are named after the same mathematician with whom we associate the one-sided, half-twisted
Mobius band. Mobius transformations are defined by

az+b
7 a,b,c,d eC,ad-bc +0.

f(@)=

cz+

az+b
cz+d

with real coefficients falls into one of two categories: either ¢ = 0, and the graph is a straight
line, or ¢ # 0, and the graph is a hyperbola. A representation of this latter type of function is
shown in Figure 3.

Here C stands for the complex numbers. Over the reals, a Mobius transformation f(z) =

Show [
Plot[(2x+1) / (x+1), {x, -10, 10},
PlotRange -> {{-5, 5}, {-4, 6}}1,
Graphics[{Dashing[{.02, .05}], Line[{{-50, 2}, {50, 2}}],
Line[{{-1, -50}, {-1, 50}}]}],
PlotRange -> {{-5, 5}, {-4, 6}}
1

4l

2x+1

A Figure 3. Graph of f(x) =

shown with dashed asymptotes.

x+1
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The Modular Group 5

Our purpose is to investigate how Mobius transformations stretch and twist regions in the
extended complex plane. The complex plane is the usual Euclidean plane with each point
identified as a complex number—namely, (x,y) = x +iy. The extended complex plane is
formed from the complex plane by adding the point at infinity. A Mobius transformation
is one-to-one (injective) on the extended complex plane C* = C | {co}.

When a Mobius transformation F acts on a complex number, F(x +iy) = u +i v, we may view
the action as moving the point (x, y) to the point (&, v). Importantly, a Mobius transformation
maps the set S of circles and lines in C* back to S in C*. A comprehensive proof of this fact
may be found in most elementary texts on complex variables, for example, in [3], p. 158.

The figures of our animations live in the extended complex plane. Each point of a figure,
taken as a complex number, is acted on by the Mdbius transformations. These transforma-
tions spin hyperbolic 2-space about a fixed point or shift the space in one direction or another.

B 3. The Modular Group and Hyperbolic Space

The modular group M is a special class of Mobius transformations:

az+b
M:={f(z): 7 a,b,c,deZ,ad—bc:l}.
c

L . . . . (a b
That is, if f € M, the coefficients of f are integers and the coefficient matrix ( c a’) has
determinant equal to one.

What is a group? Recall that a group is a set G together with a binary operation satisfying
certain properties: (1) the set G must be closed under the operation; (2) the operation must
be associative; and (3) there must be an identity element for the operation, and all inverses
of elements in G must themselves be elements of G. The proof that the modular group is,
in fact, a group under the operation of function composition is a standard exercise in a
course on complex analysis. (See, for example, [3], p. 277-278.)

We take as established that the elements of the modular group do indeed form a group and
investigate some of the interesting subgroups.

o Fundamental Regions

One of our main goals is to investigate how the elements of the modular group act on
fundamental regions. That is to say, how the regions are stretched and bent when we
view them as Euclidean objects. As hyperbolic objects, the regions are all carbon copies
of each other, in much the same way that the squares on a checkerboard are all identical
in ordinary Euclidean geometry.
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In general, a group of one-to-one transformations acting on a topological space partitions
that space into fundamental regions. For a collection of sets {U;} to be a collection of
fundamental regions, certain properties must hold. First and foremost, the U; must be
pairwise disjoint. Second, given any transformation f in the group other than the identity,
U; and f(U;) are disjoint. Finally, given any two regions U; and Uj, there exists some
transformation f such that f(U;) = U;.

Generally, in order to cover the entire space without overlapping, each fundamental region
must contain some but not all of its boundary points. This technicality is set aside for the
purposes of this article.

In fact, in this article we relax the definition to include all of the boundary points for a
particular fundamental region. Thus, adjacent fundamental regions can only overlap on
their boundaries. The essential feature remains that there is no area in the intersection of
adjacent regions.

A group of transformations does not necessarily yield a unique partition of the space into
fundamental regions. Thus, the fundamental regions we view are merely representative
fundamental regions.

Figure 4 shows a fundamental region of the modular group with some parts highlighted.

Module[ {
(*» vertex with tangents *)
v={1/2, sqrt[3] / 2},

(» tangent directions =)

dl=.3 {Cos[Pi/6], Sin[Pi/ 6]},

d2 = .3 {Cos[-Pi/6], Sin[-Pi/ 6]}

}s
Graphics|[

{
EdgeForm[Black], Cyan,
Polygon@ReIm@RightTriangle,

Black,

(» tangent lines =*)
Line[{v+dl, v-dl1}],
Line[{v+d2, v-d2}],

Line@ReIm@LeftTriangle,

Magenta,

Circle[v, 1/8, {-Pi/6, Pi/6}],

Red, PointSize[.02],

Point[{{O0, 1}, {-1, 1} v, {0, O}, v}]

}y

PlotRange -> {{- .55, .69}, {-.05, 1.05}}
1
1
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The Modular Group 7

A Figure 4. A fundamental region with vertices marked and a pair of tangents.

