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This article explores the numerical mathematics and
visualization capabilities of Mathematica in the framework of
quaternion algebra. In this context, we discuss computational
aspects of the recently introduced Newton and Weierstrass
methods for finding the roots of a quaternionic polynomial.

Introduction

Since Niven proved in his pioneering work [1] that every nonconstant polynomial of the form

P(x) =
an X"+ a,_1 X" '+ ... +a; x+ ag, witha, # 0 and ¢; € H (the quaternions),

)

has at least one zero in H, thereby extending the fundamental theorem of algebra to quater-
nionic polynomials, the use of such polynomials has been considered by different authors and
in different contexts. Quaternionic polynomials ([2]) have found a wealth of applications in a
number of different areas and have motivated the design of efficient methods for numerically
approximating their zeros (see e.g. [3-8]).

This article discusses two numerical methods to approximate the zeros (or roots) of polynomi-
als of the form (1). They can be seen as the quaternionic versions of the well-known Newton
and Weierstrass iterative root-finding methods and they both rely on quaternion arithmetic.
Here we explain in detail how we have used Mathematica to produce the numerical results
recently presented in [9-11].

All the computations in this article require the package QuaternionAnalysis, available
for download at w3.math.uminho.pt/QuaternionAnalysis (see [12] and [13]).
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B Newton-Like Methods

o Theoretical Framework

We introduce the basic definitions and results needed; we refer to Part 1 of this article [2]
for recalling the main aspects of the quaternion algebra H and to [14] for details on quater-
nionic calculus.

The real vector space R* can be identified with H by means of
X = (X0, X1, X2, %3) € R¥e— x =xg+ix; +jxo +kx3 € H,
where i, j and k are Hamilton’s imaginary units. Thus, throughout the article, we do not

distinguish an element in R* from the corresponding quaternion in H, unless we need to
stress the context.

Using the simplified notation x :=ix; + jx, + kx3 for the vector part of x, any arbitrary
nonreal quaternion x can be written as
x=xp+x=x+wX|x| ()

where | x| is the norm of x and w(x) is the quaternion

( X

wx) = —, (3)
| x|

also referred to as the sign of x. In addition, since w®)?* = -1 and |w(x)| =1, one can

say that w(x) behaves like the complex imaginary unit, and for this reason we call (2) the
complex-like form of the quaternion x.

In what follows, we consider domains 2 ¢ R* ~H and functions f:Q — H that can be
written in the form

fx) = flxo + wr) = ulxo, r) + w v(xo, 1), 4)
where r := | x|, w := w(x) and u and v are real-valued functions. Continuity and differentia-
bility are defined coordinate-wise.

We define on the set C!(£2, H) the so-called radial operators

1 _ 1
Orad = 5(50—0)@) and Oryq = 5(60+war)a

_ 0

 ox,

where 0y := 6‘670 and 0, :

We introduce the following concept.
Definition 1

Let f be a function of the form (4), x € Q and h = hy + w(x) h,, with hy, h, € R. Such
a function f is called radially holomorphic (or radially regular) in Q) if

lim (f(x + h) = f() h!

exists. In that case, this limit is called the radial derivative of f at x and is denoted by f".
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Theorem 1

A function f of the form (4) is radially holomorphic iff dyaf = 0. In that case, we
have f'= 0 f = 0o f = 0yu(xy, r) +w 0y v(xg, 1).
It follows at once that any quaternionic polynomial of the form (1) but with a; € R is radi-
ally holomorphic and its radial derivative is

PX)=na,x"'+(m-1)a,. X" 2+...+a,. 5)

O Quaternionic Newton Method

For holomorphic complex functions f of one complex variable, the well-known Newton
method for finding a zero x* consists of approximating x* € C by means of the iterative process

(z)
2D—NM:zk+1=zk—f—k,k:0,l,2,..., 6)

1 (@)
with z; € C sufficiently close to x* € R? and f' (z;) # 0. Identifying a real quaternion with
a vector in R*, the problem of solving any quaternionic equation can always be trans-
formed into the problem of solving a system of four nonlinear equations, whose solutions,
in turn, can be obtained by using the multivariate version of (6):

AD-NM : 7441 =z — (U f@)) ! flzo), k=0,1,2, ..., (7)

with z; € R* sufficiently close to x* € R* and a nonsingular Jacobian matrix J f(z;). Not
surprisingly, recent experiments performed by some of the authors of this article ([9],
[10]) have shown the substantial gain in computational effort that can be achieved when
using a direct quaternionic approach to this problem.

Newton methods in the quaternion context were formally adapted for the first time by
Janovskd and Opfer in [7], where the authors solved equations of the form x" = a,a € H.
Later, Kalantari in [15], using algebraic-combinatorial arguments, proposed a Newton
method for finding roots of special quaternionic polynomials. In [9], the equivalence between
the classical multivariate Newton method (7) and quaternionic versions of Newton methods
for a class of functions was established.

Due to the noncommutativity of multiplication for quaternions, the quotient of two quater-
nions p and ¢ may be interpreted in two different ways: either as p g~! (the right quotient) or

g~ p (the left quotient). This leads naturally to considering two versions of Newton iteration
in the quaternionic setting:

H = NMighe @ 21 = % — f(@0) (f @) k=0,1,2, ..., )

H—NMt : zie1 = 2% — (F @) flz), k=0,1,2, ... )
The derivative in equations (8) and (9) has been considered in [9] and [10] as the radial
derivative of a radially holomorphic function. In fact, in Corollary 2 of [9] it was proved
that for such functions, equations (7), (8) and (9) produce, for each z, the same sequence,
provided that J f(z;), kK =0, 1, ... is nonsingular. Here is a more general result.