Each fundamental region contains four vertices that can be fixed by elements of the modular
group. (A point f is fixed by f if f(p) = p.) Tangents are drawn at one vertex; the angle is 60
degrees. The vertex at the top has a straight, 180 degree angle. The vertex at the bottom has
a zero degree angle because the tangents to the intersecting arcs coincide there. Any
hyperbolic polygon with a vertex on the boundary of the space (the x axis in this case of the
upper half-plane) has a zero degree angle at that vertex. The corresponding four angles in
each fundamental region have the same measures as those indicated here. Each vertex can
be fixed by some element in the modular group. Further, each fundamental region can be
mapped onto any other fundamental region by an element of the modular group.

A classic view of the matter is to see the upper half-plane as tessellated (or tiled) by trian-
gular-shaped regions, as in Figure 2. A checkerboard tessellation of the Euclidean plane can
be constructed by sliding copies of a square to the left, right, up and down. Eventually, the
plane is covered with square tiles. The modular group tessellates the hyperbolic plane in an
analogous way. The elements of the group move copies of a fundamental region until trian-
gular-shaped tiles cover the upper half-plane model of the hyperbolic plane. Of course, these
tiles do not appear to be identical to our eyes, trained to match shapes and lengths in
Euclidean geometry. However, the triangular-shaped tiles are all identical if measured using
the hyperbolic metric. In the tiling process, all areas in the upper half-plane are covered by
tiles and no two tiles have any overlapping area. In fact, this procedure is precisely how the
hyperbolic plane illustration was constructed. The boundary points for a single fundamental
region were acted on by function elements of the modular group, and the resulting points
were drawn as a boundary line in the illustration.

It helps to note that each transformation in M has at least one fixed point. Some transforma-
tions in M have two fixed points. Only the identity map has more than two. In the illustra-
tions that follow, we observe the placement of fixed points and the way transformations
map fundamental regions near them.

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



8 Paul R. McCreary, Teri Jo Murphy and Christan Carter

o Hyperbolic Lengths

The hyperbolic metric is a rather curious metric that challenges our notion of distance.
Under the hyperbolic metric in the upper half-plane, the shortest distance between two
points is along a vertical line or an arc of a circle perpendicular to the boundary (the real
axis). For example, the shortest hyperbolic path between the points z=1i and z=1+1i

is the top arc of the circle {z: |z— L= %} which passes through both points and is

perpendicular to the real axis (Figure 5).

Show|[
Graphics|[
{
Circle[{.5, 0}, Sqrt[5/4]],
Text[Style["i", Italic, 14], {0, 1}, {-7, 2}],
Text [Style[Row[{1l, " + ", Style["i", Italic]}], 14],
{1, 1}, {1.5, 2}],
Red, Circle[{.5, 0}, Sqrt[5/ 4],
{ArcTan[2], Pi-ArcTan[2]}],
RGBColor [0, O, 0], PointSize[.02], Point[{{O0, 1}, {1, 1}}],
PlotRange -> {{-.7, 1.7}, {-1.2, 1.2}}
}

], Axes -> True

]

A Figure 5. The shortest hyperbolic path between the points i and 1 + i.
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The Modular Group 9

Without discussing precisely how hyperbolic lengths and areas are measured, we state that
every image under a transformation in the modular group is congruent to every other image
under the hyperbolic metric. Thus, all of our fundamental regions shown in the animations
are actually the same size in the hyperbolic metric. For a discussion on hyperbolic metrics,
[4] is a good place to start.

B 4. Structure of the Modular Group

We structure our investigation of the modular group by considering four cyclic subgroups.
Recall that a cyclic subgroup can be generated by computing all powers of a single group
element. The four cyclic subgroups we present are representative of the four possible
types of subgroups found in the modular group.

o Four Examples of Cyclic Subgroups

" (g;)

For the first subgroup, consider the function g,(z) = —1/z; it is a Mobius transformation with

0

cates that g, is of order two in M; that is, g,(g2(z)) = z, and so g, is its own inverse. In this
case, g, generates a subgroup with only two elements, namely M, = (g;) = {z, —1/z}.

coefficients a =0, b= —1,c =1, d = 0 and coefficient matrix ((1) ) The subscript indi-

In this article, we adopt the standard notation that angular parentheses ( ) indicate the set
of elements generated by taking products from the elements enclosed by the parentheses.
Curly braces { }, on the other hand, enclose the delineated list of elements in a set.

g2[z_] :=-1/12

The Mobius transformation o, its inverse o and the function R2 are used for the motion in
Figure 6.

z-1I

plz_] :=
z+1I

zI+1I

olz_] := 1
-z +
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R2[F_, t_] :=
Table [
ReIm@Table[c[Exp[2Pi I t] p@F[[j]]], {j, Length[F]}][[i]],
{i, 2}]

Manipulate[

Graphics[

{

EdgeForm[Black],
LightGray,

Line@Flatten[Join[
1

{Table[ReIm[n— ], {n, -2, 2}]},

RightTriangle

Table[ReIm[m— = ],
Table[n-—;;;;j:;;;;, {n, -2, 2}]
(m, -2, 2}]
1],

(*» background figures =)

Table[{

{Lighter@Red, Darker@Green}[[n]],
-1

Line[RZ[{LeftTriangle, }, tG][[n]]],

LeftTriangle
-1

Polygon[Rz[{RightTriangle, }, t6][[n]]]

RightTriangle
), a, )
(* pinweel arms =*)
}.
PlotRange -» {{-1.5, 1.5}, {-.1, 3}}, Axes - True,
Ticks - None, ImageSize—>400],

{{t6, 0, "rotation "}, 0, 1, Appearance -» "Labeled"},
SaveDefinitions - True

]
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rotation c{j 0

A Figure 6. Action of the order-two element g2(z) = —i—.

The Manipulate depicts the way in which g, maps the two fundamental regions shown in
Figure 2 onto one another. In fact, the action of g, on the fundamental regions is to
hyperbolically rotate them 180° onto each other about the central fixed point z = i. The actual
mapping is performed instantaneously without rotation. In particular, only the first, middle
and final frames contain illustrations of fundamental regions. However, the sequence of
intermediate mappings illustrates through animation the mapping properties of g;. In a later
section, we discuss how the functions illustrated were broken into a composition of functions
so that the hyperbolic nature of their motion was made continuous.

This example highlights the fact that vertical lines are paths of least distance in the upper
half-plane model of the hyperbolic plane. Indeed, it is usual to view straight lines as
circles that have radii with infinite length and that pass through the point at infinity. With
this bending of the definition of a circle, a vertical line has all the characteristics required
of a geodesic in the hyperbolic plane. Like the circles, a vertical line is perpendicular to
the x axis, which is the boundary of the upper half-plane model of the hyperbolic plane. A
vertical line is the limit of a sequence of geodesic circles.
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" (g)

The second example (see Figure 7) is a subgroup of infinite order generated by the linear shift
(or translation) ge,(z) = z+ 1; it is a Mobius transformation with a=1, b=1,¢=0, d=1

and matrix ( (1) i ) The function g, has infinite order because g”.(z) = z + n, and no point of

C ever returns to its original position no matter how many times g. is applied, though
8oo(00) = oo in the extended plane. The subgroup produced by taking all powers of g, and its
inverse g, 1(z) = z— lisdenoted as Mo, = {goo) = {...,2—2,2— 1,2, 2+ 1,2+2,...}.

Every point in the plane shifts one unit to the right under the action of g.. The infinite
half-strips in the following Manipulate are images of each other under powers of g.
For contrast, we also provide images of these infinite half-strip regions under the map
g2(z) = —1/z. These images are bunched in a flower-like arrangement attached to the real
axis at the origin. As the blue infinite regions are pushed from left to right, their magenta
images echo their motion in a counterclockwise direction. These two actions are not pro-
duced by a single transformation. The two transformations that cause these actions are
closely related to each other as algebraic conjugates, but more on that in a later section.

Manipulate [

Graphics [

{

LightGray,
Line[Flatten[Join[
1

{Table[ReIm[n- ], {n, -2, 3}]},

RightTriangle

Table[ReIm[m— ! ],

-1 -
Table [n - RightTriangle ! {n’ 2 ! 2 }]

(m, -2, 2}]

|- 1]

(» background figures =*)

Lighter@Blue,
Linee@
1

ReIm[8 (£7-17/2) +Tab1e[n- , {n, -1, 1}”,

LeftTriangle
(*# lines on vertical fundamental region =*)

EdgeForm[Black],

Polygone@
1

ReIm[8 (t7-1/2) +Tab1e[n- , {n, -1, 1}]],
RightTriangle

(*» polygons on vertical fundamental region =)

Lighter@Magenta,
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-1
Line@ReIm[ ] I}
8 (t7-1/2) - —L
tl.‘able[—1 ,{n,—lll}]

n-
LeftTriangle

-1
Polygon@ReIm [ ]

8 (t7-1/2) - —L
Table[ ———, (n,-1,1} ]

n-
RightTriangle

(*» polygons on fundamental region at origin =*)

14

PlotRange » {{-2.5, 2.5}, {-.1, 2.3}}, Axes - True,
Ticks -» None, ImageSize -» 1.2 {400, 200}

B
{{t7, .5, "translation "}, O, 1, Appearance - "Labeled"},
SaveDefinitions -» True

]

0.5

translation

)

A Figure 7. This animation shows copies of fundamental regions moving back and forth, with corre-
sponding regions anchored at the origin.
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The hyperbolic isometry g, is notable among the elements of the modular group because
it is also a Euclidean isometry. Under the hyperbolic metric, the magenta regions are each
congruent to the half-strip regions in blue.