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



4 M. Irene Falcdo, Fernando Miranda, Ricardo Severino and M. Joana Soares

Theorem 2 ([9], Theorem 4)

Let f(x) = i a; fi(x) be a function defined on the set C'(Q,H) such that the f;,
i=0

i=0,...,s, are radially holomorphic functions in ) and the «; are quaternions not all
zero. If 7* is a root of f such that J f(z*) is nonsingular and J f is Lipschitz continuous on
a neighborhood of z*, then for all zo € H sufficiently close to z* such that w(zg) commutes

with all w(a;), the Newton processes

S -1
H — NMighe © k1 = 2 — f(z1) (Z%‘fi' (Zk)) k=0,1,2,... (10)

i=0

s -
H — NMief © Zi+1 =Zk—(zafifi'(zk)] f@),k=0,1,2, ... (11
i=0

both produce the same sequence as (7), which converges quadratically to z*.

Each step k of the iterative schemes (10) and (11) is implemented in the function
NewtonIterativeFunction, which has as arguments the quaternion z; and the indica-
tion of the version: “right” for (10) or “1eft” for (11). At each step, a test of the value

of f'(z) is also performed. We recall again that all the functions presented here require the
package QuaternionAnalysis.

Needs["QuaternionAnalysis™ "]

A SetCoordinates: The coordinates system is set to {X0, X1, X2, X3}.

NewtonIterativeFunction[f_, Df_, q , "right", t_:10"7-16] :=
If[Abse (Dfee@q) >t, q- f@@q+* (1 /Dfee@q), Null]

NewtonIterativeFunction[f_, Df_, q_, "left", t_: 10"-16] :=
1f[Abse (Df@@q) >t, q- (1/Dfeeq) »+ fe@q, Null]

The H-Newton methods consist of the successive application of the iterative schemes (9)
or (10) through the function NewtonIterations, using a stopping criteria based on
the incremental size |zz:+; — 2x | and on the maximum number of iterations ITtMax.

TestConvergence[zl_, z2_, eps_] := Norm[zl - z2] > eps
NewtonIterations[f_, Df_, z0_, method_, eps_:10"-12,
ItMax_: 20] :=

NestWhileList [NewtonIterativeFunction[f, Df, #, method] &,
z0, TestConvergence[HH#, eps] &, 2, ItMax]
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Example 1

Consider the radially holomorphic polynomial p(x) = x> — x, whose only roots in H
are the real isolated roots — 1, 1 and 0. For the concepts of isolated and spherical roots, we
refer the reader to [2], Definition 4.

f1[xX0_, X1_, X2_, X3_] =
QPower [Quaternion[X0, X1, X2, X3], 3] -
Quaternion[X0, X1, X2, X3];
Df1l = Function[ {X0, X1, X2, X3},
Evaluate[Map[D[#, X0] &, £1[X0, X1, X2, X3]1]11;

The use of the initial guess zo = 1 —i + j — k requires nine iterations to get an approximation

to the root 0 with precision 10712, The fact that both methods produce the same sequence is
also confirmed.

NewtonIterations[fl, Dfl, Quaternion[l., -1., 1., -1.],
"right"] // Column

Quaternion
Quaternion
Quaternion
Quaternion

1., -1., 1., -1.]
0.713376, —0.611465, 0.611465, ~0.611465]
0.540286, -0.323683, 0.323683, -0.323683]
0.426575, -0.0788592, 0.0788592, —-0.0788592]
Quaternion[-0.0117115, 0.167662, -0.167662, 0.167662]
Quaternion[-0.00409338, 0.0225044, -0.0225044, 0.0225044]
Quaternion[-0.0000369029,

0.0000658452, -0.0000658452, 0.0000658452]

Quaternion [—2 .77941x 10712,
1.17485x1071%, -1.17485x10712, 1.17485x 1071?]

Quaternion[0., 0., 0., 0.]
Quaternion[0., 0., 0., 0.]

NewtonIterations[fl, Dfl, Quaternion[l., -1., 1., -1.],
"left"] // Column

Quaternion[1l. , 1., -1.]

Quaternion]0. 713376 -0.611465, 0.611465, -0.611465]
Quaternion[0.540286, -0.323683, 0.323683, -0.323683]
Quaternion[0.426575, -0.0788592, 0.0788592, -0.0788592]
Quaternion[-0.0117115, 0.167662, -0.167662, 0.167662]
Quaternion[-0.00409338, 0.0225044, -0.0225044, 0.0225044]

Quaternion[-0.0000369029,

0.0000658452, -0.0000658452, 0.0000658452]
Quaternion|-2.77941x 1072,

1.17485x107'%, -1.17485x107°'2, 1.17485><10’”]

Quaternion[0., 0., 0., 0.]
Quaternion[0., 0., 0., 0.]
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The use of the initial guesses zo = 1 + j and zp = 1 — j requires 14 iterations to get an approxi-
mation to the roots 1 and — 1, respectively.

NewtonIterations[fl, Dfl, Quaternion[l., 0., 1., O0.],
"right"] // Column

Quaternion[l., 0., 1., 0.]
Quaternion[0.756757, 0., 0.540541, 0.]
Quaternion[0.6375, 0., 0.146216, 0.]
Quaternion[0.782518, 0., -0.5633, 0.]
Quaternion[0.654848, 0., -0.172497, 0.]
Quaternion[0.765795, 0., 0.433337, 0.]
Quaternion[0.679227, 0., 0.049088, 0 ]
Quaternion[1.42625, 0., -0.397221, 0.]
Quaternion[1.11157, 0., -0.203991, O.]
Quaternion[0.98741, 0., -0.0588488, 0.]
Quaternion[0.994677, 0., 0.00153626, 0.]
Quaternion(1l. 00004 0., -0.0000249862, 0.]
[
[
[

1., 0., -2.95062x107%, 0.]

Quaternion 1., 0., -1.22895x107'7, 0.
Quaternion[l., 0., 0., 0.]

Quaternion

NewtonIterations[fl, Dfl, Quaternion[l., 0., 1., O0.],
"left"] // Column

Quaternion[l., 0., 1., 0.]
Quaternion[0.756757, 0., 0.540541, 0.]
Quaternion[0.6375, 0., 0.146216, 0.]
Quaternion[0.782518, 0., -0.5633, 0.]
Quaternion[0.654848, 0., -0.172497, 0.]
Quaternion[0.765795, 0., 0.433337, 0.]
Quaternion[0.679227, 0., 0.049088, 0 ]
Quaternion[1.42625, 0., -0.397221, 0.]
Quaternion[1.11157, 0., -0.203991, 0.]
Quaternion[0.98741, 0., -0.0588488, 0.]
Quaternion[0.994677, 0., 0.00153626, 0.]
Quaternion[1.00004, 0., -0.0000249862, 0.]
[
[
[1

Quaternion[l., 0., -2.95062x107%, 0. |
0., -1.22895x10°%7, 0. ]
, 0., 0.]

Quaternion
Quaternion
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NewtonIterations[fl, Dfl, Quaternion[-1., 0., 1., O0.],
"right"] // Column

Quaternion[-1., 0., 1., 0.]
Quaternion[-0.756757, 0., 0.540541, 0.]
Quaternion[-0.6375, 0., 0.146216, 0.]
Quaternion[-0.782518, 0., -0.5633, 0.]
Quaternion[-0.654848, 0., -0.172497, 0.]
Quaternion[-0.765795, 0., 0.433337, 0.]
Quaternion[-0.679227, 0., 0.049088, 0.]
Quaternion[-1.42625, 0., -0.397221, 0.]
Quaternion[-1.11157, 0., -0.203991, 0.]
Quaternion[-0.98741, 0., -0.0588488, 0.]
Quaternion[-0.994677, 0., 0.00153626, 0.]
Quaternion[-1.00004, 0., -0.0000249862, 0.]
Quaternion|[-1., 0., -2.95062x107°, 0.]
Quaternion|[-1., 0., -1.22895x10°'7, 0.
Quaternion[-1., 0., 0., 0.]

NewtonIterations[fl, Dfl, Quaternion[-1., 0., 1., 0.],
"left"] // Column

Quaternion[-1., 0., 1., 0.]
Quaternion[-0.756757, 0., 0.540541, 0.]
Quaternion[-0.6375, 0., 0.146216, 0.]
Quaternion[-0.782518, 0., -0.5633, 0.]
Quaternion[-0.654848, 0., -0.172497, 0.]
Quaternion[-0.765795, 0., 0.433337, 0.]
Quaternion[-0.679227, 0., 0.049088, 0.]
Quaternion[-1.42625, 0., -0.397221, 0.]
Quaternion[-1.11157, 0., -0.203991, 0.]
Quaternion[-0.98741, 0., -0.0588488, 0.]
Quaternion[-0.994677, 0., 0.00153626, 0.]
Quaternion[-1.00004, 0., -0.0000249862, 0.]
Quaternion[—l., 0., -2.95062x107°, 0.}
Quaternion|[-1., 0., -1.22895x107%7, 0. |
Quaternion[-1., 0., 0., 0.]
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Example 2

The polynomial p(x) = x3 + x has a real root 0 and the sphere of zeros [i]. Since the
polynomial is radially holomorphic, both methods produce the same sequence. Here we
would like to call attention to the convergence to the spherical root.

f2[xX0_, X1_, X2_, X3_] =
QOPower [Quaternion[X0, X1, X2, X3], 3] +
Quaternion[X0, X1, X2, X3];
Df2 = Function[ {X0, X1, X2, X3},
Evaluate[Map[D[#, X0] &, £2[X0, X1, X2, X3]111;

(sl = NewtonIterations[f2, Df2, Quaternion[l., -1., 1., -1.],
"right"]) // Last

Quaternion[-1.46937x107%, -0.57735, 0.57735, -0.57735]

NewtonIterations[f2, Df2, Quaternion[-1., 1., 0., 1.],
"right"] // Last

Quaternion[2.40741x107%, 0.707107, 0., 0.707107|

NewtonIterations[f2, Df2, Quaternion[-1., 2., 3., 4.],
"right"] // Last

Quaternion|-8.83524 x1072°, 0.371391, 0.557086, 0.742781|

As pointed out in Example 3 of [10], the behavior of the Newton methods in case of con-
vergence to values generating a spherical root [a] is clear: if zq is the initial guess, then
the Newton sequence converges to the root r € [a] such that w(r) = w(zg). This phe-
nomenon can be easily seen from the preceding results or by computing the sign (3) of the
vector part of the iterations.

W/@sl // Column

Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
Quaternion[0., -0.57735, 0.57735, -0.57735]
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When the initial guess zg is chosen in Q = {(0, x, y, 0) : x, y € R}, then all the subsequent
iterations belong to (.

Quaternion[O0, x, y, 0] - £2[0, x, y, O] »* (1 /Df2[0, x, y, O])

2x (X2 +y?) 2y (X2 +y?)

Quaternion|O0, ’ I}
-1+3x2+34y% -1+3x2+34°

InitialGuess =
{
Quaternion[0., 1., 2., 0.],
Quaternion[0., -1., -1.5, 0.],
Quaternion[0., -.3, .3, 0.],
Quaternion[0., .02, .7, 0.],
Quaternion[0., 1.2, .8, 0.],
Quaternion[0., .4, .5, 0.],
Quaternion[0., -.4, .5, 0.]
}i
seqs4D =
Apply[List, NewtonIterations[f2, Df2, #, "right"] & /@
InitialGuess, {2}];
seqgs2D = Map [Take[#, {2, 3}] &, seqs4D, {2}];
seqs2D = Map [ (Transpose@ {#1, Range[Lengthetl]}) &, seqs2D];

Show [
Plot[{Sqrt[1-x"2], -Sqrt[1l-x"2]}, {x, -2, 2},
PlotRange » All, PlotStyle » {Red}],
Graphics|[
{Circle[#, .03] & /@
(List @@@ (Rest@Most@H & /@ InitialGuess)),
Apply[ {AbsolutePointSize[8 / #2], Point[#1l]} &,
seqs2D, {2}],
Map[Line, Map[First, seqgs2D, {2}]1]1}1,
Frame -» True, FrameLabel » {x, y}, AspectRatio -» Automatic,
Ticks » None, Axes - False

]

-10 -05 00 05 10

X
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Example 3

Now consider the polynomial p(x) = x3 — jx* — x+j with the three isolated roots

ri=1,r,=—-1 and r3 = j (cf. [9], Example 3). This polynomial is not radially holomor-
phic, which means that we cannot anticipate the behavior of Newton methods unless we
choose initial guesses zp such that Theorem 2 applies, that is, such that w(zp) commutes

with w(j) = j. In other words, zo must be of the form a + j b.