" (g3)
The third cyclic subgroup of M that we consider is generated by the composition of the

first two functions g, and g;: define g3(x) = g,°82(2) = % The subgroup generated by

1

this element is denoted M3 = (g3) = {z, %, z_—_l} a subgroup of order 3.

g3[z_] :=
z

Here is the fixed point of g3.

(11—1\[?);

T =

N | =

g3[t] ==t // Simplify

True

Define u and its inverse v.

Z-T

ulz_] := -
z - Conjugate|[t]

- Conjugate[t] z+t

viz_] := 1
-z +

In Figure 8, the function ¢t moves the fixed point t to the origin and v moves it back.

ult] // Simplify

0

v[0]

1
5—(1+1‘J§W

The function R3 is an order-three hyperbolic rotation made continuous; it is used in Figures
8and 11.

R3[F_, t_] :=
Table|[
ReIm@Table[v[u[F[[j]]] Exp[2/3PiIt]], {j, Length[F]}][[
ill, {i, 3}1]
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Manipulate[

Graphics[

{

EdgeForm[Black],
LightGray,

Line@Flatten[Join[

{Table[ReIm[n— RightTiiangle]’ e -t 2}]}'
Table[ReIm[m— - 1' ],
Table[n -1/ RightTriangle, {n, -1, 2}]

(m, -1, 2}]

3],

(*» background figures =*)

Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Linee@
) 1 1
R3[{LeftTr1angle, 1- , 1- },
LeftTriangle 1- —1
LeftTriangle
£8] [[m]],
Polygon@
1
R3[{RightTriangle, 1- ’
RightTriangle
1
1- ——1}, e8] 11},
RightTriangle
(m, 1, 3}]

(» arms of pinwheel )

}
PlotRange -» {{-1, 2}, {-.1, 3}}, Axes -» True, Ticks - None,
ImageSize » 400

B
{{t8, 0, "rotation "}, 0, 3, Appearance - "Labeled"},
SaveDefinitions - True

]
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rotation c{] 0

A Figure 8. Action of the order-three element g3 (z) = %

A red fundamental region and a green fundamental region are shown associated with the
blue fundamental region attached to the origin in the animation’s first frame. We include
these in order to provide a better orientation for the scene. Of special interest is how the
point of the blue region on the x axis moves as the rotation takes place. The point begins at
the origin and slides toward the right along the positive x axis. The blue lines of the cluster
become vertical precisely when that point arrives at the point at infinity! The point contin-
ues by sliding along the negative x axis to arrive back at the origin. It is fair to say that the
motion of a point as it passes through the origin is a “mirror image” of the motion of the
point as it passes through the point at infinity. The function used here is a composition of
Mobius transformations that is described and demonstrated in Figure 12.
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" (g)

The rotations we saw in the action of g, and g3 are of orders two and three, respectively.
That is to say, after the rotation is repeated a number of times, all points are back to their
original positions. In contrast, the function g., generates an infinite subgroup. When we iter-
ate g, the right shifts accumulate at the point at infinity. Points in the left half-plane get
repelled by infinity, while points in the right half-plane get attracted to infinity. Of course,
since all points in the left half-plane eventually map to points in the right half-plane, all
points are, in some sense, simultaneously attracted to and repelled by infinity under the
action of g.,. Indeed, the point at infinity is the single fixed point for the action of g,.

22z7+1
z+1
M, that differs from M, in the sense that g, has two distinct fixed points, an attractor

and a repeller.

The transformation g,(z) = in the modular group generates an infinite subgroup

Define the well-known golden ratio ¢; its reciprocalis 1 /¢ = 1 — ¢.
0=1/2(1+v5);

1/¢p=¢p-1

True

This defines g;, with fixed points ¢ and 1 — ¢.

2z+1

gh[z_] :=
z+1

gh/@e{¢, 1-¢} // Simplify

(3 (1-5), S (1-v5)]

2

Define @ to move the fixed points ¢ and 1 — ¢ to infinity and zero, respectively.

a[¢] // Simplify // Quiet

ComplexInfinity

a[l-¢] // Simplify

0
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Define S to be the inverse of @; 8 sends infinity back to ¢ and zero back to 1 — ¢.

-¢z+(1-¢)

-z+1

Blz_] :=

Limit[B[z], 2z » =]

1
2

(l+\/?)

B[O] // Simplify
1

5»(1-J?7)

all]

For Figure 9, ¥ makes the hyperbolic translation continuous. The ratio 0]

is the length
of the hyperbolic translation.