£3[X0_, X1_, X2_, X3_] =
QPower [Quaternion[X0, X1, X2, x3], 3] -
Quaternion[0, 0, 1, O] *=*
QPower [Quaternion[X0, X1, X2, X3], 2] -
Quaternion[X0, X1, X2, X3] + Quaternion[0, O, 1, 0];
Df3 = Function[ {X0, X1, X2, X3},
Evaluate[Map[D[#, X0] &, £3[X0, X1, X2, X3]111;

NewtonlIterations[f3, Df3, Quaternion[l., 0., 2., 0.],
"right"] // Last

Quaternion[—7.93722xlo*”, 0., 1., o{

What happens if the assumptions of Theorem 2 are not valid? In fact, as we next illustrate,
although the left and right Newton methods do not give the same sequence, we can observe
convergence in both cases.

The choice zg = 1 +i+ 2 j leads, in both versions, to convergence to the root r3 = j.

NewtonIterations[f3, Df3, Quaternion[l., 1., 2., 0.],
"right"] // Column

Quaternion[l., 1., 2., 0.]

Quaternion[0.660633, 0.479638, 1.54299, -0.126697]
Quaternion[0.401696, 0.13592, 1.20369, -0.150778]
Quaternion[0.166646, -0.0369085, 0.992312, -0.0718172]
Quaternion[0.00536146, —-0.0240926, 0.979014, 0.0111292]
Quaternion[-0.000219403, 0.0000688575, 1.00114, 0.000301303]
Quaternion|-4.97446x 1077, -1.31574x 1077, 1., 3.09445x 10|
Quaternion[fl.32829x10’12,

-3.07868x107'%, 1., -1.30901x1073]

Quaternion|-4.12682x 1072, 3.47749x107°2%, 1., -8.18143x1072%]
Quaternion[0., 0., 1., 0.]
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NewtonlIterations[f3, Df3, Quaternion[l., 1

"left"] // Column

Quaternion
Quaternion
Quaternion
Quaternion
Quaternion
Quaternion

Quaternion]|-
-0.00150765, 0.998969,

0. 660633, 0.
0.405278, 0
0.168383, 0.

-0.0277294,

1., 1., 2., 0.
678733,
.409805, 0.971158, 0.179709]
0923196, 0.760201,
-0.144549, 0.875723,
0.00497575, 0.0313041,

0.000198594,
-0.000453679]

Quaternion[4.08499x10’ﬂ
2.92572%x10°%, 0.999999,

11

., 2., 0.7,

]
1.38009, 0.0904977]

0.227761]

~0.0347233]
0.978504, 0.0187528]

1.53546 x 107¢ |

Quaternion|-1.19923x107!?,
-9.84354x10712%, 1., —2.11736><10’“]

Quaternion[2.14176x 10723, 1.70721x10°%2, 1.,
-]

Quaternion[0., 0., 1., O

6.14242x1043]

With the choice zg = 1.31 + 2 i, the right version of the Newton method converges to the
root r3 = j, while the left version converges to r; = 1.

NewtonIterations[f3, Df3, Quaternion[1.31, 2., 0., O0.],
"right"] // Column
Quaternion[1.31, 2., 0., 0.]
Quaternion[0.908706, 1.38734, 0.43934, -0.212237]
Quaternion[0.638046, 0.879595, 0.76845, -0.380062]
Quaternion[0.420486, 0.387238, 0.99051, -0.449127]
Quaternion[0.215586, -0.014328, 1.06647, -0.288126]
Quaternion[0.0625773, -0.0814078, 1.03496, -0.0333192]
Quaternion[0.00554934, -0.00499996, 1.005, 0.00839568]
Quaternion[0.0000568226, 0.0000905714, 1.00009, 0.0000566505]
Quaternion[1.01771x10°%, 6.43985x10°%, 1., -1.0288x10°°|
Quaternion|3.29762x 107, -2.09405x107%¢, 1., -1.31078x1071¢]
Quaternion[1.47911x107%', -9.86076x 10732, 1., 1.2326x107%!|

NewtonIterations[f3, Df3, Quaternion[1.31, 2.,

"left"] // Column

0., 0.7,

Quaternion[1.31, 2., 0., 0.]

Quaternion[0.908706, 1.22532, -0.0502774, 0.103775]
Quaternion[0.671407, 0.631535, -0.0591902, 0.169317]
Quaternion[0.602177, 0.107295, 0.00150777, 0.174004]
Quaternion[0.92336, -0.247162, 0.184631, -0.104646]
Quaternion[0.876118, 0.00103716, -0.0397039, -0.0468976]
Quaternion[1.00287, 0.0069243, 0.0191523, 0.0130866]
Quaternion[0.999358, 0.0000841244, -0.000162339, 0.0000748251]
Quaternion|l., -1.56162x 1077, 3.95316x1077, -4.20693x 107¢]
Quaternion[l., -9.51746 x107*%, 1.57162x107*%, 1.93423x 107 ]
Quaternion[l., 3.70575x1072%, 5.10885x10°'%, -2.89733x10°2¢]
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It is interesting that the 4D Newton method (7) gives convergence to the other root
r, = —1, as observed in [9].

Following [9] and [10], consider a function Iterations that gives the number of itera-
tions required for each process to converge, within a certain precision, to one of the solu-
tions of the problem under consideration, using zq as the initial guess.

Iterations[f_, Df_, z0_, method_, eps_, ItMax_] := Module|[
{seq = NewtonIterations[f, Df, z0, method, eps, ItMax],
nseq},
nseq = Length@seq;
If[Last@seq === Null | | nseq > ItMax, Null, nseq]
1

We now consider different initial guesses zp by choosing points in special regions
Q = Q(x, y) c R* and we show density plots of Iterations. The white regions that may
appear correspond to a choice of zy € € for which the method under consideration does not
reach the level of precision eps with ItMax iterations. The default choices of
eps = 10" -2 and ItMax = 20 usually lead to realistic plots that require some minutes to
be produced. A smoother density can be obtained by increasing the option P1lotPoints.

ViewSolution[f_, Df_, domain_, method_, eps_: 10"-2,
ItMax_: 20] :=

DensityPlot[Iterations[f, Df, N@First@domain, method,

eps, ItMax], Evaluate[Sequence @@ (Rest@domain)],

PlotRange -> {0, ItMax}, PlotPoints - 50,
AspectRatio -> Automatic, MaxRecursion -> 1,
FrameTicksStyle -> Directive[7],
ColorFunctionScaling -> False,
ColorFunction -> (ColorData["Rainbow"] [# / ItMax] &),
PlotLegends » Automatic]

Example 4

We consider again the polynomial p(x) =x3—jx2— x+j of Example 3, whose
roots are the isolated roots —1, 1 and j. The following code produces the plots correspond-
ing to the choice of z in one of the following regions:

Ql = {(X,O, y,O)WC,y € [_2’ 2]}}7
QZ = {(-x’ y,O,O)UC,y € [_2’ 2]}}7
Q3 ={0,x,y,0):x,y € [-2, 2]}}.

As was already pointed out, Theorem 2 can be applied only in €)y; this is why both meth-
ods produce the same plots in this case.
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Computational Aspects of Quaternionic Polynomials 13

Show[ViewSolution[f3, Df3,

{Quaternion[x, 0, y, 0], {x, -2, 2}, {y, -2, 2}}, "left"]]
Show[ViewSolution[£f3, Df3,

{Quaternion[x, ol Y, o]l {xl ‘21 2}! {YI _21 2}}1 "right"]]
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Here is the behavior of the H-Newton methods in £2,.

Show[ViewSolution[f3, Df3,

{Quaternion([x, y, 0, 01, {x, -2, 2}, {y, -2, 2}}, "left"]]
Show[ViewSolution[£f3, Df3,

{Quaternion[x, Y, ol o]l {xl ‘21 z}l {YI _21 2}]'1 "right"]]

20

15

10

17.5

150
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10.0

75

50

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



Computational Aspects of Quaternionic Polynomials 15

Here is the behavior of the H-Newton methods in 3.

Show[ViewSolution[f3, Df3,

{Quaternion[0, x, ¥y, 01, {x, -2, 2}, {y, -2, 2}}, "left"]]
Show[ViewSolution[£f3, Df3,

{Quaternion[o, X, ¥y o]l {xl ‘21 2}! {YI _21 2}]'1 "right"]]
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o0 Basin of Attraction of a Root

The plots produced by ViewSolution give information on the number of iterations
required by each of the quaternionic Newton methods to converge within a certain precision
to any of the roots of the polynomial under consideration. However, those plots do not give
any information about the root and how the convergence occurs. This issue can be easily
overcome by plotting the basins of attraction of the roots with respect to the iterative
function. More precisely, we introduce a new input parameter in the function Newton-
Iterations with the information of the root for which we want to compute the basin of
attraction. A new function NewtonIterationsSphere takes into account the existence
of spheres of zeros. The functions ITterations and IterationsSphere give the
number of iterations needed to observe convergence to an isolated root or a spherical one,
respectively. These functions return Nul1l when the corresponding convergence test fails.

TestConvergenceSphere[zl_, z2_, eps_] :=
Abs[Re[zl] -Re[z2]] > eps | | Abs[AbsVec[zl] - AbsVec[z2]] > eps

NewtonIterations[f , Df , z0_, root_, method_, eps_,
ItMax_] :=

NestWhileList [NewtonIterativeFunction[f, Df, &, method] &,
z0, TestConvergence[H#, root, eps] &, 1, ItMax]

NewtonIterationsSphere[f , Df , z0_, root_, method_,
eps_, ItMax_] :=

NestWhileList [NewtonIterativeFunction[f, Df, &, method] &,
N[z0], TestConvergenceSphere[H#, root, eps] &, 1, ItMax]

Iterations[f_, Df , z0_, root_, method_, eps_, ItMax_] :=
Module[
{seq = NewtonIterations[f, Df, z0, root, method, eps, ItMax],
nseq}, nseq = Length@seq;
If[Last@seq === Null | | nseq > ItMax, Null, nseq]]

IterationsSphere[f_, Df_, z0_, root_, method_, eps_,
ItMax_] :=
Module[
{seq = NewtonIterationsSphere[f, Df, z0, root, method,
eps, ItMax], nseq}, nseq = Length@seq;
If[Last@seq === Null | | nseq > ItMax, Null, nseq]]
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The functions that plot the basin of attraction of an isolated root Basin or a spherical root
BasinSphere have an input parameter color associated to that root. The color coding
used is the following: if the initial guess zg, chosen in a domain = Q(x, y) ¢ R*, causes
the process to converge to a certain isolated root r to which the color ¢, was associated, then
the point zj is plotted with the color c,. For a sphere of zeros [s], all the points z, that con-
verge to a point in [s] have the color assigned to [s]. Dark shades of a color mean fast conver-
gence, while lighter-colored points lead to slower convergence. As before, white regions
mean that the method does not converge.

Basin[f_, Df_, domain_, root_, method_, color_,
eps_:10"-2, ItMax_: 20] :=

DensityPlot[Iterations[f, Df, N@First@domain, root,

method, eps, ItMax], Evaluate[Sequence @@ (Rest@domain)],

PlotRange -> {0, ItMax}, PlotPoints - 50,
AspectRatio -> Automatic, MaxRecursion -> 1,
FrameTicksStyle -> Directive[7],
ColorFunctionScaling -> False,
ColorFunction -> (Lighter[color, #/ ItMax] &) ]

BasinSphere[f_ , Df , domain_, root_, method_, color_,
eps_:10"-2, ItMax_: 20] :=
DensityPlot[IterationsSphere[f, Df, N@eFirst@domain,
root, method, eps, ItMax],
Evaluate[Sequence @@ (Rest@domain) ],
PlotRange -> {0, ItMax}, PlotPoints - 50,
AspectRatio -> Automatic, MaxRecursion -> 1,
FrameTicksStyle -> Directive[7],
ColorFunctionScaling -> False,
ColorFunction -> (Lighter[color, #/ ItMax] &) ]
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Example 5

We consider once more the polynomial p(x) = x> — jx2— x+j of Example 4, now
from the perspective of the basins of attraction of each of the roots —1, 1 and j. We associ-
ate with these roots the colors red, blue and green, respectively, and consider the domains
04, , and (3, described in Example 4. The corresponding plots can be obtained as follows
(it can take some time to produce the figures).