¥lz_, e_] ’3[(231 )" ata1]

Manipulate [

Module [ {topOfUnitCircle, MovingRegion},

L 27k
topOfUnitCircle = Table [Cos [

27‘(‘1{]
114

] +I Sin[
114

(k, 0., 57}];

MovingRegion = Join[

Table[n + VerticalStrip, {n, -4, 4}],

1
1-
Table[n + VerticalStrip, {n, 0, 4}] !
-1
Table[VerticalStrip+n, {n, -4, 0}] !
1
-2
Table[n + VerticalStrip, {n, 0, 4}]
E
Graphics[
Lightere@Gray,
Line@ReIm@Join [

Table[n + VerticalStrip, {n, -4, 4}],
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-1

Table[n + VerticalStrip, {n, -2, 2}]

B

(» background figures =*)

InfiniteLine[{{-1, 0}, {1, 0}}],

Blue, Line@ReIm[y[MovingRegion, t9]],
Red, Circle[{-1, 0}, 1, {0, Pi}],
Darker@Green, Circle[{2, 0}, 1, {0, Pi}],
Cyan, Line@ReIm@gh[topOfUnitCircle + 2],
(* boundary circles =)

Cyan, Line@ReIm@y[topOfUnitCircle +2, t9],
Darker@Green, Line@ReIm@y[topOfUnitCircle-1, t9],
(*» boundary of moving region =*)

PointSize[.01],

Red, Point[{1-¢, 0}],
Darker@Green, Point[{¢, 0}]
(» fixed points =x)

}

AspectRatio -> Automatic, PlotRange -> {{-4, 4}, {-.2, 4}},
ImageSize - 500]

B

{{t9, 0, "translate "}, 0, 1, Appearance - "Labeled"},
SaveDefinitions - True

]
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A Figure 9. Action of the hyperbolic element g; (z) =
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translate 0.2

/

(]

/

V(' |

?
D

5

2z+1
z+1 7

The Manipulate depicts the action of g, on fundamental regions in the plane. All
points exterior to the red circle on the left are mapped to the interior of the green circle on
the right. The animation begins with regions that lie exterior to the red and green circles.
These regions are all mapped to the area between the green circle and smaller cyan circle.
If the action of g, were to be repeated, the regions would be mapped into the interior of
increasingly small circles inside the smallest (cyan) circle shown. The attracting fixed
point for g, lies within these shrinking, nested circles.

The rotations and translations we have seen as examples are intimately related to Euclidean
rotations and translations, as discussed in Section 6. The transformation g, is related in a
similar way to a Euclidean dilation, which turns a figure into a similar but not congruent
image figure. A curious characteristic of hyperbolic space is that the distinction between
similarity and congruence disappears. In the hyperbolic plane, it is enough for two figures to
have the same angles to guarantee congruence. In marked contrast to Euclidean space, equal
angles guarantee that corresponding side lengths are equal in the hyperbolic metric.

Generators of M

The entire group M can be generated by the two functions g, and g.. In symbols,
M = {g,, 8- Establishing this fact requires tools from linear algebra about which we make
only a few brief comments. The group of 2 X 2 matrices with real number entries and with
nonzero determinants is denoted by GL[2, R]. This group has been studied extensively and
much is known about it. Thus, there are great advantages for any group that can be
represented as a subgroup of GL[2, R]. While the modular group cannot be represented in
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exactly this way, it almost can be. For instance, the elements ( i i) and (:i :i ) are

considered distinct in GL[2, R]. On the other hand, the actions of the two associated M&bius

222 _ Z(z+2) _ 2
-z=3 7 —(z+3) T z+3°

modular group, there are two associated elements in GL[2, R].

transformations are identical, since In general, for every element in the

A remarkable feature of Mdbius transformations is that the group operation of composi-
tions produces coefficients that are identical to the results of 2 X 2 matrix multiplication.

To see this, consider the two Mobius transformations “<2 and L. First, multiply the
cz+d gz+h
associated 2 X 2 matrices.
(a b)(e f)_(ae+bg af+bh)
c d)\g h) \ce+dg cf+dh)
Second, carry out the composition of the two functions.
a kb Calez+f) +b(gz+h)  (aetbg)z+(af+bh)
¢t g Cclez+N+d(gz+h)  (ce+dgz+(cf+dh)
87

The coefficients and the four matrix entries are the same!

In this way, the group operation of composition of functions in the modular group can be
replaced with the group operation of matrix multiplication in GL[2,R]. It is down this
path we would travel if we were to present a complete proof of the claim that the modular
group is generated by the two elements g, and g..

A major part of this claim is that any element of M can be written as a composition of g,
and g.,. Consider the following examples of compositions.
-1
gooogZ(Z) = ZT

2z-1
80°80°82(2) = =

3z-2
8o0°800°82°800°80°82(2) = J1 -

Each of these functions has a coefficient matrix with determinant equal to one. A worthy
exercise for undergraduate mathematics students is to verify by direct computations that
each equality holds for the indicated compositions.
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B 5. Conjugate Subgroups

The four examples of cyclic subgroups outlined in Section 4 give a complete description
of the four types of subgroups possible in the modular group. Any subgroup of the modu-
lar group is conjugate to a subgroup generated by g, g3, an iterate of g, or an iterate of
an element of the same type as gj,.