Here are the basins of attraction in ) (left).

Show[Basin[f3, Df3, {Quaternion[x, O, y, 0], {x, -2, 2},
{y, -2, 2}}, 1, "left", Darker@Red],
Basin[f3, Df3, {Quaternion[x, 0, y, 0], {x, -2, 2},
{y, -2, 2}}, -1, "left", Darker@Blue],
Basin[f3, Df3, {Quaternion[x, O, y, 0], {x, -2, 2},
{y, -2, 2}}, Quaternion[0, O, 1, 0], "left", Darker@Green],
PlotRange -» All]
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Here are the basins of attraction in ), (left and right).

Quiete

Show[Basin[f3, Df3, {Quaternion[x, y, 0, 0], {x, -2, 2},
{y, -2, 2}}, 1, "left", Darker@Red],

Basin[f3, Df3, {Quaternion[x, y, O, 0], {x, -2, 2},
{y, -2, 2}}, -1, "left", Darker@Blue],

Basin[f3, Df3, {Quaternion[x, y, O, 0], {x, -2, 2},
{y, -2, 2}}, Quaternion[0, O, 1, 0], "left",

Darker@Green], PlotRange -» All]

-2
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Here are the basins of attraction in )3 (left and right).

Show[Basin[f3, Df3, {Quaternion[O, x, y, 0], {x, -2, 2},
{y, -2, 2}}, 1, "left", Darker@Red],
Basin[f3, Df3, {Quaternion[O, x, y, 0], {x, -2, 2},
{y, -2, 2}}, -1, "left", Darker@Blue],
Basin[f3, Df3, {Quaternion[O, x, y, 0], {x, -2, 2},
{y, -2, 2}}, Quaternion[0, O, 1, 0], "left", Darker@Green],
PlotRange - All]
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Example 6

This example concerns the polynomial p(x) = x* + x studied in Example 2, which
has an isolated root O (red) and a sphere of zeros [i] (blue). The corresponding plots can
be obtained as follows.

Here are the basins of attraction in ) (left).

Show[Basin[f2, Df2, {Quaternion[x, O, y, 0], {x, -2, 2},
'[YI _21 2]’}1 oI
"left", Darker@Red],
BasinSphere[f2, Df2,
{Quaternion[x, 0, y, 0], {x, -2, 2}, {y, -2, 2}},
Quaternion[0, 1, 0, 0], "left", Darker@Blue],
PlotRange -» All]

Here are the basins of attraction in (), (left); as expected, the behavior is similar to that in
Q,, since [j] = [i].

2
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Here are the basins of attraction in ()3 (left).

Show[Basin[f2, Df2, {Quaternion[O, x, y, 0], {x, -2, 2},
{y, -2, 2}}, 0, "left", Darker@Red],
BasinSphere[f2, Df2,
{Quaternion[O, x, vy, 0], {x, -2, 2}, {y, -2, 2}},
Quaternion[0, 1, 0, 0], "left", Darker@Blue],
PlotRange —» All]

2

B Weierstrass Method

O Theoretical Framework

The Weierstrass method is one of the most popular iterative methods for obtaining simulta-
neously approximations to all the roots of a polynomial with complex coefficients. The
method was first proposed by Weierstrass [16] in 1891 and later rediscovered and derived
in different ways by Durand [17] in 1960, Docev [18] in 1962 and Kerner [19] and Presié
[20] in 1966.

Let P be a complex monic polynomial of degree n with roots {i,..., {, and let
219, ..., 2,© be n distinct numbers. The classical Weierstrass method for approximating
the roots ¢; is defined by the iterative scheme:
P(z;®)
7D = 7® ’ i=1,....n, k=0,1, ... (12)

i
[T jai 2 =2 ®
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If the roots 1, ... , {, are distinct and z;@, ... , 7,0 are sufficiently good initial approxi-
mations to these roots, then the method converges at a quadratic rate, as was first
proved by Docev [18]. The iteration procedure (12) computes one approximation at a
time based on the already computed approximations. For this reason, it is usually
referred to as the total-step or parallel mode. The convergence of the method can be
accelerated by using a variant—the so-called single-step, serial or sequential mode—
that makes use of the most recent updated approximations to the roots as soon as they
are available:

P(zV)

=] (20 — 5 ®4D) [Ty, @0 - 70) (13)
i=1,....,n; k=0,1, ....

2D = 200

In a recent article [11], we adapted the Weierstrass method to the quaternion algebra setting.
We refer to [2] and references therein to recall the main concepts and properties of the ring
H[x] of unilateral quaternionic polynomials. In particular, we recall the factorization of poly-
nomials P in H[x] into linear terms and the relation between zeros and factors of P.

Theorem 3—Factorization into linear terms

Any monic polynomial P of degree n = 1 in H[x] admits a factorization into linear

factors; that is, there exist xy, ... , X, such that

Px)=(x—x,)...(x—x). (14)
Theorem 4—Zeros from factors

Consider a polynomial P whose factor terms are xy, ... , X,; that is, P admits a fac-

torization of the form (14). If the similarity classes [x;], i =1, ..., n, are distinct, then P
has exactly n zeros {1, ... , {,, which are given by:

L= Re) K ROD) " i=1,.0n (15)
where

1, ifi=1
Ri) = { (x=x_1)...(x =x1), otherwise (16)

Weierstrass Algorithm

Following the idea of the Weierstrass method in its sequential version (13), the next
results show how to obtain sequences converging, at a quadratic rate, to the factor terms
in (14) of a given polynomial P. Moreover, by making use of Theorem 4, it is possible to
construct sequences converging quadratically to the roots of P.