Recall that in a group G, a subgroup H is conjugate to a subgroup K if there exists an
element g € G such that the entire subgroup H can be generated by computing gk g~! for
every ke K. More compactly, we write H = {gkg~!|keK}, and even more compactly,
H=gKg.

Here we define the hyperbolic translation 7 that relates two order-three elements: g5 and f.

niz_] :=
z+1

Consider a function f in the modular group that generates an order-three subgroup
(Figure 10).

f[F_, t_] :=
Table|[
ReIm@Table[n[v[u[F[[j]]] Exp[2/3PiIt]]],
{j, Length[F]}][[i]], {i, 3}]

RotatingRegions =
{
Table[n + VerticalStrip, {n, 0, 2}],
Table[-1/ (VerticalStrip+n) +1, {n, 0, 2}],
Table[-1/ (VerticalStrip+n-1), {n, 0, 2}]
}i

RotatingRegionsRight =
{
Table[RightVerticalStrip+n, {n, 0, 2}],
Table[-1/ (RightVerticalStrip+n) +1, {n, 0, 2}],
Table[-1/ (RightVerticalStrip+n-1), {n, 0, 2}]
}i
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Manipulate[

Graphics[

{

Lighter@Gray, Circle[{0, 0}, 1],
EdgeForm[Black],

LightGray,
Line@Flatten[Join[
1
{Table[ReIm[n— ], {n, -1, 2}]},
RightTriangle
1
Table[ReIm[m— ],
—1 -—
Table [n - RightTriangle ' {n’ 1 ' 2 }]

(m, -1, 2}]

|- 1]

Table[{{Lighter@Red, Lighter@Blue, Darker@Green}[[n]],
Polygon@f [RotatingRegions, t10][[n, 2]]}, {n, 3}],
Table[{{Lighter@Red, Lighter@Blue, Darker@Green}[[n]],
Line@f[RotatingRegionsRight, t10][[n, 2]]1}, {n, 3}]

}, PlotRange -> {{-.6, 1.5}, {-.1, 2}},
ImageSize -» 2 {200, 200}

]

’

{{t10, 0, "rotate "}, 0, 3, Appearance - "Labeled"},
SaveDefinitions - True

]
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rotate CG 0

A Figure 10. The action of the order-three function f on a selection of fundamental regions.

We view side by side the actions of f on the right and 5! g3 7 on the left. For the figure
on the left, first the function 7 moves the fixed point of f onto the fixed point of g3. Then
the function g3 rotates the attached fundamental regions, as we have seen it do before,
while at the same time the function f acts on the right-hand figure. Finally, the inverse of
n returns the fixed point and associated regions to the original position, except that the fun-
damental regions have been rotated in the same way as those on the right. Thus, the final
results are the same in both cases.

The function £ is used for the continuous motion in Figure 11.

z+t-1
Elz_, t_] := ——

z+t
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graphicsll[t_, tablel_, table2_] := Framed@Graphics]|[
{

EdgeForm[Black],

LightGray,

Line[Flatten[Join]|
{Table[ReIm /@ (-1 /RightTriangle+n), {n, -1, 2}1},
Table|[

ReIm /@ (-1 / Table[-1/ RightTriangle+n, {n, -1, 2}] +
m), {m, -1, 2}]
1, 111,
tablel, table2}, PlotRange -» {{-.6, 1.5}, {-.1, 2}},
ImageSize » {250, 250}
1

Manipulate[
Grid[{
Which|[
tll1<1/3,
{
graphics11[1 -3 tl11,
Table[{{Lighter@Red, Lighter@Blue, Darker@Green} [ [
n]], Polygon]|
ReIm /@ L [RotatingRegions, 1-3t1l1][[n, 2]1]1},
{n, 3}1,
Table[{{Lighter@Red, Lighter@Blue, Darker@Green} [ [
n]l],
Line[ReIm /@ L [RotatingRegionsRight, 1-3 t11l][[
n, 2111}, {n, 3}]
1,
Spacer[10],
graphicsll]J1,
Table[{{Lighter@Red, Lighter@Blue, Darker@Green} [ [
n]], Polygon][
ReIm /@ L [RotatingRegions, 1] [[n, 2]]1}, {n, 3}1,
Table[{{Lighter@Red, Lighter@Blue, Darker@Green} [ [
n]l,
Line[ReIm /@ £[RotatingRegionsRight, 1][[n, 2]]]1},
{n, 3}]
]
Y
1/3<tl1<2/3,
{
graphics11[3 (t11-1/3),
Table[{{Darker@Green, Lighter@Red, Lighter@Blue}[[
n]], Polygon][
R3[RotatingRegions, 3 (t11-1/3-del)][[n, 2]1]},
{n, 3}1,
Table[{{Darker@Green, Lighter@Red, Lighter@Blue}[[
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nl],
Line[R3[RotatingRegionsRight, 3 (t11-1/3-del)][[
n, 2111}, {n, 3}]
1,
Spacer[10],
graphics11[3 (t11-1/3),
Table[{{Lighter@Red, Lighter@Blue, Darker@Green}[[
n]], Polygon|
f[RotatingRegions, 3 (t11-1/3-del)][[n, 2]]1},
{n, 3}1,
Table[{{Lighter@Red, Lighter@Blue, Darker@Green} [[
n]],
Line[f[RotatingRegionsRight, 3 (t11-1/3-del)][[
n, 2111}, {n, 3}]
1
T
ti1>2/3,
{
graphics11[3 (t11-2/3),
Table[{{Lighter@Blue, Darker@Green, Lighter@Red}[[
n]], Polygon]|
ReIm /@ Z[RotatingRegions, 3 (t11-2/3-2del)][[
n, 2111}, {n, 3}],
Table[{{Lighter@Blue, Darker@Green, Lighter@Red} [ [
n]l,
Line[
ReIm /@ L [RotatingRegionsRight,
3(t1l1-2/3-2del)][[n, 2]]]1}, {n, 3}]
1,
Spacer[10],
graphicsll]1,
Table[{{Lighter@Blue, Darker@Green, Lighter@Red}[[
n]], Polygon|
ReIm /@ £[RotatingRegions, 1] [[n, 2]]]}, {n, 3}],
Table[{{Lighter@Blue, Darker@Green, Lighter@Red}[[
n]l,
Line[ReIm /@ £ [RotatingRegionsRight, 1][[n, 2]]1},
{n, 3}]
1
}
1

1y
{{t11, 0, "transform "}, O, 1, Appearance - "Labeled"},

SaveDefinitions -» True

]
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transform

(]

0.2

A Figure 11. The action of ' gzpand f.

This animation demonstrates what it means for two functions to be conjugate equivalent.

B 6. Coding Considerations

All functions in the modular group are abruptly discontinuous; that is, their actions move
triangular regions onto other regions all in one jump. The facility to produce transforma-
tions that seem continuous is due to the following.

Every element of the modular group is conjugate equivalent to one of three Euclidean
transformations, namely a rotation about the origin, a scaling from the origin or a rigid
translation of the entire plane ([2], pp. 12-20).

These Euclidean transformations have very simple continuous forms:
Rotation: Ry(z) = €l z, 6 € [0, 2 7).

Scaling: Si(z) = kz, k € (0, o).

Translation: 7,(z) = z+a, a € C.

The left-hand side of Figure 12 shows the fixed point of g translated to the origin. Follow-
ing this transformation, all circles that passed through the original fixed point become
straight lines passing through the origin. A Euclidean rotation about the origin accom-
plishes the desired rearrangement of the regions. Finally, translating the fixed points back
to their original positions maps the fundamental regions to their proper, final positions.
We see that the final results are the same for the right and left animations.

Indeed, each frame in the right-hand animation was computed by composing the functions
that are explicitly portrayed in the left-hand animation.
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generallLFT[z_, zl_, wl_, z2_, w2_, z3_] :
w2 (z -z2) (zl—z3)]
‘ ]

wl - w2 (z1l-22) (z2-23)

N[— (-wl +w2) (

(*# z3-> Infinity =)
moveToOrigin[z_, t_] :=
generalLFT[z, .5+Sqrt[3]/2 (2-t) I, O,
.5-8Sqrt[3]/2(1-¢)I, -(1+2.5(1-¢t)) I,
.5-(Sqrt[3]/2+28qrt[3] /2 (1-t)) I]-
generallLFT[.5+ISqrt[3] /2,
.5+ (Sqrt[3]/2+Sqrt[3]/2 (1-t)) I, O,
.5-8qrt[3]/2(1-¢t)I, -(1+2.5(1-¢t)) I,
.5-(Sqrt[3]/2+28qrt[3]/2 (1-t)) I]+
(.5+I8qrt[3]/2) (1-t)

graphicsl2[table_] := Framed[Graphics |

{

LightGray,

Circle[{O, 0}, 1], Line[{{-10, O}, {10, 0}}]
(» background figures =),

EdgeForm[Black],

table
3
PlotRange » {{-1.5, 1.5}, {-1, 2}},
ImageSize » {250, 250}]]