Theorem 5 ([11])

Let P be a polynomial in H[x] of degree n with simple roots and, for i =1, ...,
n, k=0,1,2, ..., let

5 = 0 - (LO PRO) () (€0 7)™, a7

23
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where

LB@) = (x=2,P) (x = 2,21 ®) ... (x = 2211 P),

18
i=1,...,n—1and £,Px) =1, (18)
0 () -—
RiPO@) = (x =z ®*V) L (x = 2%D) L (x = 7 <D, (19)
i=2,...,nand R®Px) =1
and
i—1 n
CH(x) = l_[tpzj(kﬂ,(x) ]—[ Y0 (), (20)
j=1 j=it+l

with ¥, denoting the characteristic polynomial of q, that is, ¥, = (x — q) (x —q). If the initial
approximations z;9) are sufficiently close to the factor terms x; in a factorization of P in the
form (14), then the sequences {z\¥} converge quadratically to x;. Moreover, the sequences
{{ ,-(k)} defined by

40D = R+ D) 7, D(R WD) k=1, .., 1)
converge quadratically to the roots ; of P.

The functions £;®, R® and C;®¥ are implemented as the functions PolynomialZ,
PolynomialR and Polynomialc, respectively. The support file QPolynomial asso-
ciated with [2] needs to be loaded.

<< QPolynomial~

PolynomialZ[fact_, i_] := Module[

{n = Length@fact},

Which|[
i<n-1,
(NonCommutativeMultiply @@

(Polynomial[l, -Conjugate@#] & /@ (Drop[fact, i]))),
i==n-1, Polynomial[l, -Conjugate@#] & @@
(Drop[fact, i]),

i==n, Polynomial[1l]

1

1

PolynomialR[fact_, i_] := Module[

{n = Length@fact},

Which[
i==1, Polynomial[1l],
i==2, Polynomial[l, -Conjugate@#] & @@

(Drop[fact, i-n-1]),
i<n,
(NonCommutativeMultiply @@
(Polynomial[l, -Conjugate@h] & /@
(Drop[fact, i-n-11)))
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PolynomialC[factors: {_, _}, i_] :=
Eval[CharacteristicPolynomial @@Drop|[factors, {i}]]e@
factors[i]

PolynomialC[factors_, i_] := Module]
{factori = factors[i]},
NonCommutativeMultiply @@
Map[Eval[#] @factori &,
CharacteristicPolynomial /@Drop[factors, {i}]]

]

The iterative functions associated with (17) and (21) are built into the Weierstrass-
Iteration function.

WeierstrassIteration[pol , fact_, __ ] := Module][
{n = Length@fact, factors = fact, roots = {}, RPoli,
RPoliz},

For[i=1, i<n, i++,
RPoli = PolynomialR[factors, i];
factors[i] =
factors[i] -
Eval[Polynomial/Z[factors, i] #* pol ** RPoli] [
factors[i]]] ** (1 / PolynomialC[factors, i]);
RPoliz = Eval[RPoli] [factors[i]];
AppendTo[roots, RPoliz x* factors[i]] ** (1 / RPoliz)];
1;
{pol, factors, roots}

]

The quaternionic Weierstrass iterative method is implemented in the function Weier-
strassMethod.

TestConvergenceW[pol , x1_, x2_, eps_] :=
Max@ (Abs [Norm /@ (Last@x1l) - Norm /@ (Last@x2)]) > eps ||
Max@ (Abs[Re /@ (Last@x1) - Re /@ (Last@x2)]) > eps ||
Max@ (Norm /@Eval[pol, Last@x2]) > eps;

WeierstrassMethod[pol Polynomial, fact_, eps_: 10."-12,
max_Integer: 50] :=
Module[ {out, last, errorroots, errorfact},
If [Length@pol == Length@fact +1,
out = NestWhileList[WeierstrassIterationeet &,
{pol, fact}, TestConvergenceW|[pol, #1l, #2, eps] &,
2, max];
last = Take[Reverse@out, {1, 2}];
errorroots =
Max [Max@Abs[Re@ (last[[1l, 3]]) -Re /@ (last[2, 3])],
Max@ (Abs [Norm /@ (last[[1l, 3]]) - Norm /@ (last[[2, 3])1)1;
{If[errorroots < eps, "Convergence", "Divergence"],
Length@out - 1, N@errorroots, N@last[1l, 3],
Nelast[1l, 2]},
Message [WeierstrassMethod: :Dimensions]

N
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The usual convergence test max; | ;**) —® | <& has been replaced in TestCon-
vergenceW by

max |Re(£*D)—Re(4W)| < & andmax | |4%V |- [4P] | <&
14 l

in order to let the function WeierstrassMethod recognize a sphere of zeros. Since
we also include a test on the value of max; | P(£**")], there is no risk of misidentifying
an isolated root.

Example 7

We consider now the application of the Weierstrass method to the computation of the
roots of the polynomial p(x) = x> — jx2 — x+j of Example 3, which we recall are r; = 1,
r, = —1 and r3 = j. All of the initial approximations z;©, 2, and z;3© have to lie in dis-
tinct congruence classes.

WeierstrassMethod [Polynomial[l, Quaternion[0, O, -1, O],
-1, Quaternion[0, O, 1, 0]],
{1., 2., Quaternion[l., 0., 1., 0.]}]

{convergence, 6, 1.66533x10 %, {Quaternion[l., 0., 0.,0.7,
.y 0., -1.97215x1073%, 0.],
1.83671x10°4, 0., 1., o.]},

Quaternion[
[-
{Quaternion[l., 0., 0., 0.7,
[-
-

Quaternion

Quaternion|-1., 0., -1.97215x107%, 0.]

4
Quaternion[-1.83671x107*°, 0., 1., 0.]}}

Some explanation of the output is needed. The first entry indicates the convergence or
divergence of the method. The second entry is the error in the approximations to the zeros.
The last two entries contain approximations to the roots and factors terms. Since there are
two real roots and just one nonreal root, the roots and factor terms coincide.

Example 8

Our next test example is a polynomial that also fulfills the assumptions of Theorem
5 and has simple zeros (see [11], Example 1). First, we check that the polynomial

PO =x+2D)x+1+hEx-2)x-DE-2+)x—-1+19) (22)
has the roots
s i, H=2 2 1 2k G=1,4=
= = - —1—— ]+ — -
1 2 3 3] 3 3 4
(23)
| 29 14 22 224 ; 30 .
=—1l-—i+—j-— = —_—
s 3 T3 eI T
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Recall that the function ZerosFromChain included in QPolynomial can be used.

factors = {Quaternion[l, -1, O, 0], Quaternion[2, O, -1, O],
1, 2, Quaternion[-1, 0, O, -1], Quaternion[0O, -2, 0, 0]};
zeros = ZerosFromChain[factors]

2 1
{Quaternion[l, -1, 0, 07, Quaternion{Z, -y - =

N

4 4 4

3

w

29 14 22}
4

1, 2, Quaternion{—l, “397 39" 39

_ 224 30
Quaternlon[o, -—, 0, ——H
113 113

The Weierstrass method applied to the extended form of p produces the following results.

WeierstrassMethod [PolynomialFromChain[factors],
{Quaternion[0.5, 0., 0., 0.], Quaternion[l1.5, 0., -1., 0.],
Quaternion[l1.5, 1., -1., 1.], Quaternion[l1.5, 1., -1., 0.],
Quaternion[-0.5, 0., 0., O0.],
Quaternion[-1., -2., 0., 0.]}]

{convergence, 22, 9.10383x 10,
{Quaternion|1., -2.93099 %1075,
4.64073x107%%, -7.10543 x10'"], Quaternion|2.,
2.07834x 107, -3.9968x107'%, -6.4837x1071],
Quaternion[-1., -0.74359, 0.358974, -0.564103],
Quaternion|[l., -1., 3.31679x107'%, 3.44169x10*%],
Quaternion[2., -0.666667, -0.333333, 0.666667], Quaternion[
-9.71011x107%%, -1.9823, -6.245x107Y7, —0.265487}},
{Quaternion|1., -2.93099x107%°, 4.64073x107'¢,
-7.10543 x107'"], Quaternion|2.,
2.07834x 107, -3.9968x107'%, -6.4837x107%],
Quaternion[-1., -0.74359, 0.358974, -0.564103],
Quaternion[l., -0.801865, -0.540793, -0.254079],
Quaternion[2., 0.545455, -0.818182, -0.181818], Quaternion[
-1.04668x10°%°, —2., 2.49756 x 10°'*, —2.61124x10’5]}}

N[zeros]

{Quaternion|l., -1., 0., 0.7,

Quaternion[2., -0.666667, -0.333333, 0.666667], 1.,
2., Quaternion[-1., -0.74359, 0.358974, -0.5641037,
Quaternion[0., -1.9823, 0., -0.265487]}

The convergence to the roots is in a order different from the one given in (22) because

the convergence to the factor terms also occurs in a sequence different from the one
given in (23).
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Example 9

The polynomial p(x) = x3+(1+ j)x>+x+ 1+ j has an isolated root 1+ and a
sphere of zeros [i]. The assumptions of Theorem 5 do not apply to this polynomial, but we
can observe convergence to the roots as we increase the precision of the computations.
When a polynomial has a spherical root, two of its factor terms are in the same congru-

ence class. Therefore, as the iteration proceeds, the values Q;®(z;®) in (17) become close
to zero and some care is required.

WeierstrassMethod [Polynomial[l, Quaternion[l, O, 1, O],
1, Quaternion[l1l, 0, 1, 0]],
{Quaternion[-1., 1., 0, 0], Quaternion[2, O, O, O],
Quaternion[l, 0, O, 0]}]

{Divergence, 50, 1.82203x107°8, {Quaternion{

-9.42063x107%, 0.927843, -0.369866, -0.0480275],
Quaternion|[-1., -1.11022x107%¢, -1., -5.55112x1077],
Quaternion[-1.13651x10°%, 0.572246, -0.779212, 0.255662]},
{Quaternion|-9.42063x10°, 0.927843, -0.369866,

-0.0480275], Quaternion[-1., -0.559839,

-0.236198, -0.794224], Quaternion[

-1.13651x10°%, -0.368004, -0.393937, 0.842251]}}

Using the usual precision, it was not possible to reach the required 10~'? tolerance. How-
ever, performing the calculations with more decimal places causes a fast convergence, under
the same assumptions.

out = WeierstrassMethod[
Polynomial[l, Quaternion[l, O, 1, O], 1,
Quaternion[l, 0, 1, 0]],
N[ {Quaternion[-1, 1, 0, 0], Quaternion[2, 0, O, O],
Quaternion[1l, 0, O, 0]}, 200]]

{Convergence, 10, 6.9419x10°29, {Quaternion[
1.89705x 1074, 0.927843, -0.369866, -0.0480276],
Quaternion[—l., -2.88136x107%%, -1., —9.13966x10’56],
Quaternion[0., 0.788846, 0.29268, -0.540426]},
{Quaternion|1.89705x10°%¢, 0.927843,
-0.369866, -0.0480276],

Quaternion[-1., -0.559839, -0.236198, -0.794224],
Quaternion[0., -0.368004, -0.393937, 0.842251]}}
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The spherical root can be identified at once by observing that, up to the required precision,
we have [{] = [£3].

g=out[[5]];

Abs[Re[L[1]] -Re[Z[3]]]

1.89705 x 10746

Abs[Norm[E[[1]] - Norm[Z[3]]]

0.

B Conclusion

This is the second article on several computational aspects of polynomials in the ring
H[x]. One can find in the literature methods for numerically approximating the zeros of
quaternionic polynomials based on the use of complex techniques, but numerical methods
relying on quaternion arithmetic remain scarce, with the exceptions of the Newton and
Weierstrass methods discussed in this article. We developed several functions to imple-
ment those methods and we also added some visualization tools.
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Additional Material

1. The package QuaternionAnalysis.

Available at: w3.math.uminho.pt/QuaternionAnalysis

2. The file QPolynomial .m.

Available at: www.mathematica-journal.com/data/uploads/2018/05/QPolynomial.m
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