Manipulate][
Which[
t12<0,
Grid[{
{
graphicsl2]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[
RelIm /@
({LeftTriangle, -1/ LeftTriangle+1,
-1/ (-1/LeftTriangle+1) +1}[[m]])],
Polygon|[
ReIm /@
({RightTriangle, -1/ RightTriangle+1,
-1/ (-1/RightTriangle+1) +1}[[m]])]},
{m, 1, 3}]
(# arms of pinwheel *)
1,
Spacer[10],
graphicsl2][
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Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[
ReIm /@
({LeftTriangle, -1/ LeftTriangle+1,
-1/ (-1/LeftTriangle+1) +1}[[m]])],
Polygon|[
ReIm /@
({RightTriangle, -1/ RightTriangle+1,
-1/ (-1/RightTriangle+1) +1}[[m]])]1},

{m, 1, 3}]
]
}
I
O0<tl2&&tl2<1/3,
Grid[{
{
graphicsl2]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[
RelIm /@
(moveToOrigin[ {LeftTriangle, -1/ LeftTriangle+1,
-1/ (-1/LeftTriangle+1) +1}, 3tl12][[m]])],
Polygon|[
ReIm /@
(moveToOrigin[ {RightTriangle,
-1/ RightTriangle+1,
-1/ (-1/RightTriangle+1) +1}, 3 t12][[
ml1)1},
{m, 1, 3}]

1,
Spacer[10],
graphicsl12]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[
RelIm /@
({LeftTriangle, -1/ LeftTriangle+1,
-1/ (-1/LeftTriangle+1) +1}[[m]])],
Polygon|[
RelIm /@
({RightTriangle, -1/ RightTriangle+1,
-1/ (-1/RightTriangle+1) +1}[[m]])]},
{m, 1, 3}]
]
}

I
t12>1/3 && t12<2/3,
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Grid[{
{
graphicsl12]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line][
ReIm/@ (E” (I (t12-1/3) 2Pi)
moveToOrigin|[{LeftTriangle, -1/ LeftTriangle +
1, -1/ (-1/LeftTriangle+1) +1}, 1][[
ml])1,
Polygon|[
ReIm/@ (E” (I (t12-1/3) 2Pi)
moveToOrigin[{RightTriangle, -1/ RightTriangle +
1, -1/ (-1/RightTriangle+1) +1}, 1][[
m]])1},
{m, 1, 3}]

1,
Spacer[10],
graphicsl2]|
Table] {
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[R3[{LeftTriangle, -1/ LeftTriangle+1,
-1/ (-1/LeftTriangle+1) +1}, 3 (£t12-1/3) 1[[
m]l],
Polygon|[
R3[{RightTriangle, -1/ RightTriangle+1,
-1/ (-1/RightTriangle+1) +1}, 3 (t12-1/3) ][]
ml1l},

{m, 1, 3}]
]
}
I
t12>2/3 && tl2<=1,
Grid[{
{
graphicsl2]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[
ReIm /@
(moveToOrigin[{-1/ (-1 /LeftTriangle+1) +1,
LeftTriangle, -1/ LeftTriangle +1},
1-3(t12-2/3)][[m]])],
Polygon[
RelIm /@
(moveToOrigin[{-1/ (-1 /RightTriangle+1) +1,
RightTriangle, -1/ RightTriangle +1},
1-3(t12-2/3)]1[[m]]1)1},
{m, 1, 3}]
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1,
Spacer[10],
graphicsl12]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line][
RelIm /@
({-1/ (-1/LeftTriangle+1) +1, LeftTriangle,
-1/ LeftTriangle+1}[[m]])],
Polygon|[
ReIm /@
({-1/ (-1/RightTriangle + 1) +1, RightTriangle,
-1/ RightTriangle+1}[[m]])]},
{m, 1, 3}]
1
}
I
ti2>1,
Grid[{
{
graphicsl12]|
Table[{
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line][
RelIm /@
({-1/ (-1/LeftTriangle+1) +1, LeftTriangle,
-1/ LeftTriangle+1}[[m]])],
Polygon|[
RelIm /@
({-1/ (-1/RightTriangle +1) +1, RightTriangle,
-1/ RightTriangle+1}[[m]])]},
{m, 1, 3}]
1,
Spacer[10],
graphicsl12]|
Table[ {
{Lighter@Blue, Darker@Green, Lighter@Red}[[m]],
Line[
ReIm /@
({-1/ (-1/LeftTriangle+1) +1, LeftTriangle,
-1/ LeftTriangle+1}[[m]])],
Polygon[
ReIm /@
({-1/ (-1/RightTriangle+1) +1, RightTriangle,
-1/ RightTriangle+1}[[m]])]},
{m, 1, 3}]
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1,
{{t12, -0.01, "composition rotation "}, -0.01, 1.01,

Appearance - "Labeled"},
SaveDefinitions -» True

]

composition rotation 0.25

(]

A Figure 12. Conjugation with rotation of 120°.

In this way, the action of the hyperbolic motions can be animated as continuous because
the Euclidean rotations, translations and dilations can all be coded as continuous functions.
